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RReessppoonnssee  ttoo  RReevviieewweerr  22  
We thank the two reviewers for their efforts and constructive comments (https://www.geosci-model-dev-discuss.net/gmd-
2018-123/#discussion). Each reviewer’s comments are shown below in italics, followed by our point-by-point responses in 
blue.  
 

AAnnoonnyymmoouuss  RReeffeerreeee  ##22  
This study is timely as the OCO2 satellite has begun producing data and relevant analyses are being conducted. I think the 
manuscript can contribute to the OCO2 community and, in general, the GHG community as well. The author did a lot of work 
including different sensitivity tests, and I think this work deserves publication after addressing issues I raise below. 

 
We thank Reviewer #2 for the positive feedback and constructive comments, which help improve both the scientific contents 
and the flow of this manuscript. In general, we identified several main concerns raised by Reviewer #2, in terms of 1) the 
flow of the manuscript, 2) transport error analysis, 3) background estimates, and 4) bias in wind direction and its impact on 
background estimates.  
 
We have tried to address each comment and make clarifications/modifications to the manuscript accordingly. Also, we 
recently merged the X-STILT model codes with the newer version of STILT (i.e., STILT-R version 2 by Fasoli et al., 2018) and 
updated figures and results.  

 
MMaaiinn  CCoommmmeennttss  
1. The paper covers a lot of aspects of comparing modeled column simulations and observations. The main manuscript is long 
and sometimes deviates from the main story to tell; even boring although this paper is technical by nature and the information 
can be useful. I recommend that the authors remove some sections and technical details to the Supplement and consolidate the 
main text for a coherent story. Another issue is that the authors do not link the text with figures well; some of the figure captions 
are enormously long. In many places, the authors finish the sentences with “see Fig. X” without explaining the content of the 
figure well enough. I strongly recommend that the authors identify more important results (even move some figures to the 
Supplement, e.g., Figure 4 or 5, 7) and convey those main results with more care and clarity; please explain the figures! For 
example, Section 3.2 is useful (I am glad that the authors did this), but not essential for the main story given the length of the 
manuscript. The authors can spend the space (after moving some details) in explaining figures associated with the main results.  

 
We thank the reviewer for these valuable comments and suggestions that help better re-organize our manuscript. We have 
moved several figures from the main text to the supplement and modified the legend of almost every figure by removing 
redundant sentences. More explanations in the main text have now been added when explaining a figure (e.g., “red circles 
in Fig. X”). We removed some less important results and replaced with more important analysis and discussions suggested 
by both reviewers. Table 1 is now added to summarize main results from signal calculations and error quantifications.  
 
Still, we would like to keep some content in the main text, e.g., Section 3.2 and Fig. 3, as they visually show the modifications 
of X-STILT from STILT and may help readers easily understand the upwind surface influence onto a downwind atmospheric 
column.  

 
2. Third, I am not quite satisfied with the transport error analysis. The problem is that the errors (mostly winds) for WRF and GDAS 
are not clearly defined, so it is hard to understand how good or bad the transport is and how the error can be related to signals 
(e.g., low winds to high signals or the impact of wrong wind directions – not presented clearly). The authors spend a lot of space 
to explain transport but it needs some improvement. Referring to the unpublished paper too much is not a good idea.  
 

We apologize for the lack of clarity in the transport error analysis. The definition of horizontal wind errors of meteorological 
fields is similar to that in Lin and Gerbig (2005) and was provided in Appendix B:  
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“In terms of the wind error component (𝒖𝒖𝜺𝜺) mentioned in Sect. 2.6, two sets of parameters are used to describe, 1) 
𝜎𝜎$%&'', the standard deviation of horizontal wind errors (RMSE) describing to what extent should we randomly perturb 
air parcels; and 2) horizontal and vertical length-scales and time-scales (Lx, Lz, and Lt) determining how wind errors 
are correlated and decayed in space and time. We calculated different sets of wind error statistics over 3 vertical bins, 
i.e., 0–3 km, 3–6 km and 6–10 km, for randomizing air parcels. To obtain 𝜎𝜎$%&'', observed winds at mandatory levels 
(i.e., 925, 850, 700, 500, 400, 300 mb) from surrounding radiosonde sites (Fig. 4) are compared against WRF- or GDAS-
interpolated winds. Then, we averaged wind errors at different mandatory levels over aforementioned three vertical 
bins. In addition, wind errors are considered to be spatiotemporally correlated. To determine error correlation scales, 
differences in the wind errors are calculated and wind errors at different radiosonde stations or different reported 
hours (00UTC or 12UTC) are paired up based on their separation length- or time-scales. An exponential variogram is 
then applied to estimate the horizontal, vertical and temporal correlation scales, which are the separation scales when 
errors become statistically uncorrelated.”  

 
The wind error and transport error statistics over the five overpasses we focused are now summarized in Table 1. Wind error 
statistics (RMSE for lower atmosphere, 0-3km) for several overpasses for Riyadh are labeled as numbers in Fig. S1. 
Additionally, we now add a new set of analysis and subsection about the vertical transport errors, via propagating typical 
PBL errors into the model, as part of our response to Reviewer #1. Please refer to Sect. 2.6.2 for the changes.  

 
We agree with the reviewer that a lot of numbers/statistics were listed for the transport error analysis without explicitly 
discussing the linkage from errors in wind speed to XCO2 signals in Sect. 3.4 and 3.5 (in the previous paper version). Now, we 
have added a paragraph in Sect. 3.5 (P16L22-35) to discuss this linkage and removed some sentences in simply listing 
numbers/statistics.   

