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Abstract. To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models we

present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system’s modular

design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In

the prototype discussed here we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its

stable isotopologues 13CO2/12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land5

and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of
13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.

The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere

models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on

differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization10

approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference

between observed and estimated mole fractions.

With this system we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the

Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance

on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric15

CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations

neither affected the estimated carbon fluxes, nor compromised our ability to match observed CO2 variations. The prototype

presented here can be of great benefit not only to study the global carbon balance but potentially also to function as a data

driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2,

water, isotope, and energy balance.20
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1 Introduction

The terrestrial biosphere has absorbed about 25 % of global fossil fuel carbon dioxide (CO2) emissions over the last several

decades but the future of this sink is highly uncertain in a warming world (Booth et al., 2012; Rowlands et al., 2012). It

depends on the small difference between two large fluxes of the terrestrial carbon cycle: photosynthetic uptake or gross primary

production (GPP) and terrestrial ecosystem respiration (TER), and is here referred to as the net ecosystem exchange (NEE =5

TER − GPP + fire disturbances and land use change and harvesting of crops). All these flux terms respond to changes in local

temperature, precipitation, nutrient availability and other key environmental variables (Friedlingstein et al., 2006). Extreme

climate events such as droughts can decrease GPP and increase TER and fire disturbances to a point where regional NEE is

turned into a temporary carbon source (Ciais et al., 2005; Gatti et al., 2014; Van der Laan-Luijkx et al., 2015). These dynamic

responses (and positive feedbacks whereby increased CO2 may lead to more droughts) are now an integral part of climate10

models that include fully coupled carbon cycling (Booth et al., 2012; Dai et al., 2012). Such models give rise to a wide range

of climate projections primarily as a result of different simulations of terrestrial carbon exchange (Friedlingstein et al., 2006). It

is therefore important to test and improve the representation of the terrestrial biosphere in carbon-climate models. Uncertainty

in climate projections can be reduced by evaluating present day performance of these models to observations (Hoffman et al.,

2014). This paper presents a data assimilation system that can be used to evaluate existing terrestrial biosphere models by using15

an extensive number of atmospheric CO2 observations in tandem with other trace gases.

Measurements of atmospheric CO2 have been used to infer carbon fluxes at the Earth’s surface using a variety of inversion

techniques (e.g., Keeling and Revelle, 1985; Keeling et al., 1989; Tans et al., 1993; Ciais et al., 1995; Rayner et al., 2008;

Alden et al., 2010). Unfortunately, a limited number of CO2 observations, errors in atmospheric transport modeling, and the

realism of bottom-up carbon flux estimates are limiting the utility of these techniques. For instance, the representation of20

subgrid scale vertical motion in (and through the top of) the planetary boundary layer is one of the most uncertain aspects in

atmospheric tracer modeling and can hinder the accuracy of CO2 transport (Kretschmer et al., 2012; Miller et al., 2015). In

addition, atmospheric CO2 as a tracer has its own limitations as it only reflects a small residual of different sources and sinks,

such as wild fires, anthropogenic sources, ocean in- and outgassing, and terrestrial GPP and TER.

The CarbonTracker Data Assimilation System (CTDAS) has been developed to estimate global net ocean and terrestrial25

carbon exchange fluxes, with a focus on North America and Europe (Peters et al., 2005, 2007, 2010; Van der Laan-Luijkx

et al., 2017). This application uses the Ensemble Kalman Filter (EnKF) as a Bayesian minimization approach for the estimation

of weekly ocean and terrestrial carbon fluxes on a 1× 1 degree horizontal grid to improve the agreement between modeled

and measured atmospheric CO2. The versatile object-oriented design of CTDAS allows flexible implementation of different

components of the data assimilation system (Van der Laan-Luijkx et al., 2017). Such modifications include but are not limited30

to, (1) the configuration of the state vector, (2) the expansion of the monitoring network, such as for the Amazon (Van der Laan-

Luijkx et al., 2015) and China (Zhang et al., 2014), (3) the use of Lagrangian atmospheric transport (He et al., in preparation),

and (4) to monitor other tracer gases like methane (Bruhwiler et al., 2014; Tsuruta et al., 2016).
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One aspect that has not yet been explored in CTDAS is the monitoring of multiple trace gases in the atmosphere that are

strongly related (i.e., gases with a common chemical or metabolic pathway in the ocean and/or terrestrial biosphere). The

main purpose of such an application is to improve the estimation of carbon fluxes and to retrieve new information on the

underlying flux exchange processes that would otherwise remain undetected. We are in particular interested in the use of the

stable isotope 13C (in atmospheric CO2) as an additional tracer alongside total CO2 to estimate carbon sources and sinks and5

their variability. In earlier studies 13C was used to distinguish oceanic from terrestrial carbon exchange, as oceans take up
13CO2 more efficiently than land surfaces relative to 12CO2. In so-called double-deconvolution methods this particular trait is

used to untangle the global land carbon budget from ocean carbon budget (Keeling et al., 1989; Tans et al., 1993; Ciais et al.,

1995). More recently 13C isotope was used to study the diurnal cycle of GPP and TER (Wehr et al., 2016) and was used as

a tracer of water use efficiency to study long-term responses to CO2 increases in tree-rings (Van der Sleen et al., 2015), and10

attempts are underway to do the same based on atmospheric records. On regional scales variations in the ratio of 13CO2/12CO2

(typically reported as δ13C in ‰ relative to the VPDB reference ratio) reflect changes in discrimination processes associated

with photosynthetic uptake of carbon by plants (e.g., Farquhar et al., 1989; Fung et al., 1997; Scholze et al., 2003; Rayner

et al., 2008). Plants generally take up the heavier 13CO2 molecules less efficiently than 12CO2 molecules, increasing the
13CO2/12CO2 ratio of CO2 remaining in the atmosphere. This kind of discrimination against 13C is much stronger for C315

plants than for C4 plants, but also varies as a function of moisture conditions in the canopy air and soil (Farquhar et al., 1980,

1989; Ekblad and Högberg, 2001; Ometto et al., 2002; Suits et al., 2005). That implies that under the right circumstances,

measured atmospheric δ13C can be used to recognize land usage, such as C3/C4 photosynthesis, and changes in photosynthetic

activity resulting from droughts stress (Ballantyne et al., 2010; Raczka et al., 2016).

Such an application could also be beneficial to explore other facets of carbon exchange. Any errors in the fossil fuel emission20

inventories (although relatively small) are in the current CTDAS releases aliased erroneously on the natural ocean and terrestrial

fluxes. Assimilation of the fraction of the radioactive isotope 14CO2 in the atmosphere would allow independent verification of

the fossil fuel emissions as its old organic carbon is radiocarbon-free (Bozhinova et al., 2014; Basu et al., 2016). Other chemical

constituents like carbonyl sulfide (OCS) and solar induced chlorophyll fluorescence (SIF) could also be important additions in

CTDAS. Inclusion of these tracers in the assimilation could enhance our understanding of carbon exchange, because variations25

in photosynthetic carbon uptake are recorded in atmospheric OCS and satellite SIF data (Commane et al., 2015; Yang et al.,

2014).

