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Abstract. The question of the environmental risks of social and economic infrastructure has recently become apparent due to

an  increase  in  the  number  of  extreme  weather  events.  Extreme  runoff  events  include  floods  and  droughts.  In  water

engineering, extreme runoff is described in terms of probability and uses methods of frequency analysis to evaluate an

exceedance probability curve (EPC) for runoff. It is assumed that historical observations of runoff are representative for the

future; however, trends in the observed time series doubt this assumption. The paper describes a probabilistic hydrological

MARCSHYDRO model that can be applied to predict future runoff extremes. The MARCSHYDRO model simulates statistical

estimators of a multi-year runoff in order to perform future projections in a probabilistic form. Projected statistics of the

meteorological variables available in climate scenarios force the model. This study introduces the new model’s core version

and provides a user guide together with an example of the model set-up in a single case study. In this case study, the model

simulates the projected EPCs of annual runoff under three climate scenarios. The scope of applicability and limitations of the

model’s core version 0.2 are discussed.

1 Introduction

Streamflow runoff serves as a water resource for humans, food production and energy generation while the risks of water-

sensitive economics are usually connected to runoff extremes. In fact, the runoff extremes are always connected to a human

activity since they do not exist in a natural water cycle. Engineering science considers the runoff extremes as critical values

of runoff that lead to the damage of infrastructure or water shortages, and it introduces the extremes in terms of probability.

In particular, in water engineering the runoff extremes are evaluated from the tails of exceedance probability curves (EPCs)

that are used in risk assessment for water infrastructure and decision-making in cost-loss situations (Mylne, 2002; Murphy,

1977, 1976).  The EPC of multi-year runoff allows the estimation of the runoff extremes and supports the designing of

building constructions, bridges, dams, withdrawal systems etc. 

Modern  hydrology  uses  two  approaches  to  evaluate  the  runoff  extreme  with  their  exceedance  probability:  conceptual

modelling (Lamb, 2006) and a frequency analysis (Kite, 1977; Benson, 1968; Kritsky and Menkel, 1946). In the conceptual

modelling approach, synthetic runoff series are simulated from meteorological series in order to calculate the runoff values
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of a chosen exceedance probability (Arheimer and Lindström, 2015; Veijalainen et al., 2012; Seibert, 1999). In the frequency-

analysis approach, historical yearly time series of runoff are used to evaluate statistical estimators, that is, mean value, the

coefficient  of variation (CV) and the coefficient  of skewness  (CS) (van Gelder,  2006).  These estimators  are applied to

calculate the runoff values with the exceedance probability (Guidelines SP 33-101-2003, 2004; Guidelines, 1984; Bulletin

17–B, 1982) needed to support the designing of roads, dams, bridges or water-withdrawal stations. The basic assumption of

this approach is that the future risks during an infrastructure’s operational period are equal to the risks estimated from the

past observations. The runoff extremes are simply extrapolated for the next 20–30 years on the assumption that the past

observations are representative of the future: the “stationarity” assumption (Madsen et al., 2013). 

The number of weather extremes – including hurricanes, wind, rain and snow storms, floods and droughts – has increased

(Vihma, 2014; Wang and Zhou, 2005, Manton et al., 2001). Historical time series of many climate variables show evident

trends, which are statistically significant, and the series of streamflow runoff are among others (Wagner et al., 2011; Dai et

al., 2009; Milly et al., 2005). Rosmann et al. (2016) applied the Mann–Kendall test to analyse a time series of daily, monthly

and yearly river discharges for the last four decades. The highest number of trends was detected for the yearly time series of

annual runoff. The statistically significant trends are founded on historical time series, thus the water engineers and managers

are motivated to revise the basic stationarity assumption that  lies behind infrastructures’ risk assessment since the past

observations are representative of the future (Madsen et al., 2013; Kovalenko, 2009; Milly at al., 2008). 

In this paper, we described a method that combines the conceptual modelling and frequency analysis in order to estimate the

runoff extremes in a changing climate. The method adapts the theory of stochastic systems to the water engineering practice and

it was further named as advanced of frequency analysis (AFA). It was introduced by Kovalenko (1993) and relied on the theory

of stochastic systems (Pugachev et al., 1974). The basic idea behind the method is to simulate the statistical estimators of

multi-year runoff (annual, minimal and maximal runoff) from the statistical estimators of precipitation and air temperature

on a climate scale (Budyko and Izrael, 1991). The simulated statistical estimators of runoff are used to construct EPCs with

distributions from the Pearson system (Pearson, 1895). Kovalenko (1993) suggested modelling the EPCs within Pearson

Type III distribution based on a traditional practice in water engineering (Rogdestvenskiy and Chebotarev, 1974; Matalas and

Wallis, 1973; Sokolovskiy, 1964). However, the distribution can be also chosen by fitting (Laio et al., 2009), defined in

accordance with local hydrological guidelines (Bulletin 17-B, 1982) or somehow more advanced (Andreev et al., 2005). 

A linear “black box” (or a “linear filter model” ) with stochastic components is suggested as a catchment-scale hydrological

model (Kovalenko, 1993). For this linear model, the theory of stochastic systems provides methods to direct the simulation

of probability distributions for a random process (Pugachev et al., 1974). The theory of stochastic systems is applied to

analyse and predict runoff extremes on various time scales, ranging from days (Rosmann and Domínguez, 2017) to a season

(Dominguez and Rivera, 2010; Shevnina, 2001) and climate scales (Shevnina et al., 2017; Kovalenko, 2014, Viktorova and

Gromova, 2010). The AFA approach is a simplification of the theory of stochastic systems on a climate scale. Kovalenko et al.

