
sympl (v. 0.4.0) and climt (v. 0.15.3) – Towards a flexible
framework for building model hierarchies in Python
Joy Merwin Monteiro1, Jeremy McGibbon2, and Rodrigo Caballero1

1Department of Meteorology, Stockholm University, SE-106 91 Stockholm, Sweden
2 408 Atmospheric Sciences–Geophysics (ATG) Building, University of Washington at Seattle, Box 351640, Seattle,
Washington 98195-1640

Correspondence: Joy Merwin Monteiro (joy.merwin@gmail.com)

Abstract. sympl (System for Modelling Planets) and climt (Climate Modelling and Diagnostics Toolkit) are an attempt

to rethink climate modelling frameworks from the ground up. The aim is to use expressive data structures available in the

scientific Python ecosystem along with best practices in software design to allow scientists to easily and reliably combine

model components to represent the climate system at a desired level of complexity, and to enable users to fully understand

what the model is doing.5

sympl is a framework which formulates the model in terms of a “state” that gets evolved forward in time or modified within

a specific time by well-defined components. sympl’s design facilitates building models that are self-documenting, highly inter-

operable, and that provide fine-grained control over model components and behaviour. sympl components contain all relevant

information about the input they expect and output that they provide. Components are designed to be easily interchanged, even

when they rely on different units or array configurations. sympl provides basic functions and objects which could be used in10

any type of Earth system model.

climt is an Earth system modelling toolkit that contains scientific components built using sympl base objects. These

include both pure Python components and wrapped Fortran libraries. climt provides functionality requiring model-specific

assumptions, such as state initialisation and grid configuration. climt’s programming interface designed to be easy to use and

thus appealing to a wide audience.15

Model building, configuration and execution are performed through a Python script (or Jupyter Notebook), enabling re-

searchers to build an end-to-end Python-based pipeline along with popular Python data analysis and visualisation tools.

1 Introduction

The climate is a complex system composed of interacting subsystems (atmosphere, ocean, cryosphere, biosphere, chemo-

sphere), each encompassing a broad range of physical and chemical processes with space and time scales spanning many20

orders of magnitude. Modelling and understanding the climate system in its entirety is a grand scientific and technological

challenge. An increasingly recognised strategy for tackling this challenge is to build a hierarchy of models of varying complex-

ity. Simpler models are more amenable to in-depth analysis and understanding; the insight gained from these simpler models

can then be used to understand more complicated models, and so on (Held, 2005). Specifying which particular models should

1

occupy each rung in such a hierarchy is necessarily a matter of subjective choice, and the questions of how to create a hierarchy

and what models are desirable in a canonical hierarchy has generated extensive discussions (Jeevanjee et al., 2017). Our pur-

pose here is to present a modelling framework which enables climate scientists to easily and transparently traverse the specific

model hierarchy suiting their needs.

Designing and building a framework that facilitates traversing this hierarchy remains a challenge. The lack of flexibility5

of existing climate models forces scientists to spend a lot of time reading and modifying code to construct alternative model

versions that should in principle be straightforward to build. Most modelling frameworks simply provide code to exchange

information between different physical domains such as atmosphere and ocean (See Theurich et al., 2015; Valcke et al., 2012,

for a survey of modelling frameworks), with each physical domain being represented by a monolithic block of code. It was

only with the advent a new generation of frameworks like the Earth System Modelling Framework (ESMF) (DeLuca et al.,10

2012; Theurich et al., 2015) that fine-grained control over the components that constitute a climate model was made possible.

For instance, ESMF allows configuring components as trees, where the leaf nodes could represent physical processes such as

radiation and the root of the tree could represent a physical domain such as the atmosphere. Such a hierarchical ordering of

physical processes is also present in Python based modelling packages – previous versions of climt and climlab (https:

//github.com/brian-rose/climlab) allow building models in a manner similar to ESMF. However, the norm continues to be that15

climate model composition is configured by namelist variables and boolean flags in the code rather than framework-based

approaches (like the component trees that ESMF allows).

Another emerging concern in the scientific community is that of reproducibility of research (Peng, 2011). While publicly

available climate models do provide validated configurations that are in principle completely reproducible, climate scientists

routinely need to make changes to the code that are hard to document (or understand). Short of sharing a copy of the entire code20

base, such modifications makes it difficult to reproduce simulations. While some level of code manipulation is inescapable, we

note from our own experience and from reading about such modifications in the literature that most of them follow set patterns

which could easily be provided by modelling frameworks themselves.

In this paper we present a new modelling framework, sympl, and a model toolkit, climt. While sympl focuses on

providing a model framework, a rich taxonomy of components, and model agnostic configuration options, climt focuses25

on providing a broad array of physical components to allow users to build scientifically useful models. climt also provides

model dependent configuration options and helper functions to create an initial model state as required by the components.

sympl and climt allow finer grained control over the composition of the model, with individual components representing

physical processes (such as radiation, convection, etc.,) rather than physical domains. Attempting to model the climate system

at the physical process level has its own challenges which we attempt to solve in these packages. Initiatives to build frameworks30

to traverse the hierarchy between highly idealised models to full scale GCMs (general circulation models) do exist (Fraedrich

et al., 2005; Vallis et al., 2017), but we believe the definition of a clear set of classes to represent the physical process level of

the model to be unique.

sympl and climt allow writing models which are easy to use and facilitate reproducibility of simulations. Both these

packages are subject to ongoing development, but have reached a level of maturity that makes it worthwhile to document them35

2

https://github.com/brian-rose/climlab
https://github.com/brian-rose/climlab
https://github.com/brian-rose/climlab

here. In section 2, present a series of models written using sympl and climt which illustrate the construction of a model

hierarchy. In section 3 we describe some challenges that modelling frameworks have to solve (in the context of the above

examples when possible) and discuss how sympl and climt address these challenges. We then discuss in more detail the

interfaces of sympl (section 5) and climt (section 6). In section 7 we present some benchmark calculations, and conclude

with a discussion of developments planned in the future.5

2 sympl and climt in action

To illustrate the advantages of the fine-grained control that sympl and climt offer, we consider a series of examples starting

with a diagnostic radiative calculation and ending with an idealised three dimensional atmospheric general circulation model.

Figure 1 shows the script required to calculate the heating tendencies from a longwave radiative transfer component (Clough

et al., 2005). A detailed explanation of the script follows:10

– Line 1: Import the climt package.

– Line 4: Instantiate a radiative transfer component.

– Line 7: Create a state dictionary which contains all the quantities required as inputs by the radiative transfer component.

– Line 9: Calculate the heating rate (available in tendencies and any associated diagnostics such as the radiative fluxes

(available in diagnostics).15

In Figure 1, we have used the default values for quantities in model_state, which corresponds to an isothermal atmosphere.

