
 

 

Replies to the Editor and Reviewers 
MS No.: gmd-2017-84 
September 21 2017 
 
We thank the Executive Editor and the Reviewers for their helpful and supportive comments. 
Their thorough analysis, critical comments, and suggestions have helped us to improve and 
sharpen the manuscript.  
 
Dear Astrid Kerkweg, Executive Editor, 
General comment: 
 
Please add the acronym CTDAS plus a unique version identifier of the exact version of the in this article 
described assimilation system in the title of your article in your revised submission to GMD.  
 
Authors: We changed the title of the manuscript to: The CarbonTracker Data Assimilation 
System for CO2 and δ13C (CTDAS-C13 v1.0): retrieving information on land-atmosphere 
exchange processes 
 
 
Dear Reviewer #1, 
 
General comments: 
Figures 10 and 11 show large (>0.5 permil) changes in the optimized plant 13C discrimination rate from 
the prior value, indicating that Eq. 2 for estimating the prior values does not perform well at least under 
drought conditions. The equation is based on Suits et al. (2005) and includes full discrimination processes 
from free air to the photosynthetic site inside chloroplasts. However, there are various ways to implement 
the equation. It is not clear how Ci and Cc in the equation are estimated. Usually, stomatal conductance 
and mesophyll conductance are used to estimate them. In previous research, mesophyll conductance is 
often simply scaled to stomatal conductance.  

Authors: We thank the Reviewer for making us aware that some parts of the SiBCASA’s model 
description were unclear. We improved its description from page 8 line 24 through page 9 line 8 
in the new manuscript. However, we choose not to provide all the equations that are involved in 
the photosynthesis calculations. The main focus of this manuscript is to describe our first dual-
species inverse modeling framework of CTDAS. Therefore, a detailed description of the prior flux 
estimates is less relevant here. Instead, we give the necessary references to the important papers 
that describe them in detail.  
 
 
Chen et al. (2017, GMD) used a mesophyll model of Harley et al. (1992, Plant Physiology), and found it to 
be effective in improving the sensitivity of the modeled 13C discrimination rate to environmental conditions 
and in removing abnormal values caused by scaling mesophyll conductance to stomatal conductance. I am 
not requesting the authors to further develop their prior model for this paper, but they should make it clear 
how the equation is implemented and discuss issues associated with photosynthetic discrimination 
modeling. 



 

 

 
Authors: The CO2 concentration close to the chloroplasts (Cc) is derived with the mesophyll 
conductance (gm) estimate (Cc = Ci – An/gm). Mesophyll conductance inside SiBCASA is not 
scaled to stomatal conductance but is derived with the following function (Suits et al. 2005): 
 
𝑔" = 4000 ∙ 𝑣𝑚𝑎𝑥0 ∙ Π ∙ 𝛽, 
 
where 4000 is a constant used to achieve a drop of CO2 partial pressure of 8 Pa between Ci and Cc 
when assimilation rate is high, vmax0 is the maximum potential photosynthetic rate at the top of 
canopy, ∏ is a factor that expresses the integrated photosynthetic rate over the entire canopy and 
ß is the soil moisture stress parameter, which is a function of the plant available water in the soils. 
That means water stress limits not only the assimilation rate by scaling down Vmax but also 
increases the mesophyll resistance, making it harder for CO2 molecules to diffuse to the leaf 
chloroplasts. This gives a CO2 ratio Cc/Ca that scales with the carboxylation discrimination 
parameter (Δf) used to predict the total discrimination (Eq. 2 in manuscript). Neglecting mesophyll 
conductance would mean Cc equals Ci even though Cc can be significantly lower. This would 
require an often-used simplified version of the discrimination model where Δf scales linearly with 
Ci/Ca, and therefore risking an overestimation of discrimination. A previous comparison between 
observed and simulated δ13C demonstrated the ability of SiBCASA to fit the data within 1 ‰ for 
a selection of sites of the BASIN network (van der Velde et al., 2014).  

We make reference to the mesophyll conductance formulation by Suits et al. (2005) on page 8 line 
31. We also make the importance of mesophyll conductance in relation to photosynthesis and 
discrimination more explicitly clear in the manuscript (page 9 line 1). The implementation of 
alternative mesophyll conductance models is certainly something we want to explore in the future. 
However, we did not find abnormal large or small values in discrimination caused by mesophyll 
conductance as claimed by Chen et al. (2017). On the contrary, the current photosynthesis model 
in SiBCASA conserves discrimination to an extreme due to lack of soil moisture sensitivity. But 
once again, a detailed discussion of the prior flux/discrimination uncertainties is out of scope of 
this manuscript and is either already done elsewhere (e.g. Suits et al. 2005, van der Velde et al. 
2013, van der Velde et al. 2014) or is currently in preparation as a separate manuscript.   

