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Abstract	23	

	24	

Prior	to	using	climate	data	as	input	for	sectoral	 impact	models,	statistical	bias	correction	is	25	

commonly	 applied	 to	 correct	 climate	 model	 data	 for	 systematic	 deviations.	 Different	26	

approaches	have	been	adopted	for	this	purpose,	however	the	most	common	are	those	based	27	

on	the	transfer	functions,	generated	to	map	the	distribution	of	the	simulated	historical	data	28	

to	 that	 of	 the	 observations.	 Here,	 we	 present	 results	 of	 a	 novel	 bias	 correction	method,	29	

developed	for	Inter-Sectoral	Impact	Model	Intercomparison	Project	Phase	2b	(ISIMIP2b)	and	30	

applied	to	outputs	of	different	GCMs	generated	within	the	HAPPI	(Half	A	degree	Additional	31	

warming,	 Projections,	 Prognosis	 and	 Impacts)	 project.	We	have	employed	 various	 analysis	32	

measures	including	mean	seasonal	differences,	ensemble	variability,	annual	cycles,	extreme	33	

indices	 as	well	 as	 a	 global	 hydrological	model	 to	 assess	 the	performance	of	 ISIMIP2b	bias	34	

correction	technique.	The	results	indicate	substantial	improvements	after	the	application	of	35	
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	 2	

bias	correction	when	compared	against	observational	data.	Moreover,	the	extreme	indices	as	1	

well	as	output	of	global	hydrological	model	also	reveal	a	marked	improvement.	At	the	same	2	

time,	 the	 ensemble	 spread	 of	 the	 original	 data	 is	 preserved	 after	 the	 application	 of	 bias	3	

correction.	We	find	that	the	bias	corrected	HAPPI	data	can	provide	a	reliable	basis	for	sectoral	4	

climate	impact	projections.	5	

	6	

	7	

Introduction	8	
	9	
Global	climate	models	(GCMs)	are	the	most	commonly	used	tools	to	assess	changes	in	future	10	

climate.	However,	due	to	their	coarser	resolution	(~	200	km),	many	regional	and	local	scale	11	

climate	 features	go	beyond	 the	scope	of	GCMs	and	give	 rise	 to	biases	 in	different	climate	12	

variables	 against	 observation	 in	 historical	 period	 (Flato	 et	 al	 2013).	 Besides	 resolution,	13	

imperfect	 representation	 of	 physical	 processes,	 incorrect	 initialization	 or	 errors	 in	 the	14	

parameterization	chain	etc.,	can	also	act	as	contributing	factors	to	these	biases	(Ehret	et	al	15	

2012).	Global	models	are	benchmarked	against	global	datasets	and	a	set	of	comprehensive	16	

variables,	not	for	specific	regions	or	sector	relevant	outputs.	Despite	biases	in	absolute	values,	17	

relative	 changes	 in	GCMs	have	been	 shown	 to	 resemble	observed	 trends	well	 (Flato	et	 al	18	

2013).	However,	when	GCM	output	is	directly	used	to	force	impact	models	(e.g.	crop	models,	19	

hydrological	models	etc.),	which	are	often	certain	processes	are	based	on	specific	thresholds,	20	

these	absolute	biases	limit	the	applicability	of	the	climate	data	by	affecting	the	calibration	and	21	

validation	process,	which	is	an	important	aspect	of	impact	modeling	(Warszawski	et	al	2013).	22	

	23	

Different	approaches	have	been	adopted	to	overcome	the	biases	generated	by	GCMs.	One	of	24	

them	is	the	stochastic	downscaling	in	which	a	functional	relationship	is	established	between	25	

the	 most	 robust	 and	 reliable	 fields	 provided	 by	 GCMs	 and	 the	 observed	 meteorological	26	

variables	 for	 a	 specific	 region.	 However,	 this	 approach	 is	 criticized	 due	 to	 one	 critical	27	

assumption	 implicit	 to	 all	 statistical	 downscaling	methods	which	 is	 ‘statistical	 stationarity’	28	