 
Here are some other main points about the XCO2 transport errors: 
• No large systematic errors in u- and v- component wind is discovered over dozens of overpasses (Fig. S1).  
• For each sounding, XCO2 errors due to the horizontal transport error are calculated from the CO2 variance differences 

between the standard trajectory and the perturbed trajectory, for each level. More details regarding the transport error 
quantification at each model level and for each sounding can be found in Appendix B.  

 
• For each overpass, the latitude-integrated XCO2 error due to horizontal transport is a mixture of several factors. Relevant 

text has been added to Sect. 3.5:  
“The integrated XCO2 transport error per track reflects the aggregate effect of several factors which interact, 
given how we propagate wind errors into XCO2 space (Sect. 2.6): 
1) The magnitude of the modeled urban XCO2 enhancements. In general, air parcels that are very far away from 

potential upstream emitters may hardly “hit” the emission sources or gain their enhancements, even after the 
wind perturbation. If the estimated signal is large (e.g., 3.04 ppm-deg. on 20151216 in Table 1), its resultant 
integrated transport error can also be fairly large (1.83 ppm-deg. in Table 1).  

2) The RMSE of u- and v-component winds. In general, larger wind errors will lead to larger changes in model 
trajectories and larger possibilities for perturbed trajectories in intersecting an emission source. 

3) How air parcels interact with surface emissions, i.e., the geometry/angle between the model footprint (or the 
wind direction) and satellite swaths. Changes in this angle may fluctuate the width of enhanced latitudinal 
band along with the final integration latitudinal ranges (i.e., 1.10°–2.25°). If the back-trajectory or backward 
wind direction is more parallel to the OCO-2 swath (events on 20141227, 20151216 and 20160216 in Fig. 
S10), the integration range and error covariance among soundings are usually larger, which yields larger 
integrated XCO2 errors (e.g., 1.22, 1.83, and 1.05 ppm-degree in Table 1). The averaged latitudinal range for 
integration is about 1.66° (~189 km) over 5 tracks.” 
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3. Last, I would like the authors to comment on the utility of OCO2 for urban studies based on this work, because there is some 
skepticism about OCO2’s capability for estimating urban emissions with relatively small areas. 

 
We addressed this concern in the last paragraph of Sect. 4.4. We briefly mentioned the limits of using OCO-2 on urban 
studies, such as limited temporal coverage or limited screened observations. We expect more data and diurnal variations 
after the launch of OCO-3 and its orbit on the International Space Station.  

“OCO-2 observations have been utilized in several recent studies along with this work with a particular look into 
relatively small areas, e.g., individual power plants (Nasser et al., 2017) and megacities (Ye et al., 2017). Even though 
the XCO2 urban signal over Riyadh may be in general smaller than those over other large cities, both model and 
observation successfully detect the urban signal. Still, no summertime XCO2 signal has been derived, due to the lack of 
screened observations (QF = 0) reported in OCO-2 Lite b7 file over most summertime tracks (black bars in Fig. S1). No 
diurnal variation, revisit time of 16 days and relatively narrow swath of OCO-2 may still pose challenges to urban 
emission estimates. We expect the inclusion of more column observations in stationary (target) modes, e.g., by 
scanning over megacities by OCO-3 (Eldering et al., 2016), which may offer more concrete spatial and diurnal 
variabilities that benefits urban flux inversions. Many nations are devoting considerable resources in launching 
carbon-observing satellites that can potentially be coordinated in a larger monitoring system (Tollefson, 2016). Given 
that X-STILT can potentially work with most satellites (given their sensor-specific vertical profiles), we expect 
enhanced capability in emission constraints of urban emissions by combining column measurements with X-STILT.” 

  
DDeettaaiilleedd  CCoommmmeennttss  

4. P1, L19. Global assimilation data seems to be too coarse for the urban scale CO2 simulation. Why use GDAS? 
 
The reviewer raised five detailed comments (including comment 4, 13, 14, 27 and 28) related to the meteorological field 
we used. We address them altogether here.  
 
Yes—GDAS is the primary choice in this study. STILT trajectories over all five overpasses are guided by meteorological fields 
from GDAS. Although the spatial resolution of GDAS (0.5 degree) is coarser than WRF customized in this study, GDAS is the 
main choice in this work due to the following considerations: 
1) The surrounding terrain around Riyadh is relatively flat. For other cities with complex terrain, we may have two 

options. If we still use global assimilation data, the model may likely “return” larger wind errors and resultant XCO2 
errors around the best estimates. Alternatively, we always have the option to use higher resolution meteorological 
fields, e.g., customized WRF or HRRR, to better resolve the subgrid scale dynamics and terrain flows with more 
accurate estimates in ground heights.  
 

2) The regional wind error statistics (compared against observed winds from radiosonde stations) of GDAS is similar to 
that of WRF for the few cases we examined (Table 1). The reviewer or readers may be concerned about the wind error 
quantification, as the number of observation sites around the city may not be that large (e.g., comment #27). 
However, we discussed the pros (i.e., less cloud and vegetation coverage) and cons (i.e., sparser wind observation 
network) of choosing such city like Riyadh in Sect. 1 (P4L24-27): 

“Riyadh, with a population of over 6 million by 2014 (WUP 2014), is chosen as the city of interest because of its 
low cloud interference, limited vegetation coverage, and isolated location in a barren area, which leads to higher 
data recovery rates and facilitates the background determination. Saudi Arabia has the largest CO2 emissions 
among Middle Eastern countries and ranks eighth globally in 2016 (Boden et al., 2017; BP, 2017; UNFCCC, 2017).” 

