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RReessppoonnssee  ttoo  RReevviieewweerr  11  
We thank the two reviewers for their efforts and constructive comments (https://www.geosci-model-dev-discuss.net/gmd-
2018-123/#discussion). Each reviewer’s comments are shown below in italics, followed by our point-by-point responses in 
blue.  

 
AAnnoonnyymmoouuss  RReeffeerreeee  ##11  

This paper describes a new modification and application of the STILT model for total column measurements. This will allow X-
STILT to be used to interpret satellite (and ground-based) total column abundances, and is a timely contribution, given the rapidly 
increasing number of satellite greenhouse gas total column measurements. The manuscript is thorough and technical, generally 
clear and well written, and suitable for this journal. I would recommend its publication after the following comments are 
addressed. 

We thank anonymous referee #1 for the positive feedback and have attempted to address these comments and made 
several clarifications and changes to the manuscript. Here are major changes made during the review process including  
1) the quantification of XCO2 errors due to vertical mixing errors within X-STILT (Sect. 2.6.2);  
2) discussions on results using observations from b8 Lite files (Sect. 4.4) and X-STILT’s potential for broader applications and 
expected changes (Sect. 4.3);  
3) details on the wind bias correction within the model (Appendix C); and 
4) updated simulations and codes built on the STILT-R version 2 (Fasoli et al., 2018) with updated description in Sect. 2.1.2.  

 
GGeenneerraall  CCoommmmeennttss  

“Is X-STILT restricted to XCO2, or could it be applied to any total column tracer (e.g., XCH4, XCO, XN2O, etc.)? Could it also be 
applied to ground-based total column measurements? My understanding from reading this paper is that X-STILT could be applied 
more generally, and that you were showing a rigorous example of its functionality with OCO-2 XCO2. If this is true, its generality 
should be made more clear – perhaps with a more general title and introduction.” 

 
In general, we agree with the reviewer on X-STILT’s potentials for wider applicability. We did not study other species than 
CO2 or incorporate profiles from other sensors. The codes we currently modified only aim at XCO2 and incorporate OCO-2 
satellite profiles. However, we do foresee that X-STILT could be applied more generally. Still, we are inclined to retain the 
current title and majority of the manuscript, as our methods (in particular our definition of background) are built on our 
particular focus over urban areas. Continuous work is ongoing towards a more flexible model framework that can be more 
easily applied to other column measurements.  
 
We have now clarified the model’s generality and expected changes for other tracers within a new subsection (Sect. 4.3) of 
the main text:  

 
 “4.3 X-STILT’s potential for broader applications 
In theory, X-STILT can be applied to other column measurements and other species. The underlying Lagrangian 
atmospheric model (STILT) has been applied to simulate other atmospheric species, such as CO, CH4 and N2O (Mallia et 
al., 2015; Kort et al., 2008). One of the key modifications to X-STILT from STILT is the column weighting of STILT footprint 
values (Sect. 2.1.2). Specifically, X-STILT interpolates the OCO-2 AK and PW onto each modeled level and then applies 
weighting of the trajectory-level footprints before generating a horizontal footprint map. The X-STILT code can be easily 
modified to apply sensor-specific vertical profiles of AK and PW from other satellites or ground-based column 
measurements.  

Lastly and more importantly, background may need to be derived differently according to different applications, 
e.g., local urban emissions versus regional fluxes. The overpass specific background (M3) aims at isolating the citywide 
emissions, so it makes use of the measurements outside the city, but still are quite closed to the city (within the few 
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degrees latitude). However, if the study focus is to look at emissions over a much broader region (e.g., statewide 
emissions), background region should be defined farther away from the target region, e.g., taking the advantages of 
measurements from available upstream overpasses.”  

 
SSppeecciiffiicc  CCoommmmeennttss 

1. P2L30-36.  
“I don’t think the current suite of CO2 satellites will completely fill in the gaps of the surface in situ networks, especially over 
specific locations such as cities. Certainly the future looks bright with OCO-3’s “city mode”, and the geostationary missions on the 
horizon, but I think you are overstating the impacts over cities as our satellite observing system currently stands.” 