(Dixon	et	al	2016).	Moreover,	 in	certain	cases	 (e.g.	 ISIMIP	experiment)	 in	which	 the	global	29	

impact	models	are	forced	with	the	GCM	data,	stochastic	downscaling	does	not	remain	a	very	30	

useful	 option	 (Warszawski	 et	 al	 2013).	 Another	 physically	 more	 consistent	 approach	 to	31	

overcome	 these	biases	 is	 regional	 climate	modelling	 (Giorgi	 and	Mearns	1999).	A	 regional	32	
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	 3	

climate	model	(RCM)	can	not	only	bridge	the	resolution	gap	for	the	better	representation	of	1	

regional	scale	features,	but	it	also	gives	the	flexibility	for	the	representation	of	characteristic	2	

processes	 of	 a	 certain	 region	 (Saeed	 et	 al	 2012).	 However,	 despite	 improvements	 during	3	

recent	years,	the	output	of	RCMs	is	still	afflicted	with	biases	(systematic	errors)	to	a	degree	4	

that	preclude	their	direct	use	in	the	impact	models	(Piani	et	al	2010).	5	

	6	

Another	well-established	approach	to	overcome	the	biases	of	GCMs	to	make	them	suitable	7	

for	 their	 use	 in	 impact	models	 is	 the	post-processing	of	GCM	data	by	 correcting	with	 and	8	

towards	 observations	 (Sippel	 et	 al	 2016).	 This	 approach	 has	 become	 standard	 in	 impact	9	

studies	and	 is	 known	as	bias	 correction	 (or	bias	adjustment).	 There	are	different	methods	10	

which	have	been	published	in	earlier	literature	ranging	from	simple	adjustment	of	the	means	11	

to	 flexible,	 potentially	 multivariate,	 quantile	 mapping	 approaches	 (Maraun	 et	 al	 2017).	12	

However,	 like	 other	 methods,	 there	 have	 been	 many	 problems	 associated	 with	 the	 bias	13	

correction	methods.	Few	of	those	already	identified	include	alteration	of	spatiotemporal	field	14	

consistency,	relations	among	variable	and	violation	of	conservation	laws	(Ehret	et	al	2012).	15	

Therefore	this	approach	is	prone	to	misuse	and	hence	a	careful	practice	of	the	bias	correction	16	

is	generally	recommended	(Maraun	et	al	2017).	17	

	18	

For	this	study,	we	have	used	the	applied	bias	correction	technique	developed	for	ISIMIP	(Inter	19	

Sectoral	 Impact	 Modelling	 Inter-comparison	 Project)	 and	 recently	 extended	 for	 ISIMIP2b	20	

(Frieler	et	al	2016),	hereafter	referred	to	as	ISIMIP2b-BC	approach.	ISIMIP	bias	correction	is	a	21	

trend	preserving	 statistical	 bias	 correction	 approach	which	 adjusts	 the	monthly	mean	and	22	

daily	variability	of	simulated	climate	data	to	observations	(Hempel	et	al	2013)(Lange	2017).	23	

Here	we	applied	the	ISIMIP2b-BC	to	GCM	output	from	the	HAPPI	(Half	a	degree	Additional	24	

warming,	Projection,	Prognosis	and	Impacts)	model	intercomparison	project	(Mitchell	et	al.	25	

2017).			26	

	27	

Following	 the	 adoption	 of	 the	 Paris	 Agreement,	 there	 has	 been	 a	 growing	 interest	 for	28	

quantifying	 impacts	 at	discrete	 levels	of	 global	mean	 temperature	 (GMT)	 increase	 such	as	29	

1.5°C	and	2.0°C	above	pre-industrial	levels	(Schleussner	et	al	2016).	By	now,	there	has	been	a	30	

dearth	 of	 research	 to	 address	 this	 issue	 because	many	 available	 experiments	 in	 the	CMIP	31	

(Couple	 Model	 Inter-comparison	 Project)	 are	 not	 specifically	 designed	 for	 informing	 this	32	
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report.	This	has	led	to	the	HAPPI	experiment,	an	international	effort	specifically	designed	to	1	

provide	 a	 framework	 for	 the	 generation	 of	 climate	 data	 describing	 how	 the	 climate,	 in	2	

particular	extreme	weather,	might	differ	from	the	present	day	in	worlds	those	are	1.5°	and	3	

2.0°C	warmer	than	pre-industrial	conditions	(Mitchell	et	al	2017).	The	quasi-stationary	multi-4	

ensemble	 design	 also	 allows	 for	 assessments	 of	 climate	 change	 signals	 against	 a	 highly	5	

variable	background.	6	

	7	

In	this	paper,	we	present	the	performance	of	ISIMIP2b-BC	in	correcting	the	biases	associated	8	

with	different	variables	from	four	different	GCMs	analyzed	in	the	HAPPI	experiment.	Besides	9	

validation,	this	paper	also	focuses	on	whether	the	application	of	ISIMIP2b-BC	preserves	the	10	

ensemble	spread	of	the	original	simulations.	This	paper	also	provides	a	reference	document	11	

for	the	future	users	of	HAPPI	data.	12	

	13	

Data	and	Methodology	14	
	15	
The	HAPPI	modelling	setup	considers	three	time	periods	(historical,	+1.5°C	and	+2.0°C)	each	16	

spanning	over	10	years	(Mitchell	et	al	2017).	All	the	runs	are	executed	atmosphere	only	under	17	

prescribed	 sea-surface	 temperatures	 and	 sea-ice	 forcing	 conditions.	 For	 each	of	 the	 three	18	

periods	 considered,	multi-ensemble	GCM	 realizations	 are	 provided.	 The	 ‘historical	 period’	19	

taken	through	2006-2015	for	HAPPI.		We	employed	ISI-MIP2b	bias	correction	methodology	to	20	

bias	 correct	HAPPI	 data	 in	 order	 to	 improve	 the	 representation	of	 regional	 features	 using	21	

