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Abstract. A question of environmental risks of social and economic infrastructure has become apparent recently due to an

increase in the number of extreme weather events. Extreme runoff events include floods and droughts. In water engineering

extreme runoff is  described in terms of probability,  and uses methods of frequency analysis to evaluate an exceedance

probability curve (EPC) of runoff.  It  is  assumed that historical  observations of runoff are representative for the future;

however  trends  in  observed time series  doubt  this  assumption.  The paper  describes  a  probabilistic  hydrological  model

Markov Chain System (MARCSHYDRO) to be applied to predict future runoff extremes. The MARCSHYDRO model simulates

statistical  estimators  of  a  multi-year  runoff  to  perform  future  projections  in  probabilistic  form.  Projected  statistics  of

meteorological variables available in climate scenarios force the model. This study introduces a new model’s core version,

and provides its user guide together with an example of the model set up for a single case study. In this case study, the model

simulates projected exceedance probability curves of annual runoff under three climate scenarios. The scope of applicability

and limitations of the model’s core version 0.2 are discussed.

Introduction

Streamflow runoff serves water resources for humans, food production and energy generation, while risks of water-sensitive

economics are usually connected to runoff extremes. In fact, the runoff extremes are always connected to a human activity

since they are not existing in a natural water cycle. Engineering science considers the runoff extremes as critical values of

runoff  leading  to  damage of  infrastructure  or  water  shortages,  and  introduces  the extremes in  terms of  probability.  In

particular, in water engineering the runoff extremes are evaluated from tails of exceedance probability curves to be used in

risk assessment of water infrastructure and decision-making in cost-lost situations (Mylne, 2002; Murphy, 1977, 1976). The

exceedance probability curve (EPC) of multi-year runoff allows estimation of the runoff extremes and supports designing of

building constructions, bridges, dams, withdrawal systems, etc. 

Modern  hydrology  uses  two  approaches  to  evaluate  the  runoff  extreme  with  their  exceedance  probability:  conceptual

modelling (Lamb, 2006) and a frequency analysis (Kite, 1977; Benson, 1968; Kritsky and Menkel, 1946). In the conceptual
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modelling approach,  synthetic runoff  series are simulated from meteorological  series to calculated the runoff  values  of

chosen exceedance probability (Arheimer and Lindström, 2015;  Veijalainen et al., 2012;  Seibert, 1999). In the frequency-

analysis  approach,  historical  yearly  time  series  of  runoff  are  used  to  evaluate  statistical  estimators,  i.e. mean  value,

coefficient of variation and coefficient of skewness (van Gelder, 2006). These estimators are applied to calculate the runoff

values with their exceedance probability (Guidelines SP 33-101-2003, 2004; Guidelines, 1984; Bulletin 17–B, 1982) needed

to support designing of roads, dams, bridges or water-withdrawal stations. The basic assumption of this approach is that the

future risks during infrastructure's operational period are equal to the risks estimated from the past observations. The runoff

extremes are simply extrapolated for the next 20-30 years on an assumption that the past observations are representative for

the future or a “stationarity” assumption (Madsen et al., 2013). 

A number of weather extremes including hurricanes, wind, rain and snow storms, floods and droughts has increased (Vihma,

2014; Wang and Zhou, 2005, Manton et al., 2001). Historical time series of many climate variables evident trends, which are

statistically significant, and the series of streamflow runoff are among others (Wagner et al., 2011; Dai et al., 2009; Milly at

al., 2005). Rosmann et al. (2016) apply the Mann–Kendall Test to analyse a time series of daily, monthly and yearly river

discharges for last four decades. The highest number of the trends are detected for the yearly time series of annual runoff.

The statistically significant trends are founded on historical time series, thus the water engineers and managers are motivated

to revise a basic “stationarity” assumption behind the infrastructures’ risk assessment since the past observations are not

representative for the future (Madsen et al., 2013; Kovalenko, 2009; Milly at al., 2008). 

In  this paper,  we  described a method combing the  conceptual  modelling and frequency analysis to estimate the runoff

extremes in changing climate. The method adapts a theory of stochastic systems to a water-engineering practice, and it is further

named as an Advanced of Frequency Analysis (AFA). It is introduced by Kovalenko (1993) relying on theory of stochastic

systems (Pugachev et al., 1974). The basic idea behind the method is to simulate the statistical estimators of multi-year

runoff (annual, minimal and maximal) from the statistical estimators of precipitation and air temperature on a climate scale

(Budyko and Izrael, 1991). The simulated statistical estimators of runoff are used to construct exceedance probability curves

(EPCs) with distributions from the Pearson System (Pearson, 1895). Kovalenko (1993) suggests modelling the EPCs within

the Pearson Type III distribution based on a transitional practice in water engineering (Rogdestvenskiy and Chebotarev,

1974;  Matalas and Wallis, 1973; Sokolovskiy, 1964). However, the distribution can be also chosen by fitting (Laio et al.,

2009)  or  defined  in  accordance  with  local  hydrological  guidelines  (Bulletin  17-B,  1982)  or  somehow more  advanced

(Andreev et al., 2005). 

A linear “black-box” with stochastic components (or “linear filter stochastic model”, LFSM) is suggested as a catchment-

scale hydrological model (Kovalenko, 1993). For this linear model, the theory of stochastic systems provides methods to

direct simulation of probability distributions for a random process (Pugachev et al., 1974). The theory of stochastic systems

is applied to analyse and predict  runoff extremes on various time scales ranging from days (Rosmann and  Domínguez,

2017), to a season (Domínguez and Rivera, 2010; Shevnina, 2001) and to a climate scales (Shevnina et al., 2017; Kovalenko,
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2014, Viktorova and Gromova, 2010). The AFA approach is a simplification of the theory of stochastic systems on a climate scale.