This example, though seemingly simple, is remarkable because of the ease with which such a diagnostic calculation can be

performed. Traditionally, such a calculation would involve writing a Fortran “driver”, compiling it with the radiative transfer

library, writing the output to a file, and then reading the output file into a suitable environment for further analysis. The

ease of use illustrated in the above example is a direct result of the fine-grained control that sympl and climt allow –20

individual components can be configured and run (interactively, if desired) without having to compile them with a driver file.

To summarise, components, not models, are first class entities within the sympl framework.

It is worth examining this example in greater detail, since it highlights some important features of sympl and climt that

we will look at closely in subsequent sections. The component called radiation is an implementation of the sympl entity

called TendencyComponent, which is a template for components which calculate tendencies of a quantity (air temperature25

in this case) based on quantities in a state dictionary. We will encounter other kinds of components in subsequent examples.

Figure 2 builds upon the previous example to create a model that includes both radiation and convection, steps the state

quantities forward in time, and writes the output to a file. The changes from the previous script are as follows:

– Line 7: Define the model time step using timedelta from the datetime library, which is part of any Python distri-

bution.30

3

1 import climt
2

3 # Create component
4 radiation = climt.RRTMGLongwave()
5

6 # Create model state
7 model_state = climt.get_default_state([radiation])
8

9 tendencies, diagnostics = radiation(model_state)

Figure 1. A Python script which calculates the heating tendencies and associated diagnostics from a longwave radiative transfer component.

See the text for a detailed description.

– Line 21: Create a time integrator which steps the model state forward in time, using tendencies generated by the radiation

and convection components. The integrator chosen is an instance of the sympl Stepper class which implements a

variety of Adams-Bashforth schemes.

– Line 24: Create a “monitor” component which writes the model state to a netCDF file.

– Lines 27-37: The boundary layer component provides new values of model quantities, which are used to update the5

model state. The time integrator incorporates the tendencies due to radiation and convection and provides new values

for the model state as well. The current model state is updated with diagnostics and written to a netCDF file. The model

state is then updated with the new model quantities to prepare for the next iteration.

This example illustrates how to piece together a radiative-convective equilibrium (RCE) model from different kinds of

sympl components. This example also moves up the model hierarchy, away from static diagnostic calculations to a model10

which evolves in time. It is worth noting that the first half of the example which creates components and a model state remains

identical to the procedure followed in the previous example. This example shows two notable features of the design of sympl

and climt – One, individual components can step the model state forward themselves and Two, the model integrator is a

separate entity in itself which can be replaced easily (to use more stable integration schemes, for example). These features are

in keeping with our goal of capturing the diversity of model components – some of which produce tendencies, and others that15

produce new state quantities – and allowing the user fine-grained control over model configuration.

This example also illustrates how sympl’s design provides a clear understanding of the model to users. Configuring the

model consists of modifying a run script which is meant to be entirely legible to the user. By reading the run script, one can

see exactly which model components are being used, how the state is initialised, what configuration options are being passed

to which components, what time integration scheme is used on which components, the order in which components are being20

called, and the point within the integration where the state is being output to a file.

4

1 from sympl import (
2 AdamsBashforth, NetCDFMonitor)
3 import climt
4 from datetime import timedelta
5

6 # Define model timestep in minutes
7 model_timestep = timedelta(minutes=1)
8

9 # Create components
10 radiation = climt.RRTMGLongwave()
11 convection = climt.EmanuelConvection()
12 boundary_layer = climt.SimplePhysics()
13

14 # Create model state
15 model_state = climt.get_default_state(
16 [radiation, convection, boundary_layer])
17

18 # Create integrator
19 time_stepper = AdamsBashforth(
20 [radiation, convection])
21

22 # Create monitor
23 monitor = NetCDFMonitor('radiative_convective.nc')
24

25 # step model forward
26 for step in range(10):
27 bl_diagnostics, bl_new_state = boundary_layer(
28 model_state, model_timestep)
29 model_state.update(bl_diagnostics)
30 model_state.update(bl_new_state)
31

32 diagnostics, new_state = time_stepper(
33 model_state, model_timestep)
34 model_state.update(diagnostics)
35 monitor.store(model_state)
36 model_state.update(new_state)
37 model_state['time'] += model_timestep

Figure 2. A Python script which calculates the radiative-convective equilibrium temperature of an atmospheric column for a fixed surface

temperature. See the text for a detailed description.

5

1 from sympl import (
2 TimeDifferencingWrapper, NetCDFMonitor)
3 import climt
4 from datetime import timedelta
5

6 # Define model timestep in minutes
7 model_timestep = timedelta(minutes=1)
8

9 # Create Components
10 radiation = climt.RRTMGLongwave()
11 convection = climt.EmanuelConvection()
12 boundary_layer = TimeDifferencingWrapper(
13 climt.SimplePhysics())
14 time_stepper = GFSDynamicalCore(
15 [radiation, convection, boundary_layer])
16

17 # Create model grid
18 model_grid = climt.get_grid(nx=64, ny=64, nz=28)
19

20 # Create model state
21 model_state = climt.get_default_state(
22 [time_stepper], grid_state=model_grid)
23

24 # Create monitor
25 monitor = NetCDFMonitor('moist_agcm.nc')
26

27 # step model forward
28 for step in range(10):
29 diagnostics, new_state = time_stepper(
30 model_state, model_timestep)
31 model_state.update(diagnostics)
32 monitor.store(model_state)
33 model_state.update(new_state)
34 model_state['time'] += model_timestep

Figure 3. A Python script which creates an idealised moist atmospheric general circulation model. See text for a detailed description.

6

Figure 3 presents the next step in the hierarchy from Fig. 2, creating a moist atmospheric general circulation model (AGCM)

in an aqua-planet configuration with a prescribed sea surface temperature. The default surface temperature is horizontally uni-

form, but we omit prescribing a realistic temperature distribution for purposes of comparison with Fig. 2. The main differences

from the previous example are:

– Line 14: The boundary layer component is wrapped to output tendencies instead of a new state. This wrapper is required5

since the spectral dynamical core must apply tendencies to most quantities in spectral space for numerical reasons.

– Line 18: The spectral dynamical core is used as the time stepper instead of the Adams-Bashforth scheme used previously.

– Lines 22 and 25: Since the model now has three dimensions, we require a grid describing the latitudes, longitudes as

well. Line 18 creates a model grid, and the default model state created in Line 21 uses this grid to create an appropriate

three dimensional state.10

A remarkable fact about this example is that it is only one line longer than the previous example. Intuitively, this seems

appropriate – an AGCM can be thought of as a collection of radiative-convective columns which communicate with each other

via the dynamical core. However, in most modelling frameworks the intuitive picture of the transition from an RCE to an

AGCM does not easily translate to code. This plug-and-play behaviour is a direct consequence of the modularity of individual

sympl components and the fact that all components of a similar kind (AdamsBashforth and GFSDynamicalCore in15

this case) implement the same interface, making it possible to reuse almost the entire model script from the RCE case. In this

way, sympl and climt allow constructing models in such a way that a change that intuitively seems small also translates to

a code change that is small.

