
Evaluation of Integrated Assessment Model hindcast experiments:
A case study of the GCAM 3.0 land use module
Abigail C. Snyder1, Robert P. Link1, and Katherine V. Calvin1

1Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740

Correspondence to: Abigail Snyder (abigail.snyder@pnnl.gov)

Abstract. Hindcasting experiments (conducting a model forecast for a time period in which observational data is available) are

being undertaken increasingly often by the Integrated Assessment Model (IAM) community, across many scales of models.

When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores

that mask deficiencies. We select a set of deviation based measures that can be applied at different spatial scales (regional

versus global) to make evaluating the large number of variable-region combinations in IAMs more tractable. We also identify5

performance benchmarks for these measures, based on the statistics of the observational dataset, that allow a model to be

evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method

for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single

model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated

across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this10

scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a

given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible

with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation

in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as

complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient15

for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this

work indicate it is unlikely that a single evaluation measure for all variables in an IAM exists, and therefore sector by sector

evaluation may be necessary.

1 Introduction

Integrated assessment models (IAMs) couple human and physical Earth systems to explore the impacts of economic and20

environmental policies (Parson and Fisher-Vanden, 1997; Parson et al., 2007). IAMs are usually calibrated to a historical base

year and simulate forward in time by incorporating changes in quantities such as population, GDP, technology, and policy

to produce outputs that include land use, emissions, and commodity prices. Hindcast experiments use a model to produce a

forecast simulation over a time period for which observational data is available. The ability to compare simulation data with

observational data presents new opportunities for understanding a model’s strengths and identifying avenues for improvement,25
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and raises new research questions to explore. A variety of hindcast studies in IAMs of varying scale have used different metrics

for evaluation studies, often driven by the research question of interest (Calvin et al., 2017; Fujimori et al., 2016; Baldos and

Hertel, 2013; Beckman et al., 2011; van Ruijven et al., 2010b, a; Kriegler et al., 2015). However, no community standard for

evaluation of IAMs currently exists, making it more difficult to compare results of hindcast experiments from different models.

This work outlines goals for evaluating IAM hindcast experiments.5

The Global Change Assessment Model version 3.0 (GCAM) (Calvin et al., 2011; Kim et al., 2006; Clarke et al., 2007;

Edmonds and Reiley, 1985; Kyle et al., 2011) was recently used to conduct a hindcast experiment (Calvin et al., 2017). Calvin

et al., hereafter referred to as Paper 1, used skill scores (Reichler and Kim, 2008; Taylor, 2001; Schwalm et al., 2010) to compare

performance of the land use module of GCAM under structurally different operating assumptions to an observational data set.

The different scenarios represent different extremes of information for decision making given to the GCAM economic agents.10

One finding of this hindcast experiment with GCAM 3.0 was that the highly aggregated nature that makes the skill scores

examined convenient also masks important deficiencies, limiting the insight they can provide for model development. A key

question raised by this experiment, and which this work examines in greater detail, is how to actually define "improvement".

The ease of use of skill scores has to be balanced with illuminating as many model deficiencies as possible. Only once a

definition of improvement has been decided upon can parameter estimation studies be undertaken, as ranging over parameter15

values is only a useful task if one can quantitatively identify the parameter values that give the best agreement with historical

data.

From this work, four goals for development of an IAM hindcast evaluation scheme were identified. A desirable evaluation

method will proved information about the absolute performance of a single model run and may be used to measure relative

performance of multiple model runs (from a single model or across many models of the same variables). Additionally, we20

seek a method that can describe multiple aspects of model performance at multiple scales, providing a flexible organizational

structure for analyzing the large amount of data generated by IAMs while investigating particular hypotheses of interest. And

finally, the method should include at least one metric that can be used as a cost function in future Monte Carlo-style parameter

estimation experiments. Given these goals, it is unlikely that a single metric could be arrived at to satisfy all four. Rather, a

condensed set of related metrics that together accomplish all four goals is sought for evaluating IAMs. The result of applying25

the set of metrics to model runs may be interpreted to identify future avenues for model improvement of a particular IAM. The

implementation of such improvements is outside the scope of this paper.