Kovalenko et al., (2010) give the guidelines for water engineers on an estimation of the runoff extremes in changing climate. 

The AFA has been suggested about 30 years ago, however a full description of this approach is still not published in English.

Moreover, the previous publications in Russian contain many typewriting mistakes in formulas (Kovalenko, 1993; Kovalenko et

al., 2006), and it makes understanding troublesome even for native Russians. In this paper, a theory and assumptions of the AFA

approach were formulated “step-by-step” (in the Annex 1), and formulas behind the core of the probabilistic hydrological model

MARCSHYDRO were accepted for the new version 0.2 (in the Section 1). This model core allows to predict a skewness parameter of

the Pearson Type III distribution. An example of the model set up, forcing and output for a case study of the Iijoki river is given in

the Section 2. The main features of the model and the limitations of the AFA method were formulated in the Discussions to better

place the model MARCSHYDRO among other hydrological models.

1 Model description 

The probabilistic hydrological  model MARCSHYDRO consists of six blocks Shevnina (2015).  Fig.  1 shows tools for data

analysis grouped into the blocks: two blocks to analysis and screening of observed data (DPB and DSB), the block with the

model parametrization, cross-validation and hind casts (PHP), the block to visualize the model’s results (VAB) and the block

with  socio-economic  applications  (EAB).  Shevnina  and  Gaidukova  (2017)  provide  details  about  algorithms  already

implemented to each block in the model.  In this paper,  the only version 0.2 for the model’s core was introduced. T he

formulas behind the model’s core version 0.1 is published as the annex to Shevnina et al. (2017.) 

The  MARCSHYDRO model  simulates  three  non-central  statistical  moments  of  multi-year  runoff  based  on  means  of

precipitation calculated over a period of 20–30 years. Now, the model application is limited by only a prediction on the

climate scale. Development of a socio-economic infrastructure needs also for the climate scale prediction of river runoff

(Milly et al., 2008) because the water extremes such as floods and droughts lead to economical losses. The AFA approach

have  found  the  practical  applications  to  the  building  constructions  (Shevnina  et  al.,  2017;  Kovalenko,  2009).  The

MARCSHYDRO model allows to “quick analysis” of the runoff extremes under different climate scenarios. The model needs

less computational resources because it simulates parameters of the distribution while the conceptual hydrological models

simulate the runoff time series. These time series than aggregated to distributions by methods of the frequency analysis

(Veijalainen et al., 2012) or with an ensemble of climate models (Madsen et al., 2013). 

The MARCSHYDRO model parametrization, cross-validation and hind casts needs to observations on river water discharges on

a hydrological network for a period in the past. The description of the analysis and screening of the observed time series as

well as the model cross-validation procedure were outside the topics of this paper. We focused on the equations behind the

model’s core version 0.2 and its limitations. 
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1.1 Model input

Two blocks of the MARCSHYDRO model are needed to analysis and screening of observations (DPB and DSB). The observed

time series of river runoff and precipitation are needed for the period as longer as possible. However, the length of yearly

time series on water discharges usually does not exceed 80-90 years. Hydrological year books or runoff data sets provide

observations at sites of National hydrological networks, and the river runoff is expressed in volumetric flow rate (water

discharge, m3s-1). In the DPB, the volumetric rate is converted to a specific discharge (DR, mm year-1):

DR = 1000 Q T / A, 

where Q is a yearly average water discharge, m3s-1; T is a number of seconds in a year, and A is the catchment area, m2. In the

DSB, the yearly time series of DR are used to analyze for homogeneity and trends (Dalmeh and Hall, 1990) and to define a

period for the model parametrization, or “a reference period” in Shevnina at al. (2017). Then, the reference three non-central

moments mk ( mk=1 /n∑
i=1

n

DRi
k for k=1, 2, 3) are estimated from time series of DR with a Method of Moments (van Gelder

et al., 2006). 

The observations on a precipitation are collected on meteorological sites, and they may be interpolate into grids to better

estimate a precipitation rate over a river basin area. In the  DPB, the mean annual precipitation rate (AP,  mm year-1) is

calculated from the observed yearly time series for the reference period. The mean of  AP for the future period can be

calculated from an output of any global/regional climate model or even a set of models. In a study on a catchment scale, the

time series of water discharges can be extracted from the Global Runoff Data Center (GRDC ) while the precipitation rate can be

estimated from gridded data sets (Willmott and Robeson, 1995). These two data sets were used to perform an example of the model

application the Iijoki River river basin.