 
I appreciate very much that both land and ocean discrimination rates are optimized in their data 
assimilation systems, and it is interesting to see that it is possible that these rates can be optimized with 
currently available measurements.  

Authors: We want to emphasize that ocean discrimination is not optimized. Only terrestrial 
discrimination, and the net ocean and land carbon exchange fluxes. The main reason is that ocean 
discrimination is much smaller in magnitude than terrestrial discrimination, and spatiotemporally 
much more homogeneous (page 5 line 17).  This is furthermore mentioned on page 6 line 15, and 
page 10 line 11.  
 
 
 
 



 

 

The authors also make it clear that these optimizations are based on the assumption that the prior 
disequilibrium fluxes of land and ocean have no bias errors. We understand that these disequilibrium fluxes 
are large and nearly equivalent to discrimination fluxes in size and that their estimates are quite involved 
and inaccurate. I wonder what is the justification to optimize discrimination but not disequilibrium. Since 
the disequilibrium rates over both land and ocean are difficult to estimate accurately, I wonder what are 
the impacts of their errors on the optimized fluxes and discrimination rates. The authors qualitatively 
discussed these impacts in Discussion, but the discussion is not useful for assessing the reliability of 
optimized results of their data assimilation systems. It would be useful to do a quantitative assessment of 
these impacts.  
Authors: Although we did not jointly optimize disequilibrium inside CTDAS-C13, we optimized 
it offline to match the 11-year trend in observed δ13C. We found that the prior disequilibrium 
estimates underestimated the δ13C trend substantially by 20 %. These bottom-up estimates were 
scaled by a factor of 1.2 for use in CTDAS-C13. This gave us an acceptable 11-year mean fit for 
most of the δ13C sites in the Northern and Southern Hemispheres with a RMSD of 0.079 ‰ and 
the mean bias of -0.01 ‰ (at δ13C measurement precision). This procedure is described in the 
manuscript on page 12, line 18. We believe however that the choice of 1.2 will not have a 
significant impact on our conclusions, because we focused only on interannual variability in fluxes 
and discrimination. The scaling assured that land and ocean CO2 flux magnitudes remained close 
to the results of the traditional CO2-only inversion.  

The extent disequilibrium fluxes will change year to year is a matter of debate in the literature. It 
has been suggested that at least the gross flux component of the disequilibrium between the 
atmosphere and ocean or terrestrial biosphere are mostly controlled by large-scale thermodynamic 
influences and are expected to change little on interannual time scales (e.g. Rayner et al. 1999), 
but other studies suggest this is not necessarily be true (e.g. Alden et al. 2010). Given the short 
assimilation window of 5 weeks that is used in CTDAS-C13 it is doubtful whether we can capture 
such effects that are dampened by their large reservoir size.  

To quantify the influence of errors in the disequilibrium flux we performed an additional 
experiment with SiBCASA where we allowed extra variability in respiration and discrimination 
to drive through the disequilibrium isoflux. For a detailed explanation of this experiment you can 
read our reply to Reviewer #2 (Prof. Rayner). We would indeed generate extra variability in the 
terrestrial disequilibrium budget term, necessitating 10 % less variability in discrimination to keep 
the δ13C budget closed. It indicates that allowing for errors in the disequilibrium fluxes the 
variations in discrimination could in reality be slightly larger or smaller than estimated in the paper, 
but are nonetheless still much larger than in SiBCASA (twice as large standard deviation). We 
make reference to this experiment in the manuscript on page 18, line 1.  

 
The word “multi-species” in the title is a bit misleading because there are only two gas species, CO2 and 
13CO2, considered in their data assimilation systems, while multi-species would imply at least three 
species. Although the systems are intended for more than two species, the cur- rent study only uses two 
species. I suggest changing it to duel-species or some other phrases.  

Authors: We changed the title of the manuscript to The CarbonTracker Data Assimilation 
System for CO2 and δ13C (CTDAS-C13 v1.0): retrieving information on land-atmosphere 
exchange processes. Other references to multi-species in the main text are changed to dual-
species. 



