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Abstract. We describe FESOM-C, the coastal branch of the Finite-volumE Sea ice – Ocean Model (FESOM2), which shares

with FESOM2 many numerical aspects, in particular, its finite-volume cell-vertex discretization. Its dynamical core differs

by the implementation of time stepping, the use of terrain-following vertical coordinate and formulation for hybrid meshes

composed of triangles and quads. The first two distinctions were critical for coding FESOM-C as an independent branch. The

hybrid mesh capability improves numerical efficiency, since quadrilateral cells have fewer edges than triangular cells. They do5

not suffer from spurious inertial modes of the triangular cell-vertex discretization and need less dissipation. The hybrid mesh

capability allows one to use quasi-quadrilateral unstructured meshes, with triangular cells included only to join quadrilateral

patches of differt resolution or instead of strongly deformed quadrilateral cells. The description of the model numerical part is

complemented by test cases illustrating the model performance.

1 Introduction10

Many practical problems in oceanography require regional focus on coastal dynamics. Although global ocean circulation

models formulated on unstructured meshes may in principle provide local refinement, such models are as a rule based on

assumptions that are not necessarily valid in coastal areas. The limitations on dynamics coming from the need to resolve thin

layers, maintain stability for sea surface elevations comparable to water layer thickness or simulate the processes of wetting and

drying make numerical approaches traditionally used in coastal models different from those used in large-scale models. For this15

reason, combining a coastal and large-scale functionality in a single unstructured-mesh model, although possible, would still

imply a combination of different algorithms and physical parameterizations. Furthermore, on unstructured meshes, numerical

stability of open boundaries, needed in regional configurations, sometimes requires to mask certain terms in motion equations

close to open boundaries. This would be an unnecessary complication for a large-scale unstructured-mesh model which is as a

rule global.20

The main goal of the development described in this paper was to design a tool, dubbed FESOM-C that is close to FESOM2

(Danilov et al., 2017) in its basic principles, but can be used as a coastal model. Its routines handling the mesh infrastructure

are derived from FESOM2. However, the time stepping, vertical discretization, and particular algorithms, detailed below, are
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different. FESOM-C relies on a terrain-following vertical coordinate (vs. the Arbitrary Lagrangian Eulerian (ALE) vertical

coordinate of FESOM2), but does a step further with respect to the mesh structure. It is designed to work on hybrid meshes

composed of triangles and quads. Some decisions, such as for example, the lack of the ALE at the present stage, are only

motivated by the desire to keep the code as simple as possible through the initial phase of its development and maintenance.

The code is based on the cell-vertex finite-volume discretization, same as FESOM2 (Danilov et al., 2017) and FVCOM (Chen5

et al., 2003). It places scalar quantities at mesh vertices and the horizontal velocities at cell centroids.

Our special focus is on using hybrid meshes. In essence, the capability of hybrid meshes is build in finite-volume method.

Indeed, computations of fluxes are commonly implemented as cycles over edges, and the edge-based infrastructure is immune

to the polygonal type of mesh cells. However, because of staggering, it is still convenient to keep some computations on cells,

which then depend on the cell type. Furthermore, high-order transport algorithms might be sensitive to the cell geometry10

too. We limit the allowed polygons to triangles and quads. Although there is no principal limitation on the polygon type,

triangles and quads are versatile enough in practice for the cell-vertex discretization. Our motivation of using quads is two-fold

(Danilov and Androsov, 2015). First, quadrilateral meshes have 1.5 times fewer edges than triangular meshes, which speeds

up computations because cycles over edges become shorter. The second reason is the intrinsic problem of the triangular cell-

vertex discretization — the presence of spurious inertial modes (see, e.g., Le Roux (2012)) and decoupling between the nearest15

horizontal velocities. Although both can be controlled by lateral viscosity, the control leads to higher viscous dissipation

over the triangular portions of the mesh. The hybrid meshes can be designed so that triangular cells are included only to

optimally match the resolution or even absent altogether. For example, FESOM-C can be run on curvilinear meshes combining

smooth changes in the shape of quadrilateral cells with smoothly approximated coastlines. One can also think of meshes where

triangular patches are only used to provide transitions between quadrilateral parts of different resolution, implementing an20

effective nesting approach.

Many unstructured-mesh coastal ocean models were proposed recently (e.g., Casulli and Walters, 2000; Chen et al., 2003;

Fringer et al., 2006; Zhang and Baptista, 2008; Zhang et al., 2016). It will take some time for FESOM-C to catch them up as

concerns functionality. The decision on the development of FESOM-C was largely motiated by the desire to fit in the existing

modeling infrastructure (mesh design, analysis tools, input-output organization), and not by any deficiency of existing models.25

The real work load was substantially reduced through the use or modification of the existing FESOM2 routines.

We formulate the main equations and their discretization in the three following sections. Section 5 presents results of test

simulations, followed by discussion and conclusions.

2 Model formulation

2.1 The Governing Equations30

We solve standard primitive equations in the Boussinesq, hydrostatic and traditional approximations (see, e.g., Marshall et al.

(1997)). The solution is sought in the domain Q̂=Q× [0, tf ], where tf is the time interval. The boundary ∂Q of domain

Q is formed by the free water surface, the bottom, and lateral boundaries, composed of the solid part ∂Q1 and the open
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boundary ∂Q2, Q= {x,y,z;x,y ∈ Ω,−h(x,y)≤ z < ζ(x,y, t)}, 0≤ t≤ tf . Here ζ is the surface elevation and h the bottom

topography. We seek the vector of unknown q = (u,w,ζ,T,S), where u = (u,v) is the horizontal velocity, w the vertical

velocity, T the potential temperature and S the salinity, satisfying the equations

∂u

∂t
+

∂

∂xi
(uui) +

∂

∂z
(uw) +

1

ρ0
∇p+ fk×u =

∂

∂z
ϑ
∂u

∂z
+∇ · (K∇)u, (1)

5

∇ ·u +
∂

∂z
w = 0, (2)

∂p

∂z
=−gρ, (3)