  
and in Sect. 4.4 (P19L15-24): 

“Admittedly, the transport error analysis and near-field correction may work the best with the assistance of 
denser meteorological observing networks to characterize the error structures of transport errors. Increasing the 
density of surface networks may modify the wind error statistics including the wind error variances and horizontal 
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correlated length-scale, and further impact the model transport uncertainties and inversed fluxes. Yet, this 
shortcoming is not inherent to X-STILT and applies to other means of quantifying the transport errors based on 
real data as well. The trade-off of choosing a city in the Middle East like Riyadh to minimize cloud and vegetation 
influences is the relatively sparse observations of surface meteorological network or aircraft. The most recent 
OCO-2 b8 Lite files include retrieved surface winds for each sounding. Unfortunately, most of those surface wind 
retrievals are not available over Riyadh, but the retrieved surface winds for other urban areas, if available, may be 
used for assimilation and assisting X-STILT error analysis.” 

 
3) Our ultimate goal is to look at emissions from a couple of cities over the Middle East or even around the world with 

the assistance of X-STILT in future studies. Customized WRF field for many more cities and overpasses can be relatively 
computational more expensive and require careful evaluations on their configurations over different regions.  
 

4) Lastly, the scope of this manuscript is to present a modified atmospheric transport model framework with an 
application over a relatively “simple” city. Our intention is not about evaluating the differences between two 
meteorological fields and making conclusions about which one is better (comment #28). And the STILT model itself is 
not fixated to a particular choice of meteorological field.  

 
5. P1, L21.  
“68% in posterior scaling factor” should be “68% in posterior signal” because here the bias in background is in the units of 
signal. Also, it is not clear what 68 % in posterior scaling factor means. Posterior uncertainty in 1-sigma? Or Does it mean 
the bias in background resulted in 68% higher or lower bias in the posterior scaling factor? 
 

Clarifications: Our intention is to reveal or highlight the impact of different background methods on the posterior scaling 
factor (𝜆𝜆)	in Table 1). The posterior scaling factors (for mean XCO2 signal) using M2H- and M3- derived observed signals are 
~1.78 and ~1.14, as shown in Table 1. We now reworded P1L21-23 as:  

“In addition, a sizeable mean difference of -0.55 ppm in background derived from a previous study employing simple 
statistics (regional daily median) leads to a higher mean observed urban signal by ~39 % and a larger posterior scaling 
factor.“ 

 
6. P1, L22.  
It seems to me that the authors are referring to signal calculation, and the impact of uncertainty and bias on the urban signals 
by “Based on these results”. I wonder if the authors can add a couple sentences that are more significant than these. If I put it 
differently, are these results the most important results we take home from this study? 

 
Yes—the goal of this study is to provide a modified version of STILT for column measurements and associated error 
quantifications (with a case study over a city in the Middle East). We have changed ‘Based on these results’ to ‘Based on 
our signal estimates and associated error impacts’ on P1L23.   

 
7. P3, L31.  
Please add references related to “minimal guidance”. The authors can simply add few references on uncertainties associated 
with atmospheric column simulations. 

 
We have reworded the sentence. Although the error impact from receptor setups can be small, most studies simply 
depicted their model setups without further explaining why they chose those setups or the error impact (due to model 
configurations) on modeling XCO2. No study examined this error impact on column simulations, to our best knowledge.  
Text has been changed to as:  

“Previous studies reported negligible to ~20 % of the modeled enhancements are reported as the error impact due to 
STILT particle number (released from a fixed level), depending on adopted particle numbers, examined species and 
their components/sources (Zhao et al., 2009; Gerbig et al., 2003; Mallia et al., 2015). When it comes to representing 
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an atmospheric column using particle ensembles, many studies depicted their setups for receptors/particles without 
further explaining why they chose those setups or the error impact (due to model configurations) on modeling XCO2. 
Although this error impact may be small, we still perform a set of sensitivity tests to provide more guidance on placing 
column receptors.” 

  
8. P3, L33 – 34:  
The authors underestimate recent developments in inverse modeling. There are several atmospheric inverse studies that 
consider transport errors and use full error matrix (not just diagonal), in particular non-CO2 studies (e.g., regional methane 
studies). The references there are old and does not support the statement. The authors need to be specific. I may agree that 
there are not many studies to incorporate full error characterizations for column-observation inversion studies, but there are 
now many studies to consider errors more carefully. The authors should be careful in this statement and need corrections. 

 
We now add a few more references on recent urban CO2 and regional methane inverse studies, e.g., Jeong et al., 2013, 
Lauvaux et al., 2016 and Zhao et al., 2009. And, we have changed some of our statements regarding the full error 
characterizations for column inversion studies. Text in Sect. 1 (P3L35-P4L2) has been reworded as: 

“Approaches to quantify errors in horizontal wind fields and vertical mixing have been proposed followed by 
comprehensive error characterizations on atmospheric simulations (Gerbig et al., 2008; Jeong et al., 2013; Lauvaux et 
al., 2016; Lin and Gerbig, 2005; Zhao et al., 2009). Recent efforts (e.g., Lauvaux and Davis, 2014; Ye et al., 2017) have 
been made to rigorously examine the column transport errors.”   

 
Also, I am surprised that the authors use a very simple inversion – later in the section I find they are not well formulated but 
rudimentary – I don’t see the benefit of including the inversion result in the study. Please note that there are many sophisticated 
inversion methods that are much more amenable to error characterizations – please do some literature review. 