 
We agree with the reviewer that the surface in situ networks have their vital and irreplaceable role in the CO2 measurement 
system. We might overstate the impacts over cities and be over-optimistic about the current suite of CO2 satellites. Thus, 
we reworded the previous text (P2L34-36) as:  
 

“Although most carbon-observing satellites have revisit times of multiple days (e.g., 3 days for GOSAT and 16 days for 
OCO-2), their global coverage, large number of retrievals and multi-year observations may further complement the 
current surface observing networks. Space-borne CO2 measurements, in combination with surface CO2 networks, may 
help reduce emission uncertainties and benefit urban emissions analysis, especially over regions with no surface 
observations (Duren and Miller, 2012; Houweling et al., 2004; Rayner and O’Brien, 2001)” 

 
2. Section 2.1.  
“I’m having trouble with your definition of the sensitivity of the satellite sensor: it seems incomplete. The column averaging kernel 
represents the change in the retrieved total column with respect to a perturbation in the abundance at a particular altitude. When 
the column averaging kernel is 0, the measurement is insensitive to changes at that altitude, and thus relies completely on the 
information in the a priori profile to construct the column. (Ref: OCO-2 ATBD, P58: https://co2.jpl.nasa.gov/static/docs/OCO-
2%20ATBD_140530%20with%20ASD.pdf) 
Weighting functions, which you mention on L33, at least to the retrieval community, refer to the Jacobian matrices, and while 
these are related to the averaging kernel matrices, they are not the same as the column averaging kernels (see P54 on the ATBD 
document above). I’d ask that this section is clarified further. 

 
We apologize for the many confusions caused by the lack of clarity and a few mistakes made in Sect. 2.1 and Eq. (1). We 
modified the definition of AK as: “the sensitivity of the change in retrieved XCO2 due to CO2 anomaly at each retrieved grid” 
(P5L3). We reframed the entire Sect. 2.1 to clear up these confusions. And, here are some responses and clarifications: 

 
1) In terms of representing the atmospheric column, we mislabeled n in Eq. (1) in the previous version, and corrections 

have been made to P5L10-13:  
“𝑋𝑋𝑋𝑋𝑋𝑋$.&'(.)* = 	∑ (𝐴𝐴𝐴𝐴123(,1𝑃𝑃𝑃𝑃1𝑋𝑋𝑋𝑋$.&'(.1

178987
1:; + =𝐼𝐼 − 𝐴𝐴𝐴𝐴123(,1@𝑃𝑃𝑃𝑃1𝑋𝑋𝑋𝑋$.A3'23,1)      (1) 

I is the identity vector and n stands for the combined vertical levels of X-STILT plus OCO-2. Specifically, we 
replaced OCO-2 levels with denser model release levels for the lower part of the troposphere (red circles from the 
surface in Fig. 2), while kept OCO-2 levels for upper part (blue circles in Fig. 2). To reduce computational cost, the 
air column is only simulated up to the maximum release height (MAXAGL in meters above the ground level, 
mAGL; Fig. 2).” 

 
2) Background definitions can be quite different among studies depending on their applications (e.g., examined 

spatiotemporal scales). In this study, because our focus is about the urban emissions from a target city, we defined the 
background XCO2 as the portion that is not affected by urban emissions and naturally broke the total modeled XCO2 
down to two components – XCO2.ff and XCO2.bg.  
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• When we solely rely on model to estimate XCO2.bg (the trajectory-endpoint method, M1), the background XCO2 is 
the sum of AK-weighted modeled biospheric and oceanic perturbations on top of CO2 boundary conditions using 
CarbonTracker and a portion from OCO-2 a priori profiles (Eq. (2)).  

• When the other background methods (M2H, M2S, M3) are being examined, the background XCO2 per overpass is 
simple one number derived from statistical methods or the forward plume. Thus, no simulations on biospheric or 
oceanic anomalies involving OCO-2 prior or CarbonTracker is used in these cases.  
 