∂Θj

∂t
+

∂

∂xi
(uiΘj) +

∂

∂z
(wΘj) =

∂

∂z
ϑΘ

∂Θj

∂z
+∇(KΘ∇)Θj . (4)10

Here i= 1,2, x1 = x, x2 = y, u1 = u, u2 = v, and summation is implied over the repeating indices i; p is the pressure; j = 1,2

with Θ1 = T , Θ2 = S the potential temperature and salinity respectively. The seawater density is determined by the equation

of state ρ= ρ(T,S,p), ρ0 is the reference density; f is the Coriolis parameter; k is the vertical unit vector; ϑ and K are the

coefficients of vertical and horizontal turbulent momentum exchange, respectively; ϑΘ and KΘ are the respective diffusion

coefficients and g is the acceleration due to gravity.15

Writing

ρ(x,y,z, t) = ρ0 + ρ′(x,y,z, t), (5)

where ρ′ is the density fluctuation, we obtain, integrating Eq.(3),

p− patm =

ζ∫
z

ρgdz = gρ0(ζ − z) + g

ζ∫
z

ρ′dz,

where patm is the atmospheric pressure. The horizontal pressure gradient is expressed then as the sum of barotropic, baroclinic20

and atmospheric pressure gradients:

ρ−1
0 ∇p= g∇ζ + gρ−1

0 ∇I + ρ−1
0 ∇patm,

I =

ζ∫
z

ρ′dz. (6)

Note that horizontal derivatives here are taken at fixed z.
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2.2 Turbulent closures

The default scheme to compute the vertical viscosity and diffusivity in the system of equations (1-4) is based on the Prandtl-

Kolmogorov hypothesis of incomplete similarity. According to it, the turbulent kinetic energy b, the coefficient of turbulent

mixing ϑ and dissipation of turbulent energy ε are connected as ϑ= l
√
b, where l is the scale of turbulence, ϑΘ = cρϑ, ε=

cεb
2/ϑ; cε = 0.046 (Cebeci and Smith, 1974). Prandtl’s number cρ is commonly chosen as 0.1 and sets the relationship between5

the coefficients of turbulent diffusion and viscosity. The equation describing the balance of turbulent kinetic energy is obtained

by parameterizing the energy production and dissipation in the equation for turbulent kinetic energy b as

∂b

∂t
−ϑ(|uz|2 + cρgρ

−1
0

∂ρ

∂z
) + cεb

2/ϑ= αb
∂

∂z
ϑ
∂b

∂z
, (7)

with the boundary conditions

b|h =B1|v|2,10

ϑbz|ζ = γζu
3
∗ζ ,

where αb = 0.73, B1 = 16.6, γζ = 0.4 · 10−3; u∗ζ = (ρ/ρa)1/2u∗ is the dynamical velocity in water near the surface, ρa the

air density, u∗ the dynamic velocity of water on the interface between air and water.

Dissipative term is written as:

b2/ϑ= (2bν+1bν − (b2)ν)/ϑν ,15

where ν is the index of iterations. Equation (7) is solved by a three-point Thomas scheme in the vertical direction with the

boundary conditions given above. Iterations are carried out until the convergence determined by the condition:

max |(bν+1− bν)/bν |<$,

where $ is a small value O(10−6). More details on the solution of this equation are given in (Voltzinger et al., 1989).

To determine the turbulence scale l in the presence of surface and bottom boundary layers we use the Montgomery formula20

(Reid , 1957)

l =
κ

H
ZhZζ ,

where H = h+ ζ is the full water depth, Zh = z+h+ zh, Zζ =−z+ ζ + zζ , κ' 0.4 is the von Kármán constant, z the layer

depth and zh, zζ are the roughness parameters for the bottom and free surface respectively. To remove turbulent mixing in layers

that are distant from interfaces we modify the Montgomery formula by introducing the cut-off function Z0 = 1−β1H
−2ZhZζ ,25

0≤ β1 ≤ 4 (Voltzinger, 1985)

l =
κ

H
ZhZζZ0.

In addition to the default scheme, one may select a scheme provided by the General Ocean Turbulence Model (GOTM) (Bur-

chard et al., 1999) implemented into the FESOM-C code for computing vertical eddy viscosity and diffusion for momentum
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and tracer equations. GOTM includes large number of well-tested turbulence models with at least one member of every relevant

model family (empirical models, energy models, two-equation models, Algebraic Stress Models, K-profile parameterisations,

etc) and treats every single water column independently. An essential part of GOTM includes one-point second-order schemes

(Umlauf and Burchard, 2005; Umlauf et al., 2005, 2007).

2.3 Bottom friction parametrization5

The model uses either a constant bottom friction coefficient Cd, or it is computed through the specified bottom roughness

height zh. The first option is preferable if the vertical resolution everywhere in the domain does not resolve the logarithmic

layer or when the vertically averaged equations are solved. In the second option the bottom friction coefficient is computed

according to Blumberg and Mellor (1987) and has the following form

Cd = (ln((0.5hb + zh)/zh)/κ)−2,10

where hb is thickness of the bottom layer. It is also possible to prescribe Cd or zh as a function of horizontal coordinate at the

initialization step.

2.4 Boundary conditions

The boundary conditions for the dynamical equations (1-2) are those of no-slip on the solid boundary ∂Q1,

u|∂Q1
= 0.15

As is well known, formulation of open boundary conditions faces difficulties. They are related to either the lack or incom-

pleteness of information demanded by the theory, for example, on velocity components at the open boundary. Furthermore,

whatever the external information, it may contradict to the solution inside the computational domain, leading to instabilities

which are frequently expressed as small-scale vortex structures forming near the open boundary. The procedure reconciling

the external information with the solution inside the domain becomes of paramount importance. We use two approaches. The20

first one is to use a function whereby advection and horizontal diffusion are smoothly tapered to zero in the close vicinity of

open boundary ∂Q2. Such tapering makes the equations quasi-hyperbolic at the open boundary, so that the formulation of one

condition (for example, for the elevation, ζ|∂Q2
= ζΓ) is possible (Androsov et al., 1995).

The other approach is to adapt the external information. It is applied to scalar fields and will be explained further.

Note that despite simplifications, barotropic and baroclinic perturbations still may disagree at the open boundary, leading to25

instabilities in its vicinity. In this case an additional buffer zone is introduced with locally increased horizontal diffusion and

bottom friction.
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Dynamic boundary conditions on the top and bottom specify the momentum fluxes entering the ocean. Neglecting the

contributions from horizontal viscosities, we write

ϑ
∂u

∂z
|ζ = τζ/ρ0,

ϑ
∂u

∂z
|−h = τh/ρ0 = Cd|uh|uh.

The first of them sets the surface momentum flux to the wind stress at the surface (τζ), and the second one, sets the bottom5

momentum flux to the frictional flux at the bottom (τh), with uh the bottom velocity.

Now we turn to the boundary conditions for the scalar quantities obeying equation (4). This is a three-dimensional parabolic

equation and the boundary conditions are determined by its leading (diffusive) terms. We impose the no-flux condition on the

solid boundary ∂Q1 and the bottom z =−h.

