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Abstract. This paper develops a multivariable integrated evaluation (MVIE) method to measure the overall performance of 

climate model in simulating multiple fields. The general idea of MVIE is to group various scalar fields into a vector field and 

compare the constructed vector field against the observed one using the vector field evaluation (VFE) diagram. The VFE 10 

diagram was devised based on the cosine relationship between three statistical quantities: root mean square length (RMSL) 

of a vector field, vector field similarity coefficient, and root mean square vector deviation (RMSVD). The three statistical 

quantities can reasonably represent the corresponding statistics between two multidimensional vector fields. Therefore, one 

can summarize the three statistics of multiple scalar fields using VFE diagram and facilitate the intercomparison of model 

performances. The VFE diagram can illustrate how much the overall root mean square deviation of various fields is 15 

attributable to the differences in the root mean square value and how much is due to the poor pattern similarity. The MVIE 

method can be flexibly applied to full fields (including both the mean and anomaly) or anomaly fields depending on the 

application. We also propose a multivariable integrated evaluation index (MIEI) which takes the amplitude and pattern 

similarity of multiple scalar fields into account. The MIEI is expected to provide a more accurate evaluation of model 

performance in simulating multiple fields. The MIEI, VFE diagram, and commonly used statistical metrics for individual 20 

variables constitute a hierarchical evaluation methodology, which can provide a more comprehensive evaluation of model 

performance.  

1 Introduction 

Climate models play a very crucial role in a variety of climate-related studies, e.g., climate dynamics, the detection and 

attribution of climate change, the projection of future climates and environments, and adaptation to future climate change 25 

(IPCC, 2012, 2013). All these studies strongly rely on the performances of climate models. Model evaluation and 

intercomparison have become increasingly important, especially because a number of climate models are available at present. 

29 modelling groups and 60 climate models are involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

and more are expected to be included in its next phase (Eyring et al., 2016). In addition, more and more regional climate 

models have been used in regional model downscaling and intercomparison projects (e.g., Fu et al., 2005; van der Linden 30 
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and Mitchell, 2009; Mearns et al., 2009; Giorgi and Gutowski, 2015). Thus, how to concisely summarize and evaluate model 

performance is extremely important for climate model intercomparison, development, and application. 

 

The Taylor diagram provides a very efficient way to summarize multiple aspects of model performance in simulating scalar 

fields (Taylor, 2001). Gleckler et al. (2008) introduced a suite of metrics, e.g., decomposed mean square error, and relative 5 

error metrics, which were used to characterize the model performance for various applications. Xu et al. (2016) devised a 

vector field evaluation (VFE) diagram, which can be regarded as a generalized Taylor diagram, to evaluate the model 

performance in simulating vector fields, such as vector winds and temperature gradients. Most metrics, e.g., root mean 

square error, correlation coefficient, and standard deviation, measure the model performance in simulating an individual 

variable (Gleckler et al., 2008). It is a common view that no model performs better than others in every aspect. For example, 10 

among various models, one model can show the best performance in simulating air temperature but may have a poor 

performance in simulating precipitation. In this case, how can researchers select the best model if both temperature and 

precipitation are of great concern in a study? A popular approach is to show the relative errors of various variables from 

different models using a portrait diagram (e.g. Gleckler et al. 2008; Pincus, et al. 2008). The portrait diagram illustrates 

model errors for each individual variable and can provide an overview of the model performance in simulating various 15 

variables. However, the portrait diagram cannot give a quantitative evaluation of the overall performance of climate models 

in simulating multiple fields. To measure the overall model performance, Gleckler et al. (2008) proposed an exploratory 

index, termed the model climate performance index (MCPI), by averaging each model’s relative errors across multiple fields. 

Note that the MCPI only considers the root mean square errors (RMSEs) of various fields. The RMSE can be interpreted as a 

function of the correlation coefficient and standard deviation (Murphy, 1988; Taylor, 2001; Pincus et al., 2008; Pierce et al., 20 

2009). Therefore, the RMSE takes both the correlation coefficient and standard deviation into account. However, the RMSE 

cannot explicitly measure the correlation coefficient and standard deviation. For example, the same RMSE can correspond to 

very different correlation coefficients and standard deviations, especially for large RMSE values.  

 

In this paper, we propose a more comprehensive multivariable integrated evaluation (MVIE) method, which can summarize 25 

multiple statistics of model performance in terms of multiple variables, for climate model evaluation. The general idea is to 

group M scalar fields into an M-dimensional vector field with each dimension representing a scalar field. Such a constructed 

vector field integrates multiple variables and can be assessed using the VFE diagram. The VFE diagram can concisely 

summarize the degree of correspondence between simulated and observed vector fields in terms of multiple statistics (Xu et 

al, 2016). Therefore, the VFE diagram can be a powerful tool for the MVIE of model performance. To achieve the goal of 30 

MVIE, in section 2, we generalize the VFE diagram to evaluate M-dimensional vector fields and interpret three statistical 

quantities in the VFE diagram from the viewpoint of MVIE. Section 3 presents the approach of MVIE with the VFE diagram. 

A summary and discussion are provided in section 4. 
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2 Constructing VFE diagram for multidimensional vector fields 

Xu et al. (2016) constructed the VFE diagram in terms of 2-dimensional vector fields. There are three statistical quantities in 

the VFE diagram, i.e., root mean square length (RMSL) of a vector field, vector similarity coefficient (VSC), and root mean 

square vector deviation (RMSVD) between two vector fields. In this section, each quantity will be defined and interpreted 

from the viewpoint of MVIE. Thereafter, we will construct the VFE diagram for multidimensional vector fields.  5 

2.1 Root mean square length of a vector field 

Consider two vector fields A and B, which can be spatial or/and temporal fields. Assume that vector fields A and B are 

derived from a climate model simulation and observation, respectively. Without loss of generality, vector fields A and B can 

be written as a pair of vector sequences: 

𝑨𝑗 = (𝑎1𝑗 , 𝑎2𝑗 , … , 𝑎𝑀𝑗);   j = 1, 2, … , N 10 

𝑩𝑗 = �𝑏1𝑗 , 𝑏2𝑗 , … , 𝑏𝑀𝑗�;   j = 1, 2, … , N 

Each vector field, e.g. A, consists of N discrete vectors (in time or/and space). Each vector, e.g. Aj, in M-dimensional 

Euclidean space is identified with the tuples of M real numbers (𝑎1𝑗 , 𝑎2𝑗 , … , 𝑎𝑀𝑗). Each real number represents the position 

of the perpendicular projection of the vector onto individual axis of M-dimensional Cartesian coordinate system. The norms 

of vectors Aj and Bj, the intuitive notion of length, are written as:  15 

�𝑨𝑗� = ��𝑎𝑖𝑗2
𝑀

𝑖=1

�

1/2

 

�𝑩𝑗� = ��𝑏𝑖𝑗2
𝑀

𝑖=1

�

1/2

 

 

The root mean square lengths (RMSLs) for vector fields A and B are respectively defined as: 

𝐿𝐴 = �
1
𝑁
��𝑨𝑗�

2
𝑁

𝑗=1

 (1) 

and 

𝐿𝐵 = �
1
𝑁
��𝑩𝑗�

2
𝑁

𝑗=1

 (2) 

 

The square of LA is written as: 20 

 



4 
 

 

𝐿𝐴2 =
1
𝑁
��𝑨𝑗�

2
𝑁

𝑗=1

 

=
1
𝑁
��𝑎𝑖𝑗2

𝑀

𝑖=1

𝑁

𝑗=1

 

= ��
1
𝑁
�𝑎𝑖𝑗2
𝑁

𝑗=1

�
𝑀

𝑖=1

 

= �𝐿𝑎𝑖2
𝑀

𝑖=1

 

(3) 

Similarly, we have 

𝐿𝐵2 =
1
𝑁
��𝑩𝑗�

2
𝑁

𝑗=1

 

=
1
𝑁
��𝑏𝑖𝑗2

𝑀

𝑖=1

𝑁

𝑗=1

 

= ��
1
𝑁
�𝑏𝑖𝑗2
𝑁

𝑗=1

�
𝑀

𝑖=1

 

= �𝐿𝑏𝑖2
𝑀

𝑖=1

 