(Hempel	 et	 al	 2013),	 (Lange	 2017).	 Following	 the	modelling	 protocol	 of	 the	 Intersectoral	22	

Impact	Model	Intercomparison	Project	(Frieler	et	al	2016),	the	resultant	projections	are	re-23	

gridded	to	a	0.5°x0.5°C	regular	grid	and	then	bias	corrected	using	the	EWEMBI	dataset	(Lange	24	

2017).	In	total	20	ensemble	members	per	GCM	have	been	bias	corrected.	25	

	26	

In	previous	applications,	bias	correction	was	generally	applied	on	a	single	transient	simulation	27	

by	generating	transfer	 functions	for	a	variable	 in	the	base	period.	These	transfer	 functions	28	

were	then	applied	to	the	projected	data	of	the	transient	simulation.	 In	HAPPI,	the	transfer	29	

functions	have	been	derived	for	one	long-term	member	over	a	climatological	time	scale	of	30	

more	than	25	years	(Table	1).	This	long-time	frame	is	chosen	in	order	to	capture	the	effects	of	31	

natural	 variability.	 	 The	 GCM	 specific	 transfer	 function	 is	 then	 applied	 to	 each	 ensemble	32	

member	 (of	 10	 years	 period)	 to	 attain	 the	 bias	 corrected	 data.	 It	 is	 noteworthy	 that	 the	33	
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individual	 ensemble	 members	 of	 the	 different	 periods	 are	 initialised	 stochastically.	 This	1	

implies	 that	numbering	of	 ensemble	members	 is	purely	 statistical	 and	does	not	 imply	any	2	

physical	relationship	in	terms	of	natural	variability.	Table	2	shows	the	HAPPI	variables	which	3	

are	bias	corrected	using	ISIMIP2b-BC	in	the	present	study.	4	

	5	

Different	analysis	approaches,	including	mean	seasonal	differences,	mean	standard	deviation	6	

across	ensemble,	annual	cycle	and	extreme	indices,	are	employed	to	find	out	the	performance	7	

of	ISIMIP2b-BC.	In	addition,	both	the	original	(non-bias	corrected)	and	the	bias	corrected	data	8	

sets	have	been	used	to	force	WaterGAP	(Müller	Schmied	et	al	2014),	a	global	water	use	and	9	

availability	model,	which	calculates	freshwater	fluxes	and	storages	for	all	continents	except	10	

for	Antarctica.	A	detailed	and	comprehensive	model	description	of	WaterGAP	can	be	found	in	11	

(Müller	 Schmied	 et	 al	 2014)	 and	 (Müller	 Schmied	 2017).	 The	 version	 used	 here	 is	12	

WaterGAP2.2c.	13	

	14	

Results	15	
	16	
Mean	Seasonal	Differences:	17	
	18	
Seasonal	plots	of	ISIMIP2b-BC	of	5	variables	for	different	GCMs	are	shown	in	Figure	1,	which	19	

are	plotted	by	 taking	 the	mean	of	20	ensemble	members	 for	each	variable	and	compared	20	

against	the	EWEMBI	dataset	(2001-2010).	Moreover,	the	complete	results	for	all	the	variables	21	

across	all	the	4	GCMs	are	presented	in	Figure	S1-S8.	MIROC5	exhibits	the	strongest	bias	for	22	

temperature	over	most	parts	of	the	globe	(Figure	1	and	Figure	S1).	For	certain	regions,	like	23	

Russia,	the	sign	of	the	seasonal	bias	is	swapped	between	MAM	and	JJA	(Figure	1).	Moreover,	24	

the	direction	of	the	bias	is	also	different	among	different	GCMs	over	different	regions	(Figure	25	

S1).	Application	of	ISIMIP2b-BC	improved	the	results	drastically	by	bringing	the	biases	down	26	

to	0.5°C	over	most	of	the	globe,	irrespective	of	the	direction	of	the	bias.	A	similar	behavior	is	27	

observed	for	the	results	of	tasmin	and	tasmax	where	large	biases	are	reasonably	corrected	by	28	

