The seasonal relationship between intraseasonal tropical variability and ENSO in CMIP5

Tatiana Matveeva¹, Daria Gushchina¹ and Boris Dewitte^{2,3,4,5}

¹Faculty of Geography, Moscow State University, GSP-1, 119991, Leninskie Gory, Moscow, Russia

²Laboratoire d'Etudes en Géophysique et Océanographie Spatiale, Toulouse, France.
 ³Centro de Estudios Avanzado en Zonas Áridas (CEAZA), Coquimbo, Chile.
 ⁴Departamento de Biología, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.
 ⁵Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Coquimbo, Chile

10

Submitted (07/04/2017)

Revised (22/12/2017)

15

Abstract

The El Niño Southern Oscillation (ENSO) is tightly linked to the intraseasonal tropical variability (ITV) that contributes to 30 energise the deterministic ocean dynamics during the development of El Niño. Here the relationship between ITV and ENSO is assessed based on models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) taking into account the so-called diversity of ENSO, that is the existence of two types of events (Central Pacific versus Eastern Pacific El Niño). As a first step, the models' skill in simulating ENSO diversity is assessed. The characteristics of the ITV are then documented revealing a large dispersion within an ensemble of 16 models. 11 models exhibit some skill in simulating the 35 key aspects of the ITV for ENSO: the total variance along the equator, seasonal cycle and the characteristics of the propagation along the equator of the Madden-Julian oscillation (MJO) and convectively coupled equatorial Rossby waves (ER). 5 models that account realistically for both the two types of El Niño events and ITV characteristics are used for the further analysis of seasonal ITV/ENSO relationship. The results indicate a large dispersion among the models and an overall limited skill in accounting for the seasonal ITV/ENSO relationship. Implications of our results are discussed in lights of

40 recent studies on the forcing mechanism of ENSO diversity.

1 Introduction

The El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability at interannual time-scale in the Pacific

- 45 (Bjerknes 1969; Rasmusson and Carpenter, 1982). It originates in the equatorial Pacific and induces important climate and weather anomalies in many parts of the globe through the so-called teleconnections (Horel and Wallace, 1981; Keshavamurti, 1982; Trenberth et al., 1998; Diaz et al., 2001). Therefore predicting El Niño occurrence and amplitude, both in current condition and for the next century is a key societal need (Cai et al., 2015). The coupled ocean-atmosphere models in a wide range of complexity from "Earth system models" up to intermediate coupled models have demonstrated encouraging skill in ENSO forecast (http://iri.columbia.edu/our-expertise/climate/forecasts/enso), while simple models and observation networks were instrumental in clarifying the basic mechanisms and feedbacks at play during an El Niño (Jin, 1997; Neelin et al., 1998; Wang and Picaut, 2004). However the mechanisms behind the diversity of observed events as well as ENSO irregularity are still debated in the community (see Capotondi et al. (2015) for a review), which still poses a serious barrier for further improvement of El Niño forecast (Barnston et al. 2012, McPhaden, 2012; Zhao et al. 2016). Limitations
- 55 in our ability to forecast El Niño are largely associated to difficulty in simulating realistically the ITV (Lin et al., 2006) that acts as a stochastic atmospheric trigger with regards to the deterministic recharge-discharge process (Jin, 1997).
- The dominant intraseasonal mode in the tropics the Madden-Julian oscillation (MJO) was shown to be tightly related to ENSO through its relationship to episodes of Westerly wind events (WWE), short-lived, but strong westerlies developing over the western Pacific warm pool (e.g. Luther et al., 1983; Keen, 1982) that can trigger downwelling intraseasonal Kelvin waves (Kessler et al., 1995), a precursor to El Niño onset (Zhang and Gottschalck, 2002, McPhaden et al., 2006; Hendon et al.,
- al., 2007; Fedorov, 2002; Lengaigne et al., 2003; Boulanger et al., 2004). However the MJO is not the only important component of the ITV involved in the development of Westerly wind events (WWE). Puy et al. (2016) highlighted the role of equatorial Rossby (ER) wave in the generation of WWE and show that 41% of WWEs are associated to the combined occurrence of the ER and MJO convective phase. Consistently, Gushchina and Dewitte (2012) suggested that the activity of ER is associated to the enhanced intraseasonal Kelvin wave during the development of El Niño. While the anomalous

westerlies related to the convective phase of MJO is associated to the forcing of oceanic Kelvin waves in the Western Pacific in March-April preceding the El Niño peak, the intensification of the ER activity is observed in June-July over the equatorial central Pacific and tends to compensate for the Kelvin wave dissipation along its way through the eastern Pacific. Gushchina and Dewitte (2012) also highlight the different characteristics of the ENSO/ITV relationship with regards to the two types of

- Final Field States 10 El Niño, which adds a dimension to the complex of processes behind ENSO diversity. While most previous studies suggest that the changes in occurrence of the two types of El Niño events are related to the changes in mean oceanic state (Yeh et al., 2009; Choi et al., 2012; Xiang et al., 2013), owned to the coupled nature of the tropical Pacific system, the effect of changes in the properties of ITV itself cannot be ruled out to explain either ENSO diversity or its amplitude modulation, which can be considered a null hypothesis within the recharge-discharge paradigm (Jin, 1997) where ITV is viewed either as a white noise
- 75 or a state-dependant (red noise) external forcing of ENSO (Jin et al., 2007). This raises concerns on how the ITV contribution to ENSO development may change in the future climate, which motivates the present study. Prior to addressing the climate change issue, it is necessary to evaluate the climate models, in particular those participating to the CMIP5 for which different scenario of green-house gazes emissions are available. Although considered as the state-of-the-art of climate modelling, these models still present biases both in mean state and variability, which needs to be assessed carefully in order
- 80 to undertake process studies from the most realistic ones and gain confidence in the climate change projections. Regarding ENSO, previous recent studies have focused in assessing the skill of models in simulating the two types of El Niño events. Yu and Kim (2010) analyzed the Coupled Model Intercomparison Project (CMIP) phase 3 (CMIP3) and showed that most CMIP3 models (13 out of 19) can simulate realistically Central Pacific (CP) ENSOs, but only few of them (9 out of 19) can simulate realistically strong Eastern Pacific (EP) ENSOs. Only six models realistically simulate both types of events and their intensity ratio (Yu and Kim, 2010). CMIP phase 5 (CMIP5) generation models have demonstrated significant improvements in simulating the ENSO types (Kim and You, 2012; Ham and Kug, 2012; Taschetto et al., 2014; Xu et al., 2017). Firstly, the simulated spatial patterns of both types of event are closer to the observed ones. Secondly, the inter-model differences in the CP and EP events intensity is reduced in CMIP5 as compared to CMIP3 models. The decrease in the intermodel discrepancies is more pronounced for EP event. However 50% of the CMIP5 models still cannot simulate realistically

90 strong CP and EP El Niños, which is associated with a bias in ENSO asymmetry (Zhang and Sun, 2014; Karamperidou et al., 2016).

Other studies have focused on the assessment of the ITV in the CMIP data bases. Hung et al. (2013) evaluated the skill of 20 models from CMIP5 in simulating the MJO and Convectively Coupled Equatorial Waves (CCEW) and compared their result with the one obtained from CMIP3 models (Lin et al., 2006). They showed that CMIP5 models exhibit an overall improvement in the simulation of ITV, especially the MJO and several CCEW as compared to CMIP3 models. The CMIP5 models produce larger total intraseasonal variance of precipitation than the CMIP3 models, including larger variances of MJO, Kelvin, ER, and eastward inertio-gravity (EIG) waves. About one-third of the CMIP5 models generate the spectral peak of MJO precipitation between 30 and 70 days; however, the model MJO period tends to be longer than in the observations and only one of the 20 models is able to simulate a realistic eastward propagation of the precipitation patterns

100 associated to MJO.

95

While the ITV and ENSO characteristics in CMIP5 have been documented separately, to the author's knowledge, the evaluation of how the ITV relates to the El Niño cycle in CMIP5 models is lacking. This paper addresses this issue incorporating recent progresses in our understanding of ENSO, in particular its diversity (Capotondi et al., 2015). While a long-term motivation is to address the climate change issue, we are also guided by the will to identify the most skilful model

105 in order to carry out process studies and document model biases within a physically-based framework.The paper is organised as follows:

The model data base and the observed datasets used for the validation as well as the diagnostic methods used in this study are described in section 2. The simulation of two types of El Niño, ITV components and ITV/ENSO relationship in CMIP5 models are analyzed in section 3. A summary and discussion are given in section 4.