(4) 

where  

𝐿𝑎𝑖 = �
1
𝑁
�𝑎𝑖𝑗2
𝑁

𝑗=1

 (5) 

and 

𝐿𝑏𝑖 = �
1
𝑁
�𝑏𝑖𝑗

2
𝑁

𝑗=1

 (6) 

are the RMS values of the i-th component of the vector fields A and B, respectively. The RMSL of vector field A reflects the 5 

total RMS value across all components of the vector field (Eq. 3). If we break down each variable into its mean and anomaly, 

it is easy to prove that the mean square value equals the square of the mean plus variance (Eqs. A2, A3). If the vector field is 

grouped with various scalar fields, the RMSL represents the overall mean value and variance of all scalar fields. 
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2.2 Vector similarity coefficient between two vector fields 

In the same as for the vector similarity coefficient (VSC) for 2-dimensional vector fields (Xu et al., 2016), the VSC for M-

dimensional vector fields can be defined as: 

𝑅𝑣 =
∑ 𝑨𝑗 ∙ 𝑩𝑗𝑁
𝑗=1

�∑ �𝑨𝑗�
2𝑁

𝑗=1 �∑ �𝑩𝑗�
2𝑁

𝑗=1

 (7) 

The normalized vectors are written as: 

𝑨𝑗∗ =
𝑨𝑗
𝐿𝐴

= (𝑎1𝑗∗ , 𝑎2𝑗∗ , … , 𝑎𝑀𝑗∗ ) ;   j = 1, 2, …, N 5 

𝑩𝑗∗ =
𝑩𝑗
𝐿𝐵

= (𝑏1𝑗∗ , 𝑏2𝑗∗ , … , 𝑏𝑀𝑗∗ ) ;   j = 1, 2, …, N 

With the aid of Eqs. (1) and (2), we have 

��𝑨𝑗∗�
2

𝑁

𝑗=1

= ��𝑩𝑗∗�
2

𝑁

𝑗=1

= 𝑁 (8) 

We can also represent Eq. (7) in the following form: 

𝑅𝑣 =
1
𝑁
�𝑨𝑗∗ ∙ 𝑩𝑗∗
𝑁

𝑗=1

 

=
1
𝑁
��𝑎𝑖𝑗∗ 𝑏𝑖𝑗∗

𝑀

𝑖=1

𝑁

𝑗=1

 

(9) 

VSC can be interpreted as the mean of inner products between normalized- and paired-vectors 𝑨𝑗∗ and 𝑩𝑗∗. The squared 

Euclidean Distance (SED) between 𝑨𝑗∗ and 𝑩𝑗∗ is defined as follows: 10 

�𝑪𝑗∗�
2 = �𝑨𝑗∗ − 𝑩𝑗∗�

2
 (10) 

With the aid of Eqs. (9) and (10), the sum of all SEDs can be written as: 

��𝑪𝒋∗�
2

𝑁

𝑗=1

= ��𝑨𝑗∗ − 𝑩𝑗∗�
2

𝑁

𝑗=1

 

= ���𝑎𝑖𝑗∗ − 𝑏𝑖𝑗∗ �
2

𝑀

𝑖=1

𝑁

𝑗=1

 

= ���𝑎𝑖𝑗∗
2

𝑀

𝑖=1

+ �𝑏𝑖𝑗∗
2

𝑀

𝑖=1

− 2�𝑎𝑖𝑗∗ 𝑏𝑖𝑗∗
𝑀

𝑖=1

�
𝑁

𝑗=1

 

= ��𝑨𝑗∗�
2

𝑁

𝑗=1

+ ��𝑩𝑗∗�
2 − 2

𝑁

𝑗=1

𝑁 ∙ 𝑅𝑣 

With the aid of Eq. (8), we obtain 
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𝑅𝑣 = 1 −
1

2𝑁
��𝑪𝑗∗�

2
𝑁

𝑗=1

 (11) 

Given the triangle inequality, 0 ≤ �𝑪𝑗∗� ≤ �𝑨𝑗∗� + �𝑩𝑗∗�, we have 

0 ≤ �𝑪𝑗∗�
2 ≤ ��𝑨𝑗∗� + �𝑩𝑗∗��

2 ≤ 2�𝑨𝑗∗�
2 + 2�𝑩𝑗∗�

2
. 

Adding all SEDs together yields 

0 ≤��𝑪𝑗∗�
2

𝑁

𝑗=1

≤ 2��𝑨𝑗∗�
2

𝑁

𝑗=1

+ 2��𝑩𝑗∗�
2

𝑁

𝑗=1

= 4𝑁 (12) 

Substituting Eq. (12) into Eq. (11), we obtain –1 ≤ Rv ≤ 1. Thus, the VSC between two M-dimensional vector fields varies 

from –1 to 1. The VSC reaches it maximum of 1 when each pair of normalized vectors has exactly the same length and 5 

direction, i.e., 𝑨𝑗∗=𝑩𝑗∗ for all i (1 ≤ i ≤ N). The VSC reaches it minimum value of -1 when each pair of normalized vectors has 

exactly the same length but points in opposite direction, i.e., 𝑨𝑗∗=−𝑩𝑗∗ for all i (1 ≤ i ≤ N). 

 

With the aid of Eqs. (1) and (2), Eq. (7) can be written as: 

𝑅𝑣 =
1

𝑁𝐿𝐴𝐿𝐵
�𝑨𝑗 ∙ 𝑩𝑗

𝑁

𝑗=1

 

=
1

𝑁𝐿𝐴𝐿𝐵
��𝑎𝑖𝑗𝑏𝑖𝑗

𝑀

𝑖=1

𝑁

𝑗=1

 

=
1

𝑁𝐿𝐴𝐿𝐵
��

𝑎𝑖𝑗𝑏𝑖𝑗
𝐿𝑎𝑖𝐿𝑏𝑖

𝐿𝑎𝑖𝐿𝑏𝑖

𝑀

𝑖=1

𝑁

𝑗=1

 

=
1

𝑁𝐿𝐴𝐿𝐵
��

𝑎𝑖𝑗𝑏𝑖𝑗
𝐿𝑎𝑖𝐿𝑏𝑖

𝐿𝑎𝑖𝐿𝑏𝑖

𝑁

𝑗=1

𝑀

𝑖=1

 

=
1

𝐿𝐴𝐿𝐵
��𝐿𝑎𝑖𝐿𝑏𝑖

1
𝑁
�

𝑎𝑖𝑗𝑏𝑖𝑗
𝐿𝑎𝑖𝐿𝑏𝑖

𝑁

𝑗=1

�
𝑀

𝑖=1

 

=
1

𝐿𝐴𝐿𝐵
�𝐿𝑎𝑖𝐿𝑏𝑖

𝑀

𝑖=1

𝑅𝑢𝑖 

(13) 

where 𝐿𝑎𝑖  and 𝐿𝑏𝑖 are the uncentered RMS values of the i-th component of vector fields A and B as defined in the Eqs. 5 and 10 

6, respectively. 𝑅𝑢𝑖 =
1
𝑁∑ 𝑎𝑖𝑗𝑏𝑖𝑗

𝑁
𝑗=1

𝐿𝑎𝑖𝐿𝑏𝑖
  is the uncentered pattern correlation coefficient between the i-th paired components of 

vector fields A and B. The uncentered pattern correlation coefficient is a variant of Pearson’s correlation in which the mean 
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values are not removed. Rui can also be interpreted as the normalized inner product of two N-dimensional vectors 𝒂𝑖 =

(𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑁,) and 𝒃𝑖 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑁,):  

𝑅𝑢𝑖 =
< 𝒂𝑖 ∙ 𝒃𝑖 >
‖𝒂𝑖‖‖𝒃𝑖‖

=
∑ 𝑎𝑖𝑗𝑏𝑖𝑗𝑁
𝑗=1

�∑ 𝑎𝑖𝑗2𝑁
𝑗=1 �∑ 𝑏𝑖𝑗2𝑁

𝑖=1

 (14) 

The uncentered correlation coefficient can be represented by the cosine of the angle between the N-dimensional vectors ai 

and bi. Rui increases when the arguments of vectors ai and bi approach each other (Eq. 14). Thus, the similarity coefficient 

between two vector fields A and B can be interpreted as a weighted average of uncentered correlation coefficients across all 5 

paired components between two vector fields (Eq. 13). 