In this following section, we look at detail at the design decisions that allow for the construction of a model hierarchy as

described in the three examples in this section.20

3 Design considerations and choices

In this paper we distinguish between modelling frameworks, model toolkits, and models themselves. A framework (such as

sympl) consists of abstractions of "infrastructure" code that allow the creation of climate models. A framework creates rules

one must follow, but by doing so ensures models using the framework are easier to write, understand, and combine with one

another. A toolkit (such as climt) implements those abstractions for concrete physical processes, and may provide additional25

functionality that is not covered by the framework. A model itself (such as in Figures 2 and 3) is written using components that

may come from a toolkit which follows the guidelines of the framework.

Modelling frameworks should enable scientists to intuitively combine model components and create an appropriately com-

plex model for the scientific question at hand. The user should also be able to specify details such as the order in which

components are called and the time stepping schemes used. Model toolkits should provide a wide variety of components that30

enable users to write a model appropriate to the question at hand. Toolkits should also maintain a list of quantities and numeri-

cal grids that are required by the components it provides to facilitate creating model arrays. It is also desirable that the process

7

of creating a model is fairly easy to understand and that the model code be self-documenting to eliminate the need to write

additional documentation whenever possible.

3.1 Component diversity

One of the major aims of sympl and climt is to allow fine-grained control over the processes that constitute an Earth

system model. In currently available modelling frameworks, the integration of scientific code (or model components) and the5

modelling framework happens at the physical domain level – atmosphere, ocean, land and so on. The processes that operate

within each physical domain (fluid dynamics, radiation, convection etc.,) are not accessible in a systematic manner, and their

code becomes tightly coupled and difficult to modify. For example, changing the radiation code in an atmospheric model is

typically harder than changing the kind of ocean the atmosphere is coupled to (slab, dynamical, etc.,). Tight coupling of code

at the process level can make these models more efficient, but at the cost of scientist efficiency, as the code is significantly less10

flexible and have undocumented and complicated interfaces between components.

Furthermore, the fact that certain process level components are written to work only with certain other components demands

an “architectural unity” (Randall, 1996) which might also encourage tight integration of model components. Within sympl,

it may still be the case that two components are incompatible with one another (for example, using different thermodynamic

quantities), but because their interfaces are clearly defined, it is easier to couple these components (for example, by converting15

thermodynamic quantities using an additional component). Other incompatibilities are handled automatically. For example,

sympl automatically ensures components which use different units or dimension orderings can be used alongside one another.

If we allow for configuration at the process level, we are then faced with model components which behave quite differently:

Some components (like radiation) return tendencies, while others (like large scale condensation) return a new value of a phys-

ical quantity. sympl provides a set of component classes that is comprehensive enough to capture the diversity of component20

behaviours.

An example of a sympl component is depicted in Fig. 4. input_properties and tendency_properties are

‘property’ attributes containing details of the required inputs and returned outputs, tendencies or diagnostics. Here, the input is

a quantity air_temperature whose horizontal dimensions are latitude, longitude and whose values in the vertical

are defined at model mid-levels. The units are specified for each quantity. The array_call method will be called by sympl25

with numpy arrays that are automatically extracted from the model state to satisfy the input property specifications. It is written

to return numpy arrays as output which satisfy its tendency and diagnostic property specifications. The __call__ method

which is called, for example, in Line 9 of Fig. 1, is implemented by the base sympl classes. This method encapsulates the

boilerplate code of performing consistency checks on the model state, extracting numpy arrays with the correct units and shape,

and creating a new state dictionary from the arrays returned by array_call.30

Dimension and unit requirements in sympl are not restrictions on the inputs, but rather describe the internal representation

used by the component. sympl will automatically convert the input state to satisfy these requirements, and raise an exception

if that is not possible. In this way, the property dictionaries act as self-documenting code, which both documents the component

interface and is used to convert input arrays to the desired dimension ordering and units for the component.

8

1 lass PrescribedHeating(TendencyComponent):
2

3 input_properties = {
4 'latitude': {
5 'dims': ['*'],
6 'units': 'degrees_N',
7 },
8 'longitude': {
9 'dims': ['*'],
10 'units': 'degrees_E',
11 },
12 'air_pressure': {
13 'dims': ['mid_levels', '*'],
14 'units': 'Pa',
15 },
16 }
17

18 diagnostic_properties = {}
19

20 tendency_properties = {
21 'air_temperature': {
22 'dims': ['mid_levels', '*'],
23 'units': 'degK s^-1',
24 }
25 }
26

27 def __init__(self, forcing_filename, **kwargs):
28 [...]
29 super(PrescribedHeating, self).__init__(**kwargs)
30

31 def array_call(self, state):
32 [...]

Figure 4. The general code layout for a sympl component.

As a TendencyComponent (discussed in Section 5), this component outputs tendencies of a quantity air_temperature.

The array_call() method accepts a dictionary containing just the numpy arrays extracted from the model state with the

correct units and dimensions and returns the temperature tendency as specified in the component properties.

Since components in sympl and climt are first class entities, they are not dependent on any other code for execution –

Fig. 1 shows how to interact solely with a radiative component without the need for an integrator or any other entity. This5

behaviour serves an important educational purpose and facilitates diagnostic calculations made very often during research.

3.2 Model configuration

Together, sympl and climt allow a natural way of configuring various aspects of a climate model listed below:

9

– Physical configuration (toolkit agnostic): the physical constants required by the model components.

– Algorithmic configuration (toolkit specific): the “tunable” parameters which modify the behaviour of the algorithm

which represent physical processes – for example, the entrainment coefficient in a convective parameterisation.

– Interfacial configuration (toolkit agnostic): Modifications applied to inputs and outputs at the interface of a component,

further described below.5

– Memory and Computing resource configuration (toolkit specific): The layout of arrays used by the model and the distri-

bution of the model components over the available number of processors and co-processors.

– Compositional configuration (toolkit specific): The components that compose a model, any dependency between com-

ponents, the order in which components are executed all need to be described.

Figure 5 shows types of configuration information and where such configuration lies climt/sympl and in traditional10

climate models. In contrast to symplwhere all configuration passes through a readable run script, the sheer variety of locations

where the configuration resides in traditional models makes it hard to keep track of what configuration information has changed,

and how configuration changes affect model runs. This makes it daunting for beginners to write models. Model configuration

using sympl and climt is highly centralised and easily accessible - all configuration passes through the model run script,

which is written to be readable and accessible to model users. Such centralised configuration reduces errors arising due to15

misconfiguration of the model.

While most of the configuration elements listed above are familiar, interfacial configuration is mostly unheard of and usually

applied in a non-systematic manner within climate models. The TimeDifferencingWrapper used in line 14 of Figure 3

is an example of interfacial configuration of a climate model component. There are a variety of interfacial modifications which

are commonly applied to components, and can be applied in a consistent manner across components. For instance, model20

components could

– Normally return a new value rather than a tendency of some physical quantity, but in certain instances a tendency might

be desirable (as in Figure 3).