(2010) gave guidelines for water engineers to estimate the runoff extremes in a changing climate. 
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AFA was suggested about 30 years ago; however, a full description of this approach has still not been published in English.

Moreover, the previous publications in Russian contain many typewriting mistakes in the formulas (Kovalenko, 1993; Kovalenko

et al., 2006), and this makes understanding them troublesome, even for native Russians. In this paper, the theory and assumptions

of the AFA approach were formulated “step-by-step” (see Annex 1),  and the formulas  behind the core of  the probabilistic

hydrological model MARCSHYDRO were accepted for the new version, version 0.2 (see Section 1). This model core allows the

prediction of a skewness parameter of Pearson Type III distribution. An example of the model set-up, forcing and output for a case

study of the Iijoki river is given in Section 2. The main features of the model and the limitations of the AFA method are formulated

in the Discussions section in order to better place the MARCSHYDRO model among other hydrological models.

2 Model description 

The probabilistic hydrological MARCSHYDRO model consists of six blocks (Shevnina, 2015). Fig. 1 shows the tools for data

analysis grouped into blocks: two blocks for the analysis and screening of observed data (DPB and DSB); a block with the

model parametrization, cross-validation and hind casts (PHP); a block to visualise the model’s results (VAB); and a block

with socio-economic applications (EAB). Shevnina and Gaidukova (2017) provided details about the algorithms already

implemented in each block in the model. In this paper, only version 0.2, for the model’s core, is introduced. The formulas

behind the model’s core version 0.1 is published in the annex to the work of Shevnina et al. (2017). 

The  MARCSHYDRO model  simulates  three  non-central  statistical  moments  of  multi-year  runoff  based  on  the  means  of

precipitation calculated over a period of 20–30 years. Now, the model’s application is only limited by a prediction on the

climate scale. The development of a socio-economic infrastructure also needs the climate-scale prediction of river runoff

(Milly et al., 2008) because water extremes, such as floods and droughts, lead to economical losses. The AFA approach has

found practical applications in building constructions (Shevnina et al., 2017;  Kovalenko, 2009). The MARCSHYDRO model

allows the “quick analysis” of the runoff extremes under different climate scenarios. The model needs less computational

resources because it  simulates the parameters of the distribution while the conceptual  hydrological  models simulate the

runoff time series. 

The MARCSHYDRO model parametrization, cross-validation and hindcasts need observations of the river water discharges of a

hydrological network for a period in the past (Kovalenko, 1993). For the cross-validation, the yearly time series of river

runoff are split into two sub-periods, namely the training period and the control period (Shevnina, 2017). The splitting year

corresponds to the year when the statistically significant difference in observations within two periods is detected by the

Student and Kolmogorov-Smirnov tests (Kovalenko, 1993; Kovalenko et al., 2006). The description of the analysis and

screening of the observed river runoff time series, as well as the model cross-validation procedure, fell outside the topics of

this paper. We focused on the equations behind the model’s core version 0.2 and its limitations. 
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2.1 Model input

Two blocks of the MARCSHYDRO model are needed to analyse and screen the observations. The time series of river runoff and

precipitation are required for the period as longer as possible. However, the length of yearly time series on water discharges

does not usually exceed 80–90 years. Hydrological yearbooks or runoff data sets provide observations at sites of national

hydrological  networks,  and the river  runoff  is  expressed as a  volumetric  flow rate (water  discharge,  m3s-1).  In the data

preparation block of the model, the volumetric flow rate (m3s-1) is converted to a specific water discharge (ARR, mm year-1):

ARR = 1000 Q T / A, 

where Q is a yearly average water discharge (m3s-1), T is the number of seconds in a year and A is the catchment area (m2). In

the data screening block of the model, the yearly time series of  ARR are used in the analysis of homogeneity and trends

(Dalmeh and Hall, 1990) and to define a period for the model parametrization (called “a reference period” by Shevnina et al.,

(2017)). Then, the reference  three non-central moments  mk ( mk=1 /n∑
i=1

n

DRi
k  for  k  = 1, 2, 3) are estimated from time

series of ARR using the method of moments (van Gelder et al., 2006). 

The observations on precipitation are collected from meteorological sites, and they may be interpolated into grids in order to

better estimate a precipitation rate over a river basin area. In the data preparation block of the model, the mean annual

precipitation rate (mm year-1) is calculated from the observed yearly time series for the reference period. The mean annual

precipitation rate for the future period can be calculated from an output of any global/regional climate model or even a set of

models. In a study on the catchment scale, the  time series of water discharges can be extracted from the Global Runoff Data

Centre (GRDC) while the precipitation rate can be estimated from gridded data sets (Willmott and Robeson, 1995). These two data

sets were used to perform an example of the model application on the Iijoki River basin.

2.2 Model cross-validation

The MARCSHYDRO model allows the simulation of the non-central moments of runoff that can be used for the construction of

probability distribution (or an EPC),  in other words, it provides a probabilistic form of prediction. The end product of the

model is the probability density function (PDF) (or the EPC), and there are no simulated time series of runoff to compare

with the observations. Kovalenko (1993) suggested comparing the simulated PDF with an empirical PDF by using known

statistical tests such as the Kolmogorov-Smirnov test (Smirnov, 1948). In the PHB of the MARCSHYDRO model, a specific

cross-validation procedure allows conclusions to be drawn about the model’s validation and the quality of hindcasts. For the

model’s cross-validation, the observed time series of river runoff is divided into two sub-periods, namely the training period

and the control period. The splitting year corresponds to the year when a statistically significant difference in mean values is

estimated over two periods. In this study, we did not pay much attention to the cross-validation procedure since the model

core version 0.2 is described in details in Shevnina et al. (2019).
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2.3 The MARCSHYDRO model core

In our study, core version 0.2 of the probabilistic MARCSHYDRO model was suggested instead of version 0.1 (Shevnina et al.,

2017). Version 0.2 allows the evaluation of the skewness parameter of the Pearson Type III distribution. In the new core, the

non-central statistical moments of the ARR were calculated as follows:

m1  = a−b1 , (1)

m2=−b0−2m1b1  + m1a , (2)

m3  = −2m1b0−3 m2 b1  + m 2a , (3)

where m1,  m2 and m3 are the moment estimates of the non-central statistical moments of the ARR; a,  b0,  b1 and b2 are the

parameters of the distributions of the Pearson equation (Andreev et al., 2005). 