• Clarifications have been made to the relevant text on P5L23-28:  
“Eq. (1) can further be rewritten as Eq. (2), since the simulated CO2 profiles in Eq. (1) is comprised of CO2 
boundary condition plus CO2 anomalies due to sources/sinks (FFCO2, biospheric and oceanic fluxes): 
 𝑋𝑋𝑋𝑋𝑋𝑋$.&'(.)* 		= 	𝑋𝑋𝑋𝑋𝑋𝑋$.&'(.CC + 𝑋𝑋𝑋𝑋𝑋𝑋$.&'(.D'2 + 𝑋𝑋𝑋𝑋𝑋𝑋$.&'(.2E8)1 + 𝑋𝑋𝑋𝑋𝑋𝑋$.&'(.D2F1G +	𝑋𝑋𝑋𝑋𝑋𝑋$.A3'23 	= 	𝑋𝑋𝑋𝑋𝑋𝑋$.&'(.CC + 𝑋𝑋𝑋𝑋𝑋𝑋$.DH.	      (2) 

Given our focus, we defined background value as the XCO2 portion not “contaminated” by urban emissions. 
Thus, 𝑋𝑋𝑋𝑋𝑋𝑋$.&'(.)* is the sum of the XCO2 enhancement due to FFCO2 (𝑋𝑋𝑋𝑋𝑋𝑋$.&'(.CC) and estimated background 
value (𝑋𝑋𝑋𝑋𝑋𝑋$.DH). Estimates of XCO2 anomalies are further explained in Sect. 2.2.2 and four ways to estimate 
background values (𝑋𝑋𝑋𝑋𝑋𝑋$.DH) are proposed in Sect. 2.3.” 

 
3) Yes—the “weighting functions” we referred to in Sect. 2.1 is the column averaging kernel and pressure weighing 

functions, instead of the Jacobian matrices in the retrieval. We have corrected our word choices (P5L6-7) to “the 
satellite’s column averaging kernels”. 

 
On P5, you mention the interpolation of the measurement onto the model levels. Why wouldn’t you do the reverse: interpolate 
the model onto the retrieval grid? Your method requires that you make several assumptions that seem to complicate your analyses 
(i.e., these “scaling factors” you mention). Is there a compelling reason not to interpolate the model instead of the measurements? 
Please explain these “scaling factors” in more detail to walk the reader through Fig. 2.” 

 
Here are explanations to the Reviewer’s questions on the scaling factors and interpolation of measurements’ profiles:  
1) PW function is primarily estimated based on the air mass or pressure difference (dp) between two layers. Fig. 2b shows 

that OCO-2 levels have relatively constant pressure difference (dp_oco2) and PW values (in black dots, except for the 
very top and bottom level). On the contrary, model levels are finer (in orange circles in Fig. 2b) with two different vertical 
spacings in altitudes (100 m vs. 500 m) below and above 3 km. So, those scaling factors are to adjust the PW function 
according to difference in dp_oco2 vs. dp_stilt.  

 
For example, from 0 to 3 km, dp_stilt ranges from ~8-10 mb, while dp_oco2 are mostly ~52 mb (red circles vs. black dots 
in Fig. 2b). Thus, we further scaled down the interpolated PW (red circles in Fig. 2b) by the ratio of dp_stilt over dp_oco2 
(e.g., sf = 10 mb/52 mb), because of less air between model levels than initial retrieval grids. Thus, final PW after scaling 
has value of ~0.01 (orange circles in Fig. 2b).  
 
Comparing air below 3km, fewer model levels are placed from 3-6 km (~650 to 450 mb), which gives larger dp_stilt, 
larger PW scaling factors and resultant larger scaled PW of ~0.03 –0.04 (orange circles in Fig. 2b).  
 
Since no model level placed above MAXAGL, PW stay the same as the initial OCO-2 PW values (blue circles in Fig. 2b). 
Finally, we made sure that the sum of vertical PW profile ends up being 1 for each sounding/receptor.  

 
2) We agree with the reviewer that we could construct the ‘redistribution matrix’ and interpolate the model values on 

retrieval grid, as done in Basu et al. (2013). However, we would like to keep the current method for the following reasons 
(with reasons explained on P5L14-16 in the revised version as well):  
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• It seems that the construction of redistribution matrix may also need to deal with or resolve the mismatch between 
model levels versus retrieval grids, unless model levels perfectly agree with retrieval grids.  

• Most importantly, as our intention is to preserve finer variations in modeled CO2 benefit from placing denser model 
levels within the PBL, we foresee the reversed interpolation (from model levels back to retrieval grids) could 
potentially involve some averaging or smoothing.  