– Provide output that is piece-wise constant in time – the output is updated only once every N iterations, and the same

value it output for the next N − 1 iterations. This behaviour is normally used in radiative transfer codes.25

– Scale some of its inputs or outputs by some floating point number. This kind of behaviour is desirable for example in

mechanism denial studies.

We can interfacially modify certain behaviours of model components, such as the ones above, by interacting with only

the inputs and outputs of scientific components. sympl formalises such configuration by providing wrapper objects like

TimeDifferencingWrapper.30

10

Physical
Configuration

Namelist/XML/etc., Hard Coded Runscript/Shell

Interfacial
Configuration

Memory +
Computational

Resource
Configuration

Algorithmic
Configuration

Compositional
Configuration

Constants API Wrapper Constants API Component
Initialisation Federation*

C
ur

re
nt

 C
lim

at
e

M
od

el
s

Sy
m

pl
+C

liM
T

Runscript

Figure 5. The variety of configuration options in a climate model and in the sympl-climt framework. The coloured boxes indicate the

type of configuration and the white boxes parts of the model code base. Arrows from the coloured to the white boxes indicate the part of the

code base that is typically responsible for the configuration from which the arrow originates. A particular type of configuration could exist

in two different parts of the code base: such a situation is indicated by multiple arrows terminating at all the relevant white boxes. Note that

not every climate model uses all configuration options. The starred box on the sympl+climt side indicates functionality that is not yet

implemented.

4 Model arrays

Model arrays are contained within the DataArray abstraction provided by xarray (Hoyer and Hamman, 2017) rather than

the more low-level numpy array. DataArrays are an abstraction over numpy arrays with a more natural fit to climate data

by providing labeled dimensions and metadata storage capabilities.

sympl’s DataArray object is a subclass of the xarray DataArray that provides units handling and conversion and5

will be described subsequently. This exposes the powerful analysis capabilities of xarray, allowing users to build an end-to-

end pipeline entirely within Python, from simulation to data analysis and generation of publication-ready figures.

11

Since low-level array operations using numpy and xarray are fairly simple, especially changing coordinate ordering and

C/Fortran memory ordering, climt only provides guidelines for memory layout of arrays. However, changing the ordering of

dimensions in memory will incur the performance penalty of copying the array if the model calls compiled code.

In the interest of readability of component and model code, sympl strongly encourages and climtmakes use of descriptive

names for model quantities, adhering to the CF conventions1 when possible. Most pre-defined quantities in climt use names5

derived from the CF conventions. One additional suffix that we found necessary to use was on_interface_levels to

distinguish between quantities defined on the interfaces and mid-levels of the vertical grid. For example air_temperature

refers to the air temperature defined at the vertical grid centre, whereas air_temperature_on_interface_levels

refers to the same quantity defined at the vertical grid edges. This convention is only a requirement within the model state.

Within an individual component, shorter names can be used for variables representing quantities. This shorter name is also10

contained in the property dictionary of the component, serving as documentation for the meaning of that shorter variable name.

4.1 Modelling language

Python was used as the language to write the framework. Python as a language and the Python ecosystem have a number of

desirable features, all of which were taken advantage of during the development of sympl and climt:

– Earlier versions of climt were written in Python, which gave the authors an idea of the convenience and flexibility it af-15

forded. In particular, the object-oriented capabilities of Python provide a straightforward way to represent the component

based architecture adopted by almost all climate modelling frameworks.

– Scientific libraries within the Python ecosystem now offer acceptable performance for computationally intensive opera-

tions typically used in climate models.

– The Python ecosystem includes many libraries which can be useful in developing climate models. Examples include20

machine learning, graphics and web services libraries.

– Python’s ability to act as a glue language allows interfacing with the large number of libraries for climate modelling

already available in Fortran.

– Tools available in the Python ecosystem like jupyter, pytest and sphinx which enable writing reproducible

workflows and code that is well documented and tested.25

5 sympl – Design and programming interface

sympl conceives of a climate model as a state that is continuously updated by various components. sympl’s taxonomy con-

sists of seven kinds of components. Four of these component types are used to represent physical processes and the remaining

represent other functionality required to build and run models.

1 http://cfconventions.org/Data/cf-standard-names/48/build/cf-standard-name-table.html

12

http://cfconventions.org/Data/cf-standard-names/48/build/cf-standard-name-table.html

– TendencyComponent objects like RRTMGLongwave in Fig. 1 which take the model state as input and returns

tendencies of quantities and values of quantities defined at the time of the input state.

– Stepper components like SimplePhysics in Fig. 2 which take the model state and a timestep as input and returns

values of quantities defined at a new time (after the timestep) and optionally diagnostic values of quantities defined at

the time of the input state. These are implicit as they define the target model state in terms of the target model state (e.g.5

that the target state is not supersaturated).

– DiagnosticComponent objects which take the model state as input and return quantities defined at the time of the

input state as output.

– ImplicitTendencyComponent objects like EmanuelConvection in Fig. 2 which return tendencies, but re-

quire the model timestep to produce these tendencies. This is required when the tendencies are defined in terms of10

the target model state, as is often done in convection schemes or flux limiters. These should generally be written as

Stepper components which can later be wrapped into ImplicitTendencyComponent objects if needed (such as

with SimplePhysics in line 14 of Fig. 3).

– TendencyStepper components like AdamsBashforth in Fig. 2 which contain a set of TendencyComponent

objects and use the tendencies they output to integrate the model state forward in time.15

– Monitor components like NetCDFMonitor in Fig. 2 which provide a store method which takes the model state

as input and “stores” it. The implementation of this method is left to the user, and currently is used for NetCDF output

and plotting.

– Wrapper components like TimeDifferencingWrapper in Fig. 3 which contain other sympl components and

modify the inputs passed to or outputs generated by the ‘wrapped’ component.20

Schematics of how the above components interact with the model state are presented in Figure 6. A DiagnosticComponent

object (Panel a) is very simple, producing diagnostic quantities that are inserted or updated in the current model state. Monitor

objects (Panel b) take in the model state and perform some action using it. Slightly more complicated is the Stepper object

(Panel c), which steps the model state forward in time. In addition to producing a new state, it can produce diagnostic quantities

which are inserted or updated in the current model state. Panel d is the most complex, depicting how TendencyComponent25

objects are used with a TendencyStepper to update the model state. Once created, a TendencyStepper behaves ex-

actly like an Stepper object. Internally, it provides the input state to the TendencyComponent objects to compute ten-

dencies, and uses those tendencies according to its time stepping scheme to evolve the model state forward in time. The

TendencyStepper provides the same model state to all TendencyComponent objects it contains and sums the ten-

dencies before stepping forward in time (See Fig. 6d). Using other time marching algorithms such as sequential tendency or30

sequential update splitting (Donahue and Caldwell, 2018) will require users to implement their own TendencyStepper

object, or to call several Stepper and TendencyStepper components in sequence.