110 2 Methods and datasets

2.1 Data

The outputs of 23 models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) used for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) have been analyzed (see models list in Table 1). 250-years long simulations of the Pre-Industrial (hereafter PI) experiment (Taylor et al., 2012) are used for the

- 115 evaluation of ENSO types, while a selected 20-years among these simulations are used to diagnose the ITV characteristics. The motivation for focusing on the PI experiment and not on the Historical simulations as it is commonly done for model evaluation stands in the fact that it eases the interpretation of the results since there is no external forcing in the PI experiments, which provides a benchmark for further assessment of the sensitivity of the ENSO/ITV to climate change in the CMIP5 models. Monthly-mean Sea Surface Temperature (SST) over 250-years period and daily-mean zonal wind at 850 hPa
- 120 over selected chunks of 20 years with daily data are used. Taking into account the decadal modulation of ITV/ENSO relationship the data of the Historical simulations were used for the statistical analysis of ITV/ENSO relationship, which presents data with daily resolution over a longer period than 20 years. 66 years were used for the analysis (1950-2005). For comparison of the results with observations, the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST, Rayner et al. (2003)) archive and the NCEP/NCAR Reanalysis (Kalnay et al., 2006) zonal wind at 850 hPa are used.

125 2.2 Methods

To document the ITV properties we use the technique proposed by Wheeler and Kiladis (1999). This method is identical to those used in previous studies evaluating the realism of MJO and CCEW in CMIP3 (Lin et al., 2006) and CMIP5 (Hung et al., 2013) models. It is based on the decomposition of the symmetric and antisymmetric relative to the equator components of the field in the frequency-wavenumber space. Inversed Fourier transform is then used to recompose the signal in the

130 desired frequency and wavenumber bands. The frequency and wavenumber intervals were derived from the normalized space-time spectrum for U850 and are centered on the spectral maximum of U850 (cf. Gushchina and Dewitte (2011)). In the models the localization of spectral maximum may differ from the Reanalysis. However sensitivity tests show that slight changes in the frequency/wavenumber interval does not change significantly the characteristics of the recomposed signal, therefore fixed boundaries in the frequency and zonal wavenumber domain were used. These are for MJO – zonal

135 wavenumber 1-3, period 30-96 days, for equatorial Rossby waves - zonal wavenumber -1...-8, period 10-50 days, with negative (positive) zonal wavenumber corresponding to the westward (eastward) propagating waves. For Rossby waves the frequency wavenumber bands is also limited by the dispersion curves corresponding to values of the atmosphere equivalent depth ranging from 8 m to 90 m, which follows Wheeler and Kiladis (1999).

Following Hayashi (1979), only the part of the eastward power that is incoherent with its equivalent westward power

- 140 represents the true eastward propagating signal. Moreover the results of Jiang et al. (2015) emphasize the dominant stationary signals in many model simulations. To verify if the westward counterpart is present in the models, we recomposed the signal in the same frequency intervals that for MJO and Rossby waves but for the opposite sign of zonal wave numbers: -1...-3 for MJO and +1..+8 for Rossby waves. Insignificant correlation between westward and eastward signals confirms that westward and eastward parts are incoherent, validating *a posteriori* our decomposition approach of the model outputs.
- 145 The amplitude of ER and MJO was calculated by taking the root mean square (rms) of the recomposed signal in a running window which span depends on the wave's type (90 and 48 days for MJO and Equatorial Rossby waves respectively). Then the running rms was considered as monthly averaged. To calculate the anomalies, the mean climatology over the investigated period was removed.

We use here U850 field for ITV filtering instead of Outgoing Longwave Radiation (OLR) or brightness temperature signals

- 150 from satellite data that are commonly used to derive frequency-wavenumber of ITV noting that the filter bands are similar for OLR and U850 as predicted by a simple dynamical model of ITV (Thual et al., 2014). Moreover the use of zonal wind field eases the interpretation of the results since it is the westerly wind anomalies that serve as a physical conduit from the ITV to the ENSO dynamics. This approach follows previous relevant studies (McPhaden et al. 2006, Hendon et al. 2007). In order to depict ENSO variability in terms of its two flavors (or regimes), we used the indices defined by Takahashi et al.
- 155 (2011), the so-called E and C indices, that consists in the linear combination (through rotation) of the first two EOFs of the SST anomalies over the tropical Pacific (20°S-20°N; 120°E-90°W). Whereas the E index accounts for the extreme El Niño events that are of EP type, the C index grasps the variability associated to the CP El Niño and La Niña events. These indices,

independent by construction (i.e. their correlation is zero), can be conveniently used for correlation or regression analyses. In particular, we infer the mode patterns associated to the two types of El Niño by bilinearly regressing the SST anomalies over

160 the tropical Pacific onto the E and C indices. These mode patterns have a more consistent physical interpretation than the modes patterns associated to first two EOF modes of SST anomalies over the tropical Pacific (see Takahashi et al. (2011) for details).

The CP and EP events were selected using the time series of E and C indices. E/C index above 0.75 times their standard deviation during at least 3 consecutive months of the winter period (October to March) defines EP/CP El Niño events.

165 **3 Results**

3.1 The two flavors of El Niño

As a first step, the models' skill in simulating ENSO diversity is assessed based on the comparison of the E and C modes with those of observations. The E and C patterns for the ensemble mean of the 23 CMIP5 models (see Table 1 for the list of models) and for the observation (HadISST data set) are presented on Fig. 1. As a metrics of the skill of the model in 170 accounting for the amplitude and pattern of the modes, we estimate the projection of model pattern onto the observed one within 10°S-10°N (bottom panel of Figure 1). The Figure 1 indicates that the model ensemble is quite realistic in accounting for the two types of El Niño in terms of their spatial pattern. The ensemble mean hides however some dispersion among models that is illustrated by Figure 1e. The discrepancy between the models and observation in terms of the X value (see formula in the caption) is due to the model's tendency to have a SST anomaly pattern shifted to the west compared to the 175 observations (Kim and You, 2012; Ham and Kug, 2012), but also to the differences in the amplitude of the mode patterns, which is related to the deficiency of the models in accounting realistically for the ENSO asymmetry (Zhang and Sun, 2014) and non-linearity (Karamperidou et al., 2016). In general though, the models simulate a reasonable ENSO period (not shown) with in particular a shorter period of the E index (~3-6 years) than the C index (~5-8 years) in agreement with the observations. The objective classification of the models is difficult considering the number of other important ENSO properties to consider (e.g. seasonal phase locking, asymmetry, amplitude modulation, relative contribution of feedbacks) 180

than just its diversity. We have also to consider a compromise between the model skill in simulating realistically ENSO properties and ITV (see next section). For simplicity, and considering the dispersion in ENSO amplitude among models, we thus decide to quantify the model skill in simulating ENSO diversity based on a simple metrics consisting in the spatial correlation of the E and C patterns between the observations and models within 5°S-5°N (Table2) and consider that the

185 model is "realistic" enough if the value of this metric is above 50%. This excludes 3 models from the subsequent analyses: GFDL-CM3, GFDL-ESM2M and CSIRO-Mk3. We will see hereafter that the evaluation of ITV in the models yields a more stringent test of the model realism, which will reduce drastically the number of model for the assessment of the ENSO/ITV relationship (section 3.3).

190 **3.2 Intraseasonal tropical variability**

The characteristics of ITV are documented here with the focus on its intensity, seasonality and propagating features. Earlier studies have evidenced biases in the simulation of MJO and CCEW in CMIP models (Guo et al., 2015; Jiang et al., 2015; Klingman et al., 2015; Xavier et al., 2015), with however the CMIP5 models being more realistic (Hung et al., 2013) than the CMIP3 models (Lin et al., 2006). Our analysis is here based on the most realistic models in terms of their skill in simulating the two type of El Niño. Some modes are not considered in the analyses because the daily data of U850 were not available in open access. We thus retain 16 models: ACCESS1-3, BNU-ESM, CanESM2, CCSM4, CMCC-CM, CNRM-CM5, EC-EARTH, HadGEM2-CC, HadGEM2-ES, INMCM4, IPSL-CM5A-MR, MIROC5, MPI-ESM-LR, MPI-ESM-P MRI-CGCM3 and NorESM1-M. 20-years of the PI experiment for each model are analyzed which is compared to the

NCEP/NCAR Reanalysis data over the period 1980-1999.