To set up the MARCSHYDRO model, observations of water discharges are needed. For the reference period (notated by low

index r) the moments’ estimates for the non-central moments (m1r, m2r, m3r) were first calculated from observed times series

of runoff (mm year-1), then the non-central moments were used to evaluate the parameters of the Pearson equation a, b0 and

b1:

a=0. 5 (5m1r m2 r−4m1 r
3 −m3 r) /(m2 r−m1 r

2 ) , (4)

b0=0.5 (m1 r
2 m2r−2m2r

2 +m1 r m3r )/(m2r−m1r
2 ) , (5)

b1=0.5 (3m1r m2 r−2m1r
3 −m3r )/ (m2r−m1r

2 ) . (6)

Then, the parameters of the  linear filter model (see Annex 1 for details)  c̄ ,G~
N

,G~c
~
N  denoted with a low index  r, were

calculated: 

c̄
r
=N̄

r
/ (a−b

1
/2) ,      (7)

G~
N r

=−2b
0

N̄
r
/ (a−b

1
/2) ,       (8)

G~c
~
N r

=b
1

N̄
r
/ (a−b

1
/2) ,      (9)

where N̄
r  is the mean of annual precipitation rate (mm year-1) estimated from observed time series as an average over any

chosen reference period. 

To force the MARCSHYDRO model, the outputs from global/regional-scale climate models are needed. Coupled Model Inter-

comparison  Project  5  (CMIP5; Taylor  et  al.,  2012)  is  one  collection  of  data  sets  that  is  available  for  climate-scale

hydrological studies. Recently, the model only needs to be forced by a mean of precipitation (mm year -1), evaluated for a

future period of 20–30 years. A low index pr indicated that the values were estimated for the future, and N̄ pr is estimated

from  climate  scenarios.  Following  the assumption  that  c̄ , G~
N

, G~c
~
N

 are  constant  for  both  periods,
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c̄ r=c̄pr , G~N r =G~N pr ,G~c ~N r=G~c ~N pr (a “basic parametrization scheme” according to Kovalenko, 1993); new parameters of the

Pearson equation are calculated from N̄
pr :

a=(G~c
~
N pr

+2 N̄
pr )/ (2 c̄

pr) , (10)

b
0
=−G~

N pr
/ (2 c̄

pr ) , (11)

b
1
=G~c

~
N pr

/ c̄
pr . (12)

Finally, the non-central moments of runoff are calculated for the projected period (denoted by a low index pr):

m
1 pr

=a−b
1 , (13)

m
2 pr

=−b
0
−2m

1 pr
b

1
 + am

1 pr , (14)

m
3 pr

 = −2m
1 pr

b
0
−3m

2 pr
b

1
 + a m

2 pr . (15)

It should be noted that in core version 0.2 the linear filter model includes the multiplicative stochastic component (see Annex

1 for details). It may leads to unstable solutions for the Fokker-Plank-Kolmogorov equation (mk → ∞) for statistical moments

of  high  orders.  Two methods for  getting  stable  solutions  for  the  Fokker-Plank-Kolmogorov equation  are  suggested  by

Kovalenko (2004), and one of them is already implemented in core version 0.1 (Shevnina et al., 2017). 

2.4 Model output

In our study, the EPC of runoff was modelled within Pearson Type III distribution. This distribution is commonly used by

water  engineers  to  estimate water  extremes (Kountrouvelis  and Canavos,  1999;  Rogdestvenskiy and Chebotarev, 1974;

Matalas and Wallis, 1973). The water engineering guidelines provide the ordinates of EPCs from look-up tables (Guidelines,

1984) depending on the CV and CS. These coefficients are calculated from non-central moments’ estimates (Rogdestvenskiy

and Chebotarev, 1974):

CV=√(m2
−m

1
2) /m1

, (16)

CS =(m3−3m2m1  + 2m1
3
)/CV3m1

3 .   (17)

The MARCSHYDRO model output includes the estimates of the mean value, CV and CS, calculated for the reference period

from observations as well as these estimates simulated from mean precipitation for the projected period. The ordinates of the

EPC  available  from  look-up  tables  then  allows  the  calculation  of  the  runoff  values  together  with  their  exceedance

probability. 
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3 Model application: A case study

In our study, we chose the basin of the Iijoki River at the Raasakka gauge (Lat 25.4º / Lon 65.3º) in order to give an example

of the application of the MARCSHYDRO model on the catchment scale. The Iijoki River is located in north-west Finland, and

the Raasakka gauge outlines a watershed area of over 14191 km2. The catchment has a small population and there are no

hydropower plants of  multi-year  regulation to affect  the natural  regime of the annual cycle.  Thus, one can expect  that

historical yearly time series of the annual runoff rate do not contain trends connected to artificial regulation. This case study

shows an example of the set-up and output of the probabilistic MARCSHYDRO model. 