 
We appreciate the criticism on the simple inversion from the reviewer. However, we note that conducting a 
comprehensive inversion or making conclusions about inversed urban emissions may be out of the scope of this study. This 
study focuses on the model descriptions for XCO2 signal extraction and error quantifications (that helps provide insights 
into future comprehensive inverse studies), with a case study over Riyadh.  
 
Two reasons for including a simple scaling factor inversion in discussion section: 

1) to follow the scaling factor analysis and compare the transport error results in Ye et al. (2017), even though our 
methods and adopted atmospheric transport models can be different; and 
2) to address the importance of background estimates and provide STILT-based error impacts (e.g., posterior 
covariances).  

 
In addition, we agree with the reviewer that this is a simple inversion, probably because we treated the gridded upwind 
urban emissions as a whole (i.e., no adjustments for emissions for each gridcell) and integrated latitude-dependent XCO2 
enhancements. More sophisticated inversions on the spatially distributed emissions, given more sampled satellite 
overpasses or more sampled cities over the Middle East will be considered in future studies. However, we may justify that 
these simplifications are made for the consideration of reducing error impact, in particular from potential near-fields wind 
biases. 
 
Relevant text in Sect. 4.2 has been modified and added:  

“Estimated background uncertainty is represented by the spatial variation and retrieval errors of background 
observations and may be reduced given large sampling size. To further demonstrate X-STILT’s potential role in inverse 
modeling and the potential background “bias” via different background methods on inversed results, we conducted a 
simple scaling factor inversion (Rodgers, 2000), based on 5 pairs of model-data latitudinally-integrated urban signals. 
Even though our sampling may seem to be small and the gridded urban source emissions are treated as a whole (i.e., 
no adjustments for emissions for each gridcell), these integrated signals and errors are chosen to reduce the impact of 
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potential near-field wind bias on model evaluations. Also, we are partially limited by the overpasses over Riyadh (black 
bars in Fig. S1).” 

 
9. P4, L8-9:  
I don’t quite understand “Most of these studies aim at extracting relatively large CO2 changes at a fixed level within the PBL or 
due to large emissions such as of wildfire”. Which studies are the authors referring to? The point is tower vs. column or large 
signal vs. small? Are the authors suggesting that the study site in this work has very little CO2 changes (exchanges?)? The study 
areas in this study are different from other urban areas in previous studies in terms of CO2 variations or signal-to-noise ratio? 
Also, related to this, why did the authors choose this study area instead of some US large cities? 

 
We regret the confusions caused by these lines. The main point of this paragraph is to point out some common ways to 
define background e.g., the trajectory endpoint method, as well as the limitations of those modeled background, especially 
when trying to estimate background from column observations. Text has been changed to as:  

“The aforementioned studies (adopting the trajectory-endpoint method) aim at extracting relatively large CO2 
anomalies (e.g., at a fixed level within the PBL or due to large emissions such as of wildfire) out of the total measured 
CO2.” 

 
No — we are not suggesting the study site in this work is special or the CO2 changes for this site is low. We just wanted to 
bring up the difference in extracting urban enhancements from PBL-based or column observations, where the 
enhancements are relatively larger and smaller by nature. Because the relatively small column enhancement and SNR 
when extracting the column signal, even a small error in background as low as 1 ppm can be “harmful” for interpreting 
XCO2 variation.  
 
For the reason of choosing Riyadh rather than other large cities in US, we explained in P4L23-27: “its low cloud 
interference, limited vegetation coverage, and isolated location in a barren area, which leads to higher data recovery rates 
and facilitates the background determination.” And, we will expand our study area to examine more cities around the 
world in future work.  

 
10. P4, L13:  
It is not clear why the authors introduce a new background estimation method. I guess this has to do with column simulations, 
but please state the reason more clearly. 

 
Yes—we introduce a new method because of the relatively small SNR in extracting urban enhancements (of few ppm) out 
of total XCO2 concentration as well as limitations of some other methods. We added a very brief limitation of trajectory-
endpoint method for column simulation on P4L10-12: 

“However, for studying XCO2 that is less variable than near-surface CO2 (Olsen and Randerson, 2004), potential errors 
in modeled concentration fields and atmospheric transport may pose more significant adverse impact on derived 
urban signals.” 

 
and now add the limitation of simple statistics on P4L14-15:  

“These simple statistical methods often neglect the transport and may use the less accurate spatial region to select 
measurements for deriving background values.”  

 
        We further discussed these background methods in Sect. 2.3 and 3.3.  
 
11. P4, L28:  
Please define “prior profile” since many “priors” are used in this paper. 

“Prior profile” stands for the “a priori CO2 profile” from OCO-2 Lite product. Text has been made on P5L5.  
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12. P5, L4:  
It seems “ratios of the pressure difference between adjacent model levels over that between adjacent retrieval levels” needs 
more clarification. Once PW is interpolated to model levels, then the pressure difference between model levels (as the scaling 
factor) should be enough? Please clarify. 
 

PW function is primarily estimated based on the air mass or pressure difference (dp) between two layers. Fig. 2b shows that 
OCO-2 levels have relatively constant pressure difference (dp_oco2) and PW values (in black dots, except for the very top 
and bottom level). On the contrary, model levels are finer (in orange circles in Fig. 2b) with two different vertical spacings in 
altitudes (100 m vs. 500 m) below and above 3 km. So, those scaling factors are to adjust the PW function according to 
difference in dp_oco2 vs. dp_stilt.  
 