13

DiagnosticComponent

Diagnostics

Current State

Updated
Current State Updated

Current State Monitor
NetCDF
Matplotlib
...

(a) (b)

(c) (d)

Current State New State

Updated
Current StateDiagnostics

Wrapper (optional)

Stepper Tendencies

TendencyStepperCurrent State

Diagnostics

Current State

New State

Diagnostics Updated
Current State

TendencyComponent

Wrapper (optional)

TendencyComponent

Figure 6. Flow of data for each type of component in sympl. The four panels show: a) DiagnosticComponent, which creates diag-

nostics (purple box) based on the current state. The current state is updated with the resulting diagnostics, resulting in the updated current

state. b) Monitor, which can “store” the updated current state into some format like NetCDF or plots. c) Stepper, which determines a

new state from the current state and a time step, and also diagnostics from the time of the current state which are used to update the current

state. The current state could then be passed on to Monitor components (see panel b). d) TendencyStepper, which is a special case

of Stepper initialised with a list of TendencyComponent objects (denoted by green boxes within a grey box). It passes the current

state on to those TendencyComponent objects to compute tendencies and diagnostics, which are used to compute its outputs (generally

using a time stepping scheme). In all figures, dark green boxes denote components, light green boxes denote optional wrappers, orange boxes

indicate the state dictionary at different times and purple boxes indicate tendencies and diagnostics generated by components. The converging

arrows at a summation symbol (plus sign inscribed within a circle) denotes updating the state dictionary (orange) to include output (purple)

quantities. Examples of wrapper placements are not exhaustive and meant only as examples.

14

As mentioned previously, wrapper components contain a "wrapped" component and modify the inputs or outputs, changing

how the component appears to behave. Currently, sympl has the following wrappers:

– TimeDifferencingWrapper creates tendencies from the output of an Stepper component by first order differ-

encing. This creates an ImplicitTendencyComponent from an Stepper component, which is required when

using spectral methods.5

– UpdateFrequencyWrapper calls a wrapped TendencyComponent only after the user-specified time interval has

elapsed, and until then outputs the previously returned value. In effect, this creates a piecewise constant output tendency

which can reduce the computational load during a simulation. This is often used on radiation schemes.

– ScalingWrapper scales the inputs passed into the wrapped component and the outputs (new state, tendency or

diagnostic) returned by the component.10

This taxonomy of components is larger than those typically used in modelling frameworks. For example, ESMF only consid-

ers two kinds of components – Gridded and Coupler components. However, as discussed previously, this extended taxonomy

is required to capture the diversity of components that arise if models are written to be configurable and modular at the process

level.

5.1 Model State and the DataArray abstraction15

The model state is a dictionary whose keys are the names of model quantities and values are sympl DataArray objects.

The model state also contains a required keyword time whose value is an object that implements the Python datetime or

timedelta interface. sympl provides an interface to use the datetime objects from the cftime2 package to support

several different calendars, as well as dates not supported by the numpy datetime64 or built-in datetime objects. A

schematic of the model state is presented in Fig. 7. sympl does not put hard restrictions on the name of model quantities,20

though standardised names should be used to ensure inter-package compatibility. All DataArray objects must define a string

attribute called units, which is used to convert the data contained within to the appropriate units requested by a component.

The units conversion is performed internally using the Pint3 library. Since the actual contents of the state is dependent on

model details, sympl assumes that the initialisation of the model state will be done by a model package (such as climt, or

by the user.25

5.2 Physical Constants

sympl maintains a unit-aware library of constants which can be accessed or modified by model packages and by the user

through get_constant() and set_constant() functions. For example, planetary_rotation_rate can be

changed with a single function call. The unit handling is important to ensure constants are given to components in the units

2https://github.com/Unidata/cftime
3https://pint.readthedocs.io/en/latest/

15

https://pint.readthedocs.io/en/latest/

Figure 7. The model state as in the sympl framework. The state in the orange box contains all the information that is stepped forward in

time. Each DataArray contains information such as the quantity name, units and dimensions/coordinates.

they each require. For example, the RRTMG radiative transfer code (Clough et al., 2005), requires physical constants in CGS

units.

For the purposes of logging, physical constants are classified into various categories:

– planetary constants such as rotation rate, acceleration due to gravity.

– physical constants such as the speed of light.5

– atmospheric constants such as specific heat of dry air and reference air pressure.

– stellar constants such as stellar irradiance

– condensible constants which refer to the thermodynamic properties of the condensible (in all three phases) in the atmo-

sphere.

– Oceanographic constants such as the reference sea water density.10

We chose to keep the constants related to the condensible component of the atmosphere separate to ensure sympl is flexible

enough to handle general planetary atmospheres. sympl provides a function set_condensible()which allows switching

all constants related to the condensible. For example set_condensible(’methane’) will replace all condensible con-

stants (such as density of liquid/solid/gaseous phases, latent heat of condensation) to those corresponding to methane, provided

such constants are already in the constants dictionary. The default condensible is water, which is currently the only condensible15

compound for which default values are given by sympl.

16

5.3 Modelling using sympl

A typical workflow when using a model written using sympl, as seen in previous examples such as Fig. 2 and Fig. 3, might

involve the following steps:

1. Initialise model components, providing configuration information.

2. Use Wrapper components to modify the behaviour of any components if necessary.5

3. Intialise model state which contains all quantities required by the selected components.

4. Use TendencyStepper to collect all TendencyComponent components into a component that can step the model

state forward in time.

5. Begin the model main loop.

6. Call DiagnosticComponent to compute any derived quantities from prognostic quantities or provide forcing quan-10

tities at a given time step.

7. Call Stepper components and get a new state dictionary with the updated model quantities and any diagnostics. Update

the initial model state with diagnostics.

8. Call TendencyStepper and get a new state dictionary with the updated model quantities and any diagnostics. Update

the initial model state with diagnostics.15

9. Call any Monitor components to store the initial model state (e.g. store to disk, display in real time, send over the

network).

10. Increment model time and repeat the model main loop.

6 climt – Design and programming interface

6.1 Model state, quantity dimensions and output dictionaries20

For initialisation, climt provides the functions get_grid() and get_default_state(). get_grid() creates quan-

tities that define the grid such as latitude, longitude, and air pressure. get_default_state() accepts a list of components

and optionally a state with grid quantities and creates a state dictionary which satisfies the input requirements for those com-

ponents. Default values of each model quantity are defined centrally in climt. The default values provided are scientifically

meaningful, and can be used without modification for certain simulations.25

17

6.2 Model Composition

Currently, the creation of the model and running the simulation loop is done by hand, which provides better understanding

of what the model is doing but increases the verbosity of model code. In the near future, climt will provide an additional

class called Federation which automates the process of creating a model from its components. Federation would not

require that the user know the difference between a TendencyComponent and Stepper (for instance) and their different5

call signatures, or that TendencyComponents require a TendencyStepper to step the model state forward in time. This

makes creating models easy especially for those who are not familiar with climate modelling. The tradeoff is that the run script

will not explicitly describe the sequence of the main loop because that information is hidden within the Federation code,

but this can be desirable for certain applications, particularly in education. As mentioned before, this automation is possible

only because of the rich taxonomy of components sympl provides.10

6.3 Features and software engineering

climt currently has the following components that can be used to build models4:

– RRTMG longwave and shortwave radiative transfer (Clough et al., 2005): This is a Fortran component accessed via a

cython wrapper. RRTMG is a state-of-the-art radiative transfer code used in many climate models.