3.1 The MARCSHYDRO model set-up: The reference period

The yearly time series of volumetric water discharge of the Iijoki River were extracted from a dataset of the GRDC (GRDC

56068 Koblenz, Germany). The observations at the Raasakka gauge (ID = 6854600) cover the period 1911–2014, and they

do not contain gaps. This period was considered as the reference period.  The annual specific water discharge (ARR, mm

year-1) was calculated from the average volumetric water discharge for each year in the reference period.  Then, the non-

central moments were calculated from the yearly time series of the ARR with the method of moments (see Table 1). The

reference  climatology  (the  means  of  precipitation  and  air  temperature)  were  evaluated  from  the  dataset  of  NOAA

(NOAA/OAR/ESRL PSD, Boulder, Colorado, USA) at a grid node nearest to the watershed centroid (this technique will be

discussed in a separate paper, as will the methods of a forcing pre-analysis).

3.2 The MARCSHYDRO model forcing: The projected period

Climate scenarios provide a range of projections for temperature and moisture regimes in the future. This range is produced

by different  assumptions about  climate  scenarios  as  well  as  specific  climate  models.  However,  the climate  projections

include precipitation and air temperature, and they give a forcing to hydrological models in order to simulate projections of

runoff. In the case study of the Iijoki River, the data from CMIP5 (Taylor et al., 2012) for three representative concentration

pathways (RCPs) were used to force the MARCSHYDRO model. For each RCP scenario, the projections of annual precipitation

rate were applied to test how the MARCSHYDRO model simulates the EPC under different forcing trajectories. For the period

of 2020–2050 (considered the projected period), the mean values of the precipitation rate (mm year -1) were calculated based

on four world-leading global climate models. We used the outputs from the global models CaESM2 (Chylek et al., 2011),

HadGEM2-ES (Collins et al., 2011), INM-CM4 (Volodin et al., 2010) and MPI-ESM-LR (Giorgetta et al., 2013) (see Table

2). The mean values of the precipitation rate varied by 2–5 % of the model’s average over the RCP scenarios; however, these

values alter substantially between the climate models. Among the outputs considered, the MPI-ESM-LR model projects the

highest changes in the  mean values of the precipitation rate compared to the reference period (see Tables 1 and 2). The

HadGEM2-ES model gives the lowest values for the  mean values of the precipitation rate. The projected means of the

precipitation rate varied slightly between the scenarios. At the same time, they exhibited a significant range of changes
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among the climate models (the mean values of the precipitation rate ranges from 619 to 737 mm year-1) for the case of the

Iijoki River at Raasaka.

3.3 The MARCSHYDRO model output: The projected period

The projected non-central moments’ estimates were simulated for the scenarios/models listed in Table 2. These estimates

were used to calculate the mean value, CV and CS (see Eq. (16–17)) that were included in the output of the MARCS HYDRO

model.  Table  3 shows the modelling results  for  the  HadGEM2-ES and MPI-ESM-LR global  models,  where  the  water

discharges with 10 and 90 % exceedance probabilities are given. The ordinates of the Pearson Type III distribution were

extracted from the look-up tables used in hydrological engineering (Druzhinin and Sikan, 2001), and they allow expressing

runoff as water discharge (m3s-1).  For the  Iijoki River at Raasakka, the mean values of  ARR and CV vary under the RCP

scenarios by over 7 % and 5 % correspondingly. The maximum alteration in the projected mean values of  ARR was obtained

under RCP85 (619 to 737 mm year-1). Under the projections of the MPI-ESM-LR model, the mean ARR increases by over 17 %. 

In the case of the Iijoki River at Raasakka gauge, the 10 % water discharge exceedance probability will increase in the future under

the scenarios/models considered  (see Table 3). It may leads to risks of energy spills at hydropower stations located within the

catchment of the Iijoki River in the period 2020–2050. At the same time, risks connected with water shortages may be fewer since

they are connected to a 90 % water discharge exceedance probability, which is predicted to increase. Figure 2 shows another way

in which the model performs the EPC of the annual runoff rate for the Kyrönjoki River at Skatila gauge (GRDC ID: 6854900). The

set of EPCs were simulated under three RCP scenarios using a similar set-up to the MARCSHYDRO model (Shevnina et al., 2019). In

the further development of the visualisation block, it would be important to involve water managers and decision makers in order to

better outline practical applications for the probabilistic hydrological model.

4 Discussions

Nowadays, the future vision of the climate is changing continuously. Climate projections are updated almost every 5–6 years and

many climate models generate  meteorological  projections for variables such as precipitation and air temperature. Hydrological

models are needed to perform an “express analysis” about future changes in water resources and water extremes (floods and

droughts) on a climate scale. The climate scale means that the express analysis is provided for a period of 20–30 years. Lumped or

semi-distributed physically based hydrological models are traditionally used on a short-term or seasonal scale to simulate a runoff

time series from a  time series of meteorological variables (Seibert, 1999). In many catchment-scale hydrological studies, these

models are driven by the outputs of climate models or their ensembles in order to evaluate water resources and extremes in the near

future (Arheimer and Lindström, 2015; Veijalainen et al., 2012; Yip et al., 2012). The simulation of the runoff time series from a

time series of meteorological  variables  (see Fig.  2 in  Veijalainen et  al.  [2012]) leads to high computational  costs for such

estimations  that  need  to  be  served  in  terms  of  probability  in  economical  applications  (Murphy,  1976).  The  probabilistic
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MARCSHYDRO model is computationally cheaper when compared to lumped or semi-distributed physically based hydrological

models. It can easily be coupled with global and regional climate models, and it can provide the express analysis of water resources

under a modern version of the future climate. 