For example, from 0 to 3 km, dp_stilt ranges from ~8-10 mb, while dp_oco2 are mostly ~52 mb (red circles vs. black dots in 
Fig. 2b). Thus, we further scaled down the interpolated PW (red circles in Fig. 2b) by the ratio of dp_stilt over dp_oco2 (e.g., 
sf = 10 mb/52 mb), because of less air between model levels than initial retrieval grids. Thus, final PW after scaling has value 
of ~0.01 (orange circles in Fig. 2b).  

 
Comparing air below 3km, fewer model levels are placed from 3-6 km (~650 to 450 mb), which gives larger dp_stilt, larger 
PW scaling factors and resultant larger scaled PW of ~0.03 –0.04 (orange circles in Fig. 2b).  
 
Since no model level placed above MAXAGL, PW stay the same as the initial OCO-2 PW values (blue circles in Fig. 2b). Finally, 
we made sure that the sum of vertical PW profile ends up being 1 for each sounding/receptor.  
 
Relevant text has been clarified (in Sect. 2.1 on P5L14-22): 

“Interpolations are further needed to resolve the mismatch between prescribed OCO-2 retrieval grids and model 
levels for the lower part of the troposphere. Our intention is to preserve the finer modeled CO2 variations by 
performing interpolations of satellite profiles from retrieval grids to model levels. Vertical profiles of AKnorm, PW and 
𝐶𝐶𝐶𝐶-,/'01' are treated as continuous functions and interpolated linearly to model grids (red circles in Fig. 2). Note that 
the initial OCO-2 PW functions have steady value of ~0.052 (except for the very bottom and top levels; black dots in 
Fig. 2b), which results from constant pressure spacings (dp_oco2) between two adjacent OCO-2 levels. However, X-
STILT levels are much denser with smaller pressure spacings (dp_stilt) or less airmass between their two adjacent 
levels. Therefore, the linearly interpolated PW (red circles in Fig. 2b) needs an additional scaling via a set of “scaling 
factors” representing the ratios of pressure spacings in STILT versus OCO-2 retrieval (dp_stilt/dp_oco2), to arrive at the 
correct PW for each finer model grid (orange circles in Fig. 2b).”  

 
13. P5, L12:  
I wonder what “When WRF fields were available” means. WRF is not used for all days/hours? For the comment on the abstract, 
I added that GDAS alone is not sufficient for the urban scale. Also, more importantly, the authors must add the minimum 
description of the WRF model, e.g., vertical and horizonal resolutions unless stated somewhere later in the sections. It is not 
appropriate to toss everything to another unpublished reference. 

 
STILT trajectories over all five overpasses are guided by meteorological fields from GDAS. These customized WRF fields can 
be computational expensive and require careful evaluations on its configurations. Thus, model trajectories for the first two 
overpasses (i.e., 12/27/2014 and 12/29/2014) are driven by nested WRF and GDAS fields.  
 
We have added a brief description on WRF configurations in Sect. 2.1.1 (P5L35-P6L1): “Hourly WRF fields contain 51 
vertical levels with boundary conditions from 6-hourly 0.5°×0.5° NCEP FNL (Final) Operational Global Analysis data (Ye et 
al., 2017) are customized and utilized for the first 2 of the total 5 overpasses over Riyadh.” 
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14. P5, L15: Is GDAS the primary choice? 
Yes. For the reason of choosing GDAS, please refer to our response to comment #4.  

 
15. P5, L19:  
Remove “a certain height”, but directly use an explicit one, e.g., “the maximum release height” - unnecessary vagueness. I see a 
few places in this paper that use such a vague expression. 

We have replaced ‘a certain height’ with ‘the maximum release height’ or ‘MAXAGL’.  
 
16. P5, L20:  
Please state what constitutes “different setups” so that the reader has a clear sense of the setups that might differ. As written, 
it is not clear. 

Different setups comprise of the maximum release level (MAXAGL), the vertical spacing of release levels (dh), and the 
particle number per level (dpar), which is now clarified in the main text (P6L8-9).  

 
17. P6, L26: Define “BP”. 

BP is the acronym for the British Petroleum Company plc and BP Amoco plc (an oil and gas company). We add it in the 
main text.   

 
18. P7, L3:  
Please say so, if 0.1 degree is the final resolution for signal calculation, which could be coarse for a urban region. 

 
Clarifications: We still kept 1km x 1km anthropogenic emissions from ODIAC and generated 1x1km footprints to calculate 
the XCO2 signal. The 1km x 1km should be fine for getting XCO2 signals from the urban. We further clarified this point on 
P9L20 (“To calculate modeled XCO2 enhancements, we used the latest (year 2017) version of …”) 
 
However, when it comes to emission uncertainty calculations, emissions from ODIAC are aggregated to 0.1° (due to 
mismatches in the horizontal resolutions of emission grids). Thus, another set of footprints with 0.1° x 0.1° spatial 
resolution is generated to convolve with the 0.1° x 0.1° spatial emission uncertainty, which propagates the errors in prior 
emissions to the XCO2 space (to the 1st order).  

 
19. P7, L10:  
Please comment on the 1-degree bio flux relative to the size of the study area and its potential impact (due to coarse resolution) 
on the inversion. 

 
We agree with the reviewer the 1° x 1°  CarbonTracker can be comparable to the size of the urban domain and too coarse 
to resolve the subgrid scale heterogeneity in biospheric fluxes. However, the potential impact on inversion or the signal 
calculation is small due to following reasons. And, we did not modify the main text.  
1) For the inversion and signal calculations, we actually used the overpass-specific background from M3, instead of the 

trajectory-endpoint based background that relies on CarbonTracker biospheric fluxes.  
 