– Grey gas radiation scheme: simulates radiative transfer in a grey gas. This component is accompanied by another com-15

ponent that provides an optical depth distribution which mimics the effect of water vapour (Frierson et al., 2006). These

components are written in pure Python. This radiative scheme has been used in many idealised climate dynamics simu-

lations to isolate the thermodynamic effects of latent heat release from the radiative effects of water vapour, which is a

strong greenhouse gas.

– Insolation: This component is written in pure Python. It provides the solar zenith angle based on the time available in20

the model state. This zenith angle is used in radiative transfer codes. Currently, this component uses approximations and

orbital parameters which make it highly accurate for earth but inapplicable to other planets.

– Emanuel convection scheme (Emanuel and Živković Rothman, 1999): This is a Fortran component accessed via a Cython

wrapper. It is a mass flux based convection scheme which is based on the boundary layer quasi-equilibrium hypothesis

(Raymond, 1995).25

– Grid scale condensation: This is written in pure Python. It calculates the water vapour and temperature fields in the

atmosphere after condensing out excess water vapour to keep the atmospheric column from becoming super-saturated.

– Spectral dynamical core: This component is derived from the General Forecast System (https://github.com/jswhit/gfs-dycore).

It is a Fortran module accessed via a cython wrapper. It uses a high performance spherical harmonics library shtns

4All components written in pure Python were written by the authors for use in climt.

18

https://github.com/jswhit/gfs-dycore

(https://bitbucket.org/nschaeff/shtns). It is parallelised using OpenMP (Dagum and Menon, 1998), and therefore is most

effective on shared memory systems. The dynamics is stepped using an implicit-explicit total variation diminishing

Runge-Kutta 3 time-stepper. The physics tendencies are stepped forward using a forward Euler scheme.

– Simple Physics package for idealised simulations (Reed and Jablonowski, 2012): This is a fortran module accessed via

a cython wrapper. It provides initial conditions which can be used for testing moist dynamical cores, and also provides a5

simple diffusive boundary layer suitable for idealised simulations.

– Slab surface: This component is written in pure Python. It allows for a prognostic surface temperature by calculating the

surface energy budget. It is flexible enough to represent land or ocean. It currently does not account for localised heat

fluxes.

– Sea/land ice model which allows for snow and ice layers, and energy balanced top and bottom surfaces. This component10

is written in pure Python. It is flexible enough to represent ice/snow growth and melting. It is capable of representing sea

or land ice based on the surface type available in the model state. It currently cannot handle fractional land surface types.

– Held-Suarez forcing (Held and Suarez, 1994): This component is written in pure Python. It provides an idealised set of

model physics which can be used for testing dry dynamical cores and idealised simulations.

– Initial conditions from the dynamical core MIP (DCMIP) (https://www.earthsystemcog.org/projects/dcmip/): This is a15

Fortran module accessed via a cython wrapper. It provides initial conditions for a wide variety of tests which allow

assessing the conservation properties of dynamical cores.

This set of components allow building a hierarchy of models ranging from single column radiative-convective models to

energy balanced moist atmospheric general circulation models. Because of the fine-grained configurability of sympl/climt,

the difference between the number of lines of code required to build a single column model and a moist GCM is only around20

10 lines of Python code (see scripts in supplementary material). More importantly, most of the code is reusable when moving

from a simpler to a more complex model.

Both sympl and climt are open source projects, licensed under a permissive BSD license. Both packages are available on

Mac, Linux and Windows platforms, and can be directly installed from the Python Package Index using one line commands:

pip install sympl25

pip install climt

eliminating the need to download source code from GitHub. The Python Package Index projects are located at https://pypi.

python.org/pypi/sympl and https://pypi.python.org/pypi/climt respectively.

climt also provides binary releases on all supported platforms, eliminating the need to have a compiler on the user’s system.

sympl is written in pure Python, and does not have any compiler requirements. Both packages are regression tested using30

the online services TravisCI (https://travis-ci.org/) and AppVeyor (https://www.appveyor.com/). Both packages also maintain

regularly updated documentation at http://sympl.readthedocs.io/en/latest/ and http://climt.readthedocs.io/en/latest/.

19

https://bitbucket.org/nschaeff/shtns
https://www.earthsystemcog.org/projects/dcmip/
https://pypi.python.org/pypi/sympl
https://pypi.python.org/pypi/sympl
https://pypi.python.org/pypi/sympl
https://pypi.python.org/pypi/climt
https://travis-ci.org/
https://www.appveyor.com/
http://sympl.readthedocs.io/en/latest/
http://climt.readthedocs.io/en/latest/

220 240 260 280 300
kelvin

0

200

400

600

800

1000

m
illi

ba
r

Air Temperature
d

m

10 5 0 5 10
kelvin/day

Diabatic Heating
Convection
Longwave
Shortwave

Figure 8. The mean equilibrium profiles in the radiative convective single column model. The mean temperature is presented in the left

panel, along with the dry and moist adiabats which are orange and green respectively. The mean heating profiles are presented in the right

panel, which shows a stratosphere in radiative equilibrium and a troposphere in radiative-convective equilibrium.

7 Some benchmark simulations

The first simulation is that of an atmospheric column that is run to equilibrium in the presence of radiation and convection. This

model uses the RRTMG longwave and shortwave components, the Emanuel convection scheme, the Simple Physics component

as its boundary layer scheme and a slab ocean of thickness 50 metres. The model timestep is 5 minutes and the results presented

in Fig. 8 are the mean between 15000 and 20000 timesteps. The air temperature transitions from a dry adiabat in the boundary5

layer to a moist adiabat in the free atmosphere until the tropopause. The diabatic heating balance changes from a balance

between radiation and convection in the troposphere of the model to a pure radiative equilibrium in the stratosphere.