In this paper we described the structure for the probabilistic hydrological MARCSHYDRO model, together with the AFA method that

lies behind the new model’s core version 0.2. The AFA method has a more than 25-year-long history; however, most of the studies

are published in Russian (Kovalenko, 1993; 2004; 2009; Kovalenko et al., 2010). The AFA method is based on the statistical theory

of automatic systems (Pugachev et al., 1974), which is an outsider among the “classical hydrological” disciplines. The AFA method

is  one  simplification  of  the  Fokker-Plank-Kolmogorov  equation  approach  that  has  been  developed  in  the  Russian  State

Hydrometeorological University. It has been tested in many case studies on river basins located in Russia, Colombia, Bolivia, Mali

etc. There are also a number of publications in English (Rosmann and Domínguez, 2017; Shevnina et al., 2017; Kovalenko, 2014;

Domínguez and Rivera, 2010; Viktorova and Gromova, 2008). In this manuscript we formulated the theory logically in an attempt

to provide the equations for the new core 0.2 of the MARCSHYDRO model; however, it also needs to describe the AFA method that

lies behind it.

The probabilistic hydrological MARCSHYDRO model includes the core versions 0.1 and 0.2.  In both cores, only three non-

central moments are evaluated to construct the EPC within the theoretical distribution the Pearson III Type, which is among the

traditional distributions of the frequency and risk analysis in hydrology (Kite, 1977;  Rogdestvenskiy and Chebotarev, 1974;

Sokolovskiy, 1968; Elderton, 1969; Benson, 1968). The model simulates three estimates of non-central moments of runoff instead

of a runoff time series, and this circumstance makes the computations by the MARCSHYDRO model “low cost” compared  to

conceptual hydrological models (Arheimer and Lindström, 2015; Veijalainen et al., 2012). The MARCSHYDRO model allows putting

the projections of runoff in terms of probability, that is, they appear as runoff values together with their exceedance probability. 

The MARCSHYDRO model includes six modules, and each module allows improvements by including new methods. In this paper,

the new model – core version 0.2, extended to simulate the third statistical estimator (skewness) – is presented. The applicability of

core version 0.2 is limited by the assumptions behind the AFA approach. Among others, there is the “quasi-stationary” assumption

for the expected climate change. In this case, the climate is described by the statistical estimators (i.e. mean value, variability etc.)

of precipitation, air temperature, evapotranspiration, river runoff etc. for the period of 20–30 years. It is assumed to consider two

time period periods with statistically different climates, namely the reference period and the projected period. Another limitation is

connected to the linear filter stochastic model (for details, see Annex 1) used in core version 0.2. It should be noted that there is a

multiplicative component in the model core, and it may lead to unstable solutions of the Fokker-Plank-Kolmogorov equation.

Kovalenko (2004) suggests two solutions that result in stable solutions of the Fokker-Plank-Kolmogorov equation. One of the

solutions was given by Kovalenko et al. (2010) and is coded in model version 0.1 (Shevnina et al., 2017). However, a checking

procedure needs to be applied before using this core version. In the checking procedure we plan to use the “beta criterion” method

suggested by Kovalenko (2004) to further develop the MARCSHYDRO model. 
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Further improvements of the  MARCSHYDRO  model are going to be implemented in the block of  parametrization and hindcasts.

Recently, only the basic parametrization scheme (Kovalenko, 1993) has been included. This basic scheme gives over 70–80 %

successful hindcasts (“forecasts in the past”) in the model cross-validation (Shevnina et al., 2017), and the implementation of a

regionally oriented parametrization scheme (Shevnina,  2011)  is  the  next  step.  It  needs  to  include  a mean value  of  the air

temperature of the parameter, connected to “noised” watershed physiography in Eq. (A.4), the inverse of the runoff coefficient in

the work of Kovalenko (1993). It is also important to study the role of the spatial resolution of meteorological forcing in affecting

the modelling uncertainties for the simulated mean, CV and CS of runoff. 

To fine the probabilistic MARCSHYDRO model among other hydrological models, its practical applications needs to be better

outlined. The model serves a probabilistic form of long-term hydrological projections, and they require adaptation to the needs of

water engineers and water managers as a tool for risk analysis under the expected climate change. The projected EPCs of multi-

year river runoff can be applied in designing bridges, pipes, dams etc. in order to minimise the future risks connected to extreme

floods (Shevnina et al., 2017; Kovalenko et al., 2014; Kovalenko, 2009) and to water shortage due to droughts (Viktorova and

Gromova, 2014). It is important to define informative forms for the outputs of the MARCSHYDRO model that can be adapted to the

needs of a practice, and the development of the block of economic application is among the others studies that are to be continued

in close cooperation with water managers and decision makers.

5 Conclusions

The paper describes the theory and assumptions of the AFA approach, as well as the probabilistic hydrological MARCS HYDRO

model’s structure and core version 0.2. The features of the model are: the close connection to water engineering due to serving

the runoff projection in terms of probability, cheapness in terms of computational cost and a wide range of techniques allowing

model improvement. In the new core, the third moment linked to the location parameter of the Pearson Type III distribution

(or asymmetry) was implemented for simulation. In the previous version of the model core, a constant CS/CV ratio is used to

calculate the location parameter of the distribution. 