1.2 Model cross-validation

MARCSHYDRO allows to simulate the non-central moments of runoff to be used for construction of probability distribution (or

exceedance probability curve), i.e. provides a probabilistic form of prediction. The end product of the model is the PDF (or

EPC), and there are no simulated time series of runoff to be compared with observations. Kovalenko (1993) suggests to

compare the simulated PDF with empirical PDF by known statistical tests such as the Kolmogorov-Smirnov test (Smirnov,

1948). In the PHB of the MARCSHYDRO model, a specific cross-validation procedure allows conclusions about the model’s

validation and quality of hind casts. For the model’s cross validation, the observed time series of river runoff is divide into

two sub periods namely training and control. The splitting year is corresponded to a year when a statistically significant

difference of mean values estimated over two periods. In this study, we did not pay much attention to the cross-validation

procedure described in Shevnina et al. (2017) and Kovalenko (1993).
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1.3 Model core

In  our  study,  the  core  version  0.2  for  the  probabilistic  model  MARCSHYDRO was  suggested  instead  of  the  version  0.1

(Shevnina et al., 2017). The version 0.2 allows an evaluation of a skewness parameter of the Pearson Type III distribution. In

the new core, the non-central statistical moments of the DR were calculated as following:

m1  = a−b1 , (1)

m2=−b0−2m1b1  + m1a , (2)

m3  = −2m1b0−3 m2 b1  + m 2a , (3)

where,  m1,  m2 and m3 are the moment estimates of the non-central statistical moments of the ARR;  a,  b0,  b1 and b2 are the

parameters of distribution from the Pearson System (Andreev et al., 2005) denoted as PSD in the further text. 

To set up the MARCSHYDRO model the observations on water discharges are needed. For the reference period (notated by low

index r) the moments’ estimates for the non-central moments (m1r, m2r, m3r ) were calculated from observed times series of

runoff   (mm year-1) first. Then, the non-central moments were used to evaluate the parameters of the Pearson equation

a, b
0

, b
1 :

a=0. 5 (5m1r m2 r−4m1 r
3 −m3 r) /(m2 r−m1 r

2 ) , (4)

b0=0.5 (m1 r
2 m2r−2m2r

2 +m1 r m3r )/(m2r−m1r
2 ) , (5)

b1=0.5 (3m1r m2 r−2m1r
3 −m3r )/ (m2r−m1r

2 ) . (6)

Then, the parameters of the linear filter model (LFSM, see the Annex 1 for details) c̄ ,G~
N

,G~c
~
N  denoted by low index r

were calculated: 

c̄
r
=N̄

r
/ (a−b

1
/2) ,      (7)

G~
N r

=−2b
0

N̄
r
/ (a−b

1
/2) ,       (8)

G~c
~
N r

=b
1

N̄
r
/ (a−b

1
/2) ,      (9)

where,  N̄
r  is the mean of AP (mm year-1) estimated from observed time series as an average over any chosen reference

period. 

To force the MARCSHYDRO model the outputs from global/regional scale climate models are needed. The CMIP5 (Taylor et

al., 2012) is among other collections of data sets available for climate scale hydrological studies. Recently, the model needs

to be forced only a mean of precipitation ( N̄ , mm year-1) evaluated of the future period of 20-30 year. The low index pr

indicated that the values were estimated for the future, and the N̄
pr  are estimated from climate scenarios. In an assumption
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that  c̄ , G~
N

, G~c
~
N

 are constant for both periods c̄
r
=c̄

pr
,G~

N r
=G~

N pr
,G~c

~
N r

=G~c
~
N pr

 (a “basic parametrization scheme”

according to Kovalenko, 1993), new parameters of the PSD are calculated from the N̄
pr :

a=(G~c
~
N pr

+2 N̄
pr )/ (2 c̄

pr) , (10)

b
0
=−G~

N pr
/ (2 c̄

pr ) , (11)

b
1
=G~c

~
N pr

/ c̄
pr , (12)

Finally, the non-central moments of runoff are calculated for the projected period (denoted by low index pr):

m
1 pr

=a−b
1 , (13)

m
2 pr

=−b
0
−2m

1 pr
b

1
 + am

1 pr , (14)

m
3 pr

 = −2m
1 pr

b
0
−3m

2 pr
b

1
 + a m

2 pr . (15)

It should be noted, that in the core version 0.2, the linear filter model includes the multiplicative stochastic component (see

the Annex 1 for details ). It may leads to unstable solutions of the Fokker-Plank-Kolmogorov (FPK) equation ( mk →∞) for

the statistical moments of high orders. Two methods to get stable FPK solutions are suggested by Kovalenko (2004), and one

of them is already implemented in the core version 0.1. 

1.4 Model output

In our study, the exceedance probability curve (EPC) of runoff was modelled within the Pearson Type III distribution. This

distributions  is  commonly  used  by  water  engineers  to  estimate  water  extremes  (Kountrouvelis  and  Canavos,  1999;

Rogdestvenskiy and Chebotarev, 1974; Matalas and Wallis, 1973). The water engineering guidelines provide the ordinates of

EPCs from look-up tables (Guidelines, 1984) depending on a coefficient of variation (CV) and coefficient of skewness (CS).

These coefficients are calculated from non-central moments’ estimates (Rogdestvenskiy and Chebotarev, 1974):

CV=√(m2
−m

1
2) /m1 , (16)

CS =(m3−3m2m1  + 2m1
3
)/CV3m1

3 .   (17)

The the MARCSHYDRO model output includes the estimates of the mean value, CV and CS calculated for the reference period

from observations as well as these estimates simulated from mean precipitation for the projected period. The ordinates of

EPC available from look-up tables allows then to calculate the runoff values together with their exceedance probability. 
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2 Model application: a case study

In our study, we chosen the river basin of the Iijoki at Raasakka gauge (Lat 25.411º / Lon 65.335º) to give an example of the

application of the MARCSHYDRO model on a catchment scale. The Iijoki river is located north west Finland, and the Raasakka

gauge outlines the watershed area of over 14,191 km2. The catchment has a small population and there are no hydro power

plants of multi-year regulation to affect natural regime on annual cycle. Thus, one can expect that historical yearly time

series of annual runoff rate do not contain trends connected to the artificial regulation. This case study shows an example of

the set up and output of the probabilistic model MARCSHYDRO. 