 

2.3 Root mean square vector deviation 

To measure the difference in vector fields A and B, a root mean square vector deviation (RMSVD) is defined as: 

𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁
��𝑨𝑗 − 𝑩𝑗�

2
𝑁

𝑗=1

�

1
2

 

= �
1
𝑁
���𝑎𝑖𝑗 − 𝑏𝑖𝑗�

2
𝑀

𝑖=1

𝑁

𝑗=1

�

1
2

 

(15) 

The square of the RMSVD can be written as: 10 

𝑅𝑅𝑅𝑅𝑅2 =
1
𝑁
���𝑎𝑖𝑗 − 𝑏𝑖𝑗�

2
𝑀

𝑖=1

𝑁

𝑗=1

 

= ��
1
𝑁
��𝑎𝑖𝑗 − 𝑏𝑖𝑗�

2
𝑁

𝑗=1

�
𝑀

𝑖=1

 

= �𝑅𝑅𝑅𝑅𝑖2
𝑀

𝑖=1

 

(16) 

where 𝑅𝑅𝑅𝑅𝑖 = 1
𝑁
∑ �𝑎𝑖𝑗 − 𝑏𝑖𝑗�

2𝑁
𝑗=1  is the root mean square deviation (RMSD) between the i-th paired component of vector 

fields A and B. Thus, the RMSVD measures the overall RMSDs of all components between the original vector fields A and 

B. 

 

2.4 Construction of VFE diagram for M-dimensional vector fields 15 

With the aid of Eq. (7), the square of the RMSVD can be written as: 
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𝑅𝑅𝑅𝑅𝑅2 =
1
𝑁
��𝑨𝑗 − 𝑩𝑗�

2
𝑁

𝑗=1

 

=
1
𝑁
���𝑨𝑗�

2 + �𝑩𝑗�
2 − 2𝑨𝑗 ∙ 𝑩𝑗�

𝑁

𝑗=1

 

=
1
𝑁
��𝑨𝑗�

2
𝑁

𝑗=1

+
1
𝑁
��𝑩𝑗�

2
𝑁

𝑗=1

− 2𝑅𝑣 ∙ �
1
𝑁
��𝑨𝑗�

2
𝑁

𝑗=1

�
1
𝑁
��𝑩𝑗�

2
𝑁

𝑗=1

 

(17) 

With the aid of Eqs. (1), (2), and (7), Eq. (17) can be written as: 

𝑅𝑅𝑅𝑅𝑅2 = 𝐿𝐴2 + 𝐿𝐵2 − 2𝑅𝑣 ∙ 𝐿𝐴𝐿𝐵 (18) 

The RMSVD, LA, LB, and Rv are related by the law of cosines (Eq. 18). We can construct the VFE diagram for M-

dimensional vector fields based on Eq. (18). The VFE diagram and the geometric relationship between LA, LB, Rv, and the 

RMSVD are shown in Fig. 1. As for the case of 2-dimensional vectors (Xu et al., 2016), the RMSLs, i.e., LA and LB, measure 5 

the mean and variance of the lengths of vector fields A and B, respectively (Eqs. A2, A3). Rv reflects the pattern similarity 

between two vector fields. The RMSVD describes the overall difference between two vector fields. Thus, three statistical 

quantities can be indicated by a single point on the VFE diagram (Fig. 1). 

3 Multivariable integrated evaluation with the VFE diagram 

3.1 Methodology 10 

To evaluate model performance in terms of the simulation of multivariables, one can group various scalar fields into a vector 

field and compare the constructed vector field against the observed one using the VFE diagram. For example, we can 

construct a vector field with temperature and precipitation as its x- and y-component, respectively. One can certainly use 

more variables as needed to construct the vector field. Note that the statistical quantities RMSL, VSC, and RMSVD in the 

VFE diagram are defined in an orthogonal coordinate system in which the axes are perpendicular to each other. There is no 15 

requirement for the independence of the variables to be evaluated, e.g., temperature and precipitation which are represented 

by coordinate values of individual axes. Thus, the VFE diagram can be applied to evaluate any combination of modeled 

variables against corresponding observational estimates. Given the differences in units and order of magnitude of various 

variables, we need to normalize all variables before grouping them into a vector field. The normalization can be done by 

dividing the RMS value of each observational estimate as follows:  20 

𝑨𝑗⋆ = �
𝑎1𝑗
𝐿𝑏1

,
𝑎2𝑗
𝐿𝑏2

, … ,
𝑎𝑀𝑗

𝐿𝑏𝑀
� = (𝑎1𝑗⋆ , 𝑎2𝑗⋆ , … , 𝑎𝑚𝑗⋆ );         j = 1, 2, …, N (19) 

𝑩𝑗⋆ = �
𝑏1𝑗
𝐿𝑏1

,
𝑏2𝑗
𝐿𝑏2

, … ,
𝑏𝑀𝑗

𝐿𝑏𝑀
� = (𝑏1𝑗⋆ , 𝑏2𝑗⋆ , … , 𝑏𝑀𝑗⋆ );         j = 1, 2, …, N (20) 
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where 𝐿𝑏𝑖 = �1
𝑁
∑ 𝑏𝑖𝑗

2𝑁
𝑗=1  is the RMS value for the i-th component of vector field B obtained from observational estimates. 

Each component of the normalized vector field is dimensionless and on the order of 1. Thus, the statistics of each component 

are equally important to the total statistics of the vector fields. The normalization is especially necessary when the variables 

are of different orders of magnitude. For example, the surface air temperature (SAT) is typically on the order of 102 K, but 

precipitation is generally on the order of 10-5–10-4 mm s-1. Under this circumstance, the differences in the RMSL, VSC, and 5 

RMSVD between various models would be primarily determined based on the SAT and barely impacted by the precipitation 

if no normalization was applied. Therefore, in terms of the MVIE of the model performance, the RMSLs, VSC, and RMSVD 

should be computed using the normalized vector fields 𝑨⋆ and 𝑩⋆. As interpreted in section 2, three statistical quantities in 

the VFE diagram represent the overall statistics across all components between two vector fields. If the vector fields are 

grouped by various scalar fields, the VFE diagram can summarize the three statistics of model performance in simulating 10 

multiple scalar fields. 

3.2 Application of multivariable integrated evaluation of model performance 

Without loss of generality, we choose the climatological mean SAT and precipitation as well as the temporal standard 

deviation of the SAT and precipitation as the variables to interpret the MVIE method. Four variables derived from climate 

models are examined against the corresponding observational estimates. The evaluation is based on the monthly mean 15 

datasets derived from the first ensemble run of CMIP5 historical experiments during the period from 1961 to 2000 (Taylor, 

2012). Three pairs of observed SAT and precipitation datasets are used in this study. The first pair of dataset is the Climatic 

Research Unit (CRU) gridded SAT and precipitation (Harris, et al., 2014). The second pair of dataset is the University of 

Delaware air temperature and precipitation (Willmott and Matsuura, 2001). The third pair of dataset is composed of the 

Global Historical Climatology Network (GHCN) temperature (Fan and van den Dool, 2008) and Global Precipitation 20 

Climatology Centre (GPCC) precipitation (Schneider et al., 2014). All observational data are available at 0.5°×0.5° 

resolution. We take the average of three pairs of SAT and precipitation values as the reference data in this study, unless 

stated otherwise. The observational uncertainty can be roughly estimated by comparing each observational estimate to the 

reference data (Xu et al., 2016). All datasets were regridded to a common resolution of 2.5°×2.5° using a box averaging (bi-

linear interpolation) method that re-grids data to a coarse (finer) resolution. All datasets were weighted by the area of grid 25 

cell to make the statistics more representatives for the global mean values. Both the model and observational data are 

normalized by the RMS value of each observed field before computing their statistics (Eqs. 19, 20).  