The second simulation is of a idealised aquaplanet GCM with fixed equinoctial insolation. As mentioned before, the modular

nature of our framework allows re-use of much of the runscript code from the above single column model. It consists of all the

components used in the previous model along with a dynamical core which is used as the time stepper. The model was run for10

two years and the results presented are the mean over the last six months. The simulated climate of the model is as expected

from such a configuration: the zonal mean zonal winds show two strong westerly jets which penetrate to the surface. The zonal

mean temperature shows a distinct tropical cold point and an increase in the temperature above the tropopause. The zonal mean

convective heating rate shows deep heating in the tropics and much shallower heating in the subtropical areas dominated by

descent of air. This simulation ran at a resolution of 128 longitudes, 62 latitudes (or T42 resolution) and 28 levels.15

20

50 0 500

5

10

15

20

25

m
id

_le
ve

ls

32

16

0

16

32

m
/s

50 0 500

5

10

15

20

25

150

180

210

240

270

K

50 0 50
latitude

0

5

10

15

20

25

m
id

_le
ve

ls

0.0

0.6

1.2

1.8

2.4

3.0
g/

kg

50 0 50
latitude

0

5

10

15

20

25

4

2

0

2

4

K/
da

y

Figure 9. The zonal mean equilibrium profiles in the idealised GCM runs with no seasonal cycle. The plotted fields are, in clockwise order

from the top left, the zonal winds, air temperature, convective heating rate and specific humidity respectively. The y-axis is in model levels

and x axis is in degrees.

21

8 Conclusions and Future Avenues

sympl and climt represent a novel approach to climate modelling which provides the user with fine-grained control over

the configuration of the model. sympl provides a rich set of entities which describe all functionality typically expected of

a climate model. This set of entities (or classes) allows climt to be an easy to use climate modelling toolkit by allowing

decisions about model creation and configuration to be made at a single location (the run script) and without ambiguity. The5

modular nature of the packages allows for code reuse as one traverses the hierarchy of models from single column model to

three dimensional GCMs. We attempt to address concerns about plug-and-play type architectures (Randall, 1996) by ensuring

the inputs and outputs of each model are cleanly documented, which makes it clear whether components are compatible or

not. The use of Python allows for delegating computationally intensive code to compiled languages while still providing an

intuitive and clean interface to the user. This choice also allows users access to a large variety of libraries written in Python for10

purposes ranging from machine learning to visualisation (Alpire, 2017).

The main focus in the near future would be to add more components, especially a cloud microphysics scheme, to allow

sympl/climt to simulate a more realistic benchmark climate. Due to its flexibility, we believe our modelling framework is

well suited to the simulation of general planetary atmospheres and for exoplanet modelling, and adding components relevant

to these fields will also be a priority. Another important component to add would be a flexible grid interpolation component15

to allow interaction between components based on different model grids. While care has been taken to ensure that parallel

computing is possible, we have yet to address the question of distributed memory and computing. While building models in a

simple MPI scenario seems feasible in the near future, more sophisticated configurations with components running in parallel

will need some thought and design.

Nevertheless, sympl and climt represent an important step towards creating flexible, usable and readable models. We hope20

that they will be a useful addition to the growing collection of Python based tools available to the climate science community.

Code availability. sympl is available at https://github.com/mcgibbon/sympl. The digital object identifier (DOI) for the version documented

in this paper is https://zenodo.org/record/1346405.

climt is available at https://github.com/CliMT/climt. The digital object identifier (DOI) for the version documented in this paper is https:

//zenodo.org/record/1400103.25

Acknowledgements. The first and third authors acknowledge a research grant from the Swedish e-Science Research Center (SeRC). The

second author was funded by DOE grant DE-SC0016433 as a contribution to the CMDV (CM)4 project, and by the Natural Sciences and

Engineering Research Council of Canada (NSERC) Postgraduate Scholarship Doctoral Program (PGS-D).

22

https://github.com/mcgibbon/sympl
https://zenodo.org/record/1346405
https://github.com/CliMT/climt
https://zenodo.org/record/1400103
https://zenodo.org/record/1400103
https://zenodo.org/record/1400103

References

Alpire, A.: Predicting Solar Radiation using a Deep Neural Network, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215715, 2017.

Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric

radiative transfer modeling: a summary of the AER codes, Journal of Quantitative Spectroscopy and Radiative Transfer, 91, 233–244,

https://doi.org/10.1016/j.jqsrt.2004.05.058, http://www.sciencedirect.com/science/article/pii/S0022407304002158, 2005.5

Dagum, L. and Menon, R.: OpenMP: an industry standard API for shared-memory programming, IEEE computational science and engineer-

ing, 5, 46–55, 1998.

DeLuca, C., Theurich, G., and Balaji, V.: The Earth System Modeling Framework, in: Earth System Modelling - Volume 3, Springer-

Briefs in Earth System Sciences, pp. 43–54, Springer, Berlin, Heidelberg, https://link-springer-com.ezp.sub.su.se/chapter/10.1007/

978-3-642-23360-9_6, dOI: 10.1007/978-3-642-23360-9_6, 2012.10

Donahue, A. S. and Caldwell, P. M.: Impact of Physics Parameterization Ordering in A Global Atmosphere Model, Journal of Ad-

vances in Modeling Earth Systems, pp. n/a–n/a, https://doi.org/10.1002/2017MS001067, http://onlinelibrary.wiley.com/doi/10.1002/

2017MS001067/abstract, 2018.

Emanuel, K. A. and Živković Rothman, M.: Development and Evaluation of a Convection Scheme for Use in Climate Models, Journal of the

Atmospheric Sciences, 56, 1766–1782, https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2, http://journals.ametsoc.15

org.ezp.sub.su.se/doi/abs/10.1175/1520-0469(1999)056%3C1766%3ADAEOAC%3E2.0.CO%3B2, 00553, 1999.

Fraedrich, K., Jansen, H., Kirk, E., Luksch, U., and Lunkeit, F.: The Planet Simulator: Towards a user friendly model, Meteorologische

Zeitschrift, 14, 299–304, https://doi.org/10.1127/0941-2948/2005/0043, 2005.

Frierson, D. M. W., Held, I. M., and Zurita-Gotor, P.: A Gray-Radiation Aquaplanet Moist GCM. Part I: Static Stability and Eddy Scale,

Journal of the Atmospheric Sciences, 63, 2548–2566, https://doi.org/10.1175/JAS3753.1, http://journals.ametsoc.org/doi/abs/10.1175/20

JAS3753.1, 2006.

Held, I. M.: The Gap between Simulation and Understanding in Climate Modeling, Bulletin of the American Meteorological Society, 86,

1609–1614, https://doi.org/10.1175/BAMS-86-11-1609, http://journals.ametsoc.org/doi/abs/10.1175/BAMS-86-11-1609, 2005.

Held, I. M. and Suarez, M. J.: A Proposal for the Intercomparison of the Dynamical Cores of Atmospheric General Circulation Models,

Bulletin of the American Meteorological Society, 75, 1825–1830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2,25

http://journals.ametsoc.org/doi/abs/10.1175/1520-0477%281994%29075%3C1825%3AAPFTIO%3E2.0.CO%3B2, 1994.

Hoyer, S. and Hamman, J. J.: xarray: N-D labeled Arrays and Datasets in Python, Journal of Open Research Software, 5,

https://doi.org/10.5334/jors.148, https://doi.org/10.5334/jors.148, 2017.