Before we can interpret signals derived from these additional tracers, our aim for this paper is (1) to explain how the

first dual-species CTDAS application works, with specific focus on the use of δ13C and CO2, henceforth the system named

as CTDAS-C13 version 1.0, (2) to demonstrate its accuracy in solving the targeted optimization problem in comparison to30

observations, (3) to test the sensitivity of the system to the introduced nonlinearity arising from simultaneous optimization of

terrestrial total CO2 and 13CO2 fluxes, and (4) to verify our new estimates of carbon and isotope exchange with independent

drought index data.
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2 Methodology

We present the atmospheric δ13C budget (Section 2.1) before proceeding to describe the integration of δ13C within our new

dual-species data assimilation framework CTDAS-C13 (Section 2.2). We then briefly describe the prior estimates and the

observational network used (Section 2.3). Finally, we give a brief description of the different inversion experiments (Section

2.4). The methodology presented here is based on Section 4.2 of the lead author’s PhD dissertation (Van der Velde, 2015).5

2.1 Atmospheric δ13C budget

The use of δ13C observations alongside CO2 observations constitute a useful change to the traditional CO2-only CTDAS

application, as it provide an additional constraint on carbon surface fluxes and isotope exchange processes in plants. The

rationale behind this is that the 13CO2 and 12CO2 contents in the atmosphere are affected through the same CO2 pathways

from land and ocean surfaces. There are, however, specific processes that change the 13CO2 exchange fluxes slightly differently10

from 12CO2 fluxes. We can write a global mass balance for atmospheric δ13C (δa) so that the different isotopic processes are

explicitly defined and dependent on total CO2 fluxes (see Tans et al., 1993, for the derivation of Eq. 1). We can then identify

the (1) emission forcing terms, (2) net exchange isotope forcing terms, and (3) gross-flux isodisequilibrium forcing terms:

Ca
d
dtδa = Fff (δff − δa) + Ffire (δfire − δa) [emission forcing terms]

+ Nbεph + Noεao [net exchange isotope terms]

+ Fba (δb − δeq
b ) [terrestrial isodisequilibrium forcing terms]

+ Foa (δeq
a − δa) [ocean isodisequilibrium forcing term],

(1)

where Ca is the total carbon content [unit mol or mass] in the atmosphere (in the form of CO2). The subscripts ba and oa15

denote the direction of the one-way gross fluxes [unit mol or mass per unit time]. For example, Fba refers to the respiratory

release of CO2 from terrestrial biosphere to atmosphere. The isotopic ratios of 13C/12C are expressed as δxx [‰], where

the subscripts refer to the signature in biosphere vegetation and soils (b), in biomass burning flux (fire), or in the fossil fuel

emission flux (ff). The signature δeq
a depicts the isotopic ratio of CO2 that is in equilibrium with the ocean surface and δeq

b

depicts the ratio in the terrestrial biosphere that would be in isotopic equilibrium with the current atmosphere, which is more20

depleted in 13CO2 than when the biomass was formed years ago. Nb and No refer to net exchange fluxes (gross release minus

gross uptake) of CO2, and Fff and Ffire are the fossil fuel and biomass burning CO2 emissions, respectively.

The terrestrial (photosynthetic) isotopic discrimination in Eq. 1 is expressed as εph = (δeq
b − δa) ≈−∆ph [‰], and can be

derived from a CO2 gradient-weighted average of different isotope fractionation effects during the transfer of CO2 molecules

from the canopy air until their reaction with the enzyme Ribulose-1,5-bisphosphate (Rubisco) in the chloroplasts of the plant25

leaf. There are two main fractioning effects along this pathway; the plant fractionates with ∆s = 4.4 ‰ when CO2 diffuses

from leaf boundary through leaf stomata, and with ∆f = 28 ‰ during carboxylation. Smaller fractionation effects occur during

diffusion between canopy air and leaf boundary (∆b = 2.9 ‰), and during dissolution of CO2 in mesophyll water (∆diss =

1.1 ‰) and transport to chloroplasts (∆aq = 0.7 ‰). The parameterization of ∆ph for C3 plants has been described by Farquhar
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et al. (1982) takes the following form as in Suits et al. (2005):

∆ph = ∆b

(
ca − cs
ca

)
+ ∆s

(
cs − ci
ca

)
+ (∆diss + ∆aq)

(
ci − cc
ca

)
+ ∆f

(
cc
ca

)
, (2)

where ca,s,i,c represent CO2 partial pressures in canopy air space, leaf boundary layer, stomatal cavity and in the chloroplasts,

respectively. The overall discrimination ∆ph value reflects mostly the fractionation step with the highest resistivity (O’leary,

1988). For example, during a drought when the leaf’s stomatal conductance is lowered in an attempt to prevent evaporative5

water loss, the diffusive ∆s is the most limiting factor, resulting in a lower overall ∆ph. The opposite happens under more

favorable environmental conditions when stomatal aperture is higher and carboxylation is the limiting factor, resulting in

a higher overall ∆ph.

The overall discrimination leaves the atmosphere relatively enriched and plants relatively depleted in 13C. C3 plants are de-

pleted in 13C by approximately −20 ‰ relative to the atmosphere and C4 by approximately −4 ‰ as they can assimilate 13CO210

more efficiently with Rubisco. C4 photosynthesis is essentially a more complex form of carbon fixation than C3 photosynthesis

as it shields Rubisco in the bundle sheath cells from wastefully binding with oxygen rather than carbon dioxide.

In addition to discrimination effects during photosynthetic uptake, we also need to account for isotopic enrichment of the

atmosphere through respiratory release of carbon with a heavier isotopic signature after spending from one year to several

decades or more in the plant and soil organic matter. This respiratory part will still enrich the atmosphere with 13CO2 even if15

net CO2 uptake equals zero (Ciais et al., 1995), and we refer to it as the terrestrial isodisequilibrium flux in Eq. 1.

Discrimination associated with the dissolution of CO2 in ocean water (Zhang et al., 1995) is much smaller and spatiotem-

porally homogeneous (εao = −2 ‰) than in the terrestrial biosphere. The difference between ocean and land discrimination

provide an additional constraint on the net fluxes has already been demonstrated in previous studies (e.g., Keeling et al., 1989;

Tans et al., 1993; Ciais et al., 1995; Fung et al., 1997; Rayner et al., 2008). We also have to account for isotopic disequilibrium20

that exists between the atmosphere and oceans. This isodisequilibrium flux is associated with the out-gassing of CO2 from the

ocean waters, and has globally an enriching tendency on the δa signatures.

Besides the land and ocean discrimination and disequilibrium forcing terms we have two additional terms in Eq. 1. Firstly,

there are CO2 emissions due to combustion of fossil fuels, which have a distinct isotopic signature depending on the organic

fuel type, but globally its signature is approximately δff = −30 ‰. Secondly, there are CO2 emissions due to biomass burning,25

where δfire bears the signature of the 13CO2 and 12CO2 fluxes of Ffire, which is typically the signature of burnt leaf foliage,

woody tissue and the aboveground litter (Van der Velde et al., 2014).

2.2 CTDAS-C13

We followed the method presented by Peters et al. (2005) for designing the joint CO2 and δa data assimilation system. The

architecture is similar to the CarbonTracker Data Assimilation Shell (CTDAS) v1.0 discussed in detail by Van der Laan-Luijkx30

et al. (2017). Just like the traditional CO2-only inversions, we aim to close the CO2 budget through fluxes from fossil fuel

combustion, biomass burning, and net exchange fluxes from the terrestrial biosphere and oceans. In addition, we also intend

to simultaneously close the 13CO2 (13Ca) budget using the same set of CO2 fluxes. Isotopic signatures themselves are not
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conserved quantities, therefore we calculate conserved mole fractions of CO2 and 13CO2 in our transport model, which we

can sample at designated locations and time to calculate δa. The combined set of balance equations [unit mol per unit time]

takes the following form:

d

dt
Ca = Fff +Ffire +λbNb +λoNo, (3)

5

d

dt
13Ca = 13Fff + 13Ffire + 13Nb + 13No. (4)

After some manipulation of Eq. 3 and 4, by following Tans et al. (1993), we obtain:

d

dt
13Ca = FffRff +FfireRfire +λbNb (λdiscrεph/1000 + 1)Ra +λoNo (εao/1000 + 1)Ra

+ Db +Do. (5)

The 13Ca balance equation is now a close analog of Eq. 1, because 13Ca is a function of discrimination, Nb and No, and10

isodisequilibrium fluxes. The R values depict the isotopic ratio of 13CO2/CO2 in the atmosphere (Ra), in fossil fuel (Rff )

and biomass burning emissions (Rfire), and their values are approximately 0.011. The isodisequilibrium fluxes from land and

ocean surfaces are here simply shown as Db and Do, respectively. The term (λdiscrεph/1000 + 1) represents the optimized

ratio between the isotopic signature in the photosynthetic flux and atmosphere (Rph/Ra), and ranges between 0.980 and 0.996

depending on the prior εph and discrimination scaler λdiscr. The term (εao/1000 + 1) represents the ocean flux ratio and is held15

constant at 0.998 assuming εao = −2‰, and is not optimized. The parameters λb and λo represent the linear scaling factors for

each week and ecosystem region (ecoregion) to adjust the net carbon exchange over land and ocean surfaces, respectively. For

land, the scaling factor is associated with one scalar per ecoregion based on the Olson (1985) land use classification following