2) The biospheric influence has been included over the background latitude range and then get subtracted from the total 
observed XCO2. M3 may work fine, unless large gradient of biospheric fluxes exists around the urban area (mentioned 
as a potential limitation of M3 in Sect. 4.4, P19L1-2):  

“When examining summertime tracks or tracks over some other cities, potential local gradients in biospheric 
fluxes should be considered as those gradients can affect our overpass-specific background.” 
 

3) Lastly, the land around Riyadh is relatively barren with minimal biomass coverage. For studying other cities, we can 
use biospheric fluxes with finer spatial resolution generated from other inventories/models, e.g., MsTMIP.  
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20. P8, L22:  
Please add comments on the potential impact of transport over the city when using Method 3. I note that the authors discussed 
the potential transport error for Method 1 (i.e., endpoint method). Wind direction could be a serious problem for Method 3. 
Enough overpasses (both up- and down-wind) are available for Method 3. 

 
We agree with the reviewer that It is possible that higher XCO2 values may be included in the background ranges, due to 
mismatches between modeled and observed plumes. We have added a paragraph in Sect. 2.3.3 (P9L17-28) to discuss this 
impact on background value (also pasted here):  

“In addition to random errors (that are resolved by the inclusion of the aforementioned wind error component and 
broadening of the city plume), potential large bias in near-field wind direction may lead to mismatch in modeled and 
observed background regions and may bring relatively higher XCO2 values into background XCO2. However, we do not 
explicitly account for the potential near-field wind bias’s impact on forward-trajectories defined urban plume with 
following considerations. Firstly, we attempted to propagate a near-field wind bias into the modeled plume by 
rotating forward trajectories, whereas the robustness of this near-field bias can be affected by the very few wind 
measurements near Riyadh (further explained in Sect. 2.6.1). Secondly, the background latitude range defined by M3 
with the broadening effect (blue lines in Fig. 5b) in general matches well with that observed from OCO-2 for most 
overpasses, which implies that the overall wind bias around our study site is not significant. Lastly, even if potential 
wind bias may result in less accurate background range and bring elevated XCO2 into the background, the background 
uncertainty implicitly contains information about the spatial variation in background measurements (green ribbon in 
Fig. 5b). In addition, the M3-derived background is the mean value of mostly hundreds of background observations 
(numbers in Fig. 6e), which may not be greatly affected by a few potential urban-enhanced measurements.”  

 
21. P9, L20:  
I agree with the authors that STILT configurations can affect the results. But I don’t understand the use of bootstrapping here. 
The original sample here is from the 401 levels (too many in my opinion). However, what we are interested in is the results from 
different set-ups, e.g., 20, 40, levels, which can be different from the original samples of the 401 levels. In practice, 401 levels 
are unrealistic, e.g., for annual analysis. 

 
Clarifications: Yes— what we are interested in is the results from different setups, e.g., whether 20 or 40 levels can be 
enough. The number of levels (nlevel) is further decomposed into the vertical spacing dh and the MAXAGL. By increasing 
dh from 50 m to 100 m, the number of levels reduces by half with fixed MAXAGL of 6 km.  
 
Note that the original sample is release from 0 to 10 km with a spacing of 25 m (n = 1, 2, 3, …, 401). For example, if we 
wanted to test the one case with dh = 50m, we randomly resampled trajectories released from every other level from 0 to 
6 km (n = 1, 3, 5, …, 241) for 100 times. In other words, we got 100 sets of resampled trajectories with the same 
combination (MAXAGL = 6km, dpar = 100 and dh = 50m). From those 100 new sets of trajectories and resultant 100 XCO2 
enhancements, we calculated mean and SD of those enhancements. SD is used to reveal the random uncertainty (error bar 
in Fig. 5c), while the mean for one case is compared with other means, to reveal any systematic bias (e.g., the decreasing 
trend of red dots in Fig. 5c). Therefore, we actually do not care about difference between the resampled trajectories 
against the original sample.  
 

22. P11, L15:  
It is surprising that MAXAGL < 2.5 km did not fully capture CO2 enhancements. I would expect that there is not much surface 
influence above 2 km. Is it because the study region is associated with really high PBLH? As the authors stated in L30-32, the 
lower portion of the column should matter most. Then why would MAXAGL of ∼ 2.5 km not capture the full enhancement of 
CO2? Please add sentences that dis- cuss the reason for this. Actually, looking at Figure 8(a), I realize that there are only two 
cases below 2.5 km. So, 2.5 km itself looks fine. My guess is that even 2 km should be fine. I think the authors give the reader 
somewhat wrong information here, considering the fact that using a higher altitude for MAXAGL increases the computational 
cost significantly. My understanding from this is: 1) use 100 – 200 m vertical resolutions be- tween 0 – 2 km and 2) above 2 km, 
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use 500 m. If the authors can show even MAXAGL of 2 km is comparable to 2.5 or 3 km, this will reduce the computational cost 
significantly. I don’t understand why the authors use 100 m for up to 3 km given the result shown in Figure 8(a), which in my 
opinion is too much without good reasoning. I think that some other studies will easily show denser vertical resolutions between 
0 – 2 km is good enough. 

 
We thank the reviewer in pointing out this detail and now add the one case with MAXAGL of 2 km in Sect. 3.1 and Fig. 6a. 
The one simulation using MAXAGL of 2km looks much better than the one with 1.5km MAXAGL, but can be slightly lower 
than simulation using even larger MAXAGL. We have further run another set of uneven vertical spacing test to see whether 
a cutoff level of 2 km is enough.  
 