The conditions at the open boundary ∂Q2 are given for outflow and inflow, see, e.g., Barnier et al. (1995); Marchesiello et10

al. (2001)

Θt + aΘx + bΘy =−1

τ
(Θ−ΘΓ),

where ΘΓ is the given field value, usually a climatological one or relying on data from a global numerical model or observations.

If the phase velocity components a=−ΘtΘx/G, b=−ΘtΘy/G and G= [(∂Θ/∂x)2 + (∂Θ/∂y)2]−1 (Raymond and Kuo,

1984), Θ propagates out of the domain, and one sets τ = τ0. If it propagates into the domain, a and b are set to zero and τ = τΓ,15

with τΓ� τ0. The parameter τ is determined experimentally and commonly is from hours to days. In the FESOM-C such an

adaptive boundary condition is routinely applied for temperature and salinity, yet it can also be used for any components of

solution.

At the surface the fluxes are due to the interaction with the atmosphere,

ϑΘ
∂T

∂z
|ζ = Q̂(x,y, t)/ρ0cp, (8)20

ϑΘ
∂S

∂z
|ζ = 0, (9)

where Q̂ is the heat flux excluding short wave radiation part, which has been included as a volume heat source in the temperature

equation, cρ the specific heat of sea water. The impact of the precipitation-evaporation has been been included as a volume

source in the continuity equation. In the presence of rivers, their discharge is added either as a prescribed inflow at the open25

boundary in the river mouth, or as volume sources of mass, heat and momentum distributed in the vicinity of open boundary.

In the first case it might create an initial shock in elevation, so the second method is safer.

3 Temporal discretization

As is common in coastal models, we split the fast and slow motions into, respectively, barotropic and baroclinic subsystems

(Lazure and Dumas, 2008; Higdon, 2008; Gadd, 1978; Blumberg and Mellor, 1987; Deleersnijder and Roland , 1993). The30
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reason for this splitting is that surface gravity waves (external mode) are fast and impose severe limitations on the time step,

whereas the internal dynamics can be computed with a much larger time step. The time step for the external mode τ2D is

limited by the speed of surface gravity waves, and that for the internal mode, τ3D, by the speed of internal waves or advection.

The ratio Mt = τ3D/τ2D depends on applications, but is commonly between 10 and 30. In practice, additional limitation are

due to vertical advection, or wetting and drying processes. We will further use the indices k and n to enumerate the internal5

and external time steps respectively.

The numerical algorithm passes through several stages. On the first stage, based on the current temperature and salinity

fields (time step k) the pressure is computed from hydrostatic equilibrium equation (6) and then used to compute the baroclinic

pressure gradient ρ−1
0 ∇p= g∇ζk+gρ−1

0 ∇Ik+ρ−1
0 ∇patm. We use an asynchronous time stepping, assuming that integration

of temperature and salinity is half-step shifted with respect to momentum. The index k on I implies that it is centered between10

k and k+ 1 of momentum integration. The elevation in the expression above is taken at time step k, which makes the entire

estimate for∇p only first-order accurate with respect to time.

At the second stage, the predictor values of the three-dimensional horizontal velocity are determined as

ũk+1−uk = τ3D(−fk×u−∇ ·uu +∇ · (K∇u))AB3− τ3Dρ−1
0 ∇p+ τ3D∂zϑ∂zũ

k+1− τ3D∂z(wu)AB3.

Here K is the coefficient of horizontal viscosity, and AB3 implies the third-order Adams–Bashforth estimate. The horizontal15

viscosity operator can be made biharmonic or replaced with filtering as discussed in the next chapter.

To carry out mode splitting, we write the horizontal velocity as the sum of the vertically averaged one ū and the deviation

thereof (pulsation) u′:

u = ū + u′,

ū =
1

H

ζ∫
−h

udz,20

ζ∫
−h

u′ = 0.

By integrating the system (1)-(3) vertically between the bottom and surface, with regard for the kinematic boundary conditions

∂tζ + u∇ζ = w on the surface and −u∇h= w at the bottom and time discretization, we get

(ζn+1− ζn) + τ2D∇(Hū)AB3 = 0,

25

ūn+1− ūn = τ2D(−fk× ū−∇ · ūū +∇ · (K∇ū))AB3− τ2D(g∇ζ)AM4 + τ2D(τζ/ρ0− τh)− τ2DR′3D − τ2Dgρ−1
0 ∇Īk.

Here a specific version ofAB3 is used, ūAB3 = (3/2+β)ūk−(1/2+2β)ūk−1+βūk−2, with β = 0.281105 for stability reasons

(Shchepetkin and McWilliams, 2005);AM4 implies the Adams–Multon estimate ζAM4 = δζn+1+(1−δ−γ−ε)ζn+γζn−1+

εζn−2, taken with δ = 0.614, γ = 0.088, ε= 0.013 (Shchepetkin and McWilliams, 2005). In the equations above τζ and τh
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are the surface (wind) and bottom stresses respectively, and∇Ī is the vertically integrated gradient of baroclinic pressure. The

term R′3D contains momentum advection and horizontal dissipation of the pulsation velocity integrated vertically

R′3D =
1

Hk

 ζ∫
−h

∇ ·u′u′−
ζ∫
−h

∇ · (K∇u′)

k .
In this expression Hk is the total fluid depth at time step k, Hk = h+ ζk. This term is computed only on the baroclinic time

step and kept constant through the integration of the internal mode.5

The bottom friction is taken as

τh = Cd|ū|n(ūn+1− ūn)/Hn+1 +Cd|ũh|k+1ũk+1
h /Hn+1.

The first part of bottom friction is needed to increase stability, while the second part estimates the correct friction, with ũk+1
h

the horizontal velocity vector in the bottom cell on the predictor time step.

The system of the vertically averaged equations is stepped explicitly (except for the bottom friction) through Mt time steps10

of duration τ2D (index n), to ’catch up’ the k+ 1 baroclinic time step. The update of elevation is made first, followed by the

update of vertically integrated momentum equations.

At the "corrector" step, the 3D velocities are corrected to the surface elevation at k+ 1

uk+1 =
4ki
4k+1
i

ũk+1 + (ūk+1− ūP ),

with ūP = 1
Hk+1

∑ζ
−h(ũk+14ki ), i is the vertical index. Here4ki and4k+1

i are the thicknesses of the i-th layer calculated on15

respective baroclinic time steps. The layer thickness is 4ki =4iHk, where 4i is the unperturbed vertical grid spacing. This

correction removes the barotropic component of the predicted velocity and combines the result with the computed barotropic

velocity. We will suppress the layer index i where it is unambiguous.