Peters et al. (2005, 2007) (Fig. 1). The terrestrial biosphere is further divided into 11 larger geographical areas also known

as TransCom regions (Gurney et al., 2002). Like in the early CT releases, each of the 11 TransCom land regions contains20

a maximum of 19 ecoregion types (Fig. 2) and the ocean is divided into 30 large basins encompassing large-scale ocean

circulation features. This gives a maximum of 239 (=11·19+30) different scaling factors each week (Peters et al., 2007). The

new parameter is λdiscr, which is used to scale a maximum of 209 terrestrial discrimination parameters per week. They are

associated with the same 1 × 1 degree ecoregions as the terrestrial fluxes. Note that the maximum number of scalable land

parameters is in reality ∼130, and not 209, because not each land region contains all 19 ecoregion types.25

The terrestrial net exchange term in Eq. 5 (λbNb (λdiscrεph/1000 + 1)Ra) includes two multiplicative scaling factors, mak-

ing the required solution nonlinear. This poses a potential problem where variations in net exchange and discrimination are

cancelling each other out to such a degree that it leads to low signal-to-noise, especially in discrimination. This is further

investigated in Section 3.2. The fossil fuel combustion, biomass burning, and terrestrial and ocean isodisequilibrium fluxes all

remain fixed a priori estimates. We describe in Section 3.1 the tuning of the latter disequilibrium fluxes to close the long-term30

mean balance of δ13C in our system.

The scaling factors λb, λo, and λdiscr are the unknowns that are combined in state vector x (with dimension s), for which

we will try to find an optimal solution by minimizing a quadratic cost function. In this function there is a balance between
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information drawn from the observation vector y (with dimension m) with a covariance R (m × m) and prior knowledge from

the state vector xp (s) with a covariance P (s × s):

J = (y−H (x))
T
R−1 (y−H (x)) + (x−xp)

T
P−1 (x−xp) . (6)

The observation operator H (m) represents the atmospheric transport model that propagates the surface fluxes from Eqs. 3

and 5 and samples accordingly the mole fractions of CO2 and 13CO2 at the same location and moment as the observations y.5

The solution for x that minimizes J is (Tarantola, 2005):

x = xp +K· [y−H (xp)] , (7)

where K represents the Kalman gain matrix (Peters et al., 2005). Eq. 7 can be expressed in terms of λ (posterior scaling factor),

λp (prior scaling factor) and separate measurements of CO2 (c) and δ13C (δ) with dimensions (j) and (k), respectively:
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. (8)10

In state vectors x and xp the scaling factors for terrestrial discrimination are appended after the flux scaling factors. Similarly, in

the observation vectors y andH(xp) the δ13C observations are appended after the CO2 observations. The K matrix determines

how much a scaling factor needs to change given a set of CO2 and δ13C measurements. The matrices R and P modulate whether

observations or bottom-up estimates are given more weight to the solution.

The P matrix contains 448 × 448 elements in total and is shown in Fig. 3. The first 209 × 209 element block contains the15

land flux uncertainties per ecoregion and their spatial correlations. The second 30 × 30 element block contains the ocean flux

uncertainties per ocean basin. We gave the land scalars and the ocean scalars a maximum uncertainty of 80 % and 100 % along

the diagonal, respectively as in earlier CarbonTracker releases. The third 209 × 209 element block contains the terrestrial

discrimination scalars with a maximum uncertainty of 20 % along the diagonal with an identical spatial correlation structure

as applied to the terrestrial flux uncertainty scalars. This implies that we can scale εph by a factor of 1.0± 0.2, and thus for20

a typical C3 plant (εph=−20 ‰) the mean and uncertainty lies around −20± 4‰. Furthermore, there is covariation between

ecoregions of nearby TransCom regions, e.g., between North America boreal and temperate regions, and between Europe

and Eurasian regions. We did not allow covariances between net exchange and discrimination in order to give the parameters

enough freedom in the solution.

The covariance structure of R is similar to CO2-only CTDAS, but is extended with additional uncertainties in δ13C observa-25

tions. These expected uncertainties quantify our ability to simulate observations given the uncertainty in atmospheric transport

modeling and measurement errors. Section 2.3.5 gives an overview of the used uncertainties for each observation category.
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With this inversion framework in place CTDAS-C13 progresses in a similar manner as the traditional CO2-only CTDAS.

For each week the set of unknowns in the state vector are updated in a cycle that contains two steps. First there is a forecast

step, which is driven by our fluxes and current background state vector xp to forecast an ensemble of CO2 and 13CO2 mole

fractions 5 weeks ahead in time. This is followed by an analysis step to determine the new state of the system with Eq. 8

such that it is consistent with the observations for the current week of the cycle. The analyzed state is propagated to the next5

cycle using the same model as Peters et al. (2007, Eq. 1 of Supp. Material), and with this new state a new cycle begins with

another forecast step to forecast a new ensemble of the background state 5 weeks ahead in time, now with an additional set

of observations from a new week. The ensemble for each tracer is created from 150 ensemble members to provide a Gaussian

probability density function of the state vector.

The simulation of atmospheric transport is provided by the two-way nested global transport model TM5 release 3 (Krol et10

al., 2005). This application simulates the atmospheric transport of CO2 and 13CO2 at a global 6 × 4 degree resolution, with no

nesting. It is driven by 3-hourly meteorological output from ECMWF ERA-interim reanalysis (Dee et al., 2011). All the CO2

and 13CO2 flux fields provided to the model are in units of mol CO2 m−2 s−1 and mol 13CO2 m−2 s−1, respectively. Atmo-

spheric concentrations of CO2 and 13CO2 are calculated as mole fractions in mol mol−1. Signatures of δ13C are computed to

the relative per mil value using the following conversion formulation in order to facilitate comparison with observations:15

δ13C =

(
R

Rref
− 1

)
· 1000, (9)

where Rref is the VPDB reference ratio adopted for 13CO2/(12CO2 + 13CO2), which is 0.011112 (Tans et al., 1993). R is

the ratio of simulated mole fractions 13CO2/CO2.

2.3 Prior estimates and observations

2.3.1 Terrestrial biosphere fluxes20

The terrestrial first-guess net CO2 exchange (Nb) and fire (Ffire) estimates were calculated in the Simple-Biosphere Carnegie-

Ames Stanford Approach model (SiBCASA, Schaefer et al., 2008) on a 1 × 1 degree grid on a 10 min time resolution and

were further processed into 3-hourly mean fluxes to serve as input for CTDAS-C13. SiBCASA is a biogeochemical model

that calculates carbon, isotope, water, and energy exchange fluxes. The model inherited the aerodynamic and surface resistance

models from SiB (Sellers et al., 1996) to solve for CO2 partial pressures in an iterative loop to acquire a balance between25

net assimilation rate, stomatal conductance, mesophyll conductance and CO2 partial pressures. The aerodynamic resistance

model describes the turbulent transfer processes using the Monin-Obuhkov similarity theory. The surface and interior resistance

models describe the pathway of CO2 (but also water and heat) through the leaf boundary, the leaf stomata and ultimately the

leaf chloroplasts. The Ball-Berry-Collatz model is used to estimate stomatal conductance (Ball, 1988; Collatz et al., 1991)

and is coupled to the Farquhar and Collatz photosynthesis models for C3 and C4 vegetation (Farquhar et al., 1980; Collatz30

et al., 1992). A mesophyll conductance formulation was introduced by Suits et al. (2005) to predict realistic CO2 partial
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pressures in the chloroplasts. Mesophyll conductance is suggested to be as important as stomatal conductance in terms of

magnitude and variability, and it is shown that δ13C correlate more precisely with cc/ca than with ci/ca (Flexas et al., 2008).

It is parameterized as a function of the canopy photosynthetic rate and soil water stress factor. SiBCASA is driven by 3-

hourly ECMWF ERA-interim meteorology, designed with a semi prognostic leaf pool to track seasonal plant phenology, and

it uses GFED4 daily burned area disturbances to calculate fire fluxes at a fine temporal resolution (Van der Velde et al., 2013,5

2014). The model incorporates 12 different aggregated ecosystems according to Olson (1985) to calculate photosynthesis.