  

Table 1 shows the various statistics of 9 CMIP5 models in terms of the climatological mean summer (June-July-August) 

SAT, precipitation, and the temporal standard deviation of SAT and precipitation over the global land area (60°S–60°N). The 30 

standard deviation reflects the amplitude of interannual variation. The models can generally well simulate the climatological 

mean SAT characterized by the close correspondence of the RMS values, high uncentered correlation, and small RMSD 
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between the model and observation. In contrast, models show a relatively poor performance in simulating other variables, i.e., 

climatological mean precipitation, standard deviations of SAT and precipitation. These statistics vary from one model to the 

next. It is difficult to compare the overall performances of various models because there are too many variables and models 

to distinguish one from another (Table 1). It is very useful to summarize the statistics of multiple variables with fewer 

indices, which enables an objective evaluation of the overall model performance in simulating multiple variables. To achieve 5 

this goal, we grouped the four normalized scalar fields into a four-dimensional vector field. Afterwards, we computed the 

statistical quantities, i.e., RMSL, VSC, and RMSVD, with the four-dimensional vector fields derived from model and 

observational data. As interpreted in section 2, the RMSL (RMSVD) measures the overall RMS values (RMSDs) of all 

scalar fields (Eqs. 3, 16). The VSC represents the weighted average of uncentered correlation coefficients across all scalar 

fields (Eq. 13). Thus, each model’s performance in simulating multiple variables can be summarized by a single point that is 10 

determined by 12 statistical quantities (4 variables × 3 statistics) those derived from various scalar fields (Table 1, Fig. 2).  

 

As shown in Fig. 2, the VSC varies from 0.90 to 0.95, indicating which models can better reproduce the overall spatial 

pattern of various variables and which cannot. For example, model 1 shows the maximum VSC, indicating that model 1 can 

generally better reproduce the spatial pattern of the four variables relative to other models. This can be confirmed by Table 1. 15 

The uncentered pattern correlation coefficients for the four scalar fields are generally higher in model 1 than in the other 

models. Fig. 2 also clearly shows which model overestimates or underestimates the overall RMS values. For example, 

models 5 and 7 overestimate the RMSLs of the four-dimensional vector fields, suggesting that both models generally 

overestimate the RMS values of the four scalar fields. This can also be confirmed by Table 1, as model 5 clearly 

overestimates the RMS values of Ta (1.42) and Pa (1.16) and slightly underestimates the RMS values of Tm (0.99) and Pm 20 

(0.94). Model 7 overestimates all RMS values (1.08, 1.10, 1.11, and 1.07) of the four variables. Thus, the RMSL of a 

constructed vector field can reasonably represent the overall performance of a model in reproducing RMS values of multiple 

scalar fields. In contrast, model 9 clearly underestimates the RMSL of the vector field (Fig. 2). Correspondingly, three out of 

the four RMS values of scalar fields are smaller than 1 for model 9 (Table 1). Similarly, the RMSVD between two vector 

fields can also reasonably represent the overall RMSDs of multiple scalar fields as shown in Fig. 2 and Table 1. Thus, one 25 

can evaluate the model performance in simulating multiple variables with three statistical quantities. The three statistical 

quantities represent different aspects of model performance, the knowledge of which can provide a more comprehensive 

model evaluation. The VFE diagram can clearly illustrate to what extent the overall RMSDs of various scalar fields 

(represented by the RMSVD) are attributable to the systematic difference in RMS values (represented by the RMSL) and 

how much is due to the poor pattern similarities (represented by Rv). 30 

 

Note that model performance does not change monotonically with the increase or decrease in RMS values. Specifically, 

model performance improves as the normalized RMS values approach 1 but decreases as the normalized RMS values 

approach either zero or infinity. As defined in Eq. (3), the RMSL is equal to the sum of RMS values of all components of a 
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vector field. Thus, RMSL=N, i.e., the modeled RMSL is equal to the observed one, does not necessarily suggest that the 

model well reproduces the RMS values of various scalar fields. This conclusion may result from the cancellation between 

the overestimated and the underestimated RMS values. For example, as shown in Table 1, model 3 overestimates the RMS 

values of Tm (1.05) and Ta (1.26) but underestimates the RMS values of Pm (0.80) and Pa (0.77). However, the RMSL (0.99) 

is almost consistent with the observational estimate. Under such a circumstance, the RMSL misrepresents the model 5 

performance in simulating RMS values of various scalar fields. To mitigate this shortcoming, one can add a line segment 

centered at each plotted point along the azimuthal direction (Fig. 2). The length of the line segment is equal to twice the 

standard deviation of RMS values of multiple scalar fields. Thus, the length of the line segment can measure the dispersion 

of various RMS values relative to their mean. A shorter line indicates that the RMS values are close to the mean. In contrast, 

a longer line segment indicates that the RMS values are spread out over a wider range. To measure the accuracy of modeled 10 

RMS values to that of those observed, one can use the root mean square deviation of the RMS values of various variables: 

𝑅𝑅𝑅𝑅𝐿2 =
1
𝑅
�(𝐿𝑎𝑖⋆ − 𝐿𝑏𝑖⋆ )2
𝑀

𝑖=1

 (21) 

where 𝐿𝑎𝑖⋆ = 1
𝐿𝑏𝑖
�1
𝑁
∑ 𝑎𝑖𝑗2𝑁
𝑗=1  and 𝐿𝑏𝑖⋆ = 1

𝐿𝑏𝑖
�1
𝑁
∑ 𝑏𝑖𝑗

2𝑁
𝑗=1  are the RMS values of the i-th normalized component of vector 

fields A and B, respectively. With the support of Eq. (6), we have 𝐿𝑏𝑖⋆ = 1 for all i (1 ≤ i ≤ M). The 𝑅𝑅𝑅𝑅𝐿2 can be further 

written as: 

𝑅𝑅𝑅𝑅𝐿2 =
1
𝑅
�(𝐿𝑎𝑖⋆ − 1)2
𝑀

𝑖=1

 

=
1
𝑅
�𝐿𝑎𝑖⋆

2
𝑀

𝑖=1

−
2
𝑅
�𝐿𝑎𝑖⋆
𝑀

𝑖=1

+ 1 

=
1
𝑅
��𝐿𝑎⋆��� + 𝐿𝑎𝑖⋆

′�2
𝑀

𝑖=1

− 2𝐿𝑎⋆��� + 1 

= 𝐿𝑎⋆���
2 +

1
𝑅
�𝐿𝑎𝑖⋆

′2
𝑀

𝑖=1

− 2𝐿𝑎⋆��� + 1 

= (𝐿𝑎⋆��� − 1)2 + 𝜎𝑅𝑀𝑅2  

(22) 

where 𝐿𝑎⋆���, and 𝐿𝑎𝑖⋆
′ are the mean and anomaly of 𝐿𝑎𝑖⋆ , respectively. The RMS value of 𝐿𝑎𝑖⋆

′ is written as follows: 15 

𝜎𝑅𝑀𝑅 = �
1
𝑅
�𝐿𝑎𝑎⋆

′2
𝑅

𝑎=1

�

1/2

 (23) 

 

𝜎𝑅𝑅𝑅 is the centered RMS value or the standard deviation of 𝐿𝑎𝑖⋆ . Thus, the RMSDL can be decomposed into the mean error 

and the variance of RMS values of normalized scalar fields (Eq. 22). RMSDL measures the overall deviation of modeled 
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RMS values from the observed ones. The modeled RMS values of various scalar fields are exactly equal to the 

corresponding observed ones only when the RMSDL is equal to 0. 