 
3) Clarifications have been made to the main text in Sect. 2.1 (P5L14-22) to explain above comments: 

 “Interpolations are further needed to resolve the mismatch between prescribed OCO-2 retrieval grids and model 
levels for the lower part of the troposphere. Our intention is to preserve the finer modeled CO2 variations by 
performing interpolations of satellite profiles from retrieval grids to model levels. Vertical profiles of AKnorm, PW and 
𝑋𝑋𝑋𝑋$,A3'23 are treated as continuous functions and interpolated linearly to model grids (red circles in Fig. 2). Note 
that the initial OCO-2 PW functions have steady value of ~0.052 (except for the very bottom and top levels; black 
dots in Fig. 2b), which results from constant pressure spacings (dp_oco2) between two adjacent OCO-2 levels. 
However, X-STILT levels are much denser with smaller pressure spacings (dp_stilt) or less airmass between their 
two adjacent levels. Therefore, the linearly interpolated PW (red circles in Fig. 2b) needs an additional scaling via a 
set of “scaling factors” representing the ratios of pressure spacings in STILT versus OCO-2 retrieval 
(dp_stilt/dp_oco2), to arrive at the correct PW for each finer model grid (orange circles in Fig. 2b).” 

 
3. Section 2.4.  
“A recent paper by Nassar et al. (2017) would be relevant to cite in Section 2.4. They use OCO-2 data to quantify power plant 
emissions, and they choose an overpass-dependent background that would be interesting to compare with your method. Ref: 
Nassar, R., T. G. Hill, C. A. McLinden, D. Wunch, D. B. A. Jones, and D. Crisp (2017), Quantifying CO2 emissions from individual 
power plants from space, Geophys. Res. Lett., doi:10.1002/2017GL074702.” 

 
We appreciate the reviewer in pointing out this paper. We have added this relevant paper when discussing different ways 
to determine the background in Sect. 2.3.3 (P8L27-29): 

“Nassar et al. (2017) derived overpass-dependent background and its uncertainty based on the averaged OCO-2 
observations within four different tested background latitudinal ranges.” 

 
as well as discussing the challenges in defining background and associated uncertainties when dealing with column 
measurements in Sect. 1 (P4L17-19):  

“Lastly but more importantly, recent column studies (Nassar et al., 2017; Fischer et al., 2017) studied the impact of 
potential errors/biases in background values on their emission or fluxes estimates.” 

 
In general, both studies derived the background from OCO-2 measurements over the “clean” region and accounted for 
background uncertainties. However, as Nassar et al. (2017) focuses more on emissions from individual power plants over 
different regions, we did not conduct direct comparisons against our background values.  

 
4. Section 2.6.  
My (admittedly simplistic) understanding of the transport error issue is that it is still important for models to get the vertical 
transport right when assimilating or inverting total column measurements, because the vertical transport sets the altitude at 
which advection occurs, and thus the distribution of the gas around the planet. So while the total column measurements 
themselves are insensitive to the altitude of the molecule within the column, it is not necessarily the case that the models are 
better able to reproduce the column. Indeed, the abstract of Lauvaux and Davis cited in this paragraph seems to confirm that 
vertical transport errors are very important for calculating fluxes from column-integrated measurements. Please address this 
issue further. 
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We agree with the reviewer that while likely small, we may not completely be able to neglect the impact of vertical transport 
on column simulations. To quantify this error, we have now conducted another set of transport analysis to quantify XCO2 
errors due to vertical mixing. Sect. 2.6 in previous version has now been divided into two subsections for horizontal (Sect. 
2.6.1) and vertical transport errors (Sect. 2.6.2, newly added). Section 2.6.2 has been added as: 
 

“2.6.2 Vertical transport errors 
Vertical turbulent mixing dominants the vertical transport of air parcels and control the dilution of surface emissions 
within the PBL (e.g., Gerbig et al., 2008). Uncertainties in the vertical mixing or PBL height can affect both the footprint 
magnitude and the its spatial distribution via different horizontal advections at each altitude. Although column-
integrated measurements may be less sensitive to vertical distribution of air particles than in situ measurements, vertical 
transport errors can have some impacts on column simulations nonetheless, due to wind shear and its interaction with 
vertical redistribution of air parcels  (Lauvaux and Davis, 2014). Comprehensive quantifications of the vertical transport 
errors in a column sense are performed in Lauvaux and Davis (2014) using ensemble of surface and planetary BL 
parameterizations involving a regional inverse modeling framework.  