ISIMIP2b-BC	(Figure	S2	and	S3).	A	common	feature	across	all	the	GCMs	is	are	systematic	biases	29	

over	the	high	latitude	sea	ice	regions	(warm	bias	over	the	Arctic,	cold	bias	over	Antarctica)	for	30	

the	 three	 temperature	 variables	 (i.e.	 tas,	 tasmin	 and	 tasmax)	 during	 boreal	 autumn	 and	31	

winter,	which	stays	consistent	even	after	the	application	of	ISIMIP2b-BC.	This	feature	might	32	

be	the	result	of	the	substantial	alterations	in	sea	ice	coverage	between	the	bias	correction	33	
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period	and	the	recent	past	 (decrease	 in	the	Arctic,	 increase	 in	the	Antarctic	 (Nghiem	et	al.	1	

(2016))	that	will	ultimately	alter	affect	the	applicability	of	the	transfer	function.	Despite	visible	2	

improvements	in	terms	of	model	bias,	we	identify	the	high	latitudes	as	a	region	where	the	3	

assumption	of	a	time	invariant	transfer	function	is	of	limited	validity.	4	

	5	

A	 similar	behavior	 is	observed	 for	precipitation	as	 in	 Figure	1	 for	 ECHAM6	 (and	 full	 set	of	6	

models	 in	 Figure	 S4).	 Once	 again,	 the	 bias	 correction	 yielded	 substantial	 improvement	 of	7	

precipitation.	A	few	differences	remain	over	the	tropical	and	subtropical	arid	regions	which	is	8	

attributed	 to	 the	 lack	 of	 precipitation	 in	 those	 regions,	 and	 therefore	 a	 small	 difference	9	

appears	substantial	when	looking	at	relative	changes	for	certain	seasons.	The	results	for	other	10	

GCMs	also	show	similar	patterns	(Figure	S4).	11	

	12	

CAM4-2degree	shows	an	overestimation	of	near	surface	wind	speed	over	most	of	the	land	13	

area	which	is	substantially	reduced	by	ISIMIP2b-BC	across	all	the	seasons	(Figure	1).	ECHAM6	14	

and	NorESM1	show	better	results	for	surface	wind	speeds	which	is	further	improved	after	the	15	

application	of	ISIMIP2b-BC	(Figure	S5).	A	special	case	is	MIROC5	which	shows	underestimation	16	

of	near	surface	wind	speeds	over	tropical	forested	regions	of	Africa	and	South	America,	which	17	

remains	the	same	after	the	application	of	ISIMIP2b-BC.	It	appears	that	in	MIROC5,	the	wind	18	

speeds	are	calculated	inside	the	rainforest	canopy	and,	therefore,	are	one	to	two	orders	of	19	

magnitude	too	weak	in	the	original	model	data	(Tatsuo	Suzuki	(Personal	Communication)).		20	

	21	

For	other	variables,	such	as	rsds,	rlds	and	hurs,	ISIMIP2b-BC	has	also	done	a	very	satisfactory	22	

job	in	reducing	the	biases	for	all	the	seasons	across	all	the	four	GCMs	(Figure	1	and	Figure	S5-23	

S8).	24	

	25	

Seasonal	variability	across	the	ensemble:	26	
	27	
A	 key	 research	question	 for	HAPPI	 simulations	 are	 changes	 in	 the	extremes.	Although	 the	28	

ISIMIP2b-BC	methodology	 should	 leave	 the	 stochastic	 ensemble	 variability	 unaffected,	we	29	

therefore	explicitly	assessed	 its	effects.	The	seasonal	ensemble	standard	deviation	of	daily	30	

data	for	selected	variables	is	presented	in	Figure	2.	The	complete	results	for	all	the	variables	31	

across	all	the	4	GCMs	are	presented	in	Figure	S9-S16.		32	

	33	
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All	the	GCMs	have	simulated	higher	temperature	variability	over	higher	latitudes	as	compared	1	

to	 tropics,	 especially	 during	 the	 corresponding	 winter	 season	 (Figure	 2	 and	 Figure	 S9).	2	

ISIMIP2b-BC	 has	 ably	 kept	 the	 ensemble	 variability	 for	 all	 the	GCMs.	 There	 are	 few	 small	3	

differences	 between	 the	 original	 and	 bias	 corrected	 data	 over	 some	 region,	 however	 the	4	

overall	spatial	pattern	of	the	variability	is	reasonably	kept	after	the	application	of	ISIMIP2b-5	

BC.	Similar	results	are	obtained	for	tasmax	and	tasmin,	and	are	presented	in	Figure	S10	and	6	