Figure 2 presents the space-time spectra normalized above the background spectra for symmetric component of U850 wind for the observations (Figure 2 upper panel) and for the CMIP5 models. Superimposed upon these plots are the dispersion curves for odd meridional mode number of equatorial waves for various equivalent depths (h=12, 25 and 50m). 11 models among 16 are capable of simulating the eastward propagating MJO signal with maximum at zonal wavenumber one in relative good agreement with the observations. However the intensity of MJO associated spectral maximum differs among 205 the models. 5 models among 16 simulate unrealistic westward propagating disturbances with zonal wavenumber 1-3. 7 models (BNU-ESM, CCSM4, CMCC-CM, INM-CM4, MIROC5, MPI-ESM_P and Nor ESM1-M) simulate a realistic ER spectral maximum (Figure 2).

The distribution of the variance of the MJO and ER along the equatorial band is also key to account for the relationship between ENSO and ITV considering that the balance between oceanic feedbacks which depends on the sloping mean 210 thermocline determines the nature of the coupled instability during ENSO (An and Jin, 2001). The rms of the ITV components over 20 years averaged between 15°N and 15°S were plotted as a function of longitude for the models and the NCEP/NCAR Reanalysis (Figures 3abef). The location of the MJO maximum in the eastern Indian Ocean and western Pacific is relatively realistically simulated by ACCESS1-3, BNU-ESM, CCSM-4, CMCC-CM, EC-EARTH, HadGEM2-CC, HadGEM2-ES, MIROC5, MPI-ESM-P, and NorESM1-M models. In particular, these models have a root mean square error 215 (RMSE) that is ~50% of the variance of the NCEP/NCAR data in the tropical Pacific region (Figures 3cd). However in CMCC-CM and NorESM1-M the maximum is shifted toward the central Pacific, while ACCESS1-3, HadGEM2-CC,

HadGEM2-ES and EC-EARTH underestimate the total MJO variance in the eastern Indian and western Pacific oceans. CanESM2, CNRM-CM5, IPSL-CM5A-MR, MPI-ESM-LR and MRI-CGCM3 do not exhibit a significant peak in the eastern Indian and western Pacific oceans which may be critical for the proper simulation of the relationship between ITV

- and oceanic Kelvin wave activity. 9 models out of 16 simulate a relatively realistic magnitude and longitudinal distribution of ER variance (Figures 3ef) associated with a relatively weak RMSE (Figures 3gh). Noteworthy, the ER variance maximum in the central Pacific is correctly simulated by the ACCESS1-3, CMCC-CM, HadGEM2-CC and HadGEM2-ES. As a summary of the results, we provide the Table 3 that synthesizes the models' skill for the various diagnostics carried out in this study. Since mainly based on the visual appreciation of the figures and thus somehow subjective, Table 3 is mostly
- 225 provided for clarity and readability.

In the following, the seasonality of the ITV is assessed considering the focus of this study on the seasonal dependence of the ENSO/ITV relationship.

The MJO has a maximum intensity in the summer hemisphere (i.e. in the Northern Hemisphere in July and in the Southern Hemisphere in January) which implies that the MJO variance peaks along the equator in boreal spring (Zhang and Dong,

- 230 2004) when it may act efficiently as an ENSO trigger. Therefore the MJO cross-equatorial seasonal migration is a key feature that needs to be realistically simulated in the models. The MJO seasonal variability is thus estimated over the three latitudinal belts: 10°N-15°N, 5°N-5°S and 10°S-15°S (Figure 4). For ER, since its variance remains confined to the equatorial band all year long, its seasonal cycle is estimated in the 5°N-5°S belt only (Figure 5). In the NCEP/NCAR Reanalysis, the MJO exhibits a larger variability in the summer hemisphere with a higher amplitude in the Southern than in
- Northern hemisphere. In the northern tropical Pacific (10°N-15°N), the MJO activity peaks from June to September (Figures 4ab) while in the southern tropical Pacific (15°S-10°S), it peaks in from November to March (Figures 4ef). In the near equatorial area there is no marked seasonal peak, but a slight intensification from November to April and a relaxation from May to October are observed (Figures 4cd). The seasonal shift of the MJO maximum drastically differs among the models. The comparison of the models with the observations indicates that HadGEM2-CC, ACCESS1-3, MPI-ESM-P, CMCC-CM,
- 240 BNU-ESM and MIROC5 are the models that simulate the MJO seasonal cycle the most realistically since they have the smallest values of RMSE along the equator (Figure 6a). CCSM4, NorESM1-M and INM-CM4 models simulate the correct timing of the seasonal maximum but with lower MJO amplitude for INM-CM4 and larger amplitude for CCSM4 and NorESM1-M as compared to the observations. The seasonal cycle of ER is reasonably simulated by BNU-ESM, CCSM4, CMCC-CM, HadGEM2-CC, HadGEM2-ES, INMCM4, MIROC5 and NorESM1-M (Figures 5ab and 6). The reader is

invited to refer to Table 3 for a summary of the models' skill in simulating ITV seasonality.

245

Further, the propagating characteristics of the MJO and ER along the equator are documented for the most skilful models in terms of the amplitude and seasonal cycle of the ITV. Figures 7 and 8 show the lag correlation of the MJO and ER filtered U850 tiemseries averaged between 5°N and 5°S with respect to itself at the equator and 110°E for MJO and 150°E for ER, respectively. Superimposed upon these plots are the lines corresponding to phase speeds of 5, 7, 10, and 15m/s. The observation evidences an eastward propagating MJO pattern with a phase speed of about 5m/s (Figure 7). 6 models among 11 display propagation characteristics that are consistent with the observations. The MJO phase speed is slightly slower than in observations in CMCC-CM, EC-EARTH, INM-CM4, MIROC5 and MPI-ESM-P. Noteworthy Hung et al. (2013) that

documented the MJO signal from precipitation data, find a very slow propagation in most CMIP5 models, which is not the case here for the MJO associated patterns of the low troposphere winds. The Rossby wave propagates westward with phase

speed around 7m/s to the west of the dateline and 5 m/s to the east of the dateline in the observations. 8 models simulate a realistic Rossby wave phase speed value, except for CMCC-CM, INM-CM4 and NOR-ESM1-M where the phase speed is slower (Figure 8).

3.3 ITV/ENSO seasonal relationship

- In this section, our objective is to illustrate the large dispersion among models of the skill in simulating the ITV/ENSO relationship, despite an overall good skill in simulating ITV and ENSO diversity separately for some of them. We thus arbitrarily select 5 models among the "good" models (See Table 3). One difficulty for assessing the ITV/ENSO relationship is associated to fact that it can experience a low-frequency modulation. Gushchina and Dewitte (2017) showed in particular that there is a significant decadal variability of the ITV/ENSO relationship over the observational record (see Figure S1), which arises either from change in mean state impacting the ENSO dynamics or changes in the properties of ITV itself. Thus, in order to take into account such a decadal modulation, the 11-year running mean of the lagged correlation between the MJO and ER activity indices in the equatorial Pacific and the E and C indices in January is first assessed in order to
- determine the periods (in the historical runs) when the statistics is robust (See Figure S2 for an example for the CMCC-CM model). The MJO and ER indices are calculated as running variance of U850, filtered in the domain of MJO and ER, averaged over the regions where the maximum of ITV/ENSO relationship is observed in Reanalysis (Guhschina and Dewitte 2011): western Pacific (120°-180°E; 5°S-5°N) for MJO and central Pacific (140°E-160°W; 5°S-5°N) for Rossby waves. In order to select the periods, following Gushchina and Dewitte (2017), we define a measure of the "predictive skill" of the either the MJO or ER with respect to ENSO. It is defined as follows:

$$P_{ITV}^{ENSO}(t) = \int_{\tau=Mar(-1)}^{\tau=Jan(0)} \frac{cor_{ITV}^{ENSO}(\tau,t)}{(Jan(0) - Mar(-1))^2} \cdot (Jan(0) - \tau) \cdot d\tau \quad (\text{Eq. 1})$$