To give a practical example how to set up the MARCSHYDRO model, the case of the Iijoki River at Raasakka located in Finland was

considered. The model simulated the tailed values of 10 % and 90 % of annual water discharge from the outputs of global climate

models. We showed two forms of the  probabilistic projections of runoff:  an EPC and the runoff values with their exceedance

probability. This case study of the Iijoki River at Raasakka shows that the MARCSHYDRO model gives reasonable results for the

meteorological projections considered. The practical applications in water management and decision-making should be clarified in

further studies in close co-operation with water engineers. 
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6 Code availability

Currently, the MARCSHYDRO model code is hosted at https://github.com/ElenaShe000/MARCS  ,   with details of its applications for

catchment-scale case studies. The model source code for core version 0.2 is distributed under the Creative Commons Attribution

4.0 License and can be downloaded from the link  https://zenodo.org/record/1220096#.WyTXxxxRVhw and used freely in

scientific research with reference to this publication. We hope that this type of license provides the best way to create a community

of motivated people to further develop the model. Then, the source code will be distributed under the terms of a user agreement. 

7 Data availability

The following data sets can be used to set up and force the MARCS model: the GRDC (GRDC, 56068 Koblenz, Germany), the

NOAA/OAR/ESRL PSD (Boulder, Colorado, USA) and CMIP5 (Taylor et al., 2012).

8 Sample availability

The  sample  data  set  for  the  case  study  of  the  Iijoki  river  at  Raasaka  is  given  at  this  site:

https://zenodo.org/record/1220096#.WyTXxxxRVhw.

Annex 1. The theoretical basis for core version 0.2

A1.1 The assumptions behind advance of frequency analysis 

Advance  of  frequency  analysis  (AFA)  is  based  on  the  theory  of  stochastic  systems,  specifically,  the  Fokker-Plank-

Kolmogorov equation, which is simplified into a system for three non-central statistical moments (Pugachev et al., 1974).

The time series of annual runoff is considered as a realisation of a random-process Markov chain type that is assumed to be

“stationary”. It means that the statistical estimators (mean, variance and skewness) do not change over the period considered.

The statistical estimators are used to model an exceedance probability curve (EPC) of the annual runoff with Pearson Type

III  distribution.  The  AFA approach  is  developed  with  an  assumption  of  “quasi-stationary”  (Kovalenko  et  al.,  2010,

Kovalenko, 1993). The quasi-stationary assumption suggests that the statistical estimators of multi-year runoff are different

for  two periods (the reference  period and  the  projected period).  For the  reference period,  the  statistical  estimators  are

evaluated from historical  yearly time series  of  runoff.  For  the projected  period,  the  statistical  estimators  of  runoff  are

simulated based on the outputs of global- or regional-scale climate models under any climate scenario. 

A1.2 The linear filter stochastic model 

In this context, models replace a complicate hydrological system using maths abstractions and aim to reveal the spatial and

temporal  runoff  features  which  are  important  depending  on  the  goals  of  study.  Among  other  models,  “black  box”
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hydrological  models consider  a river basin as a dynamic system with lumped parameters.  These models are “based on

analysis  of  concurrent  inputs  and temporal  output  series”  (WMO-№168,  2009) and  transform series  of  meteorological

variables (precipitation, air temperature) into series of runoff. Both input and output series are functions of time  (WMO-

№168, 2009): 

an(t)
d nQ
dtn

+an−1(t)
d n−1 Q
dtn−1

+... +a1( t ) dQ
dt

+a0(t)Q=

=bn(t )
dn P
dt n +bn−1(t)

d n−1 P
dtn−1 +... +b1(t)

d P
dt

+b0(t )P

 , (A.1)

where  Q  is the runoff in volumetric flow rate,  P  is the precipitation in volumetric flow rate (rain, snow melt) and the

coefficients a
i  and b

i  are the empirical parameters of a translating system. These coefficients are the lumped parameters

of the black box model. The solution to Eq. (A.1) for zero initial conditions gives:

Q (t )=∫
0

t

h ( t,τ ) P (τ ) dτ , (A.2)

where the function  h (t,τ )  represents the response of a river basin at time t to a single portion of precipitation at time P . In

the AFA approach, a river basin is considered as a linear system, transforming the annual precipitation into the annual runoff:

a
1

(t )
dQ
dt

 + a
0

( t ) Q  = b
0

( t ) P . (A.3)

On the other hand, a river basin can be considered as a linear system with stochastic components in the input function and

the model parameter (Kovalenko, 1993): 

dQ=[−(c̄  + ~c (t))Q  + ( N̄  + ~N (t ))]dt , (A.4)

where a0(t)=c̄ +~c (t)  is the stochastic parameter of the system (a “noised” watershed physiography, the inverse of runoff

coefficient), b0(t)P= N̄ +~N (t )  is the stochastic input for the system (a “noised” precipitation), and a1=1 . The stochastic

components of ~c (t )  and ~N (t )  are the Gaussian “white noise” with zero means, and their intensities are G~c , G~
N

. The

intensities are mutually  correlated  as  K~с
~
N

( τ ) = E (~с (t )~N (t  + τ ) )= G~с
~
N

δ (τ ) .  It  should be noted,  that  the  multiplicative

parameter c̄  + ~c (t)  in Eq. (A.4) is the sum of the constant  c̄  and Gaussian «white noise» ~c ( t ) , and it may lead to the

unstable solutions of the Fokker-Plank-Kolmogorov equation (i.e. in may lead to infinite  statistical moments of high orders).