Instead, we made use of the stochastic nature of STILT and propagated typical PBL height errors in the model. 
Changes in STILT-modeled mixed layer height modify the vertical profiles of turbulent statistics that directly control the 
stochastic motions of the Lagrangian air parcels (Lin et al., 2003). Thus, we obtained different air parcel trajectories with 
rescaled PBL heights. The resultant vertical transport error in XCO2 space is calculated as the root-mean-squared errors 
(RMSEs) between two sets of XCO2 enhancements among different receptors for each overpass. Due to this calculation, 
vertical transport errors are only provided at the overpass level (results in Sect. 3.5). Gerbig et al. (2008) reported typical 
relative PBL errors in the range of ± 20 %. Thus, we rescaled the PBL heights higher and lower by 20 % and evaluated 
the scaling’s impact on XCO2 enhancements. Because of our focus on the urban emissions and potential small XCO2 
enhancements contributions beyond one day backwards in time, we only rescaled PBL within the first 24 hours of 
transport before arrival of the air parcels at the column receptors.”  

 
We further briefly mentioned the XCO2 errors due to vertical mixing error as in Sect. 3.5: 
 

“XCO2 errors solely resulted from vertical mixing errors are in general < 15 % of the modeled signal for each overpass, 
whereas XCO2 errors due to horizontal wind errors dominate the overall XCO2 transport error (Table 1).” 

 
Furthermore, there is little discussion about the atmosphere above MAXAGL (∼450 hPa). While this is unlikely to be important for 
CO2 emissions over regional or smaller scales, it may be important for other tracers (e.g., CH4). Can you comment on how 
important the tropopause altitude, for example, might impact this work? Over what spatial and temporal scales would X-STILT 
properly represent the total column? 

 
We strongly agree with the reviewer that atmosphere above MAXAGL can be less important for XCO2 emissions, but can be 
important for other tracers like methane, due to chemical productions and losses along the atmospheric transport. In theory, 
the vertical profile of methane can be sensitive to the tropopause altitude since it rapidly decreases in the stratosphere.  
 
We admit that no chemical reaction is considered in X-STILT at this point and the model levels are only placed over the lower 
troposphere, given our focus on urban-scale CO2 surface emissions (that only get mixed within the PBL). As particles released 
from higher levels can hardly get entrained and make contact with the near-field land surface, the X-STILT column particles 
may properly represent the total column over the urban scale for less than one day. Due to our specific focus on urban CO2, 
we decided not to add related content in the main text, but to address the reviewer’s question here.  
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However, we may expect small impact on our work with reasoning showed below.  
• Although variations for atmosphere above MAXAGL are not explicitly modeled or represented by X-STILT particles given 

the way we release air parcels, those variations are part of the defined background.  
• Take methane as an example. Recall that the background air defined by the overpass-specific method (M3) are 

atmospheric columns located outside (but not far away from) the city plume. The background value is derived from 
measured XCH4 over those background atmospheric columns. In fact, those measured XCH4 are the resultant XCH4 after 
being produced or destructed along their way (backward in time) and have contained information about the upper 
tropospheric and stratospheric variations over upwind regions. Since the background air and the plume-elevated air are 
not far away from each other, we may assume no big difference in their tropopause altitudes. Thus, both background 
and plume-elevated XCH4 contains information about the XCH4 over atmosphere over MAXAGL. And, the difference 
between the two gives us the methane enhancements due to urban emissions.  

• One note on the background definitions: When using the trajectory-endpoint method (M1), model trajectories are used 
to model the XCO2 boundary condition. However, when using the other three background methods (M2H, M2S and M3), 
model trajectories are only used to estimate the XCO2 anomalies due to different sources and sinks. The choice of max 
release height may impact the modeled XCO2 enhancements. While as shown in the MAXAGL sensitivity test, almost no 
changes in XCO2 enhancement due to increase in MAXAGL.  