S11	respectively.		7	

	8	

In	 comparison	 to	 temperature	 variable,	 precipitation	 shows	 different	 behavior	 with	 the	9	

monsoon	regions	showing	highest	variability	in	the	original	simulation	with	varying	magnitude	10	

among	different	GCMs	(Figure	2	and	Figure	S12).	The	variability	is	prominent	especially	during	11	

the	 rainy	 season.	 ISIMIP2b-BC	 has	 largely	 kept	 the	 variability	 of	 the	 original	 data	 with	12	

consistent	spatial	pattern,	however	there	are	few	differences	at	regional	scale		(for	example	13	

over	the	South	Asian	Summer	Monsoon	region	(SASM)).	Looking	at	the	summer	season	plot	14	

(JJA)	 in	 Figure	 S12,	 it	 can	 be	 noticed	 that	 all	 the	 GCMs	 have	 different	 spatial	 patterns	 of	15	

variability	over	land	as	well	as	Indian	ocean	in	the	original	data.	High	and	low	variability	over	16	

India	can	be	seen	for	MIROC5	and	ECHAM6	respectively.	Moreover,	magnitude	and	location	17	

of	high	variability	spot	over	the	Arabian	Sea	vary	between	the	GCMs.	Application	of	ISIMIP2b-18	

BC	resulted	in	consistent	pattern	for	all	the	four	GCMs	with	highest	variability	occurring	over	19	

central	India	for	JJA.	Therefore,	change	in	variability	for	precipitation	arise	as	the	result	of	the	20	

modification	of	highly	dynamical	features	of	the	climate	system,	such	as	Monsoon,	that	are	21	

not	equally	represented	in	the	GCMs.	While	ISIMIP2b-BC	is	affecting	the	ensemble	variability	22	

in	 regions	where	dynamical	 features	dominate,	 this	 to	 some	extent	 is	more	 correcting	 for	23	

misrepresentations	 of	 these	 features	 in	 the	 underlying	 GCMs	 without	 changing	 their	24	

dynamical	 characteristics.	However,	 it	 presents	a	 limitation	 to	 the	applicability	of	 a	purely	25	

thermodynamic	and	statistical	correction	in	the	presence	of	strong	dynamical	features.		26	

	27	

For	rsds,	the	highest	variability	follows	the	seasonal	march	of	the	sun	in	northern	and	southern	28	

hemisphere	in	the	original	data	for	all	the	GCMs	(Figure	2	and	Figure	S14).	ISIMIP2b-BC	has	29	

once	again	done	a	good	job	in	keeping	the	seasonal	spatial	pattern	as	well	as	magnitude	of	30	

the	variability.	However,	ISIMIP2b-BC	show	a	small	reduction	in	the	ensemble	variability	of	31	

rlds	towards	higher	latitudes,	by	keeping	the	spatial	pattern	consistent	(Figure	S15).		32	
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	1	

Furthermore,	a	satisfactory	performance	of	ISIMIP2b-BC	in	correcting	the	hurs	and	sfcWind	2	

fields	have	been	observed	which	can	be	seen	from	the	Figure	S13	and	S16	respectively.	3	

	4	

Annual	Cycle:	5	
	6	
In	order	to	further	ascertain	the	ability	of	ISIMIP2b-BC	in	keeping	the	spread	of	the	original	7	

simulation,	annual	cycle	of	all	the	8	variables	have	been	plotted	in	Figure	3	and	Figure	S17	to	8	

S20	averaged	only	over	the	land	areas.	The	temperature	(tas,	tasmax,	tasmin)	and	radiation	9	

(rsds,	rlds)	variables	show	small	ensemble	spread	for	both	original	and	bias	corrected	data.	10	

ISIMIP2b-BC	 has	 done	 a	 satisfactory	 job	 in	 bringing	 these	 variables	 closer	 to	 the	 EWEMBI	11	

annual	curve	while	keeping	the	spread	reasonably	intact.	For	other	variables	ISIMIP2b-BC	not	12	

only	corrects	the	bias,	but	also	the	shape	of	the	mean	curve	(e.g.	hurs	for	MIROC5	and	pr	for	13	

CAM4-2degree	 in	 Figure	 3).	 ECHAM6	 has	 reasonably	 captured	 the	 annual	 cycle	 of	14	

precipitation	over	the	land	areas,	however	ISIMIP2b-BC	has	shown	a	marked	improvement	for	15	

the	rest	of	 the	three	GCMs.	GCMs	have	also	shown	varying	performances	 in	capturing	the	16	

annual	cycle	of	sfcWind	with	CAM4-2degree	and	NorESM1	a	systematic	overestimation	which	17	

is	also	corrected	by	ISIMIP2b-BC	quite	reasonably	(Figure	3	and	Figure	S17	to	S20).	18	