Results are added and explained in Sect. 3.1 (P13L3-10, also pasted as below): 

“We further performed two cases with uneven vertical spacing below and above a “cutoff level”. Both tested three 
different lower spacings (of 50, 100 or 150 m) with a fixed upper spacing of 500 m. Two cases differ only in their cutoff 
levels (2 or 3 km). The comparison of the uneven dh against the constant dh experiment shows that their results in 
XCO2 enhancements are fairly similar, suggesting that the lower spacing below the cutoff level matters mostly to 
model results, because most anthropogenic XCO2 enhancements are confined within the PBL. Also, results for uneven 
dh case with the cutoff level of 3 km (blue triangles in Fig. 6c) are more closed to the “truth” implied by the constant 
dh case (red dots in Fig. 6c). To be safe, column receptors are placed from 0–3 km with a spacing of 100 m and from 3–
6 km with a spacing of 500 m.” 

 
Yes—the PBLHs or mixing height are generally high over the upwind region of our city. Information about model-
interpolated mixing depths can be found in Appendix D.  

 
23. P11, L34:  
Please clarify what the fractional uncertainty means here. How did the total particle number become >12500 with 100 particle 
every 100 m within 3 km? 

 
Clarifications: The fractional uncertainty is calculated as the ratio of random uncertainty (in ppm, error bar in Fig. 6a-c) 
over the averaged simulated enhancement (in ppm, red dots in Fig. 6a-c) of results by resampling trajectories for 100 
times. We have now clarified the fractional error in Sect. 2.5 (P10L31-34) as well:  

“100 urban enhancements are calculated from 100 new sets of trajectories for each test. Basic statistics—i.e., mean 
values and standard deviations (or fractional uncertainty, i.e., SD/mean) among these 100 enhancements—are used to 
infer systematic and random uncertainties in each test, respectively (with results showed in Sect. 3.1).”    

 
For testing the sensitivity of XCO2 due to changes in one receptor parameter, the other two parameters are fixed. 
Specifically, dpar = 100 and dh = 100m are used for testing different MAXAGLs from 1 to 10 km (Fig. 6a);  
                      dh = 100m and MAXAGL = 6km are used for testing different dpar (Fig. 6b);  
                      dpar = 100 and MAXAGL = 6km are used for testing different dh (Fig. 6c).  
Thus, the one simulation (dpar = 100, dh = 50 m, MAXAGL = 6 km) has 12,000 particles.  
 
We now clarify the use of fixed MAXAGL of 6km for dpar test in Sect. 3.1 (P12L37) and in Fig. 6a-c:  

“In addition, we conducted two experiments using constant and uneven vertical spacings with the fixed MAXAGL of 6 
km and dpar of 100.”  

 
24. P12, L32: “incorporates both” to “both incorporates” 

Text changed.  
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25. P12, L37:  
I wonder what “we added a wind error component to broaden the urban plume (Sect. 2.4.3 and Sect. 2.6) that helps reduce the 
inclusion of enhanced values in the background region” means. I can understand this could help reduce strong local sources 
under the assumption that broadening plumes with additional errors reproduces the reality more accurately. But broadened 
background does not necessarily solve the bias in the wind direction that is directly related to the enhancement in the 
background region. 
 

We agree with the reviewer and are aware of the impact of this wind error component onto our defined background 
values. Please refer to our response for comment #20.  

 
26. P13, L3-6:  
How did the authors judge which one is the more accurate background that is assumed to be close to the (unknown) true 
background? The impact of the background bias (0.56 ppm here) on the emission estimation depends on the magnitude of the 
observation; it can have only a small impact when the local observations are large. 
 

We agree with the reviewer that it can be different to judge which method is the “truth”, since the background value is an 
unknown and our examined sample size could be small.  
 
However, we would still argue that M2H may not be suitable for local/urban studies, like this study. We have now added two 
paragraphs to try to discussion the limitations and advantages of M2H and M3 in Sect. 3.3 (P13L37 – P14L18, pasted as below): 

 
“We now focus on the comparison between M3 and M2H with objectively analyzing their advantages and limitations. On 
average, M2H derived background is lower than our localized “overpass-specific” background by 0.55 ppm (Fig. 6e), which 
can primarily be attributed to different defined background regions. M3 defined the background region from the same 
track as the one over Riyadh, which guarantees that the background air contains variations due to long-term atmospheric 
transport, natural sources/sinks and FFCO2 emissions except for local emissions (e.g., from Riyadh). Whereas the enhanced 
air contains the enhancements due to local emissions on top of all the information included in the background air. 
Therefore, the subtraction between M3-defined background and enhanced air correctly represent the XCO2 portion 
enhanced by the local emissions. On the contrary, M2H use a fairly broad background region (0° N–60° N, 15° W–60° E in 
Fig. S4) to estimate gridded anomalies over all places in Europe, Middle East and North Africa. Although may yield more 
data, this broad spatial region may misrepresent the correct upwind region, because the wind regime can be quite 
different among different overpass dates or seasons.  
 
We admit M3-defined background range and background value can be affect by potential large wind bias over cities other 
than Riyadh. However, the impact on background may be small and is implicitly considered in the background uncertainty 
(previously discussed in the last paragraph in Sect. 2.3.3). As for M2H, all regional OCO-2 measurements are lumped into 
its background calculation. For example, some measurements on the east-most overpass in Fig. S4 are affected by Riyadh’s 
emissions, whereas atmospheric columns at soundings along the west two overpasses in Fig. S4 may not necessarily be 
the background air that eventually arrives at region around Riyadh. Thus, the regional median of XCO2 may not physically 
indicate the accurate background that is supposed to isolate local-scale fluxes. Therefore, our localized overpass-specific 
background is designed and more suitable for extracting local-scale XCO2 anomalies. Given relatively small urban 
enhancements around our study site, this 0.55 ppm difference may lead to large differences in estimated observed urban 
signals and emission evaluations (Sect. 4.2).” 