2.1 Model set up: the reference period

The yearly time series of volumetric water discharge of the Iijoki river were extracted from a dataset of the Global Runoff

Data Center (GRDC, 56068 Koblenz, Germany). The observations at the Raasakka gauge (ID = 6854600) cover a period

1911–2014, and they do not contain gaps. This period was considered as the reference. The annual specific discharge (DR,

mm year-1) was calculated from the average volumetric water discharge for each year in the reference period. Then, the non-

central moments were calculated from the yearly time series of DR with the Method of Moments  (Table 1). The reference

climatology (the means of precipitation and air temperature) were evaluated from the dataset of NOAA (NOAA/OAR/ESRL

PSD, Boulder,  Colorado, USA) at  a  grid node nearest  to the watershed centroid (this technique will  be discussed in a

separate paper as well as the methods of a forcing pre-analysis).

2.2 Model forcing: the projected period

Climate scenarios provide a range of projections for temperature and moisture regimes in the future. This range is produced

by different assumptions behind climate scenarios as well as a specific of climate models. However, the climate projections

include precipitation and air temperature, and they give a forcing to hydrological models to simulate projections of runoff. In

the case study of the  Iijoki river, the data from the Coupled Model Inter-comparison Project 5, CMIP5 (Taylor et al., 2012)

for  three  Representative  Concentration  Pathways  (RCPs)  were  used  to  force  the  MARCSHYDRO model.  For  each  RCP

scenario, the projections of annual precipitation rate were applied to test how the MARCSHYDRO model simulates the EPD

under  different  forcing  trajectories.  For  the  period  of  2020–2050  (considered  as  the  projected),  the  mean  values  of

precipitation rate  ( N̄
pr ,  mm year-1)  were calculated based on four world-leading global climate models.  We used the

outputs from the CaESM2 (Chylek et al., 2011), HadGEM2-ES (Collins et al., 2011), INM-CM4 (Volodin et al., 2010) and

MPI-ESM-LR (Giorgetta et al., 2013) global models (Table 2). The N̄
pr  varied by 2–5 % of the model’s average over the

RCP scenarios, however, these values alter substantially between the climate models. Among the outputs considered, the

MPI-ESM-LR  model  projects  highest  changes  in  the  N̄
pr  compared  to  the  reference  period  (Tables  1  and  2).  The
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HadGEM2-ES model gives the lowest values for the  N̄
pr . The projected means of precipitation rate are slightly varied

between the scenarios. At the same times, they are exhibit the significant range of changes among the climate models (the

N̄
pr  range from 619 to 737 mm year-1) for the case of the Iijoki river at Raasaka.

2.3 Model output: projected period

The projected non-central moments’ estimates were simulated for the scenarios/models listed in Table 2. These estimates

were used to calculate the mean value, CV and CS (see the Eq. 16–17) included to the output of the MARCSHYDRO model.

Table 3 shows the modelling results for the HadGEM2-ES and MPI-ESM-LR global models, were the water discharges of 10

and 90 % exceedance probabilities are given. The ordinates of the Pearson Type III distribution were extracted from the

look-up  tables  used  in  hydrological  engineering  (Druzhinin  and  Sikan,  2001),  and  they  allow to  expressed  runoff  as

volumetric rate or water dicharge (m3s-1). For the Iijoki River at Raasakka, the mean values of DR and CV vary of over 7 % and

5 % correspondingly under the RCP scenarios. The maximum alteration in the projected mean values of DR were obtained under

RCP85 (619 to 737 mm year-1). Under the projections of the MPI-ESM-LR model, the mean of DR increases of over 17 %. 

In the case of the  Iijoki River,  the water discharge of 10 % exceedance  probability  are going to increase in the future under

scenarios/models considered (Table 3). It may leads to risks of energy spills at hydropower stations during the period 2020–2050.

At the same time, risks connected to water shortage may be less since they are connected to water discharge of 90 % exceedance

probability which are predicted to increase. Figure 2 shows another form how the model performs the EPC of annual runoff rate for

the Kyrönjoki River at Skatila (GRDC ID: 6854900). The set of EPCs were simulated under three RCP scenarios using a similar

set up of the MARCSHYDRO model (will be discussed in a separate paper). In further development of the visualisation block, it

would important to involve water managers and decision makers to better outline practical applications for the probabilistic

hydrological model.

Discussions

Nowadays, a future vision of the climate is changing continuously. The climate projections are updated almost every 5–6 years and

many climate models generate  meteorological  projections for variables such as precipitation and air temperature. It needs to

hydrological models to perform an “express analysis” about future changes in water resources and water extremes (floods and

droughts) on a climate scale. The climate scale means that the “express analysis” is provided for the period of 20-30 years. The

lumped or semi-distributed physically-based hydrological models traditionally used for short term or seasonal scale simulating

runoff times series from time series of meteorological variables (Seibert, 1999). In many catchment scale hydrological studies these

models are driven by outputs of climate models or their ensemble to evaluate water resources and extremes in the near future

(Arheimer and Lindström, 2015; Veijalainen et al., 2012; Yip et al., 2012). The simulation of the runoff time series from the time
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series of meteorological variables (see Fig. 2 in Veijalainen et al. (2012)) leads to high computational costs of such estimations

needed to be served in term of probability in economical applications (Murphy, 1976). The probabilistic MARCSHYDRO model is

computationally cheaper while to compare to lumped or semi-distributed physically-based hydrological models. It can be easy

decoupled with global and regional climate models and to provide the “express analysis” of water resources under a modern version

of the future climate. 