Our evaluation goals are not independent of each other. A metric that provides absolute performance insight can be calculated

for multiple model runs and compared to provide relative performance information. A metric evaluating a particular aspect of

model performance may be used to estimate parameters to improve that aspect of model performance.30

Several other works in the IAM hindcasting literature (Baldos and Hertel, 2013; Beckman et al., 2011; van Ruijven et al.,

2010b, a; Kriegler et al., 2015) do not meet all four of our goals. For example, in the hindcast experiment performed for the

energy component of the AIM/CGE model, Fujimori et al. present two statistics: a regression technique and an error statistic for

global aggregates. The regression technique identifies regions and variables for which model performance may be improved.

While the regression technique can produce desirable region-specific information about model performance and shortcomings35

2



for multiple variables, it unfortunately cannot be leveraged as a performance metric for future Monte Carlo-style parameter

estimation exercises. It is also difficult to efficiently and comprehensively compare the regression results of multiple different

scenarios to evaluate whether one scenario represents an overall better performance than another.

A common finding to both of these hindcast experiments is that global performance of a variable is often substantially better

than the performance in individual regions.Therefore, while this work will explore global aggregates as previous analyses did,5

we find that global aggregates alone are not sufficient to evaluate IAMs that require global supply to equal global demand at

each time period. GCAM is only one example of such an IAM.

The analysis scheme outlined below is designed with the four evaluation goals in mind and focuses on deviation based mea-

sures of model performance and the extent of conclusions that may be drawn from them. While many other model performance

statistics exist, many operate on a pass/fail basis and therefore provide little insight about the reasons a model may fail. The10

scheme is then used to re-examine the land use data from Paper 1 to demonstrate application of the evaluation method and the

resulting expanded results relative to application of skill scores.

2 Evaluation methods

A proposed scheme to meet the four evaluation goals inspired by past IAM hindcasting experiments is outlined below. This

work explores the extent of conclusions that may be drawn from the root mean square error (RMSE) measure of model per-15

formance and finds that different uses of RMSE allow the possibility of addressing all four evaluation goals. While arguments

against RMSE in favor of mean absolute error (MAE) exist (Legates and McCabe, 1999; Willmott and Matsuura, 2005), RMSE

is chosen because it can be decomposed into errors from different sources (Murphy, 1988; Weglarczyk, 1998; Taylor, 2001).

If only a single deviation measure were being examined, the types of conclusions that could be drawn would not differ appre-

ciably whether RMSE or MAE is used. However the ability to decompose RMSE provides unique opportunities to understand20

different aspects of simulation performance.

Indices of agreement are popular in the literature and generally involve the comparison of a deviation measure between sim-

ulated and observed time series with some reference measure (Nash and Sutcliffe, 1970; Garrick et al., 1978; Willmott, 1981;

Legates and McCabe, 1999; Willmott et al., 2012). Common reference measures include deviation measures between the ob-

served data points and the mean of observations, or deviation measures between the observed data points and a baseline or25

naive model of the variable being simulated. Consistent with the idea of examining different reference measures, we normalize

the root mean square error in different ways to capture different facets of model performance. Other members of the geosci-

entific modeling community are also moving to assess model performance with multiple normalized statistics, although we

differ in specific techniques (Luo et al., 2012). These indices of agreement are particularly useful for evaluating model scenario

performance in absolute terms due to the informative performance benchmarks outlined in Section 2.3. Other goodness-of-fit30

statistics such as correlation or a reduced chi-squared statistic were not chosen because they offer less information to guide

improvements when a model displays poor performance.
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2.1 Background: root mean square error decomposition

In the statistics outlined below, the value of variable i in region j at timestep t is denoted by sijt for simulation and oijt for

observation. Each time series contains N discrete time points. The deviation measure of error chosen for model evaluation is

the root mean square error, denoted for variable i in region j by

eij =

√√√√ 1

N

N∑
t=1

(sijt − o
ij
t )