 
27. P13, L34:  
It depends on which wind observations are used. The number of sites for wind obs. in this study is too small to make a 
statement as shown here. 
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We have changed the statement on P14L34-36 to “Based on available radiosonde sites over the Middle East with relatively 
flat terrain (white crosses in Fig, 4)”.  
 
We are aware of the limitation of sparse wind observation network for this city and discussed the trade-off of choosing this 
city in Sect. 4.4:  

“Yet, this shortcoming is not inherent to X-STILT and applies to other means of quantifying the transport errors based 
on real data as well. The trade-off of choosing a city in the Middle East like Riyadh to minimize cloud and vegetation 
influences is the relatively sparse observations of surface meteorological network or aircraft.”  

  
Also, please refer to the relevant response to comment #4.  

 
28. P13, Section 3.4.1 
Comparisons against OCO-2 XCO2 at selected soundings: What is the small conclusion here? After all the analysis, the authors 
state “we suspect that mismatch in the model-data enhancement widths is primarily due to errors in wind speeds”. I expected 
that the authors state, e.g., “model X is better or worse than model Y in terms of wind’ simulations compared to observations, 
and we also see better or worse in model X or Y for ‘signal’ comparison between model simulations and observations”. Any 
advantage of WRF due to higher resolutions? 

 
As stated in Sect. 2.1.1 (P6L2-3):  

“We note that the primary focus is to assess the resulting errors given the choice of a particular wind field (i.e., GDAS 
0.5°), rather than to carry out analyses of differences between WRF and GDAS.”  

 
Even though the shape of resultant XCO2 contribution maps appear to be different between two models (e.g., Fig. 7b and 
7f), the two latitude-integrated XCO2 contributions (Fig. 7d and 7h) appear to be quite identical. The GDAS and WRF 
regional wind RMSEs are also listed in Table 1.  

 
29. P17, L30:  
How large was the random error (S_lambda) relative to the background-subtracted enhancements? The 5 x 5 error matrix (if 
this is the model-data mismatch error covariance, i.e., the irreducible error component in the linear model) suggests that only 5 
obs were used? If it is true, that seems to be too small, even for a simple linear regression. The scaling factor suggests the prior 
emissions are consistent with the observation. Is this the conclusion and what the authors expect from the comparison between 
modeled XCO2 and obs? The description for this simple inversion doesn’t sound good at all. 

 
The random error (square root of the observational error variance; in ppm) are about 63 % to 85 % of background-
subtracted enhancements for different overpasses for Riyadh. These random error per overpass are assumed to be 
independent (due to mostly long separation time) and reduced when aggregating over 5 overpasses. In this revised 
version, we further added 1) retrieval errors in the background error and 2) error in vertical mixing in the X-STILT transport 
error (based on a comment from reviewer 1). Thus, the random error is slightly higher than that previously reported. 
 
Yes—we only use 5 pairs of latitude integrated observed and modeled XCO2 signals. And various errors at each sounding 
have been properly aggregated to the overpass level to reduce impact from wind bias. We carefully examined every 
possible overpass based on number of soundings and screened soundings, wind errors and distance to the city (Fig. S1). 
Then, those overpasses are under manual check to see whether there’s promising enhancements. Although we may be 
limited by our stringent criteria, we are inclined not to perform simulations or model evaluations over some other tracks 
with insufficient soundings.    
 
We appreciate the criticism and agree with the reviewer that this is a simple inversion and have now commented the 
limitation of this simple inversion on its lack of consideration of the spatiotemporal structures in Sect. 4.2. We will perform 
more sophisticated column inversion urban studies and analysis on urban emissions in future studies.  
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The posterior scaling factor is about 1.14 given observed signals using M3 background, which does not suggest the prior 
emissions are consistent with the observations. No -- our intention is not to make conclusions about the urban emissions 
for Riyadh. We will perform more comprehensive inverse analysis over more cities in future studies. For reasons of 
conducting this simple inversion, please refer to our response for comment #8. 

 
30. P18, L4-6:  
I wonder if the background estimation for column CO2 from OCO2 can be improved. Somewhat disappointing. I hope to see 
some discussions (a few sentences) on the utility of OCO2 for urban studies including the retrieval error (this urban region has 
relatively low enhancements, difficult for OCO2 to tell something), not only for this study area, but for future other regions, 
more generally. 

 
We appreciate the reviewer for this constructive comment on background estimates. We have now updated the 
background uncertainty by including the retrieval errors of observations over the background latitude range.  
 
The reviewer is making a good point, and it will be great that we examined the background estimation over other urban 
regions. However, this may be beyond the scope of this model description paper (with application applied to a city). We 
will examine more urban regions given background from OCO-2 in future studies.  
 

31. Figure 7.  
The trajectories seem to be stratified, with each streak (looks like thick streak) somewhat disconnected from each other, which 
looks strange. Any explanation? Is it because of different levels? 

 
Yes -- Figure 7 (now Fig S4) contains all air parcels released from different vertical levels. Air parcels at higher levels are 
driven by higher wind speed and different wind directions aloft than winds within the PBL. Those air parcels released from 
levels within the PBL are more concentrated near the receptor while parcels released from higher levels are displayed 
more to the west.  

 
32. Figure 8-e: Please use the same labels for the legend, e.g., M3. 

Have changed the label in panel e.  
 