3.3 Multivariable integrated evaluation index for model performance 

In general, the model results get closer to the observational estimate as the RMSVD decreases. It is noteworthy that for a 

given VSC at a relatively low value, the RMSVD does not strictly decrease monotonically as the simulated RMSL 5 

approaches the observed one (Fig. 3). For example, model B shows the same VSC as that of Model A but a smaller bias in 

the RMSL, which suggest that model B performs better than model A. However, the RMSVD is greater in model B than in 

model A (Fig. 3). Thus, the decrease in the RMSVD may not necessarily indicate an improvement in model performance. On 

the other hand, given the drawback of the RMSL in measuring the accuracy of RMS values, the model skill score, defined 

based on the RMSL and VSC in Xu et al. (2016), is also not well suited for measuring the model performance in simulating 10 

multiple scalar fields. To better measure model performance, we define a multivariable integrated evaluation index (MIEI) 

based on the VFE diagram (Fig. 3): 

𝑅𝑀𝑀𝑀2 = 𝐵𝐵2 + 𝐵𝐵2 

Based on the law of cosines, we have 

𝐵𝐵2 = 2 − 2𝑅𝑣 

Thus, the MIEI can be written as: 

𝑅𝑀𝑀𝑀2 = 𝑅𝑅𝑅𝑅𝐿2 + 2(1 − 𝑅𝑣) 

= 𝜎𝑅𝑀𝑅2 + (𝐿𝑎⋆��� − 1)2 + 2(1 − 𝑅𝑣) 
(24) 

Clearly, the MIEI takes both the amplitudes and pattern similarities of various variables into account and therefore can 15 

provide a comprehensive evaluation of model performance (Eq. 24). In contrast to the RMSVD, the MIEI satisfies the 

monotonic property of an index with respect to model performance. Specifically, for any given 𝜎𝑅𝑀𝑅  and 𝐿𝑎⋆���, the MIEI 

decreases monotonically with the increase in Rv. For any given 𝜎𝑅𝑀𝑅  and Rv, the MIEI decreases monotonically as 𝐿𝑎⋆��� 

approaches 1. For any given 𝐿𝑎⋆��� and Rv, the MIEI decreases monotonically with the decrease in 𝜎𝑅𝑀𝑅. The MIEI is equal to 0 

only when 𝜎𝑅𝑀𝑅=0, 𝐿𝑎⋆���=1, and Rv=1, which define a perfect model. In other words, modeled multiple fields are exactly the 20 

same as the observed ones when the MIEI is equal to 0.  

 

As interpreted in section 2, the RMSVD is determined based on the sum of quadratic RMSDs of various scalar fields (Eq. 

16). Thus, the RMSVD is equivalent to the model climate performance index used in previous studies (e.g., Gleckler et al., 

2008; Radić and Clarke, 2011; Chen and Sun, 2015). In general, both the RMSVD and MIEI can be used to measure the 25 

model performance. However, the MIEI is expected to provide a more accurate evaluation of model performance than the 

RMSVD. For example, model 3 shows a smaller RMSVD but a larger MIEI compared to model 2 (Table 1, Fig. 2). The 

RMSVD and MIEI give an opposite rank in the performances of models 2 and 3. Note that model 3 shows a much greater 
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standard deviation of RMS values (0.20) than that of model 2 (0.04), suggesting that model 3 poorly simulates the relative 

amplitude of the four variables. Such information is not considered by the RMSVD but can be captured by the MIEI (Eq. 21). 

The values of the MIEI derived from various models are also shown in Fig. 2. A smaller MIEI generally indicates a better 

performance of the climate model. For example, models 1 and 6 show smaller MIEIs than those of other models. Models 1 

and 6 show higher VSC values, smaller RMSDL values, and a close correspondence of RMS values with the observed ones 5 

(Fig. 2). The MIEI can serve as an index to determine the rank of climate model performance in simulating multiple fields. 

In comparison with the MIEI, the VFE diagram can provide a more detailed evaluation of the model performance by 

explicitly showing multiple statistics, i.e., pattern similarity, RMS values and their variances, and RMSVD. 

 

The issue of how to take the observational uncertainties into account is of particular importance in model evaluation and 10 

ranking, especially when more and more observational datasets provide estimates of the observational uncertainty. The 

statistics derived from each group of observational estimates are also shown in Table 1, which can roughly quantify the 

observational uncertainties and its impact on model evaluation. Generally, the colours are clearly lighter for the statistics of 

individual observed variables in contrast to the modelled variables (Table 1). This indicates that the observational 

uncertainties are relatively small and should have less impact on the evaluation of model performance. To further quantify 15 

the impacts of observational uncertainty on ranking model performance, we calculate the MIEIs of various climate models 

by taking each group of observational estimates as the reference data. Three groups of observational estimates generate three 

groups of MIEIs. Afterwards, we calculate Spearman’s rank correlation coefficient of each group of MIEIs with those 

derived from models and ensemble mean of multiple observational estimates. The Spearman’s rank correlation coefficients 

are 0.996, 0.996, and 0.904, respectively, suggesting that the ranks are very close to each other no matter which group of 20 

observational estimates is used as reference data. Thus, the observational uncertainty should have less impact on ranking 

model performance in this case. One can use the average of Spearman’s rank correlation coefficients to quantify the 

consistency of various ranks when a number of observational estimates are available.  

4 Summary and discussion 

The multivariable integrated evaluation (MVIE) method proposed here provides a concise way of representing the multiple 25 

statistics of multiple fields on a two-dimensional plot, i.e., the VFE diagram. The VFE diagram includes three statistical 

quantities, i.e., RMSL, VSC, and RMSVD, representing different aspects of model performance. Specifically, the RMSL 

(RMSVD) represents the total mean value and variance (total RMSDs) of all scalar fields. The VSC measures the overall 

pattern similarity across all scalar fields. As shown in the example, each of the three statistical quantities can reasonably 

represent the corresponding statistics of multiple scalar fields. Moreover, the VFE diagram can illustrate how much the 30 

overall RMSD of various fields is attributable to the difference in RMS values and how much is due to poor pattern 

similarity. Thus, one can summarize multiple statistics of multivariables for various models in a diagram and facilitate the 
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intercomparison of model performances in simulating multiple variables. The MVIE method can be applied to spatial or/and 

temporal fields. It can also simultaneously evaluate various temporal variabilities simulated by models, e.g., climatological 

mean state and the amplitude of interannual variability as shown in section 3.2. Based on the VFE diagram, we also 

developed a multivariable integrated evaluation index (MIEI) which takes the amplitude and pattern similarity of multiple 

fields into account. The MIEI satisfies the criterion that a model performance index should vary monotonically as the model 5 

performance improves. The MIEI provides a more concise evaluation than the VFE diagram of model performance in 

simulating multiple fields.  

 

The statistical metrics presented in this paper can be divided into three different levels and their relationships are 

summarized in a pyramid chart (Fig. 4). The first level of metrics, i.e., correlation coefficient, RMS value, and RMSD, 10 

measures model performance in terms of individual variables. These metrics can be illustrated by a table of metrics (Table 1), 

which can provide detailed information on model performance in simulating individual variables but cannot give a 

quantitative evaluation of the overall model performance in simulating multiple fields. The second level of metrics, i.e., the 

VSC, RMSL, standard deviation of RMS values, and RMSVD, are derived from the first level of metrics and represent the 

overall statistics of multiple variables. The second level of metrics can be presented as a VFE diagram, which provides an 15 

integrated evaluation of model performance in terms of simulating multiple fields. The MIEI belongs to the third level of 

metrics, which is defined based on the VFE diagram. The MIEI further summarizes the three statistical quantities of the VFE 

diagram into a single index and can be used to rank the performances of various climate models. A higher level of metrics 

provides a more concise evaluation of model performance compared to a lower level of metrics, which facilitates model 

intercomparison. Unavoidably, the higher level of metrics loses detailed statistical information in contrast to the lower level 20 

of metrics. To provide a more comprehensive evaluation of model performance, one can show the VFE diagram together 

with a table of statistical metrics (Table 1) or other model performance metrics as needed. 

 

As shown in section 2, the VFE diagram can be constructed by using uncentered statistics, which are computed using the full 

scalar fields, including both mean and anomaly. The VFE diagram can also be computed by using centered statistics 25 

(Appendix A). The centered RMSL of a vector represents the overall variance of all components of a vector field (Eq. A3). 

The centered VSC can be interpreted as weighted average of Pearson’s correlation coefficients, which measures the overall 

pattern similarity across all paired anomaly fields (Eq. A9). The centered RMSVD measures the sum of centered RMSDs 

across all paired components between two vector fields (Eq. A12). The type of statistics, i.e., centered or uncentered 

statistics, that should be used depends on the application. The uncentered statistics should be used if both the mean and 30 

anomaly need to be evaluated. In contrast, the centered statistics should be used if the anomaly fields are the primary concern. 

The centered correlations alone are not sufficient for detection studies (Legates and Davis, 1997). It has been argued that the 

uncentered statistics are better suited for detection because they incorporate the response of the mean value. In contrast, the 

centered statistics are more appropriate for attribution because they better measure the similarity between spatial patterns 
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(Hegerl et al., 2001). The VFE diagram provides us flexibility in model evaluation. In terms of model evaluation aimed at a 

detection study, one can compute the uncentered statistics with full fields. In contrast, one can use centered statistics by 

computing the statistical quantities with vector anomaly fields if an attribution study is the major concern of model 

evaluation.  