Jeevanjee, N., Hassanzadeh, P., Hill, S., and Sheshadri, A.: A perspective on climate model hierarchies, Journal of Advances in

Modeling Earth Systems, pp. n/a–n/a, https://doi.org/10.1002/2017MS001038, http://onlinelibrary.wiley.com.ezp.sub.su.se/doi/10.1002/30

2017MS001038/abstract, 2017.

Peng, R. D.: Reproducible Research in Computational Science, Science, 334, 1226–1227, https://doi.org/10.1126/science.1213847, http:

//science.sciencemag.org.ezp.sub.su.se/content/334/6060/1226, 2011.

Randall, D. A.: A University Perspective on Global Climate Modeling, Bulletin of the American Meteorological Society,

77, 2685–2690, https://doi.org/10.1175/1520-0477(1996)077<2685:AUPOGC>2.0.CO;2, https://journals.ametsoc.org/doi/abs/10.1175/35

1520-0477%281996%29077%3C2685%3AAUPOGC%3E2.0.CO%3B2, 1996.

23

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215715
https://doi.org/10.1016/j.jqsrt.2004.05.058
http://www.sciencedirect.com/science/article/pii/S0022407304002158
https://link-springer-com.ezp.sub.su.se/chapter/10.1007/978-3-642-23360-9_6
https://link-springer-com.ezp.sub.su.se/chapter/10.1007/978-3-642-23360-9_6
https://link-springer-com.ezp.sub.su.se/chapter/10.1007/978-3-642-23360-9_6
https://doi.org/10.1002/2017MS001067
http://onlinelibrary.wiley.com/doi/10.1002/2017MS001067/abstract
http://onlinelibrary.wiley.com/doi/10.1002/2017MS001067/abstract
http://onlinelibrary.wiley.com/doi/10.1002/2017MS001067/abstract
https://doi.org/10.1175/1520-0469(1999)056%3C1766:DAEOAC%3E2.0.CO;2
http://journals.ametsoc.org.ezp.sub.su.se/doi/abs/10.1175/1520-0469(1999)056%3C1766%3ADAEOAC%3E2.0.CO%3B2
http://journals.ametsoc.org.ezp.sub.su.se/doi/abs/10.1175/1520-0469(1999)056%3C1766%3ADAEOAC%3E2.0.CO%3B2
http://journals.ametsoc.org.ezp.sub.su.se/doi/abs/10.1175/1520-0469(1999)056%3C1766%3ADAEOAC%3E2.0.CO%3B2
https://doi.org/10.1127/0941-2948/2005/0043
https://doi.org/10.1175/JAS3753.1
http://journals.ametsoc.org/doi/abs/10.1175/JAS3753.1
http://journals.ametsoc.org/doi/abs/10.1175/JAS3753.1
http://journals.ametsoc.org/doi/abs/10.1175/JAS3753.1
https://doi.org/10.1175/BAMS-86-11-1609
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-86-11-1609
https://doi.org/10.1175/1520-0477(1994)075%3C1825:APFTIO%3E2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0477%281994%29075%3C1825%3AAPFTIO%3E2.0.CO%3B2
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
https://doi.org/10.1002/2017MS001038
http://onlinelibrary.wiley.com.ezp.sub.su.se/doi/10.1002/2017MS001038/abstract
http://onlinelibrary.wiley.com.ezp.sub.su.se/doi/10.1002/2017MS001038/abstract
http://onlinelibrary.wiley.com.ezp.sub.su.se/doi/10.1002/2017MS001038/abstract
https://doi.org/10.1126/science.1213847
http://science.sciencemag.org.ezp.sub.su.se/content/334/6060/1226
http://science.sciencemag.org.ezp.sub.su.se/content/334/6060/1226
http://science.sciencemag.org.ezp.sub.su.se/content/334/6060/1226
https://doi.org/10.1175/1520-0477(1996)077%3C2685:AUPOGC%3E2.0.CO;2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0477%281996%29077%3C2685%3AAUPOGC%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0477%281996%29077%3C2685%3AAUPOGC%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0477%281996%29077%3C2685%3AAUPOGC%3E2.0.CO%3B2

Raymond, D. J.: Regulation of Moist Convection over the West Pacific Warm Pool, Journal of the Atmospheric Sciences,

52, 3945–3959, https://doi.org/10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2, https://journals.ametsoc.org/doi/abs/10.1175/

1520-0469%281995%29052%3C3945%3AROMCOT%3E2.0.CO%3B2, 1995.

Reed, K. A. and Jablonowski, C.: Idealized tropical cyclone simulations of intermediate complexity: a test case for AGCMs, Journal of

Advances in Modeling Earth Systems, 4, http://onlinelibrary.wiley.com/doi/10.1029/2011MS000099/full, 2012.5

Theurich, G., DeLuca, C., Campbell, T., Liu, F., Saint, K., Vertenstein, M., Chen, J., Oehmke, R., Doyle, J., Whitcomb, T., Wallcraft, A.,

Iredell, M., Black, T., Da Silva, A. M., Clune, T., Ferraro, R., Li, P., Kelley, M., Aleinov, I., Balaji, V., Zadeh, N., Jacob, R., Kirtman, B.,

Giraldo, F., McCarren, D., Sandgathe, S., Peckham, S., and Dunlap, R.: The Earth System Prediction Suite: Toward a Coordinated U.S.

Modeling Capability, Bulletin of the American Meteorological Society, 97, 1229–1247, https://doi.org/10.1175/BAMS-D-14-00164.1,

https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-14-00164.1, 2015.10

Valcke, S., Redler, R., and Budich, R.: Earth System Modelling - Volume 3, SpringerBriefs in Earth System Sciences, Springer Berlin

Heidelberg, Berlin, Heidelberg, http://link.springer.com/10.1007/978-3-642-23360-9, dOI: 10.1007/978-3-642-23360-9, 2012.

Vallis, G. K., Colyer, G., Geen, R., Gerber, E., Jucker, M., Maher, P., Paterson, A., Pietschnig, M., Penn, J., and Thomson, S. I.: Isca, v1.0:

A Framework for the Global Modelling of the Atmospheres of Earth and Other Planets at Varying Levels of Complexity, Geosci. Model

Dev. Discuss., 2017, 1–25, https://doi.org/10.5194/gmd-2017-243, https://www.geosci-model-dev-discuss.net/gmd-2017-243/, 2017.15

24

https://doi.org/10.1175/1520-0469(1995)052%3C3945:ROMCOT%3E2.0.CO;2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281995%29052%3C3945%3AROMCOT%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281995%29052%3C3945%3AROMCOT%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281995%29052%3C3945%3AROMCOT%3E2.0.CO%3B2
http://onlinelibrary.wiley.com/doi/10.1029/2011MS000099/full
https://doi.org/10.1175/BAMS-D-14-00164.1
https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-14-00164.1
http://link.springer.com/10.1007/978-3-642-23360-9
https://doi.org/10.5194/gmd-2017-243
https://www.geosci-model-dev-discuss.net/gmd-2017-243/