In this paper we described the structure for the probabilistic hydrological model MARCSHYDRO together with the AFA method

behind a new model’s core version 0.2. The AFA method has more than 20 years story, however most of studies is published in

Russian (Kovalenko, 1993; 2004; 2009; Kovalenko et al., 2010). The AFA method is based on the statistical theory of automatic

system (Pugechev et al., 1974) , which is an outsider among the “classical hydrological” disciplines. The AFA method is one of

simplification of the Fokker-Plank-Kolmogorov equation approach been developed in the Russian State Hydrometeorological

University. It is tested in many case studies on river basins located in Russia, Colombia, Bolivia, Mali,  etc.. There are also a

number of publications in English (Rosmann and Domínguez, 2017; Shevnina et al., 2017; Kovalenko, 2014; Domínguez and

Rivera, 2010; Viktorova and Gromova, 2008). In this manuscript we formulated the theory logically in an attempt to provide the

equations for the new core 0.2 of the model MARCSHYDRO model, however it needs to describe also the AFA method behind.

The probabilistic hydrological model MARCSHYDRO includes the core versions 0.1 and 0.2. In both cores, the only three non-

central moments are evaluated to construct the exceedance probability curve within the theoretical distribution the Pearson III type,

which  is  among traditional  distributions on the  frequency and  risk analysis  in  hydrology (Kite,  1977;  Rogdestvenskiy  and

Chebotarev,  1974;  Sokolovskiy,  1968;  Elderton,  1969;  Benson,  1968).  The  model  simulates  three  estimates  of  non-central

moments of runoff instead of the runoff time series, and this circumstance makes the computations by the MARCSHYDRO model to

be a “low cost” compared  to conceptual hydrological models (Arheimer and Lindström, 2015;  Veijalainen et al., 2012). The

MARCSHYDRO model also allows to put the projections of runoff in term of probability,  i.e. as runoff values together with their

exceedance probability. 

The MARCSHYDRO model includes six modules, and each module allows improvements by including a new methods. In this paper,

the new model core version 0.2 extending to simulate the third statistical estimator (skewness) was presented. The applicability of

the core version 0.2 is limited by assumptions behind the AFA approach. The “quasi-stationary” assumption for the expected

climate change is among others. In this case, the climate is described by statistical estimators i.e. mean value, variability, etc. of

precipitation, air temperature, evapotranspiration, river runoff etc. for the period of 20–30 year. It is assumed to consider two time

period periods with statistically different climate namely the reference and projected periods. Another limitation is connected to the

linear  filter  stochastic  model  (see details  in  the Annex 1)  used in the core version 0.2.  It  should be noted that  there is  a

multiplicative component in the model core, and it may lead to unstable solutions of the FPK equation. Kovalenko (2004) suggests

two solutions resulting to the stable solutions of the FPK. On of the solution is given by Kovalenko et al. (2010) and is coded in the

model version 0.1 (Shevnina et al., 2017). However, a checking procedure needs to be apply to before using this core version. In
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the checking procedure we plan to use a “beta criterion” method suggested in Kovalenko (2004) to develop the  MARCSHYDRO

model. 

Further improvements of the MARCSHYDRO model are going to be further implemented in the block of parametrization and hind

casts. Recently the only  basic parametrization scheme (Kovalenko, 1993) is included. This basic scheme gives over 70–80 %

successful hind casts (“forecasts in the past”) in the model cross-validation (Shevnina et al., 2017), and the implementation of the

regional oriented parametrization scheme (Shevnina, 2011) is our next step further. It  needs to include a mean value of air

temperature to the parameter connected to  “noised” watershed physiography in Eq. (A.4), the inverse of runoff coefficient in

Kovalenko, (1993). It is also important to study a role of spatial resolution of meteorological forcing to affect the modelling

uncertainties for simulated mean, CV and CS of runoff. 

To fine the probabilistic MARCSHYDRO model among other hydrological models, its practical applications needs to be better

outlined. The model serves a probabilistic form of long-term hydrological projections, and they require to be adapted for needs of

water engineers and water  managers  as a tool  for risks analysis under expected climate change. The projected exceedance

probability curves of multi-year river runoff can be applied in designing of bridges, pipes, dams etc. to minimize the future risks

connected to extreme floods (Shevnina et al., 2017; Kovalenko et al., 2014;  Kovalenko, 2009) or to water shortage due to droughts

(Viktorova and Gromova,  2014).  It is important to define informative forms for the  outputs of the model  MARCSHYDRO to be

adapted for needs of a practice, and the development of the block of economic application is among others studies to be continued

in close cooperation with water managers and decision makers.

Conclusion

The paper describes  the  theory  and  assumptions of  the AFA approach as  well  as  the probabilistic  hydrological  model

MARCSHYDRO  structure and core version 0.2. The features of the model are: the close connection to water engineering due to

serving the runoff projection in terms of probability, cheapness in term of computational cost and a wide range of techniques

allowing the model improvement. In the new core, the third moment linked to the location parameter of the Pearson Type III

distribution (or asymmetry) was implemented to be simulated. In the previous version of the model core, a constant ratio CS/

CV is used to calculate the location parameter of the distribution. 

To give a practical example how to set up the MARCSHYDRO model, the case of the Iijoki River at Raasakka (Finland) was

considered. The model simulated the tailed values of 10 % an 90 % of annual runoff from the outputs of global climate models.