 5 

In practice, one may want to weight different fields based on their relative importance. If some variables to be evaluated are 

dependent to each other, e.g. skin temperature and surface air temperature, one may also want to weight these variables 

properly because the dependent variables contain redundant information. Consequently, the evaluation may overestimate the 

importance of the dependent variables. Determining the weight coefficient depends on the application and therefore is 

beyond the scope of this study. Here, we only discuss how the weight can be considered in the multivariable integrated 10 

evaluation (Appendix B). The MVIE method presented in this study requires the normalization of each modeled and 

observed variable by dividing the corresponding RMS value of the observed variable (Eqs. 19, 20). Therefore, one should 

weight different variables after the normalization (Eqs. B1, B2); otherwise the normalization process will remove the weight 

coefficient. Weighting each normalized field leads to a quadratic weighting of the quadratic RMS values, quadratic RMSDs, 

and correlation coefficient (Eqs. B1, B5, B8, B11).  15 

 

The VFE diagram and MIEI may also provide some guidance in weighting various climate models to constrain future 

climate projection. A recent study suggested that model weighting should take both model performances and model 

interdependencies into account to improve climate projections (Knutti et al., 2017). The VFE diagram can summarize model 

performances in terms of multiple statistics of multivariables on one hand. On the other hand, the VFE diagram can also 20 

clearly show the differences between model and observation as well as the differences between various models. These 

information provided by the VFE diagram may be used in weighting climate models, which warrant for further studies. 

 

Code availability 

The code used in the production of Figure 2 and Table 1 are available in the supplement to the article. 25 
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Appendix A: Decomposition of RMSL, VSC, and RMSVD 

To further interpret the RMSL, VSC, and RMSVD, we break down the full vector fields A and B into the mean and anomaly: 

𝐴𝑗 = 𝐴 + 𝐴𝑗′ = �𝑎1 + 𝑎1𝑗′ , 𝑎2 + 𝑎2𝑗′ ,⋯ , 𝑎𝑚 + 𝑎𝑚𝑗′ �;  j = 1, 2, …, N     

𝐵𝑗 = 𝐵 + 𝐵𝑗′ = �𝑏1 + 𝑏1𝑗′ , 𝑏2 + 𝑏2𝑗′ ,⋯ ,𝑏𝑚 + 𝑏𝑚𝑗′ �;   j = 1, 2, …, N     

where  5 

𝐴 = (𝑎1,𝑎2,⋯ , 𝑎𝑚), 

𝐵 =  �𝑏1, 𝑏2,⋯ , 𝑏𝑚�,  

𝐴𝑗′ = �𝑎1𝑗′ , 𝑎2𝑗′ ,⋯ , 𝑎𝑚𝑗′ �, 

𝐵𝑗′ = �𝑏1𝑗′ , 𝑏2𝑗′ ,⋯ , 𝑏𝑚𝑗′ �, 

𝑎𝑖 = 1
𝑁
∑ 𝑎𝑖𝑗𝑁
𝑗=1 ;  i = 1, 2, …., M 10 

𝑏𝑖 = 1
𝑁
∑ 𝑏𝑖𝑗𝑁
𝑗=1 ;  i = 1, 2, …., M 

𝑎𝑖𝑗′ = 𝑎𝑖𝑗 − 𝑎𝑖;  i = 1, 2, …., M 

𝑏𝑖𝑗′ = 𝑏𝑖𝑗 − 𝑏𝑖;  i = 1, 2, …., M 

The squared RMSL of vector field A is written as follows: 

𝐿𝐴2 =
1
𝑁
��𝐴𝑗�

2
𝑁

𝑗=1

 

=
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Given ∑ 𝑎𝑖𝑗′  𝑁
𝑗=1 = 0, 𝐿𝐴2 can be written as: 15 
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(A1) 

where 
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1/2
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 (A2) 

is the RMSL of the mean vector field,  

𝐿𝐴′ = �
1
𝑁
��𝑨𝑗′�

2
𝑁

𝑗=1

�

1/2

= ��𝜎𝑎𝑖2

𝑅

𝑎=1

�

1/2

 (A3) 

is the RMSL of the vector anomaly field, and 

𝜎𝑎𝑖 = �1
𝑁
∑ 𝑎𝑖𝑗′

2𝑁
𝑗=1 �

1/2
;  i = 1, 2, …, M 

is the centered RMS value (or standard deviation) of the i-th component of vector field A. 

Equation (A1) can be written as: 5 

𝐿𝐴2 = 𝐿𝐴
2 + 𝐿𝐴′

2 = �(𝑎𝑖
2 + 𝜎𝑎𝑎2)

𝑀

𝑖=1

 (A4) 

The RMSL of vector field A, LA, measures the overall mean value and variance of all components of the vector field. 

Similarly, we have 

𝐿𝐵2 = 𝐿𝐵
2 + 𝐿𝐵′

2 = �(𝑏𝑖
2

+ 𝜎𝑏𝑎2)
𝑀

𝑖=1

 (A5) 

where 

𝜎𝑏𝑖 = �1
𝑁
∑ 𝑏𝑖𝑗′

2𝑁
𝑗=1 �

1/2
;  i = 1, 2, …, M 

is the centered RMS value (or standard deviation) of the i-th component of vector field B. 10 

With the support of Eq. (13), the VSC can be written as: 

𝑅𝑣 =
1
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Given that ∑ 𝑎𝑖𝑗′𝑁
𝑗=1 = ∑ 𝑏𝑖𝑗′𝑁

𝑗=1 = 0 for all i (1 ≤ i ≤ M), we obtain 
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𝑗=1

�
𝑀

𝑖=1

 

=
𝐿�̅�𝐿𝐵�
𝐿𝐴𝐿𝐵

𝑅𝑣� +
𝐿𝐴′𝐿𝐵′
𝐿𝐴𝐿𝐵

𝑅𝑣′  

(A6) 

where 

𝑅𝑣� =
1

𝑁𝐿�̅�𝐿𝐵�
��𝑎𝑖𝑏𝑖

𝑀

𝑖=1

𝑁

𝑗=1

=
1

𝐿�̅�𝐿𝐵�
�𝑎𝑖𝑏𝑖

𝑀

𝑖=1

 (A7) 

𝑅𝑣′ =
1

𝑁𝐿𝐴′𝐿𝐵′
��𝑎𝑖𝑗′ 𝑏𝑖𝑗′

𝑀

𝑖=1

𝑁

𝑗=1

 (A8) 

Given the Cauchy-Schwarz inequality, Eq. (A7) can be rewritten as: 

𝑅𝑣�2 =
�∑ 𝑎𝑖𝑏𝑖𝑀

𝑖=1 �
2

(𝐿�̅�𝐿𝐵�)2 ≤
∑ 𝑎�𝑖2𝑀
𝑖=1 ∑ 𝑏�𝑖2𝑀

𝑖=1

(𝐿�̅�𝐿𝐵�)2 =
𝐿�̅�2𝐿𝐵�2

(𝐿�̅�𝐿𝐵�)2 = 1 

𝑅𝑣�  reaches its maximum value of 1 when 𝑎1
𝑏1

= 𝑎2
𝑏2

= ⋯ = 𝑎𝑚
𝑏𝑚

> 0. In contrast, 𝑅𝑣�  reaches its minimum value of -1 when 

𝑎1
𝑏1

= 𝑎2
𝑏2

= ⋯ = 𝑎𝑚
𝑏𝑚

< 0 . 𝑅𝑣�  measures the extent of correlation between modeled and observed mean values across all 

components of two vector fields. 5 

 

Eq. (A8) can be rewritten as: 

𝑅𝑣′ =
1

𝑁𝐿𝐴′𝐿𝐵′
��

𝑎𝑖𝑗′ 𝑏𝑖𝑗′

𝜎𝑎𝑖𝜎𝑏𝑖
𝜎𝑎𝑖𝜎𝑏𝑖

𝑀

𝑖=1

𝑁

𝑗=1

 