 

 

Dear Prof. Rayner, Reviewer #2, 
 
1st concern: 
The first is a bit more detail on posterior uncertainties. This is more difficult in the NKF formalism of 
CarbonTracker than for the classical synthesis inversion but, especially in the nonlinear case, some sense 
of ensemble correlations among fractionations and fluxes would be useful. Perhaps these are the 
correlations already quoted, it seemed from the text these were signal correlations.  
Authors: Interpreting the ensemble correlations between Δ (fractionation) and fluxes is indeed 
difficult with CTDAS, specifically because we cannot calculate covariances structures over scales 
beyond the current assimilation window of 5 weeks. So our short time window prevents us from 
deriving reliable seasonal or annual mean uncertainties and correlations from its covariance matrix. 
Within the 5-week windows, we can look at these covariations though and as we show here below 
in Figure 1, the monthly posterior ensemble-correlations (N=150) between NEE and Δ aggregated 
for TransCom regions are, besides the diagonal, just small (between -0.3 and 0.3). However, 
between the linear 2-step inversion and the nonlinear inversion the posterior ensemble-correlations 
are markedly similar, which suggest a shared commonality of the internal error estimate between 
the two methods. In the manuscript however, we show the high degree of similarity of posterior Δ 
between the two inversion methods by calculating their temporal correlations over a 11-year period 
(Figure 9 in the manuscript). Table 3, as the Reviewer had deduced, indeed presents a signal 
correlation rather than a spatiotemporal covariance. 
As argued by Peters et al. (2005), the formal uncertainty estimate cannot be based on ensemble-
correlations but should instead be based on a number of different inversions, with different 
assumptions and model setups. As mentioned in the manuscript (page 17, line 21) the reported 
correlations between NEE and Δ, and the drought index and Δ remain robust and significant if we 
change the atmospheric transport characteristics, the optimization method (linear vs. nonlinear), 
or the assigned model-data error in CTDAS. Not only robust for the Northern Hemisphere but also 
for smaller subregions like Europe and parts of Eurasia. These additional experiments and results 
are in preparation for a second publication and demonstrate in more detail atmospheric δ¹³C as a 
new observational constraint of the impact of droughts on the water-use efficiency using CTDAS-
C13. 
 
As a side-note, the p-values attached to the correlations are not relevant here. We are interested in the 
strength of a relationship while the p-value shows the chance of giving such a correlation if the population 
value was zero.  
Authors: The p-values in the main text of the manuscript refer to the hypothesis test for slopes; 
can we reject the null hypothesis that the slope parameter is zero, i.e., is there a significant slope 
between NEE (or drought index) and Δ over a 11-year period? All slopes of the curve fits in the 
manuscript were tested using two-tailed distributions and a 95% confidence level for N-2 
degrees of freedom. We improved the description in the main text.  
 

 



 

 

 
Figure 1: Posterior NEE and Δ ensemble-correlation matrix for July 2002 where we aggregated the ecoregions to 11 
TransCom regions (see Figure 2 in manuscript). The matrix on the left is derived from the linear 2-step inversion 
and the matrix on the right from the nonlinear inversion. In each matrix, the first 11x11 element block contains the 
NEE correlations between the TransCom regions, and the second 11x11 element block along the diagonal contains 
Δ correlations between the TransCom regions. The two off-diagonal 11x11 element blocks contain the correlations 
between NEE and Δ. In both matrices the diagonal correlations are 1.0, but the color scale limits values between -0.5 
and 0.5.   

 
2nd concern: 
My second concern is raised by the authors in the discussion but is not really dealt with. It could affect 
some of the conclusions. The authors note (P17) that impacts of changing net flux or fractionation on the 
isoflux are neglected. they correctly diagnose that the problem arises because the isoflux is not included in 
the optimisation. they suggest one solution, the partition of net flux into its gross components. There is 
another approximate solution. The main result of this process is a dilution of C13 signals by the isoflux. 
This can be parameterised as a response function for the C13 signal from a net flux. this was how Rayner 
et al., 1999 approached the problem, taking response functions from Trudinger et al. 1999. The time-scales 
for this response are long cf the assimilation window used in CarbonTracker so I’m not sure whether one 
can even capture the effect but we did find it had an impact on interannual variability. The problem may 
be less severe for the current paper because the prior signal for this response should be captured by 
SiBCASA. To quantify the effect I recommend that the authors take the difference between their prior and 
posterior flux and transport its C13 signature with and without the dilution response. This should at least 
give a sense of the significance of the problem.  