We shown two forms of the probabilistic projections of runoff: as the exceedance probability curve and as the runoff values with

their exceedance probability. This case study of the Iijoki River at Raasakka shows that the MARCSHYDRO model gives reasonable

results for the meteorological projections considered. The practical applications of water management and decision making should

be clarified in further studies in close co-operation with water engineers. 
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Code availability

Currently, the MARCSHYDRO model code is hosted in:  https://github.com/ElenaShe000/MARCS with details on its applications

for catchment scale case studies.  The model source code for the core version 0.2 is distributed under the  Creative Commons

Attribution 4.0 License and can be downloaded from the link: https://zenodo.org/record/1220096#.WyTXxxxRVhw, and used

freely in a scientific research with reference to this publication. We hope that this type of license provides the best way to create a

community of motivated people to further development the model. Then, the source code will be distributed under the terms of a

user agreement. 

Data availability

The following data sets can be used to set up and forcing the MARCS model: the Global Runoff Data Center (GRDC, 56068

Koblenz, Germany), the  NOAA/OAR/ESRL PSD (Boulder, Colorado, USA) as well as the  Coupled Model Inter-comparison

Project 5, CMIP5 (Taylor et al., 2012).

Sample availability

The sample data set for the Iijoki River at Raasaka case study is given in https://zenodo.org/record/1220096#.WyTXxxxRVhw.

Annex 1. Theoretical basis for the core version 0.2

A1.1 Assumptions behind the Advance of Frequency Analysis (AFA)

The Advance of Frequency Analysis is based on the theory of stochastic systems, specifically, the Fokker-Plank-Kolmogorov

equation (FPK), which is simplified to a system for three non-central statistical moments (Pugachev et al., 1974). The time

series of annual runoff is considered as realization of a random process Markov chain type assumed to be “stationary”. It

means that the statistical estimators (mean, variance and skewness) do not change over period considered. The statistical

estimators are used to model an exceedance probability curve of annual runoff within the Pearson Type III distribution. The

AFA approach is  developed with an  assumption of  “quasi-stationary” (Kovalenko et  al.,  2010,  Kovalenko,  1993).  The

“quasi-stationary”  assumption  suggests  that  the  statistical  estimators  of  multi-year  runoff  are  different  for  two periods

(reference and projected). For the reference period, the statistical estimators are evaluated from historical yearly time series

of runoff. For the projected period, the statistical estimators of runoff are simulated based on an output of global- or regional-

scale climate models under any climate scenario. 
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A1.2 Linear filter stochastic model (LFSM)

Models replace a complicate hydrological  system by maths abstractions,  and aim to reveal  spatial  and temporal  runoff

features which are important depending on goals of study. Among others, “black box” hydrological models consider a river

basin  as  a  dynamical  system with  lumped parameters.  These  models  are  “based  on  analysis  of  concurrent  inputs  and

temporal  output  series”  (WMO-№168,  2009),  and  transform  series  of  meteorological  variables  (precipitation,  air

temperature) into series of runoff. Both input and output series are functions of time (WMO-№168, 2009): 

an(t)
d nQ
dtn

+an−1(t)
d n−1 Q
dtn−1

+... +a1( t ) dQ
dt

+a0(t)Q=

=bn(t )
dn P
dt n +bn−1(t)

d n−1 P
dtn−1 +... +b1(t)

d P
dt

+b0(t )P
, (A.1)

where Q  is the runoff in volumetric flow rate,  P  is the precipitation in volumetric flow rate (rain, snow melt); and the

coefficient a
i  and b

i  are the empirical parameters of a translating system. These coefficients are lumped parameters of the

“black box” model. The solution to Eq. (A.1) for zero initial conditions gives (WMO-№168, 2009):

Q (t )=∫
0

t

h ( t,τ ) P (τ ) dτ , (A.2)

where the function h (t,τ )  represents a response of a river basin at time t to a single portion of precipitation at time τ . In the

AFA approach, a river basin is considered as a linear system transforming the annual precipitation into the annual runoff: 

a
1

(t )
dQ
dt

 + a
0

( t ) Q  = b
0

( t ) P . (A.3)

On the other hand, a river basin can be considered as a linear system with stochastic components in the input function and

the model parameter: 

dQ=[−(c̄  + ~c (t))Q  + ( N̄  + ~N (t ))]dt , (A.4)

where a0(t)=c̄ +~c (t)  is the stochastic parameter of the system (a “noised” watershed physiography, the inverse of runoff

coefficient in Kovalenko, (1993)); b0(t)P= N̄ +~N (t )  is the stochastic input for the system (a “noised” precipitation), and

a1=1 . The stochastic components of ~c (t )  and ~N (t )  are the Gaussian “white noise” with zero means, and their intensities

are G~c ,  G~
N

. The  intensities are mutually correlated as  K~с
~
N

( τ ) = E (~с (t )~N (t  + τ ) )= G~с
~
N

δ (τ ) . It should be noted, that

the multiplicative parameter c̄  + ~c (t )  in the Eq. (A.4) is the sum of constant  c̄  and Gaussian «white noise» ~c ( t) , and

it  may lead  to  the  unstable solutions of  the FPK equation (to  infinite  of  statistical  moments  of  high orders).  It  limits
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application of the AFA method (Kovalenko, 1993). Kovalenko (2004) suggests two solutions, and we will introduce them in

a further paper.