2. (1)5

Root mean square error is the total deviation error in the model, decomposed as follows:

e2ij = b2ij + v2ij , (2)

where bij represents bias and vij represents errors due to variability. Bias of variable i in region j is given by

bij = sij − oij , (3)

where sij is the mean of the simulated time series and oij is the mean of the observed time series. The errors due to variability10

are those remaining after bias is accounted for by subtracting the means of the simulation and observation. The centered root

mean square error quantifies this error and is denoted by

vij =

√√√√ 1

N

N∑
t=1

[
(sijt − sij)− (oijt − oij)

]2
. (4)

2.2 Metrics for model evaluation

Past hindcast experiments in Integrated Assessment Models have implied that errors across regions cancel, leading to better15

performance at the global level than in most regions (Calvin et al., 2017; Fujimori et al., 2016). We define the time series for

the global region, G, by concatenating the time series for each individual region. Therefore, for J total regions whose time

series each contain N data points, the global time series contains JN data points. To quantify the extent to which cancellation

across regions occurs, bias is examined at the global level in two ways. First, the bias for the global region is examined, noting

that it is mathematically equivalent to averaging the individual region biases:20

biG = siG− oiG =
1

J

J∑
j=1

bij . (5)

Second, we define global absolute bias as:

|biG|=
1

J

J∑
j=1

|bij |. (6)

By comparing the magnitudes of equations 5 and 6, the extent of cancellation occurring across regions may be quantified for

each variable i.25
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At the regional level, normalization provides context for interpreting the errors in Sect. 2.1. The conventional normalization

of root mean square uses the standard deviation of the observed time series, σij
o . Normalized RMSE of variable i in region j is

given by

e′ij =
eij

σij
o

. (7)

e′ij gives a dimensionless measure: total error as a fraction of the standard deviation of observation of variable i in region j.5

Similarly, the centered RMSE may be normalized by the standard deviation of observation, to give the errors due to variability

as a fraction of the observed standard deviation. Normalized centered RMSE of variable i in region j is given by

v′ij =
vij

σij
o

. (8)

The normalization used in equations 7 and 8 compares deviation measures to the observed variance about the temporal mean.

However, that variance encompasses the trend line behavior. Therefore, we also normalize RMSE for variable i in region j by10

the observed variance about the trend line, following the convention of comparing deviation measures to a selected baseline

to provide more targeted information about model performance (Garrick et al., 1978; Willmott, 1984; Legates and McCabe,

1999).

For each variable i in each region j, let ŷ(t) be the trend line fitted to the observational data, with ŷt the values at the discrete

time steps considered. Then we define the standard deviation of observation about the trend line as15

σ̂ij
o =

√√√√ 1

N

N∑
t=1

[
(oijt − ŷt)− (oijt − ŷt)

]2
(9)

For the true trend line, ŷ(t), the mean oijt − ŷt = 0. However, in numerically fitting the trend line, the mean is often not precisely

0. We can then define revised normalized RMSE by normalizing with the standard deviation about the trend line rather than

about the time mean as follows:

êij =
eij

σ̂ij
o

(10)20

One advantage of this refined measure is that êij penalizes poor simulation of the observed trend line more heavily than e′ij .

Another advantage is that, if the trend line is believed to be true to reality, the variance about the trend line will encapsulate

natural variations (such as those due to weather) as well as observational uncertainty.

For the GCAM land use case study defined in Sect. 3.1, FAO observational data for each crop-region combination was

individually detrended using the function loess.as from the R package fANCOVA (Wang, 2010) to fit the LOESS trend line,25

selecting the bias-corrected Akaike information criterion (AICC) method for generating the span parameter (Hurvich et al.,

1998).

2.3 Informative performance benchmarks

While the time series statistics outlined in Section 2.1 have clear values corresponding to perfect model performance (i.e. a

value of 0), specific criteria for acceptable and good model performance are more difficult to define objectively. In this section,30
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Table 1. Statistics for model evaluation

abbreviation: description: normalized by: notes:

biG global bias
lacks absolute

performance info

|biG| global absolute bias
lacks absolute

performance info

e′ij
regional normalized

RMSE

standard deviation around time

mean of observation

v′ij
regional normalized

centered RMSE

standard deviation around time

mean of observation

êij
revised regional

normalized RMSE

standard deviation around trend

lline of observation

we outline ways in which to contextualize the values achieved by each statistic outlined above to identify opportunities for

model improvement.