Respiratory CO2 release from the plant and soil is calculated in the CASA part of the model using 13 biogeochemical pools

with environment-influenced turnover rates (Schaefer et al., 2008).

2.3.2 Ocean fluxes

The ocean first-guess net CO2 exchange (No) estimates derive from ocean inversions from Jacobson et al. (2007). These10

long term estimates are combined with the quadratic gas-transfer velocity from 3-hourly ECMWF ERA-interim wind fields

(Wanninkhof , 1992) to create fluxes on a 1 × 1 degree grid at a 3-hourly temporal resolution. An additional trend was applied

to the fluxes to ensure that increases in anthropogenic uptake are proportional to increases to atmospheric CO2 levels. (see:

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker)

2.3.3 Fossil fuel emissions15

Fossil fuel CO2 emissions (Fff ) were made available on 1 × 1 degree grid at a monthly temporal resolution. They are de-

rived from a combination of databases: EDGAR4.2, CDIAC, and BP statistics. (see: http://www.esrl.noaa.gov/gmd/ccgg/

carbontracker)

2.3.4 Isotope and disequilibrium fluxes

To calculate the fluxes of 13CO2 from land surfaces we used the photosynthetic discrimination parameterization (Eq. 2) for20

C3 plants in the SiBCASA model (Van der Velde et al., 2014). The weighted leaf level value for C3 discrimination is typically

19.0 ‰, and given the more efficient CO2 bonding with the Rubisco enzyme C4 discrimination is 4.4 ‰ (Still et al., 2003; Suits

et al., 2005). Given the dominance of C3 plant growth (70 % of global GPP) the global mean discrimination in SiBCASA has

been estimated at ∆ph = 15.2 ‰. SiBCASA’s spatial heterogeneity of land discrimination is shown in Fig. 4. It reflects the land

use distribution and the environmental forcing. Large discrimination values can be found in the temperate regions, the boreal25

forests, and in the humid environments such as the tropical rain forests in South America, Africa and South East Asia. Small

discrimination values can be found in the United States corn belt and in the dry climate regions such as the African savannas

and Australian grasslands, where there is abundance of C4 plant growth. More subtle variations in ∆ph in C3 dominant regions

are driven by differences in environmental conditions (e.g., humidity, groundwater availability, and light intensity). Weekly 1

× 1 degree fields for ∆ph were used to map the regular 3-hourly net CO2 fluxes to 13CO2 fluxes:30

[terrestrial net 13C exchange term] = λbNb (λdiscrεph/1000 + 1)Ra, (10)

9
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where εph is derived from SiBCASA’s ∆ph output. Their relation is straightforward:

εph = −∆ph (11)

For the calculation of 13CO2 biomass burning flux we assumed Rfire to be very close to the signature of newly assimilated

photosynthates, i.e.:

13Ffire = Ffire (λdiscrεph/1000 + 1)Ra. (12)5

The 13CO2 fossil fuel emissions are calculated with Rff = 0.0107786, given that the global mean value of δff is equal to

−30 ‰:

13Fff = FffRff . (13)

Note that we did not vary δff for different fuel types in this version of CTDAS-C13, but such variability could be included in

the future based on the work of Andres et al. (2000).10

The ocean discrimination parameter εao is assumed to be constant at −2 ‰ as in many comparable studies (e.g., Tans et al.,

1993; Ciais et al., 1995; Alden et al., 2010), and is not optimized. The regular 3-hourly net CO2 fluxes were mapped to 13CO2

fluxes:

[ocean net 13C exchange term] = λoNo (εao/1000 + 1)Ra, (14)

The isodisequilibrium fluxes (Db and Do, in mol 13CO2 m−2 s−1) were made available on a monthly 1 × 1 degree reso-15

lution. Db is calculated using SiBCASA’s gross natural respiratory flux scaled with isotopic disequilibrium of the terrestrial

biosphere with the current atmosphere, i.e., Fba (δb − δeq
b ). Because fossil fuel emissions add isotopically depleted CO2 to the

atmosphere, the biosphere signature δb follows with a time lag dependent on the residence time of carbon in the vegetation

and soils. That implies δb is larger than δeq
b , which is the biosphere signature that is in equilibrium with the current atmosphere

(Tans et al., 1993). Db has a positive tendency on atmospheric δ13C as carbon originating from different SiBCASA pools is20

older and more enriched in 13C than the isotopic signature of recently fixed photosynthates. The SiBCASA pool configuration

is described in detail in Van der Velde et al. (2014).

Do is calculated from the out-gassing flux of CO2 scaled with the isotopic disequilibrium of the ocean surface with the

current atmosphere, i.e., Foa (δeq
a − δa). The δeq

a term is determined from a global network of δ13C measurements in dissolved

inorganic carbon (Gruber et al., 1999). Foa is parameterized as a function of surface ocean partial pressure of CO2 and wind-25

speed after Takahashi et al. (2009). Windspeed and solubility are assumed to remain constant year-to-year. The disequilibrium

fluxes are positive from the equator to approximately 60 degrees of latitude in both directions and are negative beyond that.

2.3.5 Observations

Observations of CO2 from a wide range of research laboratories are bundled in Observation Package (ObsPack) version 1.0.3

and observations of δ13C from the INSTAAR Stable Isotope Lab are bundled in version 1.0.0. These are data products that30

include the provider’s original data and metadata reformatted into the ObsPack framework (Masarie et al., 2014).
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From the available CO2 observations, approximately 24,000 weekly flask measurements were used in the assimilation from

a fixed network of 58 surface sites. Another large set of 174,000 measurements came from 23 semi-continuous in-situ sites.

Most CO2 measurements are obtained with a nominal precision of ±0.1 ppm. The remainder of sites and measurements (in-

cluding from aircraft or shipboard) were not used because of double records, and some measurements were kept for independent

checks. A small fraction was omitted as our model could not resolve certain locations at a coarse resolution.5

For the dual-species inversions we also used 22,000 flask measurements of δ13C from 53 different surface sites. A further

5,600 measurements from five different sites were obtained using programmable flask packages (PFP), which measure δ13C at

a daily resolution. The isotope ratios are measured by dual inlet mass-spectrometry with a precision of ±0.01 ‰.

We determined observation uncertainties (model-data mismatch, or MDM) for each of the δ13C measurement sites in

a heuristic manner based on earlier test inversions. These values are added to the diagonal of R. A too small error would10

give an unrealistic amount of confidence how well the model is expected to represent the measurement location during sam-

pling but a too large error we would give very little confidence to the measurement representation.

The δ13C measurement sites were divided into different categories each with their own MDM value. As with CO2 these

categories were: land, mixed conditions, marine boundary layer (MBL), deep Southern Hemisphere, and a special category for

problem sites where forecast performance is poor. For each site we determined the innovation statistic χ2, which is a measure15

for how apt our applied uncertainty level is given the model-data fit. A χ2 value of 1.0 indicates that the simulated and expected

total uncertainty are equal, lower values indicate overestimation of the uncertainty, and higher values underestimation. Table 1

gives a summary of the site categories used, together with the assigned MDM for δ13C and the category-average innovation χ2

determined from an inversion experiment. For the majority of sites the innovation values are between 0.7 and 1.3, i.e., around

the ideal value of 1.0. For the CO2 measurement sites we used a similar set of MDM values as in previous CarbonTracker20

releases.