The final step in the dynamical part calculates the transformed vertical velocity wk+1 from 3D continuity equation (2). It is

used in the next predictor step. Note that in the predictor step the computations of vertical viscosity are implicit.20

New horizontal velocities, the so-called "filtered" ones, are used for avection of tracer. They are given by the sum of the

"filtered" depth-mean and the baroclinic part of the "predicted" velocities (Deleersnijder, 1993),

uk+1
F =

4ki
4k+1
i

ũk+1 + (ūF − ūP ),

with ūF = 1
MtHk+1

∑n=Mt

n=1 (ūnHn). The procedure of "filtering" removes possible high-frequency component in the barotropic

velocity. It also improves accuracy for it in essence works toward centering the contribution of the elevation gradient. Once the25

filtered velocity is computed, the vertical velocity is updated to match it.

The equation for temperature is taken in the conservation form,

4k+1T k+1 =4kT k − τ3D[∇ · (uk+1
F 4kT ∗) +wFtT

∗
t −wFbT ∗b ] +D+ τ3DR+ τ3DC,
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where D combines the terms related to diffusion, wFt,wFb, Tt,Tb are the vertical transport velocity and temperature on top

and bottom of the layer, T ∗ is computed through the second-order Adams–Bashforth (AB) estimate. R is the boundary thermal

flux (either from surface, or due to river discharge). The last term in the equation above is

C = T
∂4i
∂t

=−T (∇(4iuF )k+1 + ∂z(4iwF )k+1).

Its two constituents combine to zero because of continuity. Keeping this term makes sense if computation of advection are split5

into horizontal and vertical substeps. The salinity is treated similarly.

In simulations of coastal dynamics it is often necessary to simulate flooding and drying events. Explicit time stepping

methods of solving the external mode are well suited for this (Luyten et al., 1999; Blumberg and Mellor, 1987; Shchepetkin

and McWilliams, 2005). The algorithm to account for wetting and drying will be presented in the next section. We only note

that computations are performed on each time step of the external mode.10

4 Spatial discretization

In the finite-volume method, the governing equations are integrated over control volumes and the divergence terms, by virtue

of the Gauss theorem, are expressed as the sums of respective fluxes through the boundaries of control volumes. For the cell-

vertex discretization the scalar control volumes are formed by connecting cell centroids with the centers of edges, which gives

the so-called median-dual control volumes around mesh vertices. The vector control volumes are the mesh cells (triangles or15

quads) themselves, as schematically shown in Fig. 1.

The basic structure to describe the mesh is the array of edges given by their vertices v1 and v2, and the array of two pointers

c1 and c2 to the cells on the left and on the right of the edge. There is no difference between triangles, quads or hybrid meshes

in the cycles which assemble fluxes. Quads and triangles are described through four indices to vertices forming them; in the

case of triangles the fourth index equals the first one. The treatment of triangles and quads differs slightly in computations of20

gradients as detailed below. We will use symbolic notation: e(c) for the list of edges forming cell c, e(v) for the list of edges

connected to vertex v, v(c) for the list of vertices defining cell of element c.

In the vertical direction we introduce a σ-coordinate (Phillips, 1957)

σ =
z+h

h+ ζ
, 1≤ σ ≤ 0.

The lower and upper horizontal faces correspond to the planes σ = 0 and σ = 1 respectively. The vertical grid spacing is25

defined by the selected set of σi. The spacing of σi is horizontally uniform in present implementation (but it can be varying)

and can be selected as equidistant or based on a parobolic function with high vertical resolution near surface and bottom in the

vertical,

σi =−(
i− 1

N − 1
)% + 1,

where N is the number of vertical layers. Here %= 1(2) gives the uniform (parabolic) distribution of vertical layers. One30

more possibility to use refined resolution near bottom or surface is implemented through the formula by Burchard and Bolding
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(2002):

σi =
tanh[(Lh +Lζ)

(N−i)
(N−1) −Lh] + tanhLh

tanhLh + tanhLζ
− 1,

where Lh and Lζ are the number of layers near bottom and surface respectively.

The vertical grid spacing is recalculated on each baroclinic time step for the vertices, where ζ is defined. It is interpolated

from vertices to cells and to edges. The vector of horizontal velocity and tracers are located in the middle of vertical layers5

(index i+ 1/2), but the vertical velocity is at full layers.

4.1 Divergence and gradients

The divergence operator on scalar control volumes is computed as:∫
v

∇ · (4u)dS =
∑
e=e(v)

[(4un`)l + (4un`)r],

where the cycle is over edges containing vertex v, the indices l and r imply that the estimates are made on the left and right10

segments of the control volume boundary attached to the center of edge e, n is the outer normal and ` the length of the segment

(see Fig. 1). Vectors sl and sr connecting the mid-point of edge e with the cell centers on the left and on the right, we get

(n`)l = k×sl and similarly, but with the minus sign for the right element (k is a unit vertical vector). The mean cell values, for

example layer thickness on the cell, can be defined as4c =
∑
v=v(c)4vwcv , where wcv = 1/3 on triangles and wcv = Scv/Sc

for quads (Sc-cell area and Scv-the part of it in the scalar control volume around vertex).15

Gradients of scalar quantities are needed on cells, and are computed as:∫
c

∇ζdS =
∑
e=e(c)

(n`ζ)e,

where summation is over the edges of cell c, the normal and length are related to the edges, and ζ is estimated as the mean over

edge vertices.

The gradients of velocities on cells can be needed for computation of viscosity and momentum advection term. They are20

computed through the least squares fit based on the velocities on neighboring cells.

£ =
∑

n=n(c)

(uc−un− (αx,αy)rcn)2 = min .

Here rcn = (xcn,ycn) is the vector connecting the center of c to that of its neighbor n. Their solution can be reformulated

in terms of two matrices (computed once and stored) with coefficients axcn = (xcnY
2− ycnXY ))/d and aycn = (ycnX

2−
xcnXY ))/d, acting on velocity differences and returning the derivatives. Here d=X2Y 2−(XY )2,X2 =

∑
n=n(c)x

2
cn, Y 2 =25 ∑

n=n(c) y
2
cn and XY =

∑
n=n(c)xcnycn.

4.2 Momentum advection

We implemented two options for horizontal momentum advection in the flux form. The first one is the linear reconstruction

upwind, based on cell control volumes (see Fig.1). The second one is central and is based on scalar control volumes, with
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subsequent averaging to cells. In the upwind implementation we write∫
c

∇ · (u4u)dS =
∑
e=e(c)

(un`4u)e.