A1.3 Fokker-Plank-Kolmogorov equation (FPK) and simplifications

The Fokker-Plank-Kolmogorov (FPK) equation can be applied to simulate the probability density function (PDF) for the

stochastic Q(t) in Eq. 4 (Kovalenko, 1993; Pugachev, 1974):

∂ p (Q,t )

∂t
=− ∂

∂Q
( A (Q ) p (Q,t ) )  + 0.5 ∂

2

∂Q2
( B (Q ) p (Q,t )) , (A.5)

where p (Q,t )  is the PDF of Q at time t; and the drift coefficient ( A ( Q ) ) and diffusion coefficients ( B (Q ) ) are calculated

as follows (Kovalenko, 1993; Pugachev, 1974): 

A ( Q )=−( c̄−0.5G~c ) Q−0. 5G~c
~
N

 +  N̄ , (A.6)

B (Q ) =G~c Q2
−2QG~c ~N +G~N

.  (A.7)

The analytical solution of Eq. (A.5) is difficult and not always needed for practical applications in water engineering since

the PDFs of runoff are modelled from a set of statistical estimators, and moments are from, among others, van Gelder et al.

(2006). The PDFs are described with the set of moments mk=∫
−∞

+∞

Qk p (Q,t ) dQ  (where k is number of the moment,  k –>

∞ ). To obtain the equations for m
k , both sides of Eq. (A.5) were multiplied by a differentiable function ψ (Y )  and then

were integrated within limits from −∞  to +∞  by Q  (however, it is supposed that Q  > 0 ):

d( ∫
−∞

+∞

ψ (Q ) p ( Q,t ) dQ)
dt

=∫
−∞

+∞

p (Q,t ) A (Q )
∂ψ ( Q )

∂Q
dQ  + 0. 5 ∫

−∞

+∞

p (Q,t ) B (Q )
∂2 ψ (Q )

∂Q2
dQ (A.8).

Then, ψ (Q )  was replaced with ψ (Q ) =Qk , and the Eq. (A.8) was written as:

dmk (t )

dt
=∫

−∞

+∞

p (Q,t ) A (Q )
∂ (Qk )
∂Q

dQ  + 0.5 ∫
−∞

+∞

p (Q,t ) B ( Q)
∂

2 (Qk )

∂Q2
dQ .  (A.9)

For a stationary random process  dm
k

( t ) /dt=0  , and the drift and diffusion coefficients are constant. Thus, Eq. (A.9) was

simplified as follows:

For k=1:

−( c̄−0.5G~c )m1
−0. 5G~c

~
N

+ N̄=0 . (A.10)

For k≥2 :
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−k ( c̄−0. 5kG~c ) mk
+ k N̄ m

k−1
−k ( k−0.5 ) G~c

~
N

m
k−1

+0. 5k ( k−1 ) G~
N

m
k−2

=0 .     (A.11)

Further,  the summands in Eq. (10–11) were divided by  (2 c̄ +G~c ) ,  and new notations were introduced as suggested in

(Kovalenko, 1993; Pugachev et al., 1974):

a=
G~c ~N

+2 N̄

2 c̄+G~c

; b
0
=−

G~N

2 c̄ +G~c

; b
1
=

2G~c ~N

2 c̄ +G~c

; b
2
=−

G~c

2 c̄+G~c
.

Then, for k = 1, 2, 3, 4 the system of Eq. (A.10–11) includes: 

m
1(2b

2
+1)−a+b

1
=0 , (A.12)

(3b
2
+1 )m2

+(2b
1
−a) m1

+b
0
=0 , (A.13)

(4 b
2
+1) m3

+ (3b
1
−a) m

2
+2b

0
m

1
=0 , (A.14)

(5b
2
+1 )m4

+ (4 b
1
−a )m3

+3b
0

m
2
=0 . (A.15)

The set of four moments (m1, m2, m3, m4) is sufficient to model distributions from the Pearson System (Andreev et al., 2005;

Elderton and Johnson, 1969). However, in water engineering we  usually use only three-parametric probability distributions

fitted to observations (Guidelines, 2004; Guidelines, 1984; Bulletin 17-B, 1982). In this case, the  G~c
<< c̄  is assumed, thus

it leads to b
2
=−G~c

/ (2 c̄ +G~c )≈0  and (4 b
2
+1 )≈1 , (3b

2
+1 )≈1 , (2b

2
+1)≈1 . To model the PDFs (or EPCs) of annual

runoff within the Pearson Type III distribution, the system of Eq. (A.12–15) is simplified as follows:

−a+b
1
=−m

1 , (A.16)

b
0

+2m
1

b
1
−am

1
=−m

2 , (A.17)

2m
1
b

0
+3 m

2
b

1
−am

2
=−m

3 . (A.18)

Denoting  lk=(
−m

1

−m2

−m3
) ,  x=(

b1

b0

a
)  and  A=(

1 0 −1
2m1 1 −m1

3m2 2 m1 −m2
) ,  the parameters  a, b

0
, b

1  are calculated as  DD=x ii / ,

where D is the determinant of matrix A, and Di is the determinant of the matrix obtained by replacing of the column i (1, 2,

3) in matrix A by the vector lk. Finally, the parameters a, b
0

, b
1  are calculated as follows:

b1=0.5 (3m1 m2−2m1
3−m3) /(m2−m1

2) ,   (A.19)

b
0
=0.5 (m1

2 m
2
−2m

2
2 +m

1
m

3)/ (m2
−m

1
2) ,   (A.20)

a=0.5 (5m
1
m

2
−4 m

1
3−m

3)/ (m2
−m

1
2) . (A.21)
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A1.3 Notations

There are too many notations used while to describe the model core version 0.2, thus the secondary parameters of equations were

grouped by model behind. Table A.1 shows the notation and description of the secondary parameters for the linear filter stochastic

model. The Eq. A.3 is simplification of the Eq. A.1 by limiting first order ordinal differential equation. It includes three parameters

a
0 , a

1  and b
0 , and two of them are assumed to be “noised”. These “noised” parameters include a constant component (with

bar) and Gaussian “white noise” component (with tilde) with own intensities.