2.4 Experiments

We performed four inversion experiments as summarized in Table 2. The simulation period covered the years 2000 through

2011, but our analyses focused on the period 2001-2011, i.e., we omitted the spinup year. As a benchmark we performed

a traditional inversion to estimate the net carbon exchange fluxes of the ocean and land using only CO2 observations, which25

we call TRAD−CO2. For the second inversion we added δ13C observations alongside CO2 to constrain only the exchange

fluxes, therefore we call this experiment TRAD−CO2C13. The experiment in which we estimated discrimination and fluxes

simultaneously is called NEW−CO2C13. This inversion is nonlinear because the discrimination scaling parameter is in the

same multiplication term as the net flux scaling parameter. The fourth experiment was a linear inversion experiment where we

estimated only the land discrimination parameter using δ13C data. We call this experiment NEW−2STEP because discrimi-30

nation was solved in a second step after optimization of the net exchange fluxes. That means that ocean and land fluxes were

derived from the optimized state vector and its covariance from the TRAD−CO2 inversion.
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3 Results

3.1 Comparison to observations of CO2 and δ13C from the global network

We first evaluate the global CO2 and δ13C budgets simulated by our combination of fluxes as described in Section 2, to

assess where we expect the largest changes in the optimization. As shown in Fig. 5a, the prior net exchange flux estimates and

unscaled disequilibrium fluxes were not large enough to close the gap with the observed tracers, CO2 and δ13C. The sum of the5

flux arrows overestimated the annual CO2 growth rate along the x-axis and overestimated δ13C depletion along the y-axis. In

a traditional TRAD−CO2 inversion the estimated ocean and land fluxes closed the CO2 budget along the x-axis. The leverage

in the net exchange fluxes was however not large enough to close the δ13C budget along the y-axis as well. In an inversion that

includes δ13C observations, the gap in δ13C would adjust the CO2 flux magnitudes and ocean/land partitioning to unrealistic

magnitudes in an effort to overcome the large offset between the simulated and observed δ13C growth rate. Instead we chose to10

use scaled disequilibrium fluxes in our inversions in order to estimate land and ocean CO2 flux magnitudes that remain close

to the results of other traditional carbon cycle budgeting studies (Alden et al., 2010; Van der Velde et al., 2013). We chose the

disequilibrium fluxes to adjust because (1) the exact magnitudes of these terms are still unknown due to uncertainties in the

carbon pool turnover, gross carbon fluxes and isotopic discrimination, and (2) these terms do not affect the CO2 mass balance.

It assured a closed mean δ13C budget of our inversions without creating unrealistic carbon sinks over land and oceans (Fig.15

5b). Most importantly, closing the climatological (11-year) budget allowed us to focus our study on interannual changes in the

net fluxes and photosynthetic discrimination.

We obtained the best fit with δ13C data when the land and ocean disequilibrium flux were scaled by a factor of 1.2 without

changing either their spatial patterns or time trends. This is consistent with recent double deconvolution studies where the

global δ13C balance was closed with a factor of 1.3 in land and ocean disequilibrium (Alden et al., 2010). Our value was20

determined after assessing an ensemble of different sets of scaling numbers (ranging from 1.1 to 1.5) in a forward TM5

simulation, which was driven by the optimized net land and ocean flux estimates from the TRAD−CO2 experiment. This

assured a closed multi-year δ13C budget together with a closed multi-year CO2 budget. As selection criteria we used (1)

the 11-year mean Root-Mean-Square-Difference (RMSD) of a large selection of δ13C sites and (2) the average bias between

simulated and observed values. In the non-scaled disequilibrium simulation we obtained a RMSD of 0.165 ‰ and a bias of25

−0.110 ‰ averaged over all sites. The optimal result was obtained with a scaling factor of 1.2, which reduced the RMSD to

0.079 ‰ and the mean bias to −0.010 ‰. Note that these scaling factors cannot be applied to other inversion studies because

the disequilibrium scaling factors are tuned for this particular system and time period.

To demonstrate our procedure in terms of individual data sets, we refer to Fig. 6. After scaling the disequilibrium fluxes

and using optimized net carbon exchange from the TRAD−CO2 inversion, time series of δ13C at 32 of the 46 Northern30

Hemisphere sites showed no remaining significant trend (sites where p-value > 0.05) in the summer residuals, and the residuals

from the trend lines were within or close to the MDM specified for our dual-species inversions. Some of the sites with remaining

trends are located at great distances from large continental carbon sources and sinks, and exert little influence on the posterior

λdiscr parameter (e.g., CHR, GMI). Some of the other sites were assigned a large MDM (e.g., BAL, NWR, TAP) giving them
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less weight in the estimation of the posterior λdiscr parameter. The collection of sites with remaining trends do not seem to

have a systematic geographic pattern and are likely reflecting a change in local oceanic or biospheric isotope exchange, such as

must be the case for the Bermuda West (BMW, non-significant positive trend) and Bermuda East (BME, significant downward

trend) site.

With the long-term trend of δ13C appropriately captured, we proceeded to optimize NEE and ∆ph with our new framework5

(NEW−CO2C13). We show that this inversion further reduced δ13C residuals (Fig. 7a), without compromising (nor strongly

improving) the fit to CO2 (Fig. 7b) that we attained from the TRAD−CO2 inversion. In Fig. 7a the ratio of δ13C RMSD

of NEW−CO2C13 to δ13C RMSD of the TRAD−CO2 inversions was at most sites smaller or equal to 0.95 (indicating

a significantly higher accuracy of NEW−CO2C13 in form of bias and noise reduction):

δ13C RMSD (NEW−CO2C13)
δ13C RMSD (TRAD−CO2)

< 0.9510

In Fig. 7b, the ratio of CO2 RMSD of NEW−CO2C13 to CO2 RMSD of TRAD−CO2 was at most locations between

0.95 and 1.05. This suggests that the two atmospheric constraints applied are complementary, and there is no indication that

the TRAD−CO2 results from CarbonTracker were inconsistent with δ13C measurements. This is an important prerequisite

for a credible estimate of discrimination in our system. Furthermore, Fig. 7a shows a notable latitudinal divide in the reduc-

tion of δ13C RMSD, indicating the utility of NEW−CO2C13 in the Northern Hemisphere due to the large availability of15

measurements and scalable discrimination parameters.

At sites like Alert (Nunavut, Canada) the NEW−CO2C13 inversion provided a better fit to the measured data than the

TRAD−CO2 inversion (Fig. 8). The 11-year averaged δ13C residuals were close to zero for both inversions, as the disequilib-

rium flux was tuned specifically to prevent large residuals in a-priori simulated δ13C as described in Section 3.1. The 1σ stan-

dard deviation of the δ13C residuals at Alert were smaller in the NEW−CO2C13 inversion in comparison to TRAD−CO2,20

due to the additional optimization of ∆ph alongside net exchange fluxes. The CO2 residuals for Alert in Fig. 8 were for both

inversions almost identical.

3.2 Linear and nonlinear estimates of net carbon uptake and land discrimination

Simultaneously optimizing both λdiscr and λbio is inherently nonlinear and thus possibly problematic for our assimilation

system, therefore we tested the validity of our approach in the NEW−CO2C13 inversion. We hypothesized that a region’s25

net carbon uptake and discrimination would change in a similar fashion in the nonlinear inversion, as it would for a linear

inversion. The linear inversion experiment consisted of two consecutive steps: (1) the optimization of the net exchange fluxes

using only CO2 observations (TRAD−CO2) followed by (2) the estimation of the land discrimination parameter using only

δ13C observations (NEW−2STEP). In the nonlinear NEW−CO2C13 inversion the optimization of fluxes and discrimination

was done simultaneously. For net carbon uptake by vegetation we refer to Net Ecosystem Exchange, or NEE, defined as positive30

when CO2 is taken up from the atmosphere. For plant isotope discrimination we refer to ∆ph in per mil, which is defined as

positive.
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As shown in Fig. 9 the 11-year mean NEE for the 11 land TransCom regions are very similar in the nonlinear NEW−CO2C13

and linear TRAD−CO2 inversions. Deviations are in the order of tens of teragrams, and within 1σ standard deviation of the

flux interannual variability (IAV). Fig. 9 also shows the impact of C4 photosynthesis on the mean TransCom aggregated ∆ph

values. In the boreal regions, where there is very little C4 plant growth, the discrimination is at its maximum (approximately

20 ‰, 5 ‰ above the global average), but in regions where there is C4 plant growth (e.g., due to agriculture in the United States5

or savannas in Africa) the mean ∆ph values are lower (approximately 12-15 ‰). These regional patterns of ∆ph imposed by

SiBCASA (see also Fig. 4) are maintained by the NEW−CO2C13 inversion framework. Because we aimed to retrieve robust

temporal patterns of IAV, the most relevant indicators for the robustness of our nonlinear inversion approach are given by the

correlation coefficients (r) between the two types of inversions. We calculated r for NEE and ∆ph between the linear and non-

linear inversions. As the seasonal cycles in uptake and discrimination are largely dictated by the prior estimates, we removed10

them using a 3-month boxcar mean smooth curve fitting to obtain the anomalies relative to the seasonal trend. The NEE in

NEW−CO2C13 is very similar to the NEE in TRAD−CO2, as indicated by the high r-values (>0.96 for N=52·11 weeks)

for all TransCom regions. The r values are lower for ∆ph, but still exceed 0.75 in the Northern Hemisphere. The correlation

is particularly high over North America Boreal, North America Temperate, and European regions. Smaller correlations are

obtained in Tropical and Temperate South America and Tropical Asia. This is expected, however, as these regions typically15

suffer from a lack of observational constraints.