where $cor_{ITV}^{ENSO}(\tau, t)$ represents the correlation as a function of time (t) and time lag (τ) between the ENSO index (either E or 275 C indices) in Jan(0) (i.e. at the ENSO peak) and the considered month of ITV (either MJO or ER) activity. $cor_{ITV}^{ENSO}(\tau, t)$ within the integral is set to zero when it is not statistically significant at the 95% confidence level. $P_{ITV}^{ENSO}(t)$ is thus the weighted ITV/ENSO correlation between Mar(-1) and Jan(0) which gives larger weight to correlation at large time lags (1 in Mar(-1)) and little at short lags (0 in Jan(0)), and can therefore be interpreted as a measure of the predictive value of either MJO and ER with regards to the E and C indices. The timeseries of $P_{MJO}^{E}(t)$, $P_{ER}^{C}(t)$ and $P_{ER}^{C}(t)$ for the model and 280 the observations are provided in Figure 9. For the following diagnostic we identify the period of strong MJO/E (C) and ER/E(C) relationship as a period with positive predictive score during at least 16 years (in accordance with the observations where the period of strong ITV/C relationship is 2000-2015). Note that the mean over the full period was removed in the models for comparison between them, but not in the observations (for comparison with Gushchina and Dewitte (2017)). The observations exhibit higher values of the predictive score than the model anyway (see also supplementary material). In some 285 models there is no extended period of time (i.e. period longer than 16 years) when the value of the predictive score is positive over the whole record. In this case, we choose to consider a 16-year period centered on the peak value of the predictive score. The periods used for the subsequent lag correlation analysis are provided in Table 5. The reference period for the NCEP/NCAR reanalysis is 1979-1998 for EP El Niño and 2000-2015 for CP El Niño, selected as a periods of occurrence of mostly EP or CP El Niño events respectively. The lagged correlation between the C and E indices with respect

Consistently with the results conveyed by Figure 9, the ITV/ENSO relationships associated to the two types of El Niño events is very diverse among models, and does not compared in a straight forwards manner with the observations. In the observations, the MJO activity in March–July is ahead the peak SST anomalies (correlation greater than 0.6) 4 to 12 months (3 to 9 months) during EP (CP) El Niño events (Figures 10ag). The significant positive correlation persists up to positive time-lags (MJO lags SST) during CP El Niño event mirroring the strong MJO after the SST peak. During EP El Niño event the MJO precursor signal is present in all models but the correlation is lower in BNU-ESM and INMCM4 as compared to the observations (Figure 10be), while MIROC 5 simulates shorter time lag between MJO intensification and SST raising (Figure 10f). Note all models exhibit too strong MJO intensity after the El Niño peak (positive correlation at positive time lags). The

to the MJO and ER activity indices is then calculated as a function of calendar month (Figures 10 and 11).

290

300 however a different timing than the observations. In BNU-ESM although the pattern of the lag-correlation is the most realistic amongst the 3 models (correlation in the lag-month space between observations and models reaches 0,38, 0,03, and -0,22 for BNU-ESM, CMCC-CM and MIROC5 respectively), the correlation values prior to the ENSO peak are lower than

MJO intensification prior to CP El Niño event is simulated by BNU-ESM, CMCC-CM and MIROC5 (Figures 10hjl), with

in observation. Conversely, in CCSM4, MJO activity is weakened prior to the ENSO peak (Figure 10i). INM-CM4 simulates unrealistic MJO weakening in April-August preceding the CP El Niño events (Figure 10k).

305 Regarding Rossby wave, the observations indicate that the ER activity intensifies in February-April and July-September of the year prior to the EP El Niño peak (Figure 11a). During CP El Niño, the Rossby wave activity appears also a good precursor and the relationship with SST anomalies persist after the peak phase (Figure 11g). All five models have limited skill in simulating these observed characteristics. Only three models (CMCC-CM, MIROC5 and BNU-ESM) exhibit some features comparable to the observations. CMCC-CM and MIROC5 simulate the increased ER activity prior to EP El Niño

310 peak (Figure 11df), while BNU-ESM has some skill in terms of the ER/C relationship (Figure 11h).

4. Summary and discussion

In this paper, we question the extent to which the models that are used for assessing the change in ENSO properties under global warming (i.e. CMIP5) are able to account for a fundamental ENSO property found in the observations, that is the

- tendency of ITV activity, in particular the MJO, to increase one to two seasons prior to the ENSO peak (McPhaden et al. 2006; Hendon et al., 2007; Gushchina and Dewitte, 2012). Five CMIP5 models (BNU-ESM, CCSM4, CMCC-CM, INM-CM4 and MIROC5) are retained that have been evaluated among a total of 16 that exhibit relatively good skills in simulating many aspects of the ITV, that is, its variance along the equator, its seasonality and the propagation characteristics of the MJO and ER. These 5 models have also some skills in accounting for the so-called ENSO diversity, that is the existence of two
- types of El Niño events, the EP and CP events. Despite the ability of these models to simulate relatively realistically both the ITV characteristics and the ENSO diversity, they exhibit limited skill in simulating the seasonal ENSO/ITV relationship. In particular, a large dispersion among these five models is found in terms of the lag-correlation between ITV and the two ENSO indices accounting for both type of event (Figures 10 and 11). Noteworthy, still, the models captures distinct patterns of the MJO and ER activity in relation with the two types of event. The limited skill in terms of the ENSO/ITV relationship of the models raises concerns on many aspects. First, it questions the extent to which ENSO in the models is influenced by
- other forms of external forcings not necessarily related with the ITV. This would be consistent with recent studies

(Dommenget and Yu, 2017; Takahashi et al., 2017) that suggests that ENSO is likely to be more influenced by external forcing than previously thought. In particular Takahashi et al. (2017) shows, based on the experimentation with a conceptual non-linear recharge-discharge model, that the role of the low-frequency component of the external forcing (interannual

- timescales) is actually key to trigger El Niño events and that there can have extreme El Niño events without a significant recharge of the heat content. What happens in 2014 when a strong El Niño event was expected after strong WWBs in February-March similar to 1997 (Menkes et al., 2014), was also the indication that external forcing is key for the development of El Niño independently of whether or not the deterministic recharge-discharge process is at work (Hu and Fedorov, 2016; Levine and McPhaden, 2016). There is also a large body of literature showing the influence of remote
- 335 regions from the tropical Pacific on ENSO (e.g. You and Furtado (2017) among many others). Within the tropical Pacific, ENSO can be influenced by the so-called Meridional Mode that operates through wind-evaporation-SST feedback either in the Northern hemisphere (Vimont et al. 2001; Chiang and Vimont 2004; Yu and Kim 2011; Larson and Kirtman 2013) or the Southern hemisphere (Zhang et al., 2014). Therefore ENSO precursors/triggers are not limited to the ITV and its projection on the ocean wave dynamics. Our results thus suggest that external forcing of ENSO in the CMIP5 models may be not
- 340 predominantly through ITV. Another related aspect is that ITV may not be just an additive forcing for ENSO but can be considered a state dependent noise forcing (Jin et al., 2007). In Reanalysis data, its amplitude was also shown to be critical for the ENSO amplitude modulation (Kug et al. 2008, Levine and Jin 2015). Interestingly, Levine et al. (2016) demonstrated that CMIP5 models are unable to correctly simulate the state-dependent noise forcing of ENSO, which may involve the model inability to reproduce the ITV/ENSO seasonal dependence. Further investigation is required to relate the statistical
- 345 analysis of nature (additive versus multiplicative) of the atmospheric forcing to the mechanistic understanding of how the atmospheric forcing is modulated by mean state conditions. This would be critical for advancing on the physical interpretations of the statistical results based on the sensitivity of the CMIP models to global warming, such the doubling in the occurrence of extreme El Niño events in the future in response to greenhouse warming (Cai et al., 2014).

Code availability

The codes in Fortran and Matlab are available from the corresponding author upon request (Daria Gushchina, dasha155@mail.ru).

355 Acknowledgments

This study is supported by the Russian Foundation of Basic Research grants No.15-05-06693 and No.16-35-00394\16. The study is carried out in the frame of the scientific program of Faculty of Geography of Moscow State University No.AAAA-A16-116032810086-4. B. Dewitte acknowledges supports from FONDECYT (project 1151185) and from LEFE-GMMC (project STEPPE).