	19	

Extreme	Indices:	20	
	21	

Climate	extremes	are	one	of	the	parameters	which	are	likely	to	get	affected	by	bias	corrections	22	

especially	 if	the	resolution	simulation	and	the	observations	are	considerably	different	from	23	

each	other	(Maraun	et	al	2017).	Moreover,	the	climate	extremes	are	also	reported	to	perform	24	

not	as	good	as	 long-term	means	and	 trends	after	 the	application	of	 ISIMIP	bias	correction	25	

(Hempel	 et	 al	 2013).	 Therefore,	 it	 becomes	 imperative	 to	 analyze	 how	 does	 ISIMIP2b-BC	26	

perform	with	HAPPI	 data	 in	 representing	 climate	 extremes.	 For	 this	 purpose,	we	 consider	27	

different	 extreme	 indices	 based	 on	 the	 recommendation	 of	 the	 Expert	 Team	 on	 Climate	28	

Change	 Detection	 and	 Indices	 (Zhang	 et	 al	 2011).	 For	 each	 extreme,	 all	 the	 indices	 are	29	

calculated	for	each	individual	ensemble	member	for	both	bias	corrected	and	original	data	and	30	

the	ensemble	mean	 is	taken	afterwards	across	all	 the	four	GCMs.	The	presented	results	 in	31	

Figure	4	to	7	are	the	differences	from	EWEMBI	data.	32	

	33	
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Consecutive	Summer	Days	(CSD):	1	

	2	

CSD	 is	 defined	 as	 the	 number	 of	 instances	 for	which	 the	maximum	 temperature	 remains	3	

greater	 than	 certain	 threshold	 for	 consecutive	 period	 of	 5	 days	 or	more.	 Results	 for	 each	4	

model	are	presented	in	Figure	4	for	the	thresholds	30°C,	35°C	and	40°C.	Figure	4	shows	general	5	

improvement	 in	 the	 simulation	 of	 CSD	 after	 the	 application	 of	 ISIMIP2b-BC,	 bringing	 the	6	

results	closer	to	the	EWEMBI	data.	Understandably,	most	of	the	differences	occur	in	the	lower	7	

latitudes	where	 these	high	 temperature	 thresholds	are	attained	more	often.	ECHAM6	and	8	

MIROC5	 simulate	 higher	 number	 of	 CSD	 instances	 than	 EWEMBI	 which	 are	 reasonably	9	

corrected	by	ISIMIP2b-BC.	10	

	11	

Consecutive	Frost	Days	(CFD):		12	

	13	

CFD	is	defined	as	the	number	of	instances	for	which	the	minimum	temperature	remains	less	14	

than	 0°C	 for	 consecutive	 period	 of	 5	 days	 or	 more.	 Results	 for	 each	 model	 for	 CFD	 are	15	

presented	in	Figure	5.	Contrary	to	CSD,	most	of	the	differences	occur	in	the	higher	latitudes	16	

for	CFD.	Once	again,	ECHAM6	has	simulated	much	higher	number	of	CFD	than	EWEMBI	data	17	

which	is	corrected	to	a	large	extent	after	the	application	of	ISIMIP2b-BC.	Altogether,	ISIMIP2b-18	

BC	has	brought	the	CFD	results	closer	to	EWEMBI.	19	

	20	

Consecutive	Dry	Days	(CDD):	21	

	22	

CDD	is	defined	as	the	number	of	instances	for	which	the	daily	precipitation	remains	less	than	23	

certain	threshold	for	consecutive	period	of	5	days	or	more.	Figure	6	shows	the	CDD	results	for	24	

thresholds	of	1mm/day,	1.5	mm/day	and	2.0	mm/day.	Once	again,	improvements	in	CDD	after	25	

the	application	of	 ISIMIP2b-BC	can	be	 seen.	Although	 irrelevant	 in	 terms	of	 impact	model	26	

application,	however	most	obvious	improvement	is	in	the	correction	of	overestimation	and	27	

underestimation	for	MIROC5,	over	most	of	the	ocean	region.	Improvements	can	also	be	seen	28	

over	land	regions	for	all	the	models.		29	

	30	

Consecutive	Wet	Days	(CWD):	31	

	32	
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CWD	is	defined	as	the	number	of	instances	for	which	the	daily	precipitation	remains	higher	1	

than	certain	thresholds	for	consecutive	period	of	5	days	or	more.	Results	for	CWD	days	for	2	

thresholds	of	1	mm/day,	2	mm/day	and	3	mm/day	are	shown	in	Figure	7.	Like	other	indices	3	

discussed	earlier,	a	general	improvement	in	the	results	after	the	application	of	ISIMIP2b-BC	4	

can	 be	 witnessed.	 Similar	 to	 CDD,	 application	 of	 ISIMIP2b-BC	 has	 shown	 a	 marked	5	