For edge e, linear velocity reconstructions on the elements on its both sides are estimated at the edge center. One of the cells

is c, and let n be its neighbor across e. The respective velocity estimates will be denoted as uce and une and upwind will be

written in form 2u = uce(1 + sgn(un)) + une(1− sgn(un)), where un = n((uce + une))/2.5

The other form is adapted from Danilov (2012). It provides additional smoothing for momentum advection by computing

flux divergence for larger control volumes. In this case we first estimate the momentum flux term on scalar control volumes,∫
v

∇ · (u4u)dS =
∑
e=e(v)

[(un`4u)l + (un`4u)r].

The notation here follows that for the divergence. No velocity reconstruction is involved. These estimates are then averaged

to the centers of cells. In both variants of advection form the fluid thickness is estimated at cell centers.10

4.3 Tracer advection

Horizontal advection and diffusion terms are discretized explicitly in time. Three advection schemes have been implemented.

The first two are based on linear reconstruction for control volume and are therefore second-order. The linear reconstruction

upwind scheme and Miura scheme (Miura, 2007) differ in the implementation of time stepping. The first of them needs the

Adams-Bashforth method to be the second-order with respect to time. The scheme by Miura reaches this by estimating the15

tracer at a point displaced by uτ3D/2. In both cases a linear reconstruction of tracer field for each scalar control volume is

performed,

ΘR(x,y) = Θ0(xv,yv) + Θx(x−xv) + Θy(y− yv),

where Θ0 is the tracer value at vertex, Θx and Θy are the gradients averaged to vertex locations, and xv,yv the coordinates of

vertex v. The fluxes for scalar control volume faces associated to edge e are computed as20 ∑
e=e(v)

([(un`4ΘR)l + (un`4ΘR)r]).

The estimate of tracer is made at the mid-points of the left and right segments, and at points displaced by uτ3D/2 from them

respectively.

The third approach used in the model is based on the gradient reconstruction. The idea of this approach is to estimate

the tracer at mid-edge locations by a linear reconstruction using the combination of centered and upwind gradients Θ±e =25

Θvi ± `e(∇Θ)±e /2, i= 1,2 are the indices of edge vertices, and gradients are computed as

(∇Θ)+
e =

2

3
(∇Θ)c +

1

3
(∇Θ)u and

(∇Θ)−e =
2

3
(∇Θ)c +

1

3
(∇Θ)d,
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here, the upper index c means centered estimates, and u, d imply the estimates on the up- and down- edge cells.

The advective flux of scalar quantity Θ through the face of the scalar volume (Qe = [(un`4)l+(un`4)r]) associated with

edge e which leaves the control volume ν1 (see Fig. 1) is

QeΘe =
1

2
Qe(Θ

+
e + Θ−e ) +

1

2
(1− γ)|Qe|(Θ+

e + Θ−e ),

γ is the parameter controlling the upwind dissipation. Taking γ = 0 give the third-order upwind method whereas γ = 1 gives5

the centered fourth-order estimate.

A quadratic upwind reconstruction is used in the vertical with the flux boundary conditions on surface (8) and (9) and zero

flux at the bottom. Other options for horizontal and vertical advection, including limiters, will be introduced in future.

The advection schemes are coded so that their order can be reduced toward the first-order upwind for very thin water layer

to increase stability in the presence of wetting and drying.10

4.4 Viscosity and filtering

Consider the operator∇A∇u. Its computation follows the rule:∫
c

∇A∇udS =
∑
e=e(c)

A`(n∇u)e

The estimate of velocity gradient on edge e is symmetrized, following the standard practice (Danilov, 2012), over the values

on neighboring cells. "Symmetrized" means that the estimate on edge e is mean of horizontal velocity gradients computed15

on elements c and n (notation from article) with the common edge e: (∇u)e = ((∇u)c + (∇u)n)/2. The consequence of

this symmetrization is that on regular meshes (formed of equilateral triangles or rectangular quads) the information from the

nearest neighbors is lost. Any irregularity in velocity on the nearest cells will not be penalized. Although unfavorable for both

quads and triangles, it has far-reaching implications for the latter: it cannot efficiently remove the decoupling between the

nearest velocities which may occur for triangular cells. This fact is well known, and the modification of the scheme above that20

improves coupling between the nearest neighbors consists in using the identity

n = rcn/|rcn|+ (n− rcn/|rcn|),

where rcn is the vector connecting the centroid of cells c and n. The derivative in the direction of rcn is just the difference

between the neighboring velocities divided by the distance, which is explicitly used to correct n∇u. It is easy to show that on

rectangular quads or equilateral triangles (n and rcn are collinear) the second term of the expression above will disappear. This25

is the harmonic discretization and a biharmonic version is obtained by applying the procedure twice.

A simpler algorithm is implemented to control grid-scale noise in the horizontal velocity. It consists in adding to the right

hand for the momentum equation (2D and 3D flow) a term coupling the nearest velocities,

Fc =−(
1

τf
)
∑
n(c)

(un−uc),
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where τf a time scale selected experimentally. On regular meshes this term is equivalent to the Laplacian operator. On general

meshes it deviates from the Laplacian, yet after some trivial adjustments it warrants momentum conservation and energy

dissipation (Danilov and Androsov, 2015).

4.5 Wetting and drying algorithm

For modeling wetting and drying we use the method proposed by Stelling and Duinmeijer (2003). The idea of this method is5

to accurately track the moving shoreline by employing the upwind water depth in the flux computations. The criterion for a

vertex to be wet or dry is taken as:wet, if Dwd = h+ ζ +hl >Dmin

dry, if Dwd = h+ ζ +hl ≤Dmin,

where Dmin is the critical depth and hl is the topography. Each cell is treated as:wet, if Dwd = minhv(c) + maxζv(c) >Dmin

dry, if Dwd = minhv(c) + maxζv(c) ≤Dmin,
10

where hv and ζv are the depth and sea surface height at the vertices v(c) of the cell c. When a cell is treated as dry, the velocity

at its center is set to zero and no volume flux passes through the boundaries of scalar control volumes inside this cell.