        
5. OCO-2 v7.  
You are using v7 of the OCO-2 data in this paper, but v8 is available and v9 will be available soon. V8 has significant improvements 
in the treatment of aerosols and throughput, which may be important for work over polluted urban regions. V9 will have improved 
pointing, especially important over topography. Please comment on whether your results will be robust against these changes to 
the OCO-2 data. 

 
We thank the reviewer in pointing out different OCO-2 versions and look forward to the upcoming b9 product to help future 
studies over cities with complex terrain. We have now performed few more simulations and analysis using version 8 Lite 
product and briefly depicted the changes in observed and simulated urban XCO2 signals in Sect. 4.4 (P19L23-33). As ongoing 
improvements made in OCO-2 retrievals are modifying the observations, it may not be that fair for us to comment the 
robustness in our results, especially given model evaluation against observations.  
 
Text has been added: 

“Emission evaluations for different regions can be different and affected by different observational constraints. Even 
changes in different versions of the retrieval (Lite b7 vs. b8) may slightly affect the model-data comparisons and simple 
inversion results in this work. Modeled XCO2 enhancements using the newer b8 differ slightly from those using b7 
(purple dots in Fig. S8 vs. in Fig. S13) due to changes in the locations of the receptors, column averaging kernels, and 
data filtering (QF) for measurements around Riyadh. Specifically, observations from b8 may yield more overpasses with 
sufficient screened soundings than those from b7 (black and red bars in Fig. S1). However, much larger differences in 
observed enhancements are found and caused by the changes in total observed XCO2 and estimated background values. 
Specifically, background uncertainty decreases by up to 0.1 ppm primarily attributed to smaller spread (smaller SD) of 
the observed XCO2. Positive shifts in the total observed XCO2 for b8 from b7 are found over most overpasses (Fig. S11). 
The M3-derived observed enhancements may be less affected by positive shifts in total observations, given similar 
positive shift associated with the overpass-specific background near the target urban region (dark green dashed lines in 
Fig. 6e vs. Fig. S12).” 
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TTeecchhnniiccaall  CCoommmmeennttss 

6. Section 2.1.1 
I found myself wondering which version of OCO-2 data you were using, given the discussion about quality flags and albedo cutoffs, 
which is version-specific. I realize this is answered later in Section 2.2. I’d suggest either not mentioning the specifics of the quality 
filtering in section 2.1.1, or mentioning the data version in 2.1.1. 

We realize the confusion caused by the introduction on quality flags in Sect. 2.1.1. We have removed this discussion (the 
data filtering on observations, i.e., QF and aerosols cutoffs) in Sect. 2.1.1.  

 
7. P10L14-7 
I’m having trouble understanding these sentences, and I believe this wind correction may be an important step in X-STILT. Please 
explain in more detail. 

 
We apologize for the confusion and clarify that this attempt to correct wind biases can be an important part in X-STILT, in 
particular over places with large systematic wind error, less complex terrain and denser wind observations. We briefly 
mentioned this correction and discussed its limitation in Sect. 2.6.1 (P11L33- P12L9) and added an Appendix C for details of 
this bias-correction:  

“Appendix C: Correcting for wind biases within X-STILT  
While we did not apply the wind bias correction for the overpasses analyzed in this paper due to the biases being 
generally small (previously explained in Sect. 2.3.3), X-STILT has the capability to account for biases, if necessary. The 
basic idea is to correct the near-field wind biases in both forward- and backward- time trajectories. Because wind error 
at each observed pressure level can be quite different, vertically-weighted u- and v- wind biases were calculated by 
fitting logarithmic mean wind profiles based on available near-fields observed and simulated wind speeds and directions. 
We then calculated the deviations in latitude and longitude directions (dx, dy, with conversion from distance to degrees) 
given estimated u- and v- wind biases. These deviations accumulate as air parcels travel further backward or forward in 
time and are used to correct the location of each particle. After fixing the particle locations, Fig. S6b shows the general 
distribution of backward trajectory being clockwise rotated, compared to initial trajectory distribution in Fig. S6b. Air 
parcels in Fig. S6b appear to be “noisier” than those in Fig. S6a, due to inclusion of the random wind error component. 
Then the new bias-corrected set of column trajectory is used to generate spatial footprint. This correction can also be 
performed to forward-time trajectory to reduce wind bias impact on best-estimated background value using the M3 
method.” 