For e′ij and eij , a helpful performance benchmark is defined as

e′ij =
eij

σij
o

< 1 ⇐⇒ eij < σij
o (11)

Recall that the definition of standard deviation is σij
o =

√
1
N

∑N
t=1(o

ij
t − oij)2. The right hand side of this equation is also5

what the root mean square error would be for a model taking sijt = oij at each time step t. Satisfying equation 11 gives some

sense of whether total error is small enough without achieving a perfect value of 0. It is popular to say that if e′ij > 1, using

the mean of the observed time series as a model leads to better performance than the current model. This interpretation is

identical to that of the Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970; Garrick et al., 1978; Legates and McCabe, 1999).

However, for a nonstationary distribution of observations, the observed mean can only be calculated after the simulation period10

and therefore cannot be used as a model. When e′ij > 1, either the bias or the variability component of RMSE (or both) is too

large. Therefore, when e′ij > 1, it is most useful to examine if v′ij < 1. In this case, improving bias may allow the model to

satisfy equation 11.

3 A case study of GCAM 3.0 land allocation

The data described below and analyzed in Section 3.2 is from the first GCAM land use system hindcast experiment, Paper15

1. The land allocation data is re-analyzed using the method outlined in Table 1 in order to determine whether this method

is more likely to achieve our four goals than the skill scores originally used. This demonstration is why we have chosen to

re-evaluate existing experiments rather than repeat or develop new experiments in a more up to date version of GCAM. The

full complement of resulting statistics and figures are available online with code and data, see Section 5.
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3.1 GCAM background and data for re-analysis

GCAM is an Integrated Assessment Model capturing the interactions between human and earth systems.1 GCAM includes

energy, economic, and land use sectors that interact with each other and with a climate model. It is designed for long term

forecasting and is typically operated in five year timesteps. Model behavior is calibrated to a historical base year using obser-

vational data, and forecasts evolve in time from the base year. Therefore, social, economic, and environmental policies in place5

during the base year are implicitly reflected in GCAM’s performance. Policies that begin later, or change over time, must be

more thoughtfully included, often explicitly.

Full details of the GCAM land use system, including equations, are provided in Wise et al. (2014) as well as in the online

documentation1. Full details of different aspects of GCAM’s structure are published in a variety of papers (Calvin et al., 2011;

Kim et al., 2006; Clarke et al., 2007; Edmonds and Reiley, 1985; Kyle et al., 2011). Briefly, the land use system of GCAM10

has a nested structure. In each sub-region within a geopolitical region, a nested structure is implemented with data specific to

the sub-region. The land allocation choice at each branch in the nest is parameterized to reflect that sub-region’s characteristics

and may vary in response to economic, policy, and technological changes.

Economic agents in each sub-region operate to maximize the difference between revenue (including any taxes and subsidies)

and the cost of production. The land use system assumes a distribution of costs, where the amount of land allocated for each15

use is actually the probability that land type is most profitable within its nest and avoiding winner-take-all behavior. That is,

land is allocated to various possible uses via a logit distribution function at each branch of the nest. All references to GCAM

within this work may be assumed to refer to GCAM version 3.0, unless otherwise specified.

Historical data prior to 1990 was used to calibrate GCAM 3.0, and then GCAM was run for a period from 1990 to 2010

without using additional historical data (i.e., GCAM is used to forecast agricultural land use from 1990 to 2010). There are20

nine GCAM crops (of 12) with historical data reported by the United Nations Food and Agricultural Organization (FAO) (FAO,

2014) during the period 1990 to 2010. The same analysis scheme outlined in Section 2 and demonstrated here could just as

easily be used to examine any variable output by an IAM with historical data available for validation.

The reference set up of GCAM 3.0 (and all subsequent versions to date) for forecast into the 21st century uses smoothed FAO

projections of yields as exogenous yield input information that is used by GCAM to simulate land allocation. The smoothing25

is performed as a five year rolling average including past and future years (i.e. the smoothed 2040 data point is generated as

the average of data from 2038-2042).