improvement	in	the	MIROC5	simulation	over	the	ocean	areas.	Moreover,	improvement	can	6	

also	be	noticed	in	the	results	of	CWD	for	all	the	models	over	land	areas.	7	

	8	

Simulated	Streamflow:		9	
	10	
The	 streamflow	 is	 calculated	 by	WaterGAP	 for	 the	 bias	 corrected	 and	 non-bias	 corrected	11	

ensemble	members	and	compared	to	a	reference	run	forced	with	EWEMBI	data.	In	figure	8	12	

we	present	the	simulation	results	at	outlets	of	three	major	river	systems	(Rhine,	Mississippi	13	

and	Amazon).	Due	 to	 the	 bias	 correction,	 the	 annual	 discharge	 and	 the	 seasonal	 flows	 fit	14	

better	to	the	reference	simulations.	Next	to	the	general	better	fit	of	discharge	the	range	of	15	

the	 ensemble	 members	 is	 predominantly	 maintained	 in	 the	 three	 basins.	 Some	 further	16	

streamflow	 simulation	 results	 can	 be	 found	 in	 figure	 S21,	 which	 also	 support	 the	17	

aforementioned	findings.		18	

Summary	and	Conclusions:	19	
	20	

Bias	 correction	 of	 climate	 model	 output	 has	 remained	 a	 controversial	 issue	 among	 the	21	

scientists.	A	vast	variety	of	bias	correction	methods	are	already	in	use	in	the	field	of	climate	22	

and	impact	modeling,	however	many	problems	with	the	bias	correction	methods	have	also	23	

been	 identified.	 For	 example,	 bias	 correction	 not	 only	 alters	 the	 underlying	 physical	24	

characteristics	among	variables,	but	also	e.g.	for	extreme	tails	for	the	same	variable	(Sippel	et	25	

al.,	 2016).	 On	 the	 other	 hand,	 climate	 scientists	 are	 confronted	with	 growing	 pressure	 to	26	

translate	their	modeling	information	into	informed	adaptation	decision	by	using	the	impact	27	

models.	Impact	models,	in	which	certain	processes	are	based	on	threshold,	are	sensitive	to	28	

large	systematic	biases	in	the	climate	data	making	bias	correction	an	essential	step.	We	have	29	

assessed	 the	performance	of	 ISIMIP2b-BC	 in	 correcting	8	 variables	 simulated	under	HAPPI	30	

project	across	4	different	GCMs.		31	

	32	
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An	overall	 satisfactory	performance	of	 ISIMIP2b-BC	 is	witnessed	 in	correcting	 the	seasonal	1	

means	as	well	ensemble	spread	across	the	GCMs.	A	marked	improvement	in	the	annual	cycle	2	

of	the	variable	is	also	achieved.		The	results	for	extreme	indicators	also	come	closer	to	the	3	

observations	although	they	have	not	been	explicitly	bias	corrected.	All	these	improvements	4	

are	 translated	 into	 the	 results	 of	 the	 impact	 model	 (WaterGAP),	 which	 show	 significant	5	

improvements	after	the	application	of	ISIMIP2b-BC.	Few	limitation	have	also	been	identified,	6	

for	example	ISIMIP2b-BC	failed	to	correct	the	deviations	in	strong	dynamical	features	of	the	7	

monsoon	regions.	8	

	9	

The	results	of	this	study	indicate	that	the	application	of	bias	correction	technique	is	mandatory	10	

when	 forcing	 the	 impact	 models	 with	 the	 data	 of	 climate	 models.	 Besides	 an	 orthodox	11	

validation,	this	study	will	also	serve	as	a	reference	document	to	analyze	the	performance	of	12	

bias	corrected	against	the	original	(non-bias	corrected)	data	for	the	future	HAPPI	data	users.	13	

	14	

Data	availability:		15	

The	 data	 used	 in	 this	 paper	 is	 freely	 available	 from	 the	 link	16	
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Table	1:	Table	of	GCMs	which	are	bias	corrected	in	HAPPI,	with	their	specifications.	18	

Model	 Horizontal	
Resolution	

	Time-Period	for	construction	
of	Transfer	Functions	

References	

CAM4	 2x2º	 1979-2005	 Neale	et	al.	(2013)	

MIROC5	 150x150	km	 1979-2010	 Shiogama	et	al.	
(2014)	

MPI-ECHAM6.3	 T63	 1979-2010	 --	

NorESM1-Happi	 1.25x0.94º	 1986-2010	 Bentsen	et	al.	
(2013)	