 
Unfortunately, we ended up not performing bias correction to model particles, because the wind observation sites are not 
perfect around Riyadh to estimate a robust wind error to rotate model particles. We mentioned these limitations and other 
more comprehensive methods in Sect. 2.6.1 (P12L1-9):  

“Unfortunately, only 2 radiosonde stations around Riyadh with 3 vertical pressure levels within the PBL (and sometimes 
with missing data) may be insufficient to correctly interpolate the near-field vertical wind biases. However, cities with 
meteorological profiles sampling more levels within the PBL and higher temporal frequency in reporting observed 
vertical winds will be more suitable sites to retrieve the near-field wind errors. Other methods include rotation and 
stretching of urban plumes derived from WRF-Chem (Ye et al., 2017), similar to the rotation of X-STILT air parcels, to 
quantify errors in wind directions and speeds. Deng et al. (2017) sought correction of wind biases in a sophisticated 
manner via data assimilation. Yet, the near-field correction within X-STILT can be potentially utilized in the future as a 
quick bias correction to the near-field wind in LPDMs, given denser wind observations and relatively flat terrains. 
Therefore, we decided to reduce the potential impact of wind bias on model-data comparisons using a latitudinal 
integration (further in Sect. 3.5).” 
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8. P13L3-6:  
I believe you are saying that M2H is in general lower than M3. But can you say definitively that M3 is correct, and thus M2H has 
the bias? Also, 0.56 ppm is not small! This can be 25-50% of the enhancement. 

 
We agree that a mean difference of 0.56 ppm (between M2H- and M3-derived background values) is actually quite large, 
given small column enhancement. And, we cannot definitively say that our method is correct since the “true” background is 
more of an unknown value. So, we have reworded some relevant sentences (e.g., “bias” to “mean difference”).  

 
However, we would argue that M2H may not be suitable for local/urban studies and have rewritten the latter two paragraphs 
in Sect. 3.3 (P13L36-P14L17) to objectively discuss the pros and cons of M2H and M3 methods (also pasted below): 

“We now focus on the comparison between M3 and M2H with objectively analyzing their advantages and limitations. 
On average, M2H derived background is lower than our localized “overpass-specific” background by 0.55 ppm (Fig. 6e), 
which can primarily be attributed to different defined background regions. M3 defined the background region from the 
same track as the one over Riyadh, which guarantees that the background air contains variations due to long-term 
atmospheric transport, natural sources/sinks and FFCO2 emissions except for local emissions (e.g., from Riyadh). 
Whereas the enhanced air contains the enhancements due to local emissions on top of all the information included in 
the background air. Therefore, the subtraction between M3-defined background and enhanced air correctly represent 
the XCO2 portion enhanced by the local emissions. On the contrary, M2H use a fairly broad background region (0° N–
60° N, 15° W–60° E in Fig. S7) to estimate gridded anomalies over all places in Europe, Middle East and North Africa. 
Although may yield more data, this broad spatial region may misrepresent the correct upwind region, because the wind 
regime can be quite different among different overpass dates or seasons.  

We admit M3-defined background range and background value can be affect by potential large wind bias over cities 
other than Riyadh. However, the impact on background may be small and is implicitly considered in the background 
uncertainty (previously discussed in the last paragraph of Sect. 2.3.3). As for M2H, all regional OCO-2 measurements are 
lumped into its background calculation. For example, some measurements on the east-most overpass in Fig. S7 are 
affected by Riyadh’s emissions, whereas atmospheric columns at soundings along the west two overpasses in Fig. S7 
may not necessarily be the background air that eventually arrives at region around Riyadh. Thus, the regional median 
of XCO2 may not physically indicate the accurate background that is supposed to isolate local-scale fluxes. Therefore, 
our localized overpass-specific background is designed and more suitable for extracting local-scale XCO2 anomalies. 
Given relatively small urban enhancements around our study site, this 0.55 ppm difference may lead to large differences 
in estimated observed urban signals and emission evaluations (Sect. 4.2).” 
 