360

References

- An, S-I., and F-F. Jin.: Collective role of zonal advective and thermocline feedbacks in ENSO mode, J. Climate, 14, 3421–3432, doi: 10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2, 2001.
- 365 Barnston, A., Tippett, M.K., L'Heureux, M.L., Li, S., DeWitt, D.G.: Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? B. Am. Meteorol. Soc., 93, 631–651, doi:10.1175/BAMS-D-11-00111.1, 2012.
 - Bjerknes, J.: A possible response of the atmospheric Hadley circulation to equatorial anomalies of Ocean temperature, Tellus, 18(4), 820-829, 1966.
- Boulanger, J.-P., Menkes, C., and Lengaigne, M.: Role of high- and low-frequency winds and wave reflection in the onset, growth and termination of the 1997/1998 El Niño, Clim. Dynam., 22(2-3), 267–280, doi:10.1007/s00382-003-0383-8, 2004.

Cai, W., et al.: ENSO and greenhouse warming, Nat. Clim. Change, 5, 849–859, doi:10.1038/nclimate2743, 2015. Capotondi, A., Ham, Y. G., Wittenberg, A. T., and J.-S. Kug: Climate model biases and El Niño Southern Oscillation

375 (ENSO) simulation, US CLIVAR Variations, 13(1), 21-25, 2015.

- Chang, P., Wang, B., Li, T., and L. Ji: Interactions between the seasonal cycle and the Southern Oscillation—Frequency entrainment and chaos in an intermediate coupled ocean–atmosphere model, Geophys. Res. Lett., 21, 2817–2820, doi: 10.1029/94GL02759, 1994.
- Chang, P.L. Ji, B. Wang, and T. Li: Interactions between the seasonal cycle and El Niño–Southern Oscillation in an intermediate coupled ocean–atmosphere model, J. Atmos. Sci., 52, 2353–2372, doi:10.1175/1520-0469(1995)052<2353:IBTSCA>2.0.CO;2, 1995.
 - Chen, C., et al.: ENSO in the CMIP5 Simulations: Life Cycles, Diversity, and Responses to Climate Change, J. Climate, 30(2), 775-801, doi:10.1175/JCLI-D-15-0901.1, 2017.
- Chiang, J.C.H., Vimont, D.J.: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17(21), 4143–4158, doi:10.1175/JCLI4953.1, 2004.
 - Choi, J., An, S.I., Yeh, S.W.: Decadal amplitude modulation of two types of ENSO and its relationship with the mean state, Clim. Dyn., 38, 2631–2644, doi: 10.1007/s00382-011-1186-y, 2012.
 - Diaz, H. F., Hoerling, M. P. and J. K. Eischeid: ENSO variability, teleconnections and climate change. Int. J. Climatology, 21, 1845-1862, doi:10.1002/joc.631, 2001.
- 390 Dommenget, D. and Y. Yu: The effects of remote SST forcings on ENSO dynamics, variability and diversity, Climate Dynamics, 2017, *in press*.
 - Fedorov, A.: The response of the coupled tropical ocean-atmosphere to westerly wind bursts, Q. J. Roy. Meteor. Soc., 128(579), 1–23, doi:10.1002/qj.200212857901, 2002.
- Gill, A. E.: Some simple solutions for heat induced tropical circulation, Q. J. Roy. Meteor. Soc., 106, 447-462, doi:10.1002/qj.49710644905, 1980.
 - Glantz, M., R. Katz, and N. Nicholls (eds.): Teleconnections Linking Worldwide Climate Anomalies, Cambridge University Press, Cambridge, 1991.
 - Guo, Y., Duane, E., Waliser, and Xianan, J.: A systematic relationship between the representations of convectively coupled equatorial wave activity and the Madden–Julian oscillation in climate model simulations, J. Climate, 28 (5), 1881-
- 400 1904, 1881-1904, doi: 10.1175/JCLI-D-14-00485.1, 2015.
 - Gushchina, D., and B, Dewitte: The relationship between intraseasonal tropical variability and ENSO and its modulation at seasonal to decadal timescales, Cent. Eur. J. Geosci., 1(2), 175-196, doi: 10.2478/s13533-011-0017-3, 2011.
 - Gushchina, D., and B. Dewitte: Decadal modulation of the ITV/ENSO relationship and the two types of El Niño, Clim. Dynam., 2017, *submitted*.
- 405 Gushchina, D., and B. Dewitte: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño, Mon. Weather Rev., 140(11), 3669-3681, doi: 10.1175/MWR-D-11-00267.1, 2012.
 - Ham, Y.-G., and J.-S. Kug: How well do current climate models simulate two types of El Niño? Clim Dyn, 39 (1-2): 383-398, doi:10.1007/s00382-011-1157-3, 2012.

- Hayashi, Y.: A generalized method for resolving transient disturbances into standing and travelling waves by space-time
 spectral analysis, J. Atmos. Sci., 36, 1017–1029, doi: 10.1175/1520-0469(1979)036<1017:AGMORT>2.0.CO;2, 1979.
 - Hendon, H. H., Wheeler, M. C. and C. Zhang: Seasonal dependence of the MJO–ENSO relationship, J. Climate, 20, 531– 543, doi:10.1175/JCLI4003.1, 2007.
- Horel, J. D. and J. M. Wallace: Planetary-Scale Atmospheric Phenomena Associated with the Southern Oscillation, Mon.
 Weather Rev., 109, 813-829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2, 1981.
 - Hu, S. and Fedorov, A.V.: An exceptional easterly wind burst stalling El Niño of 2014, PNAS, 113(8), 2005-2010, doi: 10.1073/pnas.1514182113, 2016.
 - Hung, M. P., et al.: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models, J. Climate, 26(17), 6185-6214, doi:10.1175/JCLI-D-12-00541.1, 2013.
- 420 Jiang, X., et al.: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations, J. Geophys. Res.: Atmos, 120(10), 4718-4748, doi: 10.1002/2014JD022375, 2015.
 - Jin, F.-F., Lin. L, Timmermann, A., Zhao, J.: Ensemble-mean dynamics of the ENSO recharge oscillator under statedependent stochastic forcing, Geophys. Res. Lett., 34, L03807, doi:10.1029/2006GL027372, 2007.
 - Jin, F.-F.: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model, J. Atmos. Sci., 54, 811–829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2, 1997.

425

- Jin, F.-F.: Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño–Southern Oscillation, Science, 274, 76–78, doi: 10.1126/science.274.5284.76, 1996.
- Kalnay, E., et al.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77(3), 437-471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
- 430 Kapur, A., and C. Zhang: Multiplicative MJO Forcing of ENSO, J. Climate, 25, 8132-8147, doi:10.1175/JCLI-D-11-00609.1, 2012.
 - Karamperidou, C., Jin, F. F., Conroy, J. L.: The importance of ENSO nonlinearities in tropical pacific response to external forcing, Clim. Dyn., 49(7-8), 2695-2704, doi: 10.1007/s00382-016-3475-y, 2017.
 - Keen, R. A.: The role of cross-equatorial tropical cyclone pairs in the Southern Oscillation, Mon. Weather Rev., 110(10), 1405-1416, doi: 10.1175/1520-0493(1982)110<1405:TROCET>2.0.CO;2, 1982.
 - Keshavamurty, R. N.: Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleconnections of the Southern Oscillation, J. Atmos. Sci., 39, 1241-1259, doi:10.1175/1520-0469(1982)039<1241:ROTATS>2.0.CO;2, 1982.
- Kessler, W. S., McPhaden, M. J., and K. M. Weickmann: Forcing of intraseasonal Kelvin waves in the equatorial Pacific, J.
 Geophys. Res., 100, 10613-10631, doi:10.1029/95JC00382, 1995.
 - Kim, S. T. and J.-Y. Yu: The two types of ENSO in CMIP5 models, Geophys. Res. Lett, 39(11), L11704, doi: 10.1029/2012GL052006, 2012.