It  limits the application of the AFA method (Kovalenko, 1993).  Kovalenko (2004) suggests two solutions, and we will

introduce them in a further paper.
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A1.3 The Fokker-Plank-Kolmogorov equation and simplifications 

The Fokker-Plank-Kolmogorov equation can be applied to simulate the probability density function (PDF) for the stochastic

Q(t) in Eq. (4) (Kovalenko, 1993; Pugachev, 1974):

∂ p (Q,t )

∂t
=− ∂

∂Q
( A (Q ) p (Q,t ) )  + 0.5 ∂

2

∂Q2
( B (Q ) p (Q,t )) , (A.5)

where p (Q,t )  is the PDF of Q at time t; and the drift coefficient ( A ( Q ) ) and diffusion coefficients ( B (Q ) ) are calculated

as follows (Kovalenko, 1993; Pugachev, 1974): 

A ( Q )=−( c̄−0.5G~c ) Q−0. 5G~c
~
N

 +  N̄ , (A.6)

B (Q ) =G~c Q2
−2QG~c ~N +G~N

.  (A.7)

The analytical solution of Eq. (A.5) is difficult and not always needed for practical applications in water engineering since

the PDFs of runoff are modelled from a set of statistical estimators, and the moments are from, among others, van Gelder et

al. (2006). The PDFs are described with the set of moments mk=∫
−∞

+∞

Qk p (Q,t ) dQ  (where k is number of the moment, k –>

∞ ). To obtain the equations for m
k , both sides of Eq. (A.5) were multiplied by a differentiable function ψ (Y )  and then

integrated within limits from −∞  to +∞  by Q  (however, it is supposed that Q  > 0 ):

d( ∫
−∞

+∞

ψ (Q ) p ( Q,t ) dQ)
dt

=∫
−∞

+∞

p (Q,t ) A (Q )
∂ψ ( Q )

∂Q
dQ  + 0. 5 ∫

−∞

+∞

p (Q,t ) B (Q )
∂2 ψ (Q )

∂Q2
dQ (A.8).

Then, ψ (Q )  was replaced with ψ (Q ) =Qk , and Eq. (A.8) was written as:

dmk (t )

dt
=∫

−∞

+∞

p (Q,t ) A (Q )
∂ (Qk )
∂Q

dQ  + 0.5 ∫
−∞

+∞

p (Q,t ) B ( Q)
∂

2 (Qk )

∂Q2
dQ .  (A.9)

For a stationary random process  dm
k

( t ) /dt=0  , and the drift and diffusion coefficients are constant. Thus, Eq. (A.9) was

simplified as follows:

For k=1:

−( c̄−0.5G~c )m1
−0. 5G~c

~
N

+ N̄=0 . (A.10)

For k≥2 :

−k ( c̄−0. 5kG~c ) mk
+ k N̄ m

k−1
−k ( k−0.5 ) G~c

~
N

m
k−1

+0. 5k ( k−1 ) G~
N

m
k−2

=0 .     (A.11)

Further, the summands in Eq. (10–11) were divided by (2 c̄ +G~c ) ,  and new notations were introduced as suggested in the

work of Kovalenko (1993) and Pugachev et al. (1974):
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a=
G~c ~N

+2 N̄

2 c̄+G~c

; b
0
=−

G~N

2 c̄ +G~c

; b
1
=

2G~c ~N

2 c̄ +G~c

; b
2
=−

G~c

2 c̄+G~c
.

Then, for k = 1, 2, 3, 4 the system of Eq. (A.10–11) includes: 

m
1(2b

2
+1)−a+b

1
=0 , (A.12)

(3b
2
+1 )m2

+(2b
1
−a) m1

+b
0
=0 , (A.13)

(4 b
2
+1) m3

+ (3b
1
−a) m

2
+2b

0
m

1
=0 , (A.14)

(5b
2
+1 )m4

+ (4 b
1
−a )m3

+3b
0

m
2
=0 . (A.15)

The set of four moments (m1, m2, m3, m4) is sufficient to model distributions from the Pearson equation (Andreev et al., 2005;

Elderton and Johnson, 1969). However, in water engineering we usually only use three-parametric probability distributions

fitted to observations (Guidelines, 2004; Guidelines, 1984; Bulletin 17-B, 1982). In this case,  G~c
<< c̄  is assumed, thus it

leads to  b
2
=−G~c

/ (2 c̄ +G~c )≈0  and  (4 b
2
+1)≈1 ,  (3b

2
+1 )≈1 ,  (2b

2
+1)≈1 . To model the PDFs (or EPCs) of annual

runoff within the Pearson Type III distribution, the system of Eq. (A.12–15) is simplified as follows:

−a+b
1
=−m

1 , (A.16)

b
0

+2m
1

b
1
−am

1
=−m

2 , (A.17)

2m
1
b

0
+3 m

2
b

1
−am

2
=−m

3 . (A.18)

Denoting  lk=(
−m

1

−m2

−m3
) ,  x=(

b1

b0

a
)  and  A=(

1 0 −1
2m1 1 −m1

3m2 2 m1 −m2
) ,  the parameters  a, b

0
, b

1  are calculated as  DD=x ii / ,

where D is the determinant of matrix A, and Di is the determinant of the matrix obtained by replacing of the column i (1, 2,

3) in matrix A by the vector lk. Finally, the parameters a, b
0

, b
1  are calculated as follows:

b1=0.5 (3m1 m2−2m1
3−m3) /(m2−m1

2) ,   (A.19)

b
0
=0.5 (m1

2 m
2
−2m

2
2 +m

1
m

3)/ (m2
−m

1
2) ,   (A.20)

a=0.5 (5m
1
m

2
−4 m

1
3
−m

3)/ (m2
−m

1
2) . (A.21)

A1.3 Notations

There are too many notations used to describe the model’s core version 0.2, thus the secondary parameters of equations were

grouped by the model behind it. Table A.1 shows the notation and description of the secondary parameters for the linear  filter
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stochastic model. Eq. (A.3) is a simplification of Eq. (A.1) that limits the first order ordinal differential equation. It includes three

parameters, a
0 , a

1  and b
0 , and two of them are assumed to be noised. These noised parameters include a constant component

(indicated with a bar) and a Gaussian white noise component (indicated with a tilde) with their own intensities.