Because GCAM requires global supply to equal global demand to solve for market prices at each time step, it is possible for

GCAM economic agents are implicitly optimizing land allocation to meet global demand at minimum cost, even though GCAM

is a dynamic recursive rather than an optimization model. When the economic agents are given unrealistic fore-knowledge of30

the impacts of weather events, for example, this implicit optimization may become particularly problematic. GCAM uses a

global market price (where global supply equals global demand) to set producer prices used by economic agents in profit

calculations underlying land allocation decisions. Currently, every land use region shares the same producer price, initially

1Documentation available at http://jgcri.github.io/gcam-doc/.
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the US base year price for calibration. This is partly due to data availability, but could lead to incorrectly incorporating or

missing impacts of policies like subsidies or crop insurance programs. On the demand side, the price is sterilized in the GCAM

calibration procedure.

Paper 1 featured experiments designed to investigate the possibility of unrealistic implicit optimization and examined two

extremes of exogenous yield inputs via different parameterizations. The extremes also emphasize different aspects of the5

GCAM reference set up, and so the reference setup behavior is assumed to lie between the behaviors of the two extremes. The

first extreme features increased variability in exogenous yield inputs compared to the GCAM reference. This is referred to as

the Actual Yield case: GCAM makes planting decisions (allocates land) in 2005 based on knowing what the yield at the end

of the year in 2005 will be, a case of economic agents having unrealistic levels of information for making planting decisions.

There is no smoothing at all, and there is no explicit memory of past years’ performance. The other extreme features a lack10

of variability and no updates to exogenous yield inputs during the simulation period 1990-2010, as opposed to the reference

set up. This is referred to as the Forecast Yield case: a linear regression is fit to the historical yields over 1961-1990 and

extrapolated linearly for the simulation period 1990-2010. There is no variation about this linear trend and economic agents

have no fore-knowledge, contrasting the Actual Yield case.

To examine the impact of missing or incorrectly characterizing a policy, Paper 1 examined the US Renewable Fuel Standards15

implemented in 2005. The standards, among other things, increased demand for corn. GCAM runs without any implementation

of the policy were compared with GCAM runs in which the increased demand for corn was explicitly included. Future scenarios

interested in deeper analysis of the impacts of the US Renewable Fuel Standards may use a more detailed implementation or

may make use of the metrics outlined in Section 2 to perform a Monte Carlo style parameter estimation for parameters related

to the fuel standards.20

These considerations result in the following four test cases (scenarios) examined in Paper 1:

– GCAM makes annual land allocations given data for population, income, and actual crop yields (denoted AY);

– GCAM makes annual land allocations given data for population, income, actual crop yields, and includes an estimate of

the additional demand for corn resulting from the implementation of the U.S. Renewable Fuel Standards (denoted AYB);

– GCAM makes annual land allocations given data for population and income, but crop yields are forecasted based on an25

annual time trend for the years 1961 to 1990 (denoted FY);

– GCAM makes annual land allocations given data for population and income, crop yields are forecasted based on an

annual time trend for the years 1961 to 1990, and includes an estimate of the additional demand for corn resulting from

the implementation of the U.S. Renewable Fuel Standards (denoted FYB).

The simulated regional data in each of these four scenarios is compared to data reported by the FAO (FAO, 2014) during the30

period 1990 to 2010 for the nine GCAM crops with FAO data available. Calvin et al. found that the case FYB performed as well

or better than the other scenarios across the skill scores considered: Reichler-Kim (Reichler and Kim, 2008), Normalized Mean

8



Absolute Error (Schwalm et al., 2010; Luo et al., 2012), and Taylor Skill (Schwalm et al., 2010; Luo et al., 2012). Scenarios

AY and AYB generally performed the worst.

3.2 Results

A selection of results demonstrating how the evaluation method summarized in Table 1 can be used to analyze multiple aspects

of model performance at multiple scales and how the metrics may be used to make the analysis of the large amounts of data5

produced by IAMs more tractable are presented. The results presented were chosen both to illustrate the general types of

insights that may be drawn from application of the evaluation scheme and to highlight the GCAM areas of strong performance

and weak performance, with the full results for all variables at all scales by all metrics lying somewhere in between the results

presented in this section. Each metric in Table 1 is used to re-examine the Paper 1 data, demonstrating the interactive and

complementary nature of the metrics selected. With this approach, we are able to verify and expand the previous GCAM land10

hindcast results arrived at using skill scores in Paper 1. The analysis scheme does appear more capable of achieving all four

evaluation goals than the skill scores. The full complement of resulting statistics and figures are available online with code and

data, see Section 5 for details.