- Klingaman, N. P., et al.: Vertical structure and physical processes of the Madden-Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening, J. Geophys. Res.: Atmos, 120(10), 4690-4717, doi: 10.1002/2014JD0223742015, 2015.
- 445
 - Kug, J.-S., Jin, F.-F., Sooraj, K.P., Kang, I.-S.: State-dependent atmospheric noise associated with ENSO, Geophys. Res. Lett., 35 (5), L05701, doi: 10.1029/2007GL032017, 2008.
 - Larson, S., Kirtman, B.: The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model, Geophys. Res. Lett., 40, 3189–3194, doi: 10.1002/grl.50571, 2013.
- 450 Lee, T., and M. J. McPhaden: Increasing intensity of El Niño in the central-equatorial Pacific, Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007, 2010.
 - Lengaigne, M., et al.: The March 1997 Westerly Wind Event and the Onset of the 1997/98 El Niño: Understanding the Role of the J. Atmospheric Response, Climate, 16(20), 3330-3343, doi:10.1175/1520-0442(2003)016<3330:TMWWEA>2.0.CO:2. 2003.
- 455 Levine A. F. Z., and M. J. McPhaden: How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start, Geophys. Res. Lett., 43(12), 6503-6510, doi:10.1002/2016GL069204, 2016.
 - Levine A. F. Z., et al.: Extreme Noise-Extreme El Niño: How State-Dependent Noise Forcing Creates El Niño-La Niña Asymmetry, J. Climate, 29, 5483-5499, doi:10.1175/JCLI-D-16-0091.1, 2016.
 - Levine, A.F.Z. and F.-F. Jin: A simple approach to quantifying the noise ENSO interaction. Part I: Deducing the state
- 460 dependency of the windstress forcing using monthly mean data, Clim. Dyn., 48(1-2), 1-18, doi 10.1007/s00382-015-2748-1, 2015.
 - Lin, J.-L., et al.: Tropical intraseasonal variability in 14 IPCC AR4 climate models Part I: convective signals, J. Climate, 19, 2665-2690, doi:10.1175/JCLI3735.1, 2006.
 - Luther, D.S., Harrison, D.E., and Knox, R.A.: Zonal winds in the central equatorial Pacific and El Niño, Science, 222(4621),
- 465 327-330, doi:10.1126/science.222.4621.327, 1983.
 - McPhaden, M. J., Zhang, X., Hendon, H. H., and M.C. Wheeler: Large scale dynamics and MJO forcing of ENSO variability, Geophys. Res. Lett., 33, L16702, doi:10.1029/2006GL026786, 2006.
 - McPhaden, M. J.: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies, Geophys. Res. Lett., 39, L09706, doi:10.1029/2012GL051826, 2012.
- 470 Menkes, C. E., et al.: About the role of Westerly Wind Events in the possible development of an El Nino in 2014, Geophys. Res. Lett., 41(18), 6476-6483, doi:10.1002/2014GL061186, 2014.
 - Neelin, J. D., et al.: ENSO theory, J. Geophys. Res.: Oceans, 103(C7), 14261-14290, doi:10.1029/97JC03424, 1998.

Philander, S. G.: El Niño, La Niña and the Southern Oscillation, Academic Press, 289, 1990.

Puy, M., Vialard, J., Lengaigne, M., and E. Guilyardi: Modulation of equatorial Pacific westerly/easterly wind events by the 475 Madden-Julian oscillation and convectively-coupled Rossby waves, Clim. Dynam., 46(7-8), 2155-2178, doi:10.1007/s00382-015-2695-x, 2016.

- Rasmusson, E. M., and T.H. Carpenter: Variations in Tropical Sea-Surface Temperture and Surface Wind Fields associated with the Southern Oscillation El Niño, Mon. Weather Rev., 110, 354-384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2, 1982.
- 480 Rayner, N. A., et al..: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.: Atmos., 108(D14), doi:10.1029/2002JD002670, 2003.
 - Roundy, P.E., and G.N. Kiladis: Observed relationship between oceanic Kelvin waves and atmospheric forcing. J. Climate, 19, 5253–5272, doi:10.1175/JCLI3893.1, 2006.
 - Roundy, P.E., and J.R. Kravitz: The association of the evolution of intraseasonal oscillations to ENSO phase, J. Climate, 22,
- 485 381-395, doi:10.1175/2008JCLI2389.1, 2009.
 - Takahashi, K., Karamperidou, C. and B. Dewitte: A simple theoretical model of strong and moderate El Niño regimes, Clim. Dyn., 2017, *Accepted upon minor revision*.
 - Takahashi, K., Montecinos, A., Goubanova, K., and B. Dewitte: ENSO regimes: Reinterpreting the canonical and Modoki El Niño, Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364, 2011.
- 490 Taschetto, A. S, et al.: Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections, J. Climate, 27(8), 2861-2885, doi:10.1175/JCLI-D-13-00437.1, 2014.
 - Taylor K. E., Stouffer R. J., and Meehl G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93 (4), 485-498, doi:10.1175/BAMS-D-11-00094.1, 2012.
- Thual, S., Majda, A.J., Stechmann, S.N.: A stochastic skeleton model for the MJO, J. Atmos. Sci., 71, 697–715, doi:10.1175/JAS-D-13-0186.1, 2014.
 - Trenberth, K.E., et al.: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures, J. Geophys. Res.: Oceans, 103(C7), 14291-14324, doi:10.1029/97JC01444, 1998.
 - Vimont, D.J., Battisti, D.S., Hirst, A.C.: Footprinting: a seasonal connection between the tropics and mid-latitudes, Geophys. Res. Lett., 28(20), 3923–3926, doi:10.1029/2001GL013435, 2001.
- 500 Wallace, J.M., Mitchell, T.P. and C. Deser: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal at Interannual variability, J. Climate, 2, 1492-1499, doi:10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2, 1989.
 - Wang, C., and J. Picaut.: Understanding ENSO physics A review, Earth's Climate, 21-48, doi: 10.1029/147GM02, 2004.

Wheeler, M. C., and G. N. Kiladis: Convectively coupled equatorial waves: Analysis of clouds and temperature in the

- 505 wavenumber–frequency domain, J. Atmos. Sci., 56, 374–399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2, 1999.
 - Xavier, P. K., et al.: Vertical structure and physical processes of the Madden-Julian Oscillation: Biases and uncertainties at short range, J. Geophys. Res.: Atmos, 120(10), 4749-4763, doi:10.1002/2014JD022718, 2015.
 - Xiang, B., Wang, B., Li, T.: A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s,
- 510 Clim. Dyn., 41 (2), 327-340, doi:10.1007/s00382-012-1427-8, 2013.

Xu, K., et al.: CMIP5 Projections of Two Types of El Niño and Their Related Tropical Precipitation in the Twenty-First Century, J. Climate, 30(3), 849-864, doi:10.1175/JCLI-D-16-0413.1, 2017.

Yeh, S.-W., et al.: El Niño in a changing climate, Nature, 461, 511-514, doi:10.1038/nature08316, 2009.

- You, Y., and J. C. Furtado: The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophys. Res. Lett., 44(14), 7438-7446, doi:10.1002/2017GL073475, 2017.
- Yu, J.-Y. and S.T. Kim: Identification of Central-Pacific and Eastern-Pacific types of ENSO in CMIP3 models, Geophys. Res. Lett., 37, doi:10.1029/2010GL044082, 2010.
- Yu, J.Y., Kim, S.T.: Relationships between extratropical sea level pressure variations and the Central Pacific and Eastern Pacific types of ENSO, J. Clim., 24(3), 708-720, doi:10.1175/2010JCLI3688.1, 2011.
- 520 Zhang, C., and J. Gottschalck: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific, J. Climate 15(17), 2429-2445, doi:10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2, 2002.
 - Zhang, C., and M. Dong: Seasonality in the Madden–Julian oscillation, J. Climate, 17(16), 3169-3180, doi:10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2, 2004.

Zhang, C.: Madden-Julian Oscillation, Rev. Geophys. 43, RG2003, doi: 10.1029/2004RG000158, 2005.

525 Zhang, H., Clement, A., Di Nezio, P.: The South Pacific meridional mode: a mechanism for ENSO-like variability. J. Clim., 27(2), 769-783, doi:10.1175/JCLI-D-13-00082.1 2014

Zhang, T., and D.-Z. Sun: ENSO asymmetry in CMIP5 models, J. Climate, 27(11), 4070-4093, doi:10.1175/JCLI-D-13-00454.1, 2014.

Zhao, M, Hendon, H.H., Alves, O., Wang, G.: Weakened Eastern Pacific El Niño Predictability in the Early 21st Century, J. Climate, 29(18), 6805-6822, doi:10.1175/JCLI-D-15-0876.1, 2016.