Table A.1 The notation and description of the parameters for a linear filter stochastic model.

Q runoff volumetric flow rate, m3s-1

P precipitation volumetric flow rate, m3s-1

a
i
(t ) , b

i
(t ) lumped parameters of “block box” model, i = 0 and 1

c̄ +~c (t) inverse of runoff coefficient: c̄  is constant component, ~c ( t)  is the Gaussian “white noise” 

N̄ +~N (t ) Precipitation: N̄  is constant component,  ~N (t )  is the Gaussian “white noise” 

G~c , G~
N

intensities of the Gaussian “white noise” 

G~с
~
N

δ (τ ) Correlation function for the mutually delta-correlated processes ~c ( t )  and ~N (t)

Table A.2 gives description of the parameters of the FPK and the Pearson System Distribution (PSD).  It should be noted that we do

not solve the FPK, and only its simplification to the system for three non-central moments is applied. These non-central moments

are estimated from runoff observations for the reference period. For the projected period the moments are calculated from a mean

of precipitation. 

Table A.2. The notations of the FPK equation and PSD

p (Q,t ) probability density function of Q at time t

A ( Q )  drift coefficient (the FPK), estimated from the “noised” parameters and their intensities

B (Q ) diffusion coefficient (the FPK), estimated from the “noised” parameters and their intensities

m
k

non-central statistical moment with order k = 1, 2, 3, 4

a, b
0

, b
1
, b

2
parameters of a distribution (the PSD)
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Annex 2. Short user guide the MARCS model 

To set up the model for a single river catchment, the non-central moments should be calculated from historical time series of annual

river runoff rate as well as a mean value of annual precipitation rate. These values should be placed manually (lines 45-48 in

model_core.py located in https://zenodo.org/record/1220096#.WyTXxxxRVhw) as well as the ID number of catchment (line 51,

model_core.py). To force the model, the projected mean value of annual precipitation rate should be evaluated from an output of

climate model, and then the model_core.py can be running in Unix command line: ./model_core.py XXX (where XXX is  the

mean  of  annual  precipitation  rate  for  the  projected  period).  The  output  of  the  model_core.py  in  stored  in  the  output  file

model_GPSCH.txt and include line with  following format: the ID of catchment, the first non-central moment estimate of annual

runoff rate (mm year-1) for a reference period, the mean value of annual precipitation rate (mm year-1) for a reference period, the

coefficient  of  variation  for  a  reference  period,  the  coefficient  of  skewness  for  a  reference  period,  the  model  parameters

c̄ , G~
N

, G~c
~
N

, the the first non-central moment estimate of annual runoff rate (mm year-1) for a projected period, the mean value

of annual precipitation rate (mm year-1) for a projected period, the coefficient of variation for a projected period, the coefficient of

skewness for a projected period.
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Table 1. The MARCS model set up: the Iijoki river at Raasakka as a case study.

GRDC ID River at Gauge Length,
year

m1 r,
mm year-1

m2 r, 
mm2 year-1

m3 r, 
mm3 year-1

N̄
r , 

mm year-1 

T̄
r

*, 

°C

6854600 Iijoki at Raasakka (Finland) 100 379 149343 60811610 625 0.2

Notes:  m1r ,m2 r ,m3r  are the moments of runoff as well as the mean of precipitation ( N̄
r ) were evaluated from observa-

tions. The mean air temperature ( T̄
r )* was not used in the model set up in case of the Iijoki river, however this value allows

advancement of the model parametrization (Shevnina et al., 2017).
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Table 2. The forcing of the MARCS model for the case study of the Iijoki river at Raasakka. 

Global climate

model

Climate scenario

RCP26 RCP45 RCP85

T̄
pr , 

°C*

N̄
pr , 

mm year-1

T̄
pr , °C N̄

pr , 

mm year-1

T̄
pr , °C N̄

pr , 

mm year-1

CaESM2 2.9 673 2.7 652 2.7 652

HadGEM2-ES 1.4 635 2.6 637 2.2 619

INM-CM4 – – 1.3 645 1.4 660

MPI-ESM-LR 2.5 704 2.2 695 2.9 737

Notes: Projected mean of air temperature ( T̄
pr )* is needed for a regional parametrization scheme (see details Shevnina,

2011), and these values were not used in the model forcing in the case of the Iijoki river at Raasakka. N̄
pr  is the projected

mean of annual precipitation amount.

23

565

570



Table 3. The projected climatology and statistics of annual runoff: a case of the Iijoki river.

Value Reference

period:

1914–2014

Projected period: 2020–2050

HadGEM2-ES MPI-ESM-LR

RCP85 RCP45 RCP26 RCP85 RCP45 RCP26

Precipitation, mm year-1 625 619 637 635 737 695 704

Specific discharge, mm year-1 380 375 386 385 447 421 427

CV 0.19 0.2 0.19 0.19 0.16 0.17 0.17

CS –0.04 –0.04 –0.04 –0.04 –0.04 –0.04 –0.04

Q10%, m3s-1 475 473 483 481 527 505 512

Q90%, m3s-1 293 278 297 296 331 354 359
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Figure 1: The MARCSHYDRO model structure and core versions. 
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Figure 2: The variability on tails of the EPCs of annual runoff for the reference (black) and projected (colours) periods. 
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