5 Numerical simulations

In this section we present the results of two model experiments. The first of them considers tidal circulation in the Sylt–Rømø

Bight. This area has a complex morphometry with big zones of wetting/drying and large incoming tidal waves. In this case15

our intention is to test functioning of meshes of various kind. The second experiment simulates a South-East part of the North

Sea. For this area, annual simulation of barotropic-baroclinic dynamics with realistic boundary conditions on open and surface

boundaries is carried out and compared to observations. We note that a large number of simpler experiments, including those

where analytical solutions are known, were carried out in the course of model development, to test and tune the model accuracy

and stability. Lessons learned from them were taken into account. We omit their discussion in favor of realistic simulations.20

5.1 Sylt-Rømø experiment

To test the code sensitivity to the type of grid and grid quality we computed barotropic tidally driven circulation in the Sylt-

Rømø Bight in the Wadden Sea.

It is a popular area for experiments and test cases (e.g. Lumborg and Pejrup, 2005; Ruiz-Villarreal et al., 2005; Burchard

et al., 2008; Purkiani et al., 2014). The Sylt and Rømø islands are connected to the mainland by artificial dams, creating a25

relatively small semi-enclosed bight with a circulation pattern well-known from observations and modeling (e.g. Becherer et

al., 2011; Purkiani et al., 2014). It is a tidally energetic region with the water depth down to 30 m, characterized by wide

13



intertidal flats and a rugged coastline. Water is exchanged with the open sea through a relatively narrow (up to 1.5 km wide)

and deep (up to 30 m) tidal inlet Lister Dyb. The bathymetry data for the area was provided by Burchard (2015) and is presented

in Fig 2.

We constructed three different meshes (Fig. 2) for our experiments. The first one is a nearly regular quadrilateral mesh,

complemented by triangles that straighten the coastline (MESH-1). Its spatial resolution is 200 m. The second mesh is purely5

triangular (MESH-2) with resolution varying from∼820 to∼90 m. The third mesh was generated by the Gmsh mesh generator

(Geuzaine and Remacle, 2009) and includes 34820 quads and 31 triangles with the minimum cell size of 30 m and maximum

size of∼260 m (MESH-3). All meshes have 21 non-uniform sigma layers in the vertical direction (refined near the surface and

bottom). The wetting/drying option is turned on. We apply the k− ε turbulence closure model with transport equations for the

turbulent kinetic energy and the turbulence dissipation rate using GOTM library. The second-moment closure is represented by10

algebraic relations suggested by Cheng et al. (2002). The experiment is forced by prescribing elevation due to M2 tidal wave

at the open boundary (western and northern boundaries of the domain) provided by Burchard (2015).

Simulations on each mesh were continued until reaching the steady state in the tidal cycle of M2 wave. The last tidal period

was analyzed. The quasi-stationary behavior is established already on the second tidal period. The simulated M2 wave is

essentially nonlinear during the tidal cycle judged by the difference in amplitude of two tidal half-cycles.15

Figure 3 shows the behavior of potential and kinetic energies in the entire domain, whereas the right panels show the energies

computed over the areas deeper than 1 m. The results are sensitive to the meshes, which is explained further. The smallest tidal

energy is simulated on the triangular mesh (MESH-2). The reason is that with the same value of the time scale τf in the filter

used by us in these simulations the effective viscous dissipation is much higher on a triangular mesh than on quadrilateral

meshes of similar resolution. However, the solutions on quadrilateral meshes are different too, and this time the reason is the20

difference in the details of representing very shallow areas on meshes of various resolution (MESH-3 is finer than MESH-1).

The difference between the simulations on two quadrilateral meshes is related to the potential energy and comes from the

difference in the elevation simulated in the areas subject to wetting and drying (see Fig. 8). Note that the velocities and layer

thickness are small in these areas, so the difference between kinetic energies between the left and right bottom panels of Fig. 3

is small.25

The average currents, sea level and residual circulation simulated on MESH-1 are presented in Fig. 4. The results of this

experiment show good agreement with the previously published results of Ruiz-Villarreal et al. (2005).

An example of spectrum of level oscillations on station LIST-auf-SYLT from model results presented in Fig. 5. The am-

plitude of the M2 wave on quad meshes (MESH-1 and MESH-3) slightly exceeds 80 cm and is a bit smaller on MESH-2.

Similar behavior is seen for the second harmonics (M4) expressing nonlinear effects in this region. We tried to compare model30

simulation with the observations (https://www.pegelonline.wsv.de/gast/start/). For comparison, the observations were taken for

the first half of January, 2018. Figure 6 presents the range of fluctuations for the whole period. As is seen, the main tidal wave

M2 has a smaller amplitude (about 70 cm) than in simulations. However, the high-frequency part of the spectrum is very noisy

because of atmospheric loading and winds. If the analysis is performed for separate tidal cycles in cases of strong wind and

no-wind, the correspondence with observation is recovered in the second case.35
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Of particular interest is the convergence of solution on different meshes. For comparison the solutions simulated on MESH-2

and -3 were interpolated to the MESH-1. The comparison was performed for the full tidal cycle and is shown in Fig. 7 which

presents the histograms of the differences.

For the solutions on MESH-1 and MESH-3 values at more than 80% of points agree within the range of ±1 cm for the

elevation (the maximum of tidal wave exceeds 1 m) and within the range of ±1 cm/s for the velocity (the maximum horizontal5

velocity is about 120 cm/s). Thus the agreement between simulations on quadrilateral MESH-1 and MESH-3 is also maintained

on a local level. The agreement becomes worse when comparing solutions on triangular MESH-2 and quadrilateral MESH-1.

Here the share of points with larger deviations is noticeably larger.

Spatial patterns of the differences for elevations and velocities simulated on different meshes are presented in Figs 8 and 9

respectively. Substantial differences for the elevation are located in wetting and drying zones. This is related to the sensitivity10

of the wetting and drying algorithm to the cell geometry. For the horizontal velocity the difference between the solutions is

defined by the resolution of bottom topography in the most energetically active zone on the quadrilateral meshes (see residual

circulation in Fig. 4). The difference between the triangular grid and quadrilateral grid has a noisy character and is seen in the

regions of strongest depth gradients.

5.2 South-East North Sea circulation15

Here we present the results of realistic simulations of circulation in the southeastern part of the North Sea. The area of simula-

tions is limited by the Dogger Bank and Horns Rev (Denmark) on the North and border between Belgium and the Netherlands

on the west. It is characterized by complex bathymetry with strong tidal dynamics (Maßmann et al., 2010; Idier et al., 2017).