Figure 1 shows the global bias (equation 5), which is equivalent to the average of each individual region’s bias. Because it is

a signed quantity, a black circle is included at bi,G = 0 for visual reference. Each scenario models global supply well for each15

crop with observational data available, as measured by global bias biG. The primary exceptions are that the scenarios AY (red)

and AYB (green) model MiscCrop and OtherGrain poorly. This is not surprising, given that each of those crops is an aggregate

of a large number of real world crops, varying across regions.
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Figure 1. Global bias, biG (equation 5). The black circle corresponds to bi,G = 0.

Figure 2 shows the global absolute bias (equation 6). For each crop, the magnitude of the global absolute bias in Figure 2 is

larger than the magnitude of the global bias in Figure 1, indicating that errors are canceling across regions. Because there are

no regional constraints on supply to supplement the requirement that global supply equal global demand, there are numerous

regional supply solutions that may satisfy the global constraint. This provides ample opportunity for error cancellation across

regions in any Integrated Assessment Model with a similar global constraint.5

The FYB scenario (purple) displays the smallest absolute bias for all crops, with the exception of Rice and OtherGrain, in

Figure 2. In other words, the FYB scenario is most successful at modeling global supply when cancellation across regions is

prohibited.
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Figure 2. Global absolute bias, |biG| (equation 6).

The compensating errors across regions can be further studied by examining the normalized RMSE, e′ij (equation 7), for a

single crop. Figure 3 displays the individual regional errors for Wheat. A black circle is included to denote the performance

benchmark e′ij = 1 (equation 11). With the exception of Southeast Asia, the forecast yield scenarios (FY, blue, and FYB,

purple) outperform the scenarios using actual yield information (AY, red, and AYB, green). Scenarios FY and FYB show that

compensating performance is occurring: the good performance in Canada, Eastern Europe, and USA is balanced by the poorer5

performance in Australia New Zealand, India, Latin America, and Southeast Asia. Similar trends hold when examining other

crops.

To further understand the role of compensating errors in GCAM land allocation, the role of bias as a contributing factor is

examined. Because root mean square error decomposes into bias and centered root mean square error (equation 2), a sense of

whether bias is too large can be gained from comparing e′ij (equation 7) and v′ij (equation 8). If e′ij > 1 and v′ij < 1, bias may10

be considered a problematic source of errors. This is generally what occurs in GCAM.
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Figure 3. Normalized RMSE, e′ij (equation 7), in each region for the land allocated to Wheat. The black circle is at the performance

benchmark, e′ij = 1, (equation 11). e′ij compares RMSE error with the standard deviation of observation for each crop.

Figure 4 displays the normalized RMSE, e′ij , for each crop in the United States. A black circle is included for e′ij = 1. In the

FYB scenario (purple), e′ij > 1 for every crop except Wheat.

Figure 5 displays the normalized centered RMSE, v′ij , for each crop in the United States. A black circle is included for

v′ij = 1.

The FYB scenario (purple) displays v′ij < 1 for all crops except Rice and Root Tuber. Compared with the larger values of5

e′ij in Figure 4, this indicates that bias is a major contributing factor to performance issues. This general trend - that scenario

FYB performs best and that bias is the major contributor to model performance issues for most crops - holds across regions.
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Figure 4. Normalized RMSE, e′ij (equation 7), for each crop in the United States. A black circle is included for e′ij = 1. e′ij compares RMSE

error with the standard deviation of observation for each crop.
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Figure 5. Normalized centered RMSE, v′ij (equation 8), for each crop in the United States. A black circle is included for v′ij = 1. v′ij

compares centered RMSE error with the standard deviation of observation for each crop.