	19	
Table	2:	List	of	HAPPI	variables	which	are	bias	corrected	using	ISIMIP2b-BC.	20	

Variable	 Short	name	 Unit	

Precipitation	 pr	 Kg	m2	s-1	

Near	surface	air	

temperature	

tas	 K	

Near	surface	maximum	air	

temperature	

tasmax	 K	

Near	surface	minimum	air	 tasmin	 K	
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temperature	

Surface	downwelling	

longwave	radiation	

rlds	 W	m-2	

Surface	downwelling	

shortwave	radiation	

rsds	 W	m-2	

Near	surface	wind	speed	 sfcWind	 m	s-1	

Near	surface	relative	

humidity	

hurs	 %	

	1	
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	1	
Figure	1:	Seasonal	absolute	(tas)	and	relative	(pr,rsds,hurs,sfcWind)	differences	against	EWEMBI	data	for	different	GCMs.	2	
For	each	variable,	upper	and	lower	panels	show	the	results	of	bias	corrected	and	original	(non-bias	corrected)	data	3	
respectively.	4	

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-107
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 June 2018
c© Author(s) 2018. CC BY 4.0 License.



	 17	

	1	
Figure	2:	Seasonal	ensemble	standard	deviation	across	different	GCMs	for	different	variables.	For	each	variable,	upper	and	2	
lower	panels	show	the	results	of	bias	corrected	and	original	(non-bias	corrected)	data	respectively.	3	

	4	
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	1	
Figure	3:	:	Annual	Cycle	for	different	variables	averaged	over	the	land	areas	across	different	GCMs.	Red,	green	and	black	2	
curves	represent	ensemble	median	for	original	(non-bias	corrected),	bias-corrected	and	EWEMBI	data.	The	respective	3	
coloured	band	around	original	and	bias	corrected	curves	represent	the	spread	of	the	20	Ensemble	member	for	each	variable.	 	4	
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	1	
Figure	4:	Consecutive	Summer	Days	(CSD)	index	at	the	thresholds	of	30°C,	35°C	and	40°C	presented	as	a	difference	from	2	
EWEMBI	data.	Presented	are	the	number	of	instances	during	which	the	maximum	temperature	remains	equal	or	more	than	3	
the	respective	thresholds	consecutively	for	5	days	or	more.	Upper	and	Lower	panels	show	the	results	for	bias	corrected	and	4	
original	(non-bias	corrected)	data	across	all	the	four	GCMs.	 	5	
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	1	
Figure	5:	Consecutive	Frost	Days	(CFD)	index	presented	as	a	difference	from	EWEMBI	data.	Presented	are	the	number	of	2	
instances	during	which	the	minimum	temperature	remains	equal	or	less	than	0°C	consecutively	for	5	days	or	more.	Upper	3	
and	Lower	panels	show	the	results	for	bias	corrected	and	original	(non-bias	corrected)	data	across	all	the	four	GCMs.	 	4	

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-107
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 June 2018
c© Author(s) 2018. CC BY 4.0 License.



	 21	

	1	
Figure	6:	Consecutive	Dry	Days	(CDD)	index	at	the	thresholds	of	1mm/day,	1.5	mm/day	and	2.0	mm/day	presented	as	a	2	
difference	from	EWEMBI	data.	Presented	are	the	number	of	instances	during	which	the	daily	precipitation	remains	more	3	
than	the	respective	thresholds	consecutively	for	5	days	or	more.	Upper	and	Lower	panels	show	the	results	for	bias	corrected	4	
and	original	(non-bias	corrected)	data	across	all	the	four	GCMs.	 	5	

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-107
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 June 2018
c© Author(s) 2018. CC BY 4.0 License.



	 22	

	1	
Figure	7:	Consecutive	Wet	Days	(CWD)	index	at	the	thresholds	of	1mm/day,	2	mm/day	and	3	mm/day	presented	as	a	2	
difference	from	EWEMBI	data.	Presented	are	the	number	of	instances	during	which	the	daily	precipitation	remains	more	3	
than	the	respective	thresholds	consecutively	for	5	days	or	more.	Upper	and	Lower	panels	show	the	results	for	bias	corrected	4	
and	original	(non-bias	corrected)	data	across	all	the	four	GCMs.	 	5	
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Figure	8:	Figure	8:	Seasonal	discharge	at	the	outlet	of	Amazon	river	basin	(first	row),	Mississippi	river	basin	(second	row)	and	6	
Rhine	river	basin	(third	row)	for	2006	–	2013	for	the	analysed	GCMs.	The	black	line	represents	the	reference	simulation	7	
forced	with	EWEMBI,	whereas	the	green	and	red	coloured	lines	represent	the	bias	corrected	and	the	original	(non-bias	8	
corrected)	ensemble	mean.	The	coloured	bands	around	original	and	bias	corrected	curves	show		the	spread	of	the	20	9	
ensemble	members.	10	
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