The linear NEW−2STEP inversion estimated the same large increase in discrimination IAV as in the nonlinear NEW−CO2C13

inversion for the Northern Hemisphere in comparison to the first-guess estimate of SiBCASA (8-fold increase in standard de-

viation, see Table 3). In addition, we also found in both inversions a strong positive correlation between ∆ph and NEE on

annual time scales (r = 0.79) with a significant slope (p=0.001, 95 % confidence interval of a two-sided distribution with 920

degrees of freedom). In years when annual mean NEE is low (less carbon uptake) the ∆ph is low too (less discrimination),

implying that stomata have partially closed, and vice versa. This correlation did not emerge in the TRAD−CO2 estimate

based on atmospheric CO2 observations alone, and it also did not emerge if δ13C observations were additionally used in

the TRAD−CO2C13 estimate, to estimate NEE but not ∆ph. The SiBCASA terrestrial biosphere model that provides the

first-guess NEE and ∆ph of our data assimilation framework based on commonly used drought response parameterizations,25

simulated neither the large IAV in NEE and ∆ph nor their strong correlation. It is evident from the NEW−2STEP inversion

that changes in ∆ph and the correlation with NEE were driven by δ13C observations, and were not a symptom of the systems

inability to separately estimate NEE and ∆ph variations. This suggests that the estimated IAV of ∆ph in the nonlinear inversion

is truly a signal retrieved from δ13C that would otherwise be aliased erroneously into the carbon fluxes or not retrieved at all.

3.3 Independent verification with drought indices30

A closer inspection reveals that the reported correlation between the Northern Hemisphere’s NEE and ∆ph in Table 3 could

indicate a moisture driven response at ecosystem level. We identified several moments of severe to extreme drought as char-

acterized by a Standardized Precipitation and Evaporation Index (SPEI, Vicente-Serrano et al., 2010) below -1.0 that covered

an extensive area of more than a million km2 in United States. These droughts are described in literature as the droughts (or
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heat waves) of summer 2002 (Seager, 2010; Schwalm et al., 2012) and 2011 (Long et al., 2013). The annual averaged maps

of SPEI for 2001-2011 are shown in the top panel of Fig. 10 calculated for the Northern American Temperate TransCom

domain. Independent of the SPEI drought index, we estimated changes in ∆ph and NEE over the same American domain

with the NEW−CO2C13 inversion using atmospheric CO2 and δ13C data (Fig. 10, middle and lower panels). A correlation

between ∆ph and SPEI could only be established by applying an area weighting function to the SPEI index to give years that5

experienced large and severe droughts the strongest association with reductions in ∆ph. We used the following function for the

Weighted Drought Index (WDI):

WDI =

∑
i=1 (SPEI[i] · Gridcell-area[i])

Total-area
.

In words, we sum over the product of the SPEI index and the grid cell surface area where SPEI is below -1.0 and subsequently

we divide it by the total area of the TransCom domain. Hence, the WDI is an expression the drought in terms of the surface10

area that is affected. A larger drought surface area will result in a more negative WDI. Using this function we see that the

lower values for ∆ph correspond strongly with years of low SPEI over large serried areas, indicating a temporal correlation

of r=+0.75 between the SPEI variable and ∆ph (see correlation in Fig. 11 with a significant slope: p=0.008, 95 % confidence

interval of a two-sided distribution with 9 degrees of freedom). The two largest anomalies (> 1σ of 11-year IAV) in annual

mean ∆ph correspond with low SPEI in 2002 and in 2011. A third notable drought as recorded in SPEI happened in 2006, and15

although carbon uptake was reduced, it did not amount to a significant signal in ∆ph. Similar correlations do exist over other

parts of the Northern Hemisphere in our inversion solution. For instance, severe droughts in Western Europe (2003) and Russia

(2010) lowered the discrimination by 1.0 ‰, and exceeded more than 1σ standard deviation of its 11-year IAV (not shown).

In addition, in years when ∆ph is low, the annual mean NEE tends to be low too, possibly as a result of reduced GPP. This

implies that leaf stomata have partially closed and therefore affecting both ∆ph and carbon uptake from photosynthesis. The20

reduction of the optimized net carbon sink for North America is 100-400 Tg C yr−1 during the drought years of 2002, 2006

and 2011 (in comparison to their surrounding years).

These correlations that are averaged over continent sized areas do however breakdown on smaller scales. At regional scales

we observed a partial misallocation of the model adjustments of NEE and ∆ph in comparison to SPEI. This is largely a con-

sequence of our limited capacity to monitor CO2 and δ13C. For example, for North America Temperate 2002, where the25

drought index was negative over the mountain states, the impact on the carbon cycle was strongest over the eastern forests of

the United States. In these forest ecosystems CO2 exchange is much stronger than over the mountains, and hence their impact

on atmospheric δ13C as well.

Notice that the prior net carbon sink is underestimated in comparison to the optimization because SiBCASA assumes a near

steady state between between GPP and TER (Fig. 10). SiBCASA was in fact able to simulate small carbon uptake anomalies30

during the reported droughts using its own environmental response parameterizations. However, it lacked substantial amount of

interannual variability in NEE and ∆ph nor a strong correlation of ∆ph with SPEI (Fig. 11). This suggests a potential absence

of an important coupling between the hydrology and carbon discrimination processes in the model.
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4 Discussion and conclusions

We developed a new application of the CarbonTracker data assimilation system that simulates two atmospheric tracers simul-

taneously: CO2 and the δ13C isotope signature of CO2. We used measurements of both tracers to optimize the net ocean and

land carbon exchange fluxes and the land discrimination parameter ∆ph. The annual reductions in ∆ph were up 0.75 ‰ and

exceeded the 1σ standard deviation of the IAV over 11 years in the North American domain (16.4±0.3‰). We interpret these5

negative anomalies in ∆ph as possible reductions of the intercellular CO2 levels and relative increases of the intercellular
13CO2/12CO2 ratio, resulting from stomatal closure due to drought stress at the leaf level. This is the most plausible explana-

tion as most other factors that affect ∆ph either (a) are included a-priori in SiBCASA biosphere model, such as the effects of

IAV in strength of photosynthesis over C3 and C4 vegetation, or the variations in mesophyll conductance are (b) not expected

to vary much from year-to-year, such as ecosystem composition, or (c) would enhance the intercellular CO2 levels (and thus10

∆ph) rather than reduce it, such as increased radiance of the leaves under reduced cloud cover. This suggest the possibility

that the impact of environmental stress on stomatal conductance and carbon uptake is much larger than currently simulated

by the widely used drought parameterizations in terrestrial biosphere models. These parameterizations are often derived from

laboratory observations or plot-scale observations that often aggregate poorly over much larger scales. Our first results suggest

that a data assimilation system that uses the global atmospheric δ13C record, in concert with the CO2 record, can offer new15

insights on large-scale drought dynamics of the coupled vegetation-atmosphere system.