It would be preferential for the bias to be improved intrinsically through structural or parametric model changes, rather than

through bias correction techniques. Therefore, we examine which factors contribute to bias. The revised normalized RMSE, êij

(equation 10), compares GCAM performance to variations of the observed time series about the trend line. Figure 6 displays

this metric for each crop in the USA. A black circle is included for êij = 1. Each crop in each scenario misses the trend

line behavior. With the exception of Rice, scenario FYB (purple) comes closest to capturing the trend line behavior. This result5

holds for most crops in most regions. Therefore, scenario FYB is one possible starting place in making structural improvements

to GCAM.
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Figure 6. Revised normalized RMSE, êij (equation 10), for each crop in the United States. A black circle is included for êij = 1. êij

compares RMSE error with the standard deviation about the observed trend line for each crop.

To further examine the ways in which simulations may improve at capturing trend lines, time series for Corn (left) and

Wheat (right) for multiple regions are depicted in Figure 7. The black curves are FAO observational data for land allocation in

each region, and the colored time series correspond to the different GCAM scenarios.

The time series for both Corn and Wheat illustrate a key issue: GCAM tends to incorrectly simulate whether land allocation

should increase or decrease in time. The FYB scenario for Wheat (Figure 7, right) tends to be the most accurate, consistent5

with the results depicted in Figure 6. It is of note that the actual yield scenarios (AY, red, and AYB, green) are also susceptible

to inaccurate discrimination between increasing and decreasing land allocation, showing that it is not improved by economic

agents in GCAM having perfect information about year end yields to make planting decisions.

One possibility for the incorrect direction of simulated trends is that the parameters involved in the land allocation decision

may be improved, by changing the calibration process and/or by using parameter estimation to adjust the logit exponents10

governing competition. Another option may be to explore the impacts of using different distributions to govern competition.

That the AY (red) scenario displays different performance than the AYB (green) scenario reinforces the importance of careful

implementation of policies: explicitly including the effects of policies (such as in AYB) leads to different performance than

15



assuming policies are implicitly included in the information provided to the model (as in AY, a case where real world yields

that should implicitly reflect the increased demand due to the US Renewable Fuel Standards).

Finally, the time series for Corn in the Former Soviet Union and Wheat in China both suggest an opportunity for structural

changes to improve the land allocation performance of GCAM. The yields for both of these crops display different slopes

during the simulation period than the historical period. Therefore, the extension of the historical yield trends used in the FY5

and FYB scenarios has no hope of correctly capturing the different yield behavior during the simulation period. In turn, GCAM

has no hope of capturing the different land allocation decisions in response to those yield changes. In contrast to the FY and

FYB scenarios, the AY and AYB scenarios lead to GCAM’s land allocation being very responsive to variability in yield inputs.

One hypothesis is that this is because the economic agents in GCAM have unrealistic access to year end harvest amounts when

making their planting decisions. This local yield input information may allow GCAM to meet global demand without matching10

historical data due to the lack of regional supply constraints.

Figure 7. Time series for land allocated to Corn (left) and Wheat (right) in units of thousand km2 across select regions. The black time series

in each panel represents FAO observational data. The colored time series correspond to different GCAM scenarios.
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3.3 GCAM-specific conclusions

Using the evaluation method outlined in Table 1, we expand the results presented in Paper 1. Like many IAMs, GCAM requires

that global supply equal global demand for each commodity in each time period. The FYB scenario in GCAM models global

supply well, as measured by global bias biG, Figure 1. GCAM, at least, has no regional constraints on supply to supplement

the global supply and demand constraint. As a result, there are numerous regional supply solutions that may satisfy the global5

constraint. This provides ample opportunity for error cancellation across regions, demonstrated in Figure 3.

We find that the main opportunity to improve land allocation decisions in GCAM is to make structural and parametric

changes to improve the trend line for each simulated time series and therefore improve bias. The scenario using yields fore-

casted from the historical period and modeling the U.S. Renewable Fuel Standards (scenario FYB) generally performs the

best across all metrics and is the most reasonable starting point to begin model improvements. Specifically, updating the yield10

forecast as new information becomes available each year in the simulation period would allow the yield to capture changes

occurring during the simulation period while avoiding the over-responsiveness of the scenarios using actual yields as inputs

(scenarios AY and AYB). Changes to parameters, calibration methods, and data sources for producer prices may also improve

the land use system’s ability to discern whether land allocation trend lines should increase or decrease in time for a given crop-

region combination. The metrics in Table 1 may be used for parameter estimation studies. In using GCAM to forecast into the15

future (where an AY scenario is not possible), providing the ability to adapt to shifts in yield occurring during a simulation

period and the ability to better predict whether a land allocation trend line should increase or decrease in response to a yield

shift would both be improvements.