530

Figures captions:

Figure 1: E and C mode patterns (i.e. regression of SST anomalies onto the E and Cindices) for (a, c) the observations and

(b, d) the ensemble mean of the CMIP5 models (see Table 1 for the model names). The estimate from the models is based on 250 years of PI Control experiment. Stippling (red dots) indicates where the sign of the E and C patterns differs among the models by 70%. (e) Histogram of the quantity X defined as: $X = \frac{\iint_{x=120^{\circ}E,y=10^{\circ}S}^{x=90^{\circ}W,y=10^{\circ}N}(E_{obs}(x,y),E_{model}(x,y))dxdy}{\iint_{x=120^{\circ}E,y=10^{\circ}S}^{x=90^{\circ}W,y=10^{\circ}N}(E_{obs}(x,y),E_{obs}(x,y))dxdy}$ for the different models and the ensemble mean. X is thus a metric of the

model skill in accounting for the spatial pattern and amplitude of the E and C modes. Blue (red) refers to the E (C) mode.

Figure 2: Space–time spectrum averaged between 15°N–15°S of symmetric component of U850 divided by the background spectrum for the NCEP/NCAR Reanalysis and the CMIP5 models.

545 **Figure 3**: Variance (rms) of MJO (a,b) and Rossby waves (c,g) filtered U850 averaged between 15°N and 15°S for CMIP5 models and the NCEP/NCAR Reanalysis. Root mean square error (RMSE) between modeled and observed variance of MJO (e,f) and Rossby waves (d,h) averaged between 15°N and 15°S

Figure 4: Seasonal variances (rms) of MJO averaged zonally over Tropical Pacific (120°E - 90°W) and meridionally over (a,b) 10°N-15°N, (c,d) 5°N-5°S and (e,f) 10°S-15°S for the NCEP/NCAR Reanalysis and the models.

Figure 5: Seasonal variances (rms) of Rossby waves averaged zonally over Tropical Pacific (120°E - 90°W) and meridionally over 5°S-5°N for NCEP/NCAR Reanalysis and the CMIP5 models.

Figure 6: Root mean square error (RMSE) between modeled and observed seasonal variance of MJO (a,b) and Rossby waves (c,d) averaged zonally over Tropical Pacific (120°E - 90°W) and meridionally over 5°S-5°N.

Figure 7: Lag correlation of the MJO filtered U850 averaged along the equator between 5°N and 5°S with respect to itself at the equator and 105°E for the NCEP/NCAR Reanalysis and the CMIP5 models. The three diagonal lines correspond to phase speeds of 5, 10, and 15ms⁻¹.

560

Figure 8: Lag correlation of the ER filtered U850 averaged along the equator between 5°N and 5°S with respect to itself at the equator and 150°E for the NCEP/NCAR Reanalysis and the CMIP5 models. The three diagonal lines correspond to phase speeds of 7, 10, and 15m/s.

565 **Figure 9:** Evolution of the predictive score (see Eq. 1 in the text) for MJO (a,c) and ER (b,d) and for EP (a,b) and CP (c,d) El Niño events for 5 CMIP5 models and the NCEP/NCAR Reanalysis. Note that the mean was removed for the models but not for the observations.

Figure 10: Monthly lagged correlation of E (a-f) and C (g-l) indices as a function of start month with respect to MJO activity index for NCEP/NCAR Reanalysis and 5 CMIP5 models. Contour interval is 0.1. Negative correlation is blue shaded,

570 positive correlation is orange shaded. Hatching lines denote correlation at 90% statistical confidence level based on a Gaussian statistics. The thick black line indicates the zero correlation line.

Figure 11: As Fig. 10 but for Rossby waves activity index.

Atmospheric grid Model name Modeling Group (or Center) latitude longitude Commonwealth Scientific and Industrial Research 1.25° 1.875° Organisation/Bureau of Meteorology, Australia 1 ACCESS1-3 2.7906° 2 **BNU-ESM** Beijing Normal University, China 2.8125° Canadian Centre for Climate Modelling and Analysis, 2.8125° 2.8125° 3 CanESM2 Canada National Center for Atmospheric Research, USA 0.9424° 1.25° 4 CCSM4 National Science Foundation, Department of Energy, 0.9424° 1.25° 5 CESM1-CAM5 National Center for Atmospheric Research, USA 0.75° Centro Euro-Mediterraneo per I Cambiamenti 0.7484° 6 CMCC-CM Climatici, Italy Centre National de Recherches Météorologiques, 1.4008° 1.40625° 7 CNRM-CM5 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France Commonwealth Scientific and Industrial Research 1.8653° 1.875° 8 Organization/Queensland Climate Change Centre of CSIRO-Mk3 Excellence, Australia 9 EC-EARTH consortium (ECMWF consortium) 1.125° 1.125° **EC-EARTH** The First Institute of Oceanography, SOA, China 2.8125° 10 FIO-ESM 2.8125°

Table 1: Description of the 23 CMIP5 coupled models analyzed in this study. Names in blue indicate the model retained for the evaluation of ITV (section 3.2)

2° 2.5°
2° 2.5°
2° 2.5°
.25° 1.875°
.25° 1.875°
1.5° 2°
2676° 2.5°
4008° 1.40625°
3653° 1.875°
3653° 1.875°
2148° 1.125°
8947 2.5°

Table 2: Spatial correlation between observed (HadISST) an simulated (CMIP5 models) E and C patterns within theequatorial Pacific ($120^{\circ}E-90^{\circ}W$; $5^{\circ}S-5^{\circ}N$)

Model number	Model name	<e(x,y)<sub>model</e(x,y)<sub>	<c(x,y)<sub>model</c(x,y)<sub>
		$E(x,y)_{obs} >$	$C(x,y)_{obs} >$
1	ACCESS1-3	0.922	0.674
2	BNU-ESM	0.773	0.775
3	CanESM2	0.835	0.672
4	CCSM4	0.930	0.923
5	CESM1-CAM5	0.869	0.895
6	CMCC-CM	0.848	0.829
7	CNRM-CM5	0.938	0.913
8	CSIRO-Mk3	0.733	-0.114
9	EC-EARTH	0.934	0.807
10	FIO-ESM	0.911	0.882
11	GFDL-CM3	0.810	0.250
12	GFDL-ESM2M	0.869	0.457
13	GISS-E2-H	0.943	0.642
14	GISS-E2-R	0.897	0.954
15	HadGEM2-CC	0.939	0.852
16	HadGEM2-ES	0.932	0.848
17	INM-CM4	0.882	0.558
18	IPSL-CM5A-MR	0.917	0.637
19	MIROC 5	0.876	0.528
20	MPI-ESM-LR	0.900	0.652
21	MPI-ESM-P	0.884	0.561
22	MRI-CGCM3	0.870	0.873
23	NorESM1-M	0.939	0.869

585 **Table 3**: Summary of the model skill according to the diagnostics performed in our study: The + and – refer to "semiobjective" criteria which are defined in Table 4. The model name in green are those analyzed in section 3.3 (i.e. seasonal ENSO/ITV relationship).