Lastly, we may admit that our definition (using one mean value to represent the background) is not perfect and are aware 
of the potential wind bias impact on background definition. So, we made several attempts in this work: 
1) by widening the polluted latitude range by bringing a wind error component (Sect. 2.3.3);  
2) by trying to correct the wind bias on forward plume via a near-field correction (Appendix C, better for regions with 

denser wind observations); and  
3) by introducing background uncertainty as the combined error impacts from retrieval error and natural variation (SD) of 

observed XCO2 over background latitude range (Sect. 2.3.3). Retrieval errors of measurements over the background 
range have now been included in the background error as well, based on a comment from the Reviewer #2.  

 
Relevant discussions based on above point 1) to point 3) have been made to Sect. 2.3.3 on P9L17-28 (also pasted here):  

“In addition to random errors (that are resolved by the inclusion of the aforementioned wind error component and 
broadening of the city plume), potential large bias in near-field wind direction may lead to mismatch in modeled and 
observed background regions and may bring relatively higher XCO2 values into background XCO2. However, we do not 
explicitly account for the potential near-field wind bias’s impact on forward-trajectories defined urban plume with 
following considerations. Firstly, we attempted to propagate a near-field wind bias into the modeled plume by rotating 
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forward trajectories, whereas the robustness of this near-field bias can be affected by the very few wind measurements 
near Riyadh (further explained in Sect. 2.6.1). Secondly, the background latitude range defined by M3 with the 
broadening effect (blue lines in Fig. 5b) in general matches well with that observed from OCO-2 for most overpasses, 
which implies that the overall wind bias around our study site is not significant. Lastly, even if potential wind bias may 
result in less accurate background range and bring elevated XCO2 into the background, the background uncertainty 
implicitly contains information about the spatial variation in background measurements (green ribbon in Fig. 5b). In 
addition, the M3-derived background is the mean value of mostly hundreds of background observations (numbers in 
Fig. 6e), which may not be greatly affected by a few potential urban-enhanced measurements.”  

 
9. There are several instances of omitted definite and indefinite articles, and a few typos here and there, but I assume that once 
this paper has been accepted, the copy editor will find and correct them more thoroughly than I have. However, I will list the ones 
I caught here. Between ** are the edits I suggest.  
P2L17: top-down constrain*ts* P3L6-7: shed light** on CO2 emission** monitoring network*s*. P4L18: Riyadh*,* with *a* 
population P4L20: Saudi Arabia has the largest CO2 emission*s* among... P4L32: “apple*s*-to-apple*s*” P4L33: weighted using 
*the* satellite’s *column averaging kernels*... P5L17: at the same lat/lon as *the* satellite... P5L21: compare ** overall modeled 
P5L28: *The l*onger the time an air parcel..., *the* higher its footprint value... P6L5: FFCO2 *are* derive*d* from... P6L13: we 
binned ** the observed... P6L16: estimate *the* increase in observed... P6L22: 1x1 km resolution on ** monthly scale*s*... 
emission estimates by fuel type** from the... specific ODIAC emission categories on *a* monthly basis... P6L31: line sources and 
diffuse** sources... P8L32: which are more straightforward** and efficient** than solely *relying* on... P9L7: boundary of *the* 
city... P10L19: more suitable sites *to* retrieve... P10L25: get around ** the impact on... P11L6: we fit *an* exponential 
variogram... P12L11: which results in *an* overall smaller footprint... Yet, column foot- print*s* cover**... P12L14: an air column 
can be one or *a* few orders... P12L18: regardless *of the* adopted meteorological fields. P12L33: Here we emphasi*ze*... 
P13L29: sensible → sensitive P14L21: according to *the* OCO-2 Lite file... P14L24: scatter*ed* P15L36: latitudinal** integration 
←this happens in other locations as well P16L30: exceeding *a* certain averaged... P17L8: emissions of *a* target city P18L2: 
even large impact*s* on *the* posterior... can be caused by using *a* background derived from simplistic statistic*s* P18L13: 
hampered ** due to... P18L24: improves biospheric flux** estimation... P20L10: for *a* few levels... P21L17: These small changes 
*show* that our *latitude band integration*... a second peak or miss** large XCO2 enhancements. P21L21: *widths* P21L27: 
The word “benefit” seems out of place here. P21L30: Based on three simpl*e* tests... 
 

We sincerely thank the reviewer in thoroughly reading the manuscript and pointing out these issues listed above. We have 
corrected them all in the relevant text.  