Because the GCAM reference exogenous yield inputs lie between the two extremes examined in Paper 1 and here, one

expects a hindcast experiment with the reference set up to have errors between those of the AY and FY cases. However,20

because the reference scenario has exogenous yield inputs based on FAO forecasts of yields, it is possible that the reference

scenario may perform substantially worse than any of the cases examined in this work. This could occur if FAO forecasts of

yields are dramatically inaccurate. Because planting decisions are not subject to the kind of vintaging seen with power plant

construction, it is unlikely that errors will compound in an unexpected ways. A planting decision (in GCAM) only lasts for the

year in which it occurs. A power plant construction lasts for 30+ years. This lack of vinatging makes it simpler to evaluate the25

land sector than other sectors of GCAM. Therefore, while the evaluation method outlined in this work can still be applied to

sectors that feature vintaging, the results must be interpreted much more carefully. It’s possible that additional metrics may have

to be implemented for sectors with vintaging, and rigorous studies designed to specifically test the extent to which vintaging

causes errors to compound may be undertaken in the future.

4 Conclusions30

Examination of past hindcasting exercises in the IAM community has suggested that global aggregate metrics are often not

well-suited to evaluating IAM hindcast performance. This work has outlined a suite of metrics designed to counteract this
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problem, and has demonstrated that the family of metrics presented is able to provide richer insight into model performance

than global skill scores by re-evaluating the results of a past hindcast experiment in GCAM.

Further, applying the evaluation method outlined in Table 1 allows insight into evaluating IAMs beyond GCAM. While

global results in GCAM are largely consistent with observations, cancellation of errors is present at the global level, a finding

implied by previous hindcasting work in two different IAMs (Calvin et al., 2017; Fujimori et al., 2016). Any IAM requiring5

globally balanced supply and demand without additional regional constraints will likely encounter this same issue. This sug-

gests a larger challenge in evaluating Integrated Assessment Models: replicating global aggregates is a necessary but in no way

sufficient constraint on model performance. Indeed, many IAMs force global supply to equal global demand, and so global

aggregates of many variables in IAMs simply reflect this forced behavior. Therefore, a family of validating metrics is found to

be necessary in evaluation of IAM hindcast experiments. The option to evaluate results both relatively and absolutely should10

lead to more robust model improvements in the future by identifying the best performing scenarios for a single model, as well

as aid the IAM community in conducting hindcast intercomparison studies.

A sector by sector application of a family of metrics may be necessary for evaluation of an IAM hindcast experiment

as a whole. Future research into more tractable methods for simultaneous evaluation of all IAM sectors without masking

deficiencies as global aggregates do is necessary to determine if this is the case. Such work is complicated by the lack of15

historical data against which to validate many IAM variables. Additionally, one may question whether the observational data

being used for validation is reliable. Collecting global economic data is difficult and there is no opportunity for repeated

measurements to obtain measurement uncertainty. When fitting trend lines to the FAO data for use in the revised normalized

RMSE metric, êij (equation 10), it became clear that in at least some regions the data may not be a reflection of reality. Namely,

for some crops in Korea and Japan (among other regions), there is almost no variation about the trend line. There also was no20

available FAO data to validate three crops and other land types modeled by GCAM. Therefore, a better sense of observational

uncertainty is necessary before parameter estimation based on observational data can take place.

5 Data and code availability

The data analyzed in this work is publicly available at https://github.com/JGCRI/LandHindcastPaper. This repository includes

all input data, the R scripts for calculating all statistics and the results of those calculations, and the R scripts for generating all25

plots of statistics and the resulting plots.

Results from GCAM 3.0 simulations were used in this work. All GCAM releases from 3.0 onward are available at:

https://github.com/JGCRI/gcamcore/releases.
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