It is unlikely our terrestrial biosphere model will reproduce the new large-scale atmospheric constraints on NEE and ∆ph

with a simple adjustment of the currently used drought response parameterizations (such as stomatal conductance and soil

water stress inhibition functions). We experimented with a different stomatal conductance model based on vapor pressure

deficit (VPD, Leuning, 1995) rather than relative humidity as it was shown to better predict changes of the isotopic composition20

in tree rings (Ballantyne et al., 2010). This modification however did not change the annual covariation between NEE and ∆ph

in SiBCASA. In addition, modifications in the soil water stress function of SiBCASA, which impacts ∆ph through mesophyll

conductance (Seibt et al., 2008) also had little impact on annual variations in ∆ph. Instead, SiBCASA shows minimal dynamic

range in the hydrological drivers of drought stress. This was also concluded using satellite observed soil moisture in SiBCASA

over Boreal EurAsia (Van der Molen et al., 2016). That means our model is potentially (a) too homogenous regarding its25

plant and soil characteristics, (b) suffering from a too simple hydrological formulation for run-off and interception, (c) lacking

realism in simulating the latency of ecosystem recovery after a severe drought, (d) missrepresenting effects of root-zone soil

moisture stress, as was also diagnosed for the Amazon by Harper et al. (2010) for the closely related SiB model, or (e)

suffering from even a more fundamental problem inside the A-gs model where ci/ca and cc/ca are calculated. In SiBCASA

the soil moisture limitations are applied by first downscaling assimilation rate (A), vmax, and mesophyll conductance, after30

which the balance is calculated between A, stomatal conductance (gs), and cc/ca. In Egea et al. (2011) this approach was

shown to conserve incorrectly intrinsic water-use efficiency (iWUE = A/gs) and ∆ph during droughts. However, initial tests

show that a direct coupling of soil moisture stress to gs would affect SiBCASA’s iWUE (and ∆ph) much stronger and more

favorable during droughts (E. van Schaik, personal communication, 2017). The lack of variability in simulated atmospheric
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δ13C found in Van der Velde et al. (2013) could well be (partially) ascribed to the lack of sensitivity towards soil moisture stress

in SiBCASA. There is also evidence that the conventional use of land cover types in biosphere models does not adequately

describe the spatial variations of carbon exchange (Bloom et al., 2016).

As with any data assimilation system, the number of available observations largely determines the assimilation system’s

ability to retrieve meaningful signals. Our current method relies on atmospheric δ13C anomalies that affect multiple monitoring5

sites at the same time due to low signal-to-noise at each site, but the network coverage over many parts of the world is

still sparse. The increase of number of measurement sites, and the addition of δ13C to many existing ones, particularly in

sparsely populated areas could benefit CTDAS-C13 greatly. New measurement efforts are currently underway to improve our

observational coverage in these sparsely sampled areas. Regular measurements of CO2 from aircraft vertical profiles have

recently commenced at four different sites above the Amazon. These data have provided new insights on the carbon cycle10

under drought conditions (Gatti et al., 2014). These new measurements were successfully used in an application of CTDAS

(Van der Laan-Luijkx et al., 2015) and confirmed that the Amazonian CO2 uptake by vegetation was indeed reduced during

the severe 2010 drought. Furthermore, some coauthors are currently involved in a new collaborative effort to provide the first

high-precision measurements of δ13C and other isotopes in CO2 from a large number of air samples collected over the Amazon

basin. Using an assimilation system similar to that described here, these data would bolster our ability to quantify seasonal to15

interannual changes in the Amazonian carbon balance and better understand the influence of drought stress on NEE.

The retrieved correlation between NEE and ∆ph in the Northern Hemisphere was derived from atmospheric δ13C obser-

vations through our new dual-species approach, and thereby provided new insights on the land-atmosphere coupling of water

and carbon on continental and hemispheric scales. The unconstrained SiBCASA model does not show a large enough response

to drought both in terms of NEE and ∆ph. The correlation between droughts and ∆ph over the North American Temperate20

domain (Fig. 10) can only be demonstrated after optimizing NEE and ∆ph by applying atmospheric δ13C and CO2 constraints

together. We emphasize that the reported correlations remain robust and significant even when changing the atmospheric trans-

port characteristics (i.e., convection fields from ECMWF ERA-Interim meteorology vs. default TM5 convection scheme), the

optimization method (nonlinear vs. linear 2-step), and when changing the assumed model-data errors of our data assimilation

system.25

A potential problem with the current framework is that we cannot account for changes in the terrestrial isodisequilibrium

flux. In Eq. 1, we forced all missing isotopic variability into term Nbεph without considering additional variability from

the isodisequilibrium term. Photosynthetic discrimination is also responsible for a portion of the variability in the terrestrial

isodisequilibrium flux (Van der Velde et al., 2013), but the extent is hard to quantify. The δeq
b signature (i.e., the biosphere

signature that is in equilibrium with the atmosphere) is a function of the current δa and ∆ph, two quantities that ultimately exert30

influence on δb as the isotopic signal carries through the series of carbon reservoirs (i.e., leaves, stems, roots, and ultimately

the soils). The absence of direct adjustments to the disequilibrium flux could mean we aliased erroneously isotopic signals only

onto the net flux term of the budget. In light of recent observational evidence, the variability of disequilibrium term might be

of more importance than recently thought. Bowling et al. (2014) showed with δa measurements that the disequilibrium flux

can become negative locally due to humidity induced changes in ∆ph. We found that these effects on the ∆ph estimate are35
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likely small mainly because gross flux variability is fundamentally limited and dampened by the large reservoir sizes from

which it comes. In an experiment with SiBCASA where we allowed extra uncertainty in respiration and ∆ph to drive through

the disequilibrium isoflux we found indeed an increase in variability in the disequilibrium term, necessitating 10 % less ∆ph

variability to keep a closed δ13C budget. It indicates that allowing for errors in the disequilibrium fluxes the variations in the

estimated ∆ph parameter might be slightly smaller or larger than estimated with CTDAS-C13, but nonetheless still twice as5

large than estimated with SiBCASA. Using a more simplified but physically consistent set of equations only based on gross

fluxes (GPP and TER) to express the rate of change of δa would eliminate the need for a disequilibrium term. This would on

the other hand complicate the closing of the CO2 budget as it necessitates a way to effectively separate these two gross fluxes.

It is worth mentioning that the carbon residence time in land ecosystems is highly uncertain, and therefore the gross CO2

exchange as well. Welp et al. (2011) suggested that the current popular estimate of global GPP of 120 Pg C yr−1, which is also10

predicted by SiBCASA, may be a lower limit and could in reality be as large as 175 Pg C yr−1 to reflect faster turnover of

carbon in the vegetation and soils. Such uncertainties were also underlined by Carvalhais et al. (2014) who found that higher

precipitation rates are associated with faster carbon turnover, but that global modeled turnover is in fact often underestimated.

We make a cautious conjecture that if GPP is in fact as large as claimed by Welp et al. (2011), and heterotrophic respiration is

large too, it will partly explain the current underestimation in the modeled disequilibrium fluxes, which are a function of TER15

and ocean CO2 outgassing. In this study we closed the gap with a predetermined scaling factor of 1.2 on the disequilibrium

fluxes for oceans and land without assuming actual changes in GPP, TER or ∆ph. We could therefore benefit from a more

integrated assimilation system where we are using atmospheric data to simultaneously optimize for terrestrial model parameters

that exert influence on GPP, TER, carbon turnover. The CTDAS modular design (Van der Laan-Luijkx et al., 2017) makes it

now more straightforward to develop and implement such additional improvements.20

To conclude, this study showed there is significant potential to use atmospheric CO2 and δ13C data as constraints on plant

NEE and isotopic discrimination using a dual-species assimilation platform. Signals that would otherwise be lost in a single

tracer data assimilation system, such as the possibility of a drought driven covariation between isotope discrimination and NEE

or the separation of GPP from NEE, can potentially be detected in the described dual-species application of CTDAS. Continued

and additional measurements of atmospheric δ13C and CO2, especially in future assimilation systems where biosphere model25

parameters are directly optimized, should help us better understand the hydrological and biogeochemical interactions between

the atmosphere and vegetation.

Code availability

The CTDAS-C13 and TM5 source code are made available online as supplementary material on the GMD website. More

detailed model descriptions and information to run the code are available on the following websites: www.carbontracker.eu30

and tm.knmi.nl/index.php/Main_Page.
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Figure 1. Global distribution of Olson ecosystem types.
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Figure 2. Earth’s partitioning into 11 land regions and 11 ocean regions according to the TransCom project. The ocean regions are divided

into 30 smaller basins (not shown) and the land regions can contain up to 19 different ecoregions as shown in Fig. 1.

Table 1. Summary of assigned δ13C model-data mismatch (MDM), the category-averaged and 1σ standard deviation of the innovation χ2,

and number of sites per category.