The related estuarine circulation (Burchard et al., 2008; Flöser et al., 2011), strong lateral salinity and nutrient gradients

and rivers plumes (Voynova et al., 2017; Kerimoglu et al., 2017) are important aspects of this area. In our simulations, the20

mesh consists of mainly quadrilateral cells. The mesh is constructed with the Gmsh (Geuzaine and Remacle, 2009) using the

Blossom-Quad method (Remacle et al., 2012). It includes 31406 quads and only 32 triangles. The mesh resolution (defined as

the distance between vertices) varies between 0.5 - 1 km in the area close to the coast and Elbe estuary, coarsening to and 4 - 5

km at the open boundary (Fig. 10). The mesh contains 5 sigma layers in the vertical.

The bathymetry from the EMODnet Bathymetry Consortium (2016) has been used. Model runs were forced by 6 hourly25

atmospheric data from NCEP/NCAR Reanalysis (Kalnay et al., 1996) and daily resolved observed river runoff (Radach and

Pätsch , 2007; Pätsch and Lenhart, 2011). Salinity and temperature data on the open boundary were extracted from hindcast

simulations based on TRIM-NP (Weisse et al., 2015). The sea surface elevation at the open boundary was prescribed in terms

of amplitudes and phase for M2 and M4 tidal waves derived from the previous simulations of the North Sea (Maßmann et al.,

2010; Danilov and Androsov, 2015). Data for temperature and salinity from TRIM-NP model were used to initialize model30

runs for one year. The results of these runs were used as initial conditions for 10 month final simulation.

The validation of simulated amplitudes and phases of M2 tidal wave is presented in Fig. 11. This wave is the main tidal

constituent in this region. It enters the domain at the western boundary and propagates along the coast as a Kelvin wave. The

phase field is characterized by two amphidromic points. We used the observed values from Andersen (2008) for the comparison.
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The simulated amplitudes are generally slightly smaller than the observed ones (Fig. 11). The deviations in amplitudes can be

explained by uncertainty in model bathymetry and the use of constant bottom friction coefficient. The phases of M2 wave are

well reproduced by the model. We characterize its accuracy by the total vector error:

µ=
1

N

N∑
n=1

((A∗ cosϕ∗−Acosϕ)2 + (A∗ sinϕ∗−Asinϕ)2)1/2
n ,

where A∗, ϕ∗, and A, ϕ are the observed and computed amplitudes and phases, respectively at N stations. The total vector5

error is 0.24 m for 53 stations in the entire simulated domain which presents a reasonably good result for this region given the

domain size. From the results of comparison it is seen that observations at some stations, such as station 7 in the open sea,

differ considerably from the amplitude and phase at the close stations. The comparison will improve if such outlier stations are

excluded.

To validate the simulated temperature and salinity we used data from the COSYNA data base (Baschek et al., 2016) and ICES10

data base (www.ices.dk). Comparison of modeled surface temperature and salinity show good Pearson correlation coefficient

0.98 and 0.9 with RMSD 1.24 and 0.98 respectively. The model can represent both seasonal changes in sea surface temperature

(SST) and salinity (SSS), as well as lateral gradients (not shown) reasonably well. The modeled and observed SSS for Cuxhaven

station is presented in Fig. 12 for simulations with the Miura advection scheme.

The observations are from the station located in the mouth of the Elbe river near the coast. They are characterized by15

tidal amplitude in excess of 1.5 m, the horizontal salinity gradient of 0.35 PSU/km (during springtide up to 0.45 PSU/km)

(www.portal-tideelbe.de and Kappenberg et al. (2018)) and an extended wetting and drying area around this station. Simulation

is in good agreement with tidal filtered mean SSS (Fig. 12). The model represent well the summer flood event during June -

July months.

Figure 13 shows the calculated surface salinity field in the part of the simulated domain at the time on June 26, 2013, in20

comparison with the observational data from FerryBox (FunnyGirl) (Petersen, 2014). As can be seen from the plot, there is a

high consistency of the simulated results with observational data.

6 Discussion

6.1 Triangles vs. quads: numerical performance

We examine the computational efficiency by comparing the CPU time needed to simulate 5 tidal periods of M2–wave on25

MESH-1 and MESH-2 in the Sylt-Rømø experiment, as presented on Fig. 14. The number of vertices of the quadrilateral

MESH-1 is approximately ∼ 1.13 of that of triangular MESH-2, but the numbers of elements relate as ∼ 0.57. We have found

that the total CPU times are in approximate ratio 1.62 (triangles/quads). The simulations were performed with the same time

steps.

The 3D velocity part takes approximately the same CPU time as the computation of vertically averaged velocity and eleva-30

tion (external mode). Operations on elements, which include the Coriolis and bottom friction terms as well as computations
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of gradients of velocity and scalars, are approximately twice cheaper on quadrilateral meshes, as expected. Computations of

viscosity and momentum transport are carried out in a cycle over edges which is 1.5 times shorter for meshes made of quadri-

lateral elements, which warrants a similar gain of∼ 1.5 in performance on quadrilateral meshes. In our simulation, the net gain

was ∼ 1.62 times on MESH-1 compared to MESH-2, even despite the fact that the number of vertices is 13% larger than on

MESH-2. Model is stable on the quadrilateral meshes with smaller horizontal viscosity, which is also an advantage.5

6.2 Triangles vs. quads: Open boundaries

The presence of open boundaries is a distinctive feature of regional models. The implementation of robust algorithms for the

open boundary is more complicated on unstructured triangular meshes than on structured quadrilateral meshes. For example,

it is more difficult to cleanly assess the propagation of perturbations toward the boundary in this case. In addition, spurious

inertial modes can be excited on triangular meshes in the case of cell-vertex discretization used by us, which in practice leads10

to additional instabilities in the vicinity of open boundary. The ability to use hybrid meshes is very helpful in this case. Indeed,

even if the mesh is predominantly triangular, the vicinity of open boundary can be constructed of quadrilateral elements.

We illustrate the improvements of the dynamics in the vicinity of open boundary by simulating baroclinic tidal dynamic in

an idealized channel with an underwater sill. The channel is 12 km in length and 3 km in width, with the maximum depth of

200 m near the open boundary. The sill with the height of 150 m in located in the central part of the channel. The flow is forced15

at the open boundaries by a tide with the period of M2-wave and amplitude of 1 cm, applied in antiphase. The left part of the

channel contains denser waters than the right one.

Three meshes were used for these simulations. The first one is a quadrilateral mesh with the horizontal resolution of 200 m

refined to 20 m in the vicinity of the underwater sill. The second one is a purely triangular mesh obtained from the quadrilateral

mesh by splitting quads into triangles. The third mesh is predominantly triangular, but for the zones close to the open boundary20

where it is quadrilateral too.