Table A.1 The notation and description of the parameters for a linear filter stochastic model.

Q runoff as a volumetric flow rate, m3s-1

P precipitation as a volumetric flow rate, m3s-1

a
i
(t ) , b

i
(t ) the lumped parameters of “block box” model, i = 0 and 1

c̄ +~c (t) the inverse of runoff coefficient: c̄  is constant component, ~c ( t )  is the Gaussian “white noise” 

N̄ +~N (t ) precipitation: N̄  is constant component,  ~N (t)  is the Gaussian “white noise” 

G~c , G~
N

the intensities of the Gaussian “white noise” 

G~с
~
N

δ (τ ) the correlation function for the mutually delta-correlated processes ~c ( t)  and ~N (t )

Table A.2 gives a description of the parameters of the Fokker-Plank-Kolmogorov equation and the Pearson system. It should be

noted that we do not solve the Fokker-Plank-Kolmogorov equation, and only its simplification for the system of three non-central

moments is applied. These non-central moments are estimated from runoff observations for the reference period. For the projected

period the moments are calculated from the mean of precipitation. 

Table A.2. The notations of the Fokker-Plank-Kolmogorov equation and Pearson equation.

p (Q,t ) the probability density function of Q at time t

A ( Q )  the drift coefficient, estimated from the “noised” parameters and their intensities

B (Q ) the diffusion coefficient, estimated from the “noised” parameters and their intensities

m
k

the non-central statistical moment with order k = 1, 2, 3, 4

a, b
0

, b
1
, b

2
the parameters of a distribution within the Pearson equation

Annex 2. A short user guide the MARCS model 

To set up the model for a single river catchment, the non-central moments should be calculated from historical time series of the

annual river runoff rate as well as from a mean value of annual precipitation rate. These values should be placed manually (lines

45–48 in model_core.py located at https://zenodo.org/record/1220096#.WyTXxxxRVhw) as should the ID number of catchment

(line 51 of model_core.py). To force the model, the projected mean value of the annual precipitation rate should be evaluated from

an output of a climate model, and then the model_core.py can be run in the Unix command line: ./model_core.py XXX (where
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XXX is the mean of the annual precipitation rate for the projected period). The output of model_core.py is stored in the output file

model_GPSCH.txt and included in line with the following format: the ID of catchment, the first non-central moment estimate of

annual runoff rate (mm year-1) for a reference period, the mean value of annual precipitation rate (mm year-1) for a reference period,

the coefficient  of variation for a reference period, the coefficient  of skewness for a reference period, the model parameters

c̄ , G~
N

, G~c
~
N

, the the first non-central moment estimate of annual runoff rate (mm year-1) for a projected period, the mean value

of annual precipitation rate (mm year-1) for a projected period, the coefficient of variation for a projected period, the coefficient of

skewness for a projected period.
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Table 1. The MARCSHYDRO model set-up: the Iijoki river at Raasakka as a case study.

GRDC ID River at Gauge Length,
year

m1 r,
mm year-1

m2 r, 
mm2 year-1

m3 r, 
mm3 year-1

N̄
r , 

mm year-1 

T̄
r

*, 

°C

6854600 Iijoki at Raasakka (Finland) 100 379 149343 60811610 625 0.2

Notes:  m1r ,m2 r ,m3r  are  the  moments  of  runoff  as  well  as  the  mean  of  precipitation  ( N̄
r )  were  evaluated  from

observations. The mean air temperature ( T̄
r )* was not used in the model set up in case of the Iijoki River, however this

value allows advancement of the model parametrization (Shevnina et al., 2017).
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Table 2. The forcing of the MARCSHYDRO model for the case study of the Iijoki River at Raasakka. 

Global climate

model

Climate scenario

RCP26 RCP45 RCP85

T̄
pr , 

°C*

N̄
pr , 

mm year-1

T̄
pr , °C N̄

pr , 

mm year-1

T̄
pr , °C N̄

pr , 

mm year-1

CaESM2 2.9 673 2.7 652 2.7 652

HadGEM2-ES 1.4 635 2.6 637 2.2 619

INM-CM4 – – 1.3 645 1.4 660

MPI-ESM-LR 2.5 704 2.2 695 2.9 737

Notes: Projected mean of air temperature ( T̄
pr )* is needed for a regional parametrization scheme (see details Shevnina,

2011), and these values were not used in the model forcing in the case of the Iijoki River at Raasakka. N̄
pr  is the projected

mean of annual precipitation amount.
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Table 3. The projected climatology and statistics of annual runoff: a case of the Iijoki River.

Value Reference

period:

1914–2014

Projected period: 2020–2050

HadGEM2-ES MPI-ESM-LR

RCP85 RCP45 RCP26 RCP85 RCP45 RCP26

Precipitation, mm year-1 625 619 637 635 737 695 704

Specific discharge, mm year-1 380 375 386 385 447 421 427

CV 0.19 0.2 0.19 0.19 0.16 0.17 0.17

CS –0.04 –0.04 –0.04 –0.04 –0.04 –0.04 –0.04

Q10%, m3s-1 475 473 483 481 527 505 512

Q90%, m3s-1 293 278 297 296 331 354 359

24

590

595



Figure 1: The MARCSHYDRO model structure and core versions. 
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Figure 2: The variability of the tails of the EPCs for annual runoff for the reference period (black) and projected period (colours). 
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