=
1

𝑁𝐿𝐴′𝐿𝐵′
��

𝑎𝑖𝑗′ 𝑏𝑖𝑗′

𝜎𝑎𝑖𝜎𝑏𝑖
𝜎𝑎𝑖𝜎𝑏𝑖

𝑁

𝑗=1

𝑀

𝑖=1

 

=
1

𝐿𝐴′𝐿𝐵′
��𝜎𝑎𝑖𝜎𝑏𝑖

1
𝑁
�

𝑎𝑖𝑗′ 𝑏𝑖𝑗′

𝜎𝑎𝑖𝜎𝑏𝑖

𝑁

𝑗=1

�
𝑀

𝑖=1

 

=
1

𝐿𝐴′𝐿𝐵′
�𝜎𝑎𝑖𝜎𝑏𝑖𝑟𝑖

𝑀

𝑖=1

 

(A9) 

where 𝜎𝑎𝑖  and 𝜎𝑏𝑖  are the centered RMS values (or standard deviation) of the i-th component of vector field A and B, 

respectively.  
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𝑟𝑖 =
1
𝑁
�

𝑎𝑖𝑗′ 𝑏𝑖𝑗′

𝜎𝑎𝑖𝜎𝑏𝑖

𝑁

𝑗=1

 

represents the centered correlation coefficients between the i-th paired components of vector fields A and B. 𝑅𝑣′  can be 

interpreted as a weighted average of the centered correlation coefficients across all paired components between two vector 

fields. The weight coefficients are proportional to the product of standard deviations between paired variables. Clearly, the 

VSC is simultaneously determined based on the correlation of various mean fields and the overall correlation of anomaly 

fields across all paired components between two vector fields (Eqs. A6, A7, A9).  5 

 

The RMSVD between two vector fields can also be represented by the mean and anomaly fields: 

𝑅𝑅𝑅𝑅𝑅2 =
1
𝑁
��𝑨𝑗 − 𝑩𝑗�

2
𝑁

𝑗=1

 

=
1
𝑁
���𝑎�𝑖 + 𝑎𝑖𝑗′ − 𝑏�𝑖 − 𝑏𝑖𝑗′ �

2
𝑀

𝑖=1

𝑁

𝑗=1

 

=
1
𝑁
���𝑎�𝑖 − 𝑏�𝑖 + 𝑎𝑖𝑗′ − 𝑏𝑖𝑗′ �

2
𝑁

𝑗=1

𝑀

𝑖=1

 

=
1
𝑁
����𝑎�𝑖 − 𝑏�𝑖�

2
𝑁

𝑗=1

+ ��𝑎𝑖𝑗′ − 𝑏𝑖𝑗′ �
2

𝑁

𝑗=1

+ 2�𝑎�𝑖 − 𝑏�𝑖���𝑎𝑖𝑗′ − 𝑏𝑖𝑗′ �
𝑁

𝑗=1

�
𝑀

𝑖=1

 

Given that ∑ 𝑎𝑖𝑗′𝑁
𝑗=1 = ∑ 𝑏𝑖𝑗′𝑁

𝑗=1 = 0 for all i (1 ≤ i ≤ M), we obtain 

𝑅𝑅𝑅𝑅𝑅2 =
1
𝑁
����𝑎�𝑖 − 𝑏�𝑖�

2
𝑁

𝑗=1

+ ��𝑎𝑖𝑗′ − 𝑏𝑖𝑗′ �
2

𝑁

𝑗=1

�
𝑀

𝑖=1

 

=
1
𝑁
���𝑎�𝑖 − 𝑏�𝑖�

2
𝑀

𝑖=1

𝑁

𝑗=1

+
1
𝑁
���𝑎𝑖𝑗′ − 𝑏𝑖𝑗′ �

2
𝑀

𝑖=1

𝑁

𝑗=1

 

=
1
𝑁
��𝑨 − 𝑩�

2
𝑁

𝑗=1

+
1
𝑁
��𝑨𝑗′ − 𝑩𝑗′�

2
𝑁

𝑗=1

 

= (𝑅𝑅𝑅𝑅𝑅𝑅)2 + (𝑅𝑅𝑅𝑅𝑅𝑎)2 

(A10) 

where  

(𝑅𝑅𝑅𝑅𝑅𝑅)2 = ��𝑎�𝑖 − 𝑏�𝑖�
2

𝑀

𝑖=1

 (A11) 
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is the RMSVD between mean vector fields A and B, which represents the mean difference of all fields. 

(𝑅𝑅𝑅𝑅𝑅𝑎)2 = ��
1
𝑁
��𝑎𝑖𝑗′ − 𝑏𝑖𝑗′ �

2
𝑁

𝑗=1

�
𝑀

𝑖=1

= �𝑅𝑅𝑅𝑅𝑖′
2

𝑀

𝑖=1

 (A12) 

is the centered RMSVD between two vector fields, which represents the overall RMSD across all paired components of 

vector anomaly fields A and B. From the viewpoint of MVIE, the RMSVD can be interpreted as the overall mean difference 

of all fields plus the overall RMSD of all anomaly fields.  

 5 

The statistics can be computed based on the full vector fields or anomaly vector fields depending on the concern of 

evaluation. The statistical quantities, i.e., RMSL, VSC, and RMSVD, computed based on the full vector fields represent the 

uncentered pattern statistics, which include the statistics from both the mean and anomaly fields. Alternatively, three 

statistics can also be computed based on the anomaly fields, yielding centered statistics, which only measure the anomaly 

fields. The full vector fields should be used if both the mean and anomaly need to be evaluated. In contrast, the anomaly 10 

vector fields should be used if anomaly fields are the primary concern. 
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Appendix B: Weighted multivariable integrated evaluation with VFE diagram 

In terms of model evaluation, one may care for some variables more than other variables, although all variables are of great 

concern. In such a circumstance, it would be useful to weight different variables to make the VSC, RMSL, and RMSVD 

more sensitive to some variables than to others. Without loss of generality, the weighted- and normalized-vector fields 𝑨𝑤 

and 𝑩𝑤 can be written as a pair of vector sequences: 5 

𝑨𝑗𝑤 = 𝒘 ∙ 𝑨𝑗⋆ = (𝑤1𝑎1𝑗⋆ ,𝑤2𝑎2𝑗⋆ , … ,𝑤𝑀𝑎𝑀𝑗⋆ );          j = 1, 2, …, N (B1) 

𝑩𝑗𝑤 = 𝒘 ∙ 𝑩𝑗⋆ = �𝑤1𝑏1𝑗⋆ ,𝑤2𝑏2𝑗⋆ , … ,𝑤𝑀𝑏𝑀𝑗⋆ �;          j = 1, 2, …, N (B2) 

where 𝑎𝑖𝑗⋆  and 𝑏𝑖𝑗⋆  (1 ≤ i ≤ M) are the same as in Eqs. (19) and (20). wi is the weight coefficient for the i-th component of the 

vector field and satisfies the constraint.  

�𝑤𝑖

𝑀

𝑖=1

= 𝑅 

Note that the weighting should be applied to the normalized model and observational data (Eqs. B1, B2). Otherwise, the 

normalization would remove the weight coefficient. Based on Eq. (3), the square of the RMSL of the normalized vector field 

𝑨⋆ can be written as follows: 10 

𝐿𝐴⋆
2 = �𝐿𝑎𝑖⋆

2
𝑀

𝑖=1

 (B3) 

where 𝐿𝑎𝑖⋆ = �1
𝑁
∑ 𝑎𝑖𝑗⋆

2𝑁
𝑗=1 �

1/2
denotes the RMS value of the i-th component of the normalized vector field 𝑨⋆. Similarly, the 

RMSL of weighted- and normalized-vector fields can be written as follows: 

𝐿𝐴𝑤
2 = �𝐿𝑎𝑖𝑤

2
𝑀

𝑖=1

 (B4) 

where 𝐿𝑎𝑖𝑤 = �1
𝑁
∑ 𝑤𝑖2𝑎𝑖𝑗⋆

2𝑁
𝑗=1 �

1/2
 is the RMS value of the i-th component of vector field 𝑨𝒘. With the support of Eqs. (B1), 

(B3), and (B4), it is easy to obtain 

 15 

𝐿𝐴𝑤
2 = �𝐿𝑎𝑖𝑤

2
𝑀

𝑖=1

= �𝑤𝑖2𝐿𝑎𝑖⋆
2

𝑀

𝑖=1

 (B5) 

The RMSL of vector field 𝑨𝑤 is determined based on the weighted RMS values across all components of the vector field. 