Figure 15 illustrates that at time close to the maximum of the inflow (8h 20m), a strong computational instability due to

the interaction between baroclinic and barotropic flow components evolves on the right open boundary on the triangular mesh,

leading eventually to the blow-up of the solution (see the left insert). However, replacing triangles in a small domain adjacent

to the open boundary with quadrilateral cells we stabilize the numerical solution (see the right insert), for it allows us to cleanly25

handle the directions normal and tangent to the boundary.

7 Conclusions

We described the numerical implementation of three-dimensional unstructured-mesh model FESOM-C, relying on FESOM2

and intended for coastal simulations. The model is based on a finite-volume cell-vertex discretization and works on hybrid

unstructured meshes composed of triangles and quads.30

We illustrated the model performance with two test simulations.
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Sylt-Rømø Bight is a closed Wadden Sea basin, characterized by a complex morphometry and high tidal activity. A sensitiv-

ity study was carried out to elucidate the dependence of simulated surface elevation and horizontal velocity on mesh type and

quality. The elevation simulated in zones of wetting and drying may depend on the mesh structure, which may lead to distinc-

tions in the simulated energy on different meshes. The total energy comparison shows that on the triangular MESH-2, having

approximately the same number of vertices as MESH-1, the solution is more dissipative, for higher dissipation is generally5

needed to stabilize it against spurious inertial modes.

The second experiment deals with the southeastern part of the North Sea. Computation relied on the boundary information

from hindcast simulations by the TRIM-NP, and realistic atmospheric forcing from NCEP/NCAR. Modeling results agree both

qualitatively and quantitatively with observations for the full period of simulation.

Future development of the FESOM-C will include coupling with the global FESOM2 (Danilov et al., 2017), addition of10

monotonic high-order schemes and sea ice of FESOM2, and various modules that would increase functionality of FESOM-C.

Code and data availability. The version of FESOM-C v.2 used to carry out simulations reported here can be accessed from

https://doi.org/10.5281/zenodo.2085177.
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Figure 1. Schematic of mesh structure. Velocities are located at centroids (red circles) and elevation at vertices (blue circles). A scalar control

volume associated with vertex v1 is formed by connecting neighboring centroids to edge centers. The control volumes for velocity are the

triangles/quads themselves. The lines passing through two neighboring centroids (e. g., c1 and c2) are broken in a general case at edge

centers. Their fragments are described by the left and right vectors directed to centroids (sl and sr for edge e). Edge e is defined by its two

vertices v1 and v2 and is considered to be directed to the second vertex. It is also characterized by two elements c1 and c2 to the left and to

the right respectively.

22



Figure 2. Top left: The bathymetry of the Sylt-Rømø Bight (provided by Burchard (2015)) with the location of station List-auf-Sylt; Top

right: the regular quasi-quadrilateral Mesh-1 (200 m, 16089 vertices; 15578 quads and 176 triangles); Bottom left: the triangular Mesh-2

(14193 vertices and 27548 triangles); Bottom right: the irregular quadrilateral Mesh-3 (35639 vertices; 34820 quads and 31 triangles).
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Figure 3. Potential and kinetic energy. Top and bottom left panels are for the total area; top and bottom right are for the area where the full

depth exceeds 1 m.
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Figure 4. Left upper panel: full ebb; right upper panel: low-water; bottom panel: the residual circulation. Simulation was performed on

MESH-1.
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Figure 5. Left upper panel: SSH for one tidal period in the station List-auf-Sylt (see Fig. 2); right upper panel: spectrum of the computed

M2 tidal sea level at station List-auf-Sylt on MESH-1; left bottom panel: spectrum on MESH-2; right bottom panel: spectrum on MESH-3.
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Figure 6. Upper panel: spectrum of the observation tidal sea level at station List-auf-Sylt (see Fig. 2) from 1 to 15 January 2018; Middle

panel: spectrum of the observation SSH for one tidal period (strong wind: 01.01.2018); Bottom panel: spectrum of the observation SSH for

one tidal period (no-wind: 14.01.2018).
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Figure 7. Histograms of the difference between solutions for the tidal cycle of M2 wave on MESH-1 and MESH-2 (left column) and on

MESH-1 and MESH-3 (right column). Top, middle and bottom rows correspond to the difference in elevation, u- and v-components of

velocity respectively.
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Figure 8. Spatial distribution of the elevation differences for full tidal period for MESH-1 and MESH-2 (left) and for MESH-1 and MESH-3

(right).
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Figure 9. Spatial distribution of the difference between the horizontal velocities for the full tidal period of M2 wave: u- component (top row);

v-component (bottom row). The differences are between MESH-1 and MESH-2 (left column) and MESH-1 and MESH-3 (right column).
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Figure 10. The area of South-East North Sea experiment with mesh (black lines). Red dot indicates position of the Cuxhaven station. This

mesh includes 31406 quads and 32 triangles.
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Figure 11. The simulated M2 tidal map in the South North Sea experiment compared to observations. The amplitude is in meters (upper and

bottom left) and phase (upper and bottom right) in degrees. Upper row - are model to observation graphs, the numbers correspond to stations

numbers shown in bottom row. The color shows the amplitude in upper left and phase in upper right, the filled circles show the observational

data. The red circle indicate the position of Cuxhaven station. The total vector error is 0.24 m for 53 stations.
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Figure 12. Modeled (blue line) and observed (gray dots and dashed black lines) sea surface salinity (SSS) at the Cuxhaven station. The

station is positioned at the mouth of the Elbe River between stations 9 and 13 in Fig. 11. The top panel shows 9 months of simulations.

The bottom panel shows results from 2 selected days in May. The blue (modeled with the Miura advection scheme) and thick dashed black

(observation) lines in the top panel show running mean SSS with time window of 10 periods of M2 tidal wave. Thin dashed black lines are

one standard deviation bounds of running mean observed SSS on the top panel.
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Figure 13. Sea surface salinity on 26 June 2013. Filled contours are model results, colored lines are observational data from FerryBox

(FunnyGirl) Petersen (2014).

Figure 14. CPU time on two meshes MESH-1 (black line) and MESH-2 (red line) for Sylt-Rømø experiment. The CPU time for 3D velocity

(left pannel), external mode (middle panel) and the total CPU time (right panel).
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Figure 15. Temperature section along the channel as simulated on the quadrilaateral mesh (left panel). The two inserts show the area adjacent

to the open boundary on the purely triangular mesh (left) and mesh where the vicinity of the open boundary is rendered with quads (right).

The dashed rectangle shows the areaof the inserts. A numerical instability evolves on a purely triangular mesh (blue ellipse).
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