Authors: Prof. Rayner makes a valid point that our current optimization framework lacks C13 
signal dilution that could result in an over- or underestimation of the Δ variability. The Δ variability 
would in reality drive through the disequilibrium isoflux and generate additional variability, but 
this was ignored in our framework. We found by analyzing the variability in the net flux and isoflux 
components of the CO2*d13C mass balance that such ‘dilution effects’ of the C13 signals were in 
fact quite minimal. Variability in Δ with dilution response was about 10% smaller in comparison 
to the Δ estimate without dilution response. However, both solutions still contained significantly 
more (two times more in standard deviation) variability in Δ than predicted by SiBCASA. 
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To demonstrate this, consider the following formulation for rate of change of atmospheric d13C 
only due to terrestrial C13 exchange: 
 
-./0/
-1

= 𝑁3𝛿53 + 𝐹35(𝛿35 − 𝛿53)  

The first term on the right-hand side represents a net isoflux: the product of net terrestrial carbon 
uptake (𝑁3 ) and isotopic signature in carbon assimilation (𝛿53 ), where 𝛿53  is the sum of 𝛿5 
(atmospheric d13C) and Δ  (photosynthetic fractionation). The second term represents the 
disequilibrium isoflux: the product of total respiration (𝐹35 ) and the difference in isotopic 
signatures of the total respiration and photosynthesis (𝛿35 − 𝛿53).  To account for dilution effect, 
extra Δ variability should go into 𝛿53 and 𝛿35. There is an immediate effect in 𝛿53 because 𝛿53 ≈
𝛿5 − Δ. For 𝛿35 the response time is more complex, because the Δ variations return quickly via 
autotrophic respiration (perhaps ~1-7 days), while there is a much more dampened effect of Δ 
variations in the heterotrophic component of 𝛿35 because the multiple carbon pools with different 
turnover rates homogenize the isotopic signature of carbon released from the soils (Alden et al., 
2010). For this analysis, we took monthly 1x1 degree 𝑁3, 𝐹35, 𝛿53 and 𝛿35 from SiBCASA for the 
North American domain over a total time period of 11 years. We introduced for each year a spatial 
uncertainty parameter 𝛽 of +/-1‰ (1s standard deviation) and a covariance length scale of 300 
km to mimic increased correlated interannual variability in 𝛿53  and  𝛿35 . Because 40% of the 
North American respiration is heterotrophic (according to SiBCASA), and rather insensitive to 
changes in Δ , we scaled down the 𝛽  parameter applied on 𝛿35  by a factor of 0.6. A second 
uncertainty parameter g was introduced to mimic 20% more variability in 𝐹35 using a covariance 
length scale of 300 km. 
We rewrite the rate of change equations for two different cases: (1) with dilution response and (2) 
without dilution response, which is similar to the scenario portrait in the manuscript. 
-./0/
-1 =>1?	->AB1>CD

= 𝑁3(𝛿53 + 𝛽) + (𝐹35 + 𝛾) ∙ [ 𝛿35 + 𝛽 ∙ 0.6) − (𝛿53 + 𝛽 ]   (1) 
 
-./0/
-1 =>1?CB1	->AB1>CD

= 𝑁3(𝛿53 + 𝛽) + 𝐹35(𝛿35 − 𝛿53)      (2) 
 
How much variability in 𝛿53 in eq. (2) do we need to match the more realistic ‘with dilution’ 
scenario? Answer can be deduced after some substitution between eq. (1) and eq. (2): 

𝛿53 = 	
JK/L/
JM NOMP	JOQRMOST

UVW/(0W/U0/W)

XW
  

𝛿53 estimation is analogous with the Δ estimation in the manuscript using atmospheric constraints 
and a fixed terrestrial disequilibrium flux without dilution effects. Figure 2 below shows that 
variability of the North American annual mean 𝛿53  is overestimated (10% larger standard 
deviation) in comparison to the ‘correct’ estimate of (𝛿53 + 𝛽). More importantly, variations in 
both (𝛿53 + 𝛽 ) and 𝛿53  are significantly larger than SiBCASA’s estimate for 𝛿53  (two times 
larger standard deviation) and highly correlated (r=0.97). It suggests the possibility that variations 
in Δ may be overestimated in the manuscript, however, the dilution response introduced via the 
gross fluxes and isotopic signatures is not large enough to believe our current Δ estimates from 
CTDAS-C13 are unrealistic. We make a reference to this experiment on page 18, line 1.  



 

 

  
Figure 2: North American mean estimates of 𝛿53 from SiBCASA (cyan), 𝛿53 with extra 𝛽 variability (blue), and the 
top-down estimate 𝛿𝑎𝑏  that excludes dilution effects (red). Both (𝛿53 + 𝛽 ) and 𝛿𝑎𝑏  are significantly larger than 
SiBCASA’s estimate for 𝛿53 (more than 100% larger standard deviation) and highly correlated (r=0.97). 
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