The contribution of the i-th RMS value, 𝐿𝑎2⋆ , to the quadratic RMSL of the vector field is weighted by 𝑤𝑖2. The RMS value 

accounts for more of the RMSL when its weight coefficient is greater. 

 

Based on Eq. (16), the square of the RMSVD between normalized vector fields 𝑨⋆ and 𝑩⋆ can be written as follows: 20 
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𝑅𝑅𝑅𝑅𝑅⋆2 = �𝑅𝑅𝑅𝑅𝑖⋆
2

𝑀

𝑖=1

 (B6) 

where 𝑅𝑅𝑅𝑅𝑖 = �1
𝑁
∑ �𝑎𝑖𝑗⋆ − 𝑏𝑖𝑗⋆ �

2𝑁
𝑗=1 �

1/2
is the RMSD of the i-th paired components between normalized vector fields  𝑨⋆ 

and 𝑩⋆. Similarly, the square of the RMSVD between weighted vector fields 𝑨w and 𝑩w can be written as follows: 

𝑅𝑅𝑅𝑅𝑅𝑤2 = �(𝑅𝑅𝑅𝑅𝑖𝑤)2
𝑀

𝑖=1

 (B7) 

𝑅𝑅𝑅𝑅𝑖𝑤 = �1
𝑁
∑ �𝑤𝑖𝑎𝑖𝑗⋆ − 𝑤𝑖𝑏𝑖𝑗⋆ �

2𝑁
𝑗=1 �

1/2
 is the RMSD of the i-th paired components between weighted vector fields 𝑨w and 

𝑩w. With the aid of Eqs. (B1), (B2), (B6), and (B7), we obtain 

(𝑅𝑅𝑅𝑅𝑅𝑤)2 = �(𝑅𝑅𝑅𝑅𝑖𝑤)2
𝑀

𝑖=1

= �𝑤𝑖2𝑅𝑅𝑅𝑅𝑖⋆
2

𝑀

𝑖=1

 (B8) 

The RMSVD between two vector fields is determined based on the weighted RMSDs across all paired components of two 5 

vector fields. The contribution of the i-th RMSD to the quadratic RMSVD between two vector fields is weighted by 𝑤𝑖
2. 

 

Based on Eq. (13), the VSC between normalized vector fields 𝑨⋆ and 𝑩⋆ can be written as follows: 

𝑅𝑣⋆ =
1

𝐿𝐴⋆ ∙ 𝐿𝐵⋆
�𝐿𝑎𝑖⋆ 𝐿𝑏𝑖⋆ 𝑅𝑢𝑖⋆
𝑀

𝑖=1

 (B9) 

where 𝐿𝑎𝑖⋆ = �1
𝑁
∑ 𝑎𝑖𝑗⋆

2𝑁
𝑗=1 �

1/2
 and 𝐿𝑏𝑖⋆ = �1

𝑁
∑ 𝑏𝑖𝑗⋆

2𝑁
𝑗=1 �

1/2
are the RMS values for the i-th modeled and observational fields.  

𝑅𝑢𝑖⋆ =
1
𝑁∑ 𝑎𝑖𝑗

⋆ 𝑏𝑖𝑗
⋆𝑁

𝑗=1

𝐿𝑎𝑖𝐿𝑏𝑖
 is the uncentered correlation coefficient for the i-th components between two vector fields. Similarly, the 10 

VSC between weighted fields can be rewritten as: 

𝑅𝑣𝑤 =
1

𝐿𝐴𝑤 ∙ 𝐿𝐵𝑤
�𝐿𝑎𝑖𝑤 𝐿𝑏𝑖𝑤 𝑅𝑢𝑖𝑤
𝑀

𝑖=1

 (B10) 

where 𝐿𝑎𝑖𝑤 , 𝐿𝑏𝑖𝑤 , and 𝑅𝑢𝑖𝑤  are the same as 𝐿𝑎𝑖⋆ , 𝐿𝑏𝑖⋆ , and 𝑅𝑢𝑖⋆ , respectively, except they are computed based on the weighted 

vector fields  𝑨w and 𝑩w. With the aid of Eqs. (B1), (B2), (B9), and (B10), we obtain 

𝑅𝑣𝑤 =
1

𝐿𝐴𝑤 ∙ 𝐿𝐵𝑤
�𝑤𝑖2𝐿𝑎𝑖𝐿𝑏𝑖𝑅𝑢𝑖

𝑀

𝑖=1

 (B11) 

The VSC is determined based on the sum of the products of the uncentered correlation coefficients and the RMS values. The 

contribution of the i-th product term, 𝐿𝑎𝑖𝐿𝑏𝑖𝑅𝑢𝑖, to the VSC is weighted by 𝑤𝑖2. 15 
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Tables 
 

Table 1. Multiple statistics of CMIP5 models in simulating surface air temperature and precipitation in terms of 

climatological mean state and interannual variability. Tm (Pm): climatological mean surface air temperature (precipitation) 

in summer (June-July-August). Ta (Pa): temporal standard deviation of summer surface air temperature (precipitation). 5 

CMIP5 simulations and three individual groups of observational datasets are compared with the ensemble mean of three 

groups of SAT and precipitation data observed during the period from 1961 to 2000. RMS: the ratio of modeled to observed 

root mean square (RMS) values of the spatial pattern for each variable. CORR (RMSD): uncentered spatial correlation 

coefficient (root mean square deviation) between model and observational fields. RMSL, Rv, RMSVD measure the statistics 

of two vector fields, which can represent the overall statistics of all fields (Eqs. 3, 13, 16). RMSL was shown as the ratio of 10 

model simulated RMSL to the observed RMSL. RMS_stddev is the standard deviation of four RMS values, which describe 

the dispersion of RMS values of Tm, Pm, Ta, and Pa (Eq. 23). MIEI: multivariable integrated evaluation index (Eq. 24). 

Model performance is indicated by the color scale: lighter colors denote better model performance.  

 
  15 
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Captioned Figures 

 
Figure 1: VFE diagram for displaying multiple statistics of two vector fields. The vector similarity coefficient between two 

vector fields is given by the azimuthal position of the test field. The radial distance from the origin is proportional to the 

RMS length. LA and LB represent the RMS lengths of the test and reference vector fields, respectively. The RMSVD 

between the test and reference fields is proportional to their distance (dashed contours given in the same units as those for 

the RMS length). 
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Figure 2: VFE diagram describing the normalized climatological mean SAT, precipitation, and interannual variabilities 

of SAT and precipitation over a land area between 60°S–60°N simulated by 9 CMIP5 models compared with three groups 

of SAT and precipitation data observed during the period from 1961 to 2000. The RMS length and the RMSVD have been 

normalized by dividing the RMS length derived from the observed data. The line segment centered at each plotted point 

along the azimuthal direction represents twice standard deviations of the RMS values of various fields. The value of the 

MIEI for each model is also shown in the diagram. 
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Figure 3: Schematic diagram displaying the relationship between the RMSVD, RMSDL, and MIEI. The points A, B, and 

D represent different models. The RMSDL measures the overall difference between the modeled RMS values and the 

observed ones. The line segment BC is vertical with respect to the VFE diagram. The length of line segment BG is 

determined based on the vector field similarity, which measures the overall pattern similarity of various scalar fields 

relative to the observed ones. Thus, the MIEI index takes both the pattern similarity and the RMS values of various scalar 

fields into account. 
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Figure 4: Pyramid chart showing the relationship between three levels of metrics. The first level of metrics, i.e., correlation 

coefficient (R), RMS value, and RMSD, measures the model performance in terms of individual variables. The second level of 

metrics, i.e., VSC, RMSL, standard deviation of RMS values (𝝈𝑹𝑹𝑹), and RMSVD, is derived from the first level of metrics and 

summarizes the overall performance of a climate model in simulating multiple fields. The MIEI further summarizes the VSC, 

RMSL, and 𝝈𝑹𝑹𝑹𝟐  into a single index to rank various climate models in terms of simulating multiple fields. 
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