Model name	X_E	X _C	spectra	total	seasonal	Phase
				variance	cycle of	speed
				along the	MJO/ER	MJO/ER
				equator	indices	
				MJO/ER		
ACCESS1-3	+	-	+	+/+	+/++	+/+
BNU-ESM	-	+	++	++/+	+/++	+/+
CanESM2	++	++		-/-	/	
CCSM4	++	+	++	+/+	+/++	+/+
CESM1-	-	-				
CAM5						
CMCC-CM			++	+/++	++/+	+/-
CNRM-CM5	+	-		-/-	/	
CSIRO-Mk3	-					
EC-EARTH			+	+/++	+/-	-/+
FIO-ESM	-	+				
GFDL-CM3	-	-				
GFDL-	-					
ESM2M						
GISS-E2-H						
GISS-E2-R						
HadGEM2-CC	++	+	+	+/++	+/+	+/-
HadGEM2-ES	++	++	+	+/++	-/+	+/-
INM-CM4	++		++	-/+	-/+	-/+
IPSL-CM5A-	+	-		-/-	/	
MR						
	Model name ACCESS1-3 BNU-ESM CanESM2 CCSM4 CESM1- CAM5 CAM5 CMCC-CM CAM5 CMCC-CM CNRM-CM54 CSIRO-Mk3 CSIRO-MK3 CSIRO	Model nameXEModel nameXEServer AServer AACCESS1-3+BNU-ESM-CanESM2++CCSM4++CESM1CAM5-CMCC-CMCNRM-CM5+FIO-ESM-FIO-ESM-GFDL-CM3-GFDL-CM3-GFDL-CM3-GISS-E2-HGISS-E2-R++HadGEM2-CC++HadGEM2-ES++INM-CM4++IPSL-CM5A- MR+	Model nameXEXCACCESS1-3+-BNU-ESM-+CanESM2++++CESM1CAM5CMCC-CMCNRM-CM5+-FIO-ESMFIO-ESMGFDL-CM3GFDL-CM3GISS-E2-HHadGEM2-CC+++HadGEM2-ES++INM-CM4++IPSL-CM5A- MR	Model nameXEXCspectraACCESS1-3+-+BNU-ESM-+++CanESM2++++CCSM4++++++CESM1CAM5CMCC-CMCSIRO-Mk3++FIO-ESM+FIO-ESM+GFDL-CM3GFDL-CM3GISS-E2-HGISS-E2-RHadGEM2-CS++++HAGEEM2-CS++++INM-CM4++++IPSL-CM5A-+MR	Model nameXe F SpectraXe Spectraspectra variance along the equator MJO/ERACCESS1-3+-++/+BNU-ESM-+++/+CanESM2++++/-CCSM4++++++/+CanESM2++++++/+CESM1/-CCSM4+++++/+CESM1/-CSM5CMCC-CM+++/++CNRM-CM5+/-CSIRO-Mk3/-FIO-ESMGFDL-CM3GFDL-CM3GISS-E2-RHadGEM2-CC+++++/++INM-CM4++/+-/+IPSL-CM5A- MR/-	Model nameXEXCspectratotalseasonalVariancecycle of along theMJO/ER equatorindicesACCESS1-3+-+//-BNU-ESM-++/+//+BNU-ESM-++/+//-CanESM2++++///CCSM4+++++//-//-CCSM4++++//-//-CCSM4++++//-//-CAM5//-//-CMCC-CM//-//-CSIRO-Mk3//-//-FIO-ESM//-//-GFDL-CM3//-//-GISS-E2-H//-//-//-HadGEM2-CC+++++//-//-INM-CM4+++//-//-//-INM-CM4++//-//-INM-CM4++//-//-INM-CM4++//-INM-CM4++//-INM-CM4++//-INM-CM4++//-INM-CM4++//-INM-CM4/-INM-CM4

19	MIROC 5	++	++	++	++/+	++/+	-/+
20	MPI-ESM-LR	++	++		-/-	/	
21	MPI-ESM-P	++	++	++	+/++	+/-	-/+
22	MRI-CGCM3				-/-	/	
23	NorESM1-M	++	++	++	+/+	+/++	+/-

Table 4: Definition of the scale for classifying the models' skill for table 3.

	X	spectra	Total variance	seasonal cycle of MJO/ER	Phase speed
				indices	
++ good	0,9≤X≤1,1	Realistic signal for MJO and ER	Maximum is correctly located and the variance is comparable to Reanalysis	The seasonal maximum and amplitude are comparable to the Reanalysis	The phase speed in the model is consistent with the Reanalysis
+ reasonable	0,8≤X<0,9 1,1 <x≤1,2< td=""><td>Realistic signal for MJO or ER</td><td>Maximum is correctly located but the variance differs from Reanalysis</td><td>Seasonal maximum is correctly located but the amplitude differs from Reanalysis</td><td></td></x≤1,2<>	Realistic signal for MJO or ER	Maximum is correctly located but the variance differs from Reanalysis	Seasonal maximum is correctly located but the amplitude differs from Reanalysis	
- not good	0,7≤X<0,8 1,2 <x≤1,3< td=""><td>Weak match between model and Reanalysis</td><td>The longitudinal distribution and amplitude differ from the Reanalysis</td><td>Seasonal cycle differ from Reanalysis the amplitude is slightly different from Reanalysis</td><td>The phase speed in the model differs from the Reanalysis</td></x≤1,3<>	Weak match between model and Reanalysis	The longitudinal distribution and amplitude differ from the Reanalysis	Seasonal cycle differ from Reanalysis the amplitude is slightly different from Reanalysis	The phase speed in the model differs from the Reanalysis
poor	X<0,7 X>1,3	No spectral maximum in MJO and ER domain		The seasonal cycle and amplitude differ from the Reanalysis	

	BNU-ESM	CCSM4	CCSM- CM	INMCM4	MIROC5
MJO/	1955-1979	1983-2000	1955-1976	1977-1999	1981-1996
Е					
MJO/	1955-1971	1976-1994	1978-1998	1955-1970	1955-1971
С					
ER/E	1980-2000	1979-2000	1955-1978	1980-1999	1982-2002
ER/C	1955-1971	1967-1991	1980-2000	1964-1988	1989-2004

Table 5: Periods used for the statistics of the figures 10 and 11.

Figure 1 E and C mode patterns (i.e. regression of SST anomalies onto the E indices) for (a, c) the observations and (b, d) the ensemble mean of the CMIP5 models (see Table 1 for the model names). The estimate from the models is based on 250 years of PI Control experiment. Stippling (red dots) indicates where the sign of the E and C patterns differs among the models by 70%. (e) Histogram of the quantity X defined as:

$$x = \frac{\iint_{x=120^{\circ}E, y=10^{\circ}S}^{x=90^{\circ}W, y=10^{\circ}N} (E_{obs}(x, y). E_{model}(x, y)) dxdy}{\iint_{x=120^{\circ}E, y=10^{\circ}S}^{x=90^{\circ}W, y=10^{\circ}N} (E_{obs}(x, y). E_{obs}(x, y)) dxdy}$$
for the different models and the ensemble mean.

X is thus a metric of the model skill in accounting for the spatial pattern and amplitude of the E and C modes. Blue (red) refers to the E(C) mode.

Figure 2. Space–time spectrum averaged between15°N–15°S of symmetric component of U850 divided by the background spectrum for the NCEP/NCAR Reanalysis and the CMIP5 models.

4.1 3.9 3.7

Figure 2: (Continued)

Figure 3. Variance (rms) of MJO (a,b) and Rossby waves (e,f) filtered U850 averaged between 15°N and 15°S for CMIP5 models and the NCEP/NCAR Reanalysis. Root mean square error (RMSE) between modeled and observed variance of MJO (c,d) and Rossby waves (g,h) averaged between 15°N and 15°S.

10°N-15°N

Figure 4. Seasonal variances (rms) of MJO averaged zonally over Tropical Pacific (120°E - 90°W) and meridionally over (a,b) 10°N-15°N, (c,d) 5°N-5°S and (e,f) 10°S-15°S for the NCEP/NCAR Reanalysis and the CMIP5 models.

Figure 5. Seasonal variances (rms) of Rossby waves averaged zonally over Tropical Pacific (120°E - 90°W) and meridionally over 5°S-5°N for NCEP/NCAR Reanalysis and the CMIP5 models.

Figure 6. Root mean square error (RMSE) between modeled and observed seasonal variance of MJO (a,b) and Rossby waves (c,d) averaged zonally over Tropical Pacific (120°E - 90°W) and meridionally over 5°S-5°N.

Figure 7. Lag correlation of the MJO filtered U850 averaged along the equator between 5°N and 5°S with respect to itself at the equator and 105°E for the NCEP/NCAR Reanalysis and the CMIP5 models. The three diagonal lines correspond to phase speeds of 5, 10, and 15ms-1.

Figure 8. Lag correlation of the ER filtered U850 averaged along the equator between 5°N and 5°S with respect to itself at the equator amd150°E for the NCEP/NCAR Reanalysis and the CMIP5 models. The three diagonal lines correspond to phase speeds of 7, 10, and 15ms-1.

Figure 9: Evolution of the predictive score (see Eq. 1 in the text) for MJO (a,c) and ER (b,d) and for EP (a,b) and CP (c,d) El Niño events for 5 CMIP5 models and the NCEP/NCAR Reanalysis. Note that the mean was removed for the models but not for the observations.

Figure 10. Monthly lagged correlation of E (a-f) and C (g-l) indices as a function of start month with respect to MJO activity index for NCEP/NCAR Reanalysis and 5 CMIP5 models. Contour interval is 0.1. Negative correlation is blue shaded, positive correlation is orange shaded. Hatching lines denote correlation at 90% statistical confidence level based on a Gaussian statistics. The thick black line indicates the zero correlation line.

Figure 11. As Fig. 10 but for Rossby waves activity index.