Site category MDM (‰) χ2 # sites

land 0.13 0.97±0.52 10

mixed 0.080 0.80±0.34 11

marine boundary layer 0.03 1.29±0.70 15

deep Southern Hemisphere 0.03 1.22±0.44 7

problem 0.4 0.63±0.48 10

Table 2. Summary of the four inversion experiments, the observations used, the optimized items (ocean and land fluxes, and ∆ph), and their

linearity. The prefix TRAD− refers to traditional, i.e., experiments that have been performed in the past in any way, shape or form. The

prefix NEW− refers to a new type of inversions used in this publication. NEW−CO2C13 used the default CTDAS-C13 model setup as

described in the Methodology, while NEW−2STEP solved for ∆ph using only δ13C data.

Experiment Observations Optimization Linear?

TRAD−CO2 CO2 flux only yes

TRAD−CO2C13 CO2 and δ13C flux only yes

NEW−CO2C13 CO2 and δ13C flux and ∆ph no

NEW−2STEP δ13C ∆ph only yes
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Figure 3. The prior P covariance structure represents squared uncertainty of the dimensionless state vector. The first 209 × 209 element

block represents the covariance matrix for land NEE with a maximum diagonal uncertainty of 0.64 (equivalent to 80 %), the second 30 × 30

element block represents the covariance matrix for ocean fluxes with a maximum diagonal uncertainty of 1.0 (equivalent to 100 %), and the

third 209 × 209 element block represents the covariance matrix for ∆ph with a maximum diagonal uncertainty of 0.04 (equivalent to 20 %).

The matrix is organized according to TransCom ocean basins and land regions, where each land region contains 19 potential ecoregions (see

Figs. 1 and 2).

Table 3. Northern Hemisphere land net carbon uptake (NEE, [Pg C yr−1]) and land discrimination (∆ph, [‰]) 11-year mean estimates, and

IAV (±1σ standard deviation) from SiBCASA (prior) and the four inversion experiments. The last line gives the correlation coefficient r

between 11 annual mean NEE and ∆ph values.

Prior TRAD−CO2 TRAD−CO2C13 NEW−CO2C13 NEW−2STEP

NEE 0.22±0.28 2.44±0.46 2.65±0.49 2.58±0.46 2.44±0.46

∆ph 18.1±0.02 18.1±0.02 18.1±0.02 18.2±0.17 18.3±0.17

r −0.26 −0.14 −0.18 0.79 0.78
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Figure 4. Mean (2001-2011) modeled discrimination parameter ∆ph (‰) from SiBCASA. The discrimination is more detailed for ∆ph >

16‰ to highlight the more subtle variations in ∆ph in the dominant C3 regions that experience different environmental forcing.
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(b) NEW-CO2C13 mean growth rates

Figure 5. Annual mean carbon (x-axis) and δ13C (y-axis) growth rates for (a) the prior estimates and for (b) the NEW−CO2C13 experi-

ment. Colored arrows represent the different sources and sinks of the carbon cycle. A closed budget for both tracers was accomplished in the

NEW−CO2C13 experiment, as indicated by the resultant vector (sum of all colored arrows) returning to the black arrow (observed growth

rate in atmosphere). To close the long-term trend we increased the isodisequilibrium fluxes by 20 %.
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Figure 6. Summer (JJA) residuals of δ13C [‰] in CO2 for 46 sites (excluding aircraft and ships) situated in the Northern Hemisphere.

These sites are ordered based on the their latitudinal location; most Northern site is placed at the top left (Alert, Canada) and the site nearest

to the equator at the bottom left on the next page (Christmas Island, Republic of Kiribati). All residuals (simulated minus observed) are

calculated from a traditional TRAD−CO2 inversion with scaled disequilibrium fluxes. Assuming a closed long-term mean budget in δ13C

we tested the Ho hypothesis the slope of the linear regression line is zero. Sites with a trend where the p-value is smaller than the significance

level of 5 % are shown in red, whereas the remaining sites without significant trend are shown in green. The sample uncertainty (model-data

mismatch) used for the NEW−CO2C13 and NEW−2STEP inversions is displayed by transparent gray areas. Sites marked with ** were

not included in the inversions but were used for independent verification. For detailed information of the sites and their location we refer to

the NOAA website: http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/observations.php.28
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(a) δ13 C RMSD 
 NEW-CO2C13 vs. TRAD-CO2

(b) CO2  RMSD 
 NEW-CO2C13 vs. TRAD-CO2

Figure 7. A comparison of the relative performance of inversion techniques for the period 2001 through 2006 based on the ratio of the

model-data (a) δ13C Root-Mean-Square-Difference (RMSD) of NEW−CO2C13 to δ13C RMSD of TRAD−CO2, and (b) CO2 RMSD of

NEW−CO2C13 to CO2 RMSD of the TRAD−CO2 inversion. A ratio lower than 1.0 indicates a higher accuracy of the NEW−CO2C13

inversion technique: green sites indicate a ratio ≤ 0.95, red sites indicate a ratio ≥ 1.05, and sites where the difference in respective RMSD’s

is less than 0.05 are given in black. The size of the each symbol is a measure of the relative performance of NEW−CO2C13 in comparison

to TRAD−CO2. The larger the symbol, the more the ratio of RMSDs differs from 1.0.
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Figure 8. Comparison of two different inversion experiments at Alert (ALT, Canada). The top panel displays δ13C observations (black circles)

together with simulated δ13C from NEW−CO2C13 (green circles). The top right panel displays the probability density functions (PDF)

of the residuals between NEW−CO2C13 and observed (green) and between TRAD−CO2 and observed (blue). The lower panel displays

independent flask measurements (not used in the assimilation) of CO2 (black circles) at Alert with simulated CO2 from NEW−CO2C13

(green circles). Notice the almost identical distribution of the residual PDFs between NEW−CO2C13 and TRAD−CO2 inversion tech-

niques.
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Figure 9. Top panel: the 11-year mean land carbon uptake [Pg C yr−1] for each TransCom region with estimates from the nonlinear

NEW−CO2C13 inversion (red) and estimates from the linear TRAD−CO2 inversion (yellow). Error bars depict 1σ standard devia-

tion of the flux IAV. The 11-year correlation coefficients r between the two inversion methods are given on top of the bars. These correlations

are based on the 3-month boxcar mean anomalies after subtracting the seasonal cycle. Middle panel: comparison of ∆ph [‰] between the

NEW−CO2C13 inversion and the linear NEW−2STEP inversion. We again provide IAV error bars and correlation coefficients between

inversion methods. Lower panel: the 3-month box car mean anomalies in ∆ph for the North America Temperate TransCom region to illustrate

the high degree of similarity between both inversion methods (r = 0.86).
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Figure 10. Top panels: the annual averaged Standardized Precipitation and Evaporation Index (SPEI) estimated for the North American Tem-

perate domain (map inserts). Middle panel: the annual GPP weighted averaged ∆ph [‰] of vegetation against 13CO2 from NEW−CO2C13

(red) and SiBCASA (blue) estimated for the same domain. It illustrates the summertime isoforcing of δ13C towards the atmosphere (as win-

tertime ∆ph has no impact on atmospheric δ13C). Lower panel: net carbon uptake [TgC yr−1] from NEW−CO2C13 (red) and SiBCASA

(blue) estimated for the same domain. The yellow shaded years (2002 and 2011) indicate significant drought conditions as recorded in SPEI

and other independent reports (e.g. Seager, 2010; Schwalm et al., 2012; Long et al., 2013). These droughts correlate with reductions in annual

mean ∆ph, and reductions in the estimated carbon sinks as reported in Peters et al. (2007).
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Figure 11. Weighted SPEI drought index (WDI) versus annual mean isotopic discrimination ∆ph integrated over North American Temperate

domain. Results from the SiBCASA biosphere model (blue circles) show no significant correlation between ∆ph and large scale droughts,

while the simultaneous optimization of carbon sinks and ∆ph with atmospheric CO2 and δ13C observations (red triangles) suggests a highly

significant correlation can be derived. The slope of the red regression line is 1.61‰/WDI (p=0.008, 95% confidence interval of a two-sided

distribution with 9 degrees of freedom). The SiBCASA slope is however not significantly different from zero (p»0.05). The integrated ∆ph

values are GPP-weighted per grid box as in Fig. 10. WDI is based on the SPEI index but area weighted to give years with large serried areas

that experienced severe droughts (with SPEI smaller than -1.2) more leverage.
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