
Editor comments

E1: The main paper must give the model name and version number (or other unique identifier) in the title.

AE1: The final paper contains the model name and version number in the title.

CE1: The title is now changed.



Anonymous Referee #1

The authors  use  a  reduced order model  representation  of  a  complex  numerical  wet  land methane  model  with
adaptive MCMC to estimate posterior distributions of model  parameters.  Because wetland methane models are
complex and surface CH4 emissions are small differences between large gross fluxes, this type of calibration exercise
is difficult and potentially valuable.

The authors did a nice job describing their results, given their model setup and assumptions. At this point, however,
several assumptions in the approach leave me unconvinced of the reasonableness of the results, which I describe
below. Also, the underlying model has not been described in the literature, and citing “Raivonen et al. (2017)” is
inappropriate, since it is apparently a paper in preparation.

We thank the Anonymous Referee #1 for her/his constructive critique and we address the points raised below. Here, we
would like to point out that Raivonen et al. Is in public discussion in GMD, and therefore available for consultation. The list
of references that we provide at the end of the article has the old reference to “in preparation” paper, which is unfortunate.
Whe have added the link, https://www.geosci-model-dev-discuss.net/gmd-2017-52/ to the references.

Changes to manuscript: Reference to Raivonen changed in the bibliography; now the entry is correct.

Major comments 

R1/1. It is unclear why you need to vary the peat depth in your optimization. You apparently have measurements of
the depth (lines 22-23, page 4), so you ought to use that as a non-calibratable value in the model. The high sensitivity
of your parameter calibration to the peat depth implies to me that some other factor must be important and not
properly resolved in your underlying model (e.g., O2 profiles below the WT depth or rooting profiles). The argument
on line 31, page 6 that it is more computationally expensive to run with a deeper peat depth is not sufficient to justify
this approach. 

AR1/1:  Peat  depth of  a  wetland is  not  constant  and  therefore  using a  measured  value is  not  as  straightforward  as  is
suggested. The    peat depth affects in sqHIMMELI both production and transport. The high sensitivity of the parameter
tau_C_cato  suggest,  as  discussed,  that  the  total  catotelm  decomposition  rate  is  relatively  constant  as  it  is  positively
correlated with peat depth.

We changed the model to include the full 4m deep peat layer, by increasing the thickness of the lowest layer, and mention
that  this value is  not an absolute truth but is  to  be looked at  together  with the tau_C_cato parameter,  because of  the
variability  of  peat  depth at  any given wetland site,  and the heterogeneity of  the site.  In  MCMC experiments,  500000
sequential simulations are often needed, and the posterior estimate improves with more simulations,  so in our opinion
computational efficiency does matter. If the model simulation takes five seconds longer to finish, we end up spending 29
days more on the simulations. 

As both referees wondered about the changing discretization level numbers, We drop the part of the study looking into that,
and only concentrate on a single experiment.

CR1/1 Regarding peat depth: changes in Sec. 3.3 explain this, latexdiff  p.8. l. 7-12; also the connection to the tau_C_cato
parameter is mentioned there. 

R1/2. Changing z_exu and Q10 on a yearly basis seems arbitrary. For Q10, I would expect much larger seasonal than
interannual variations, yet you ignore that possibility. I think you need to explicitly describe the mechanisms you are
proposing for the inter-annual variability of these parameters.  The citation to Bergman et al 2000, who noticed
change in Q10, "even within a single year", seems to bely your approach.

AR1/2We could have added an additional model for the parameters Q10 and z_exu, but decided that a simpler approach
serves us better here as we do not want to overfit the parameters. Bergman reports the following mid-July – late Sept. Q10-
values for minerotrophic lawn, which is closest to the Siikaneva site (Laine et al.) whose data is used in the manuscript: 5.9,
3.7, 8.4, 4.0, 7.1, 4.1, 7.0. This suggests that the seasonal variation can be quite irregular at such sites, and in such a
situation we opt for the simplest description of the variation. We would like to note here, that for the calibration we feel it is
enough to be convinced that there is variation, and the mechanisms are a research question to be tackled in a separate
research project. However, we note that these mechanisms are discussed in e.g. (Davidson et al., 2006), and we add a short
section about it to our text.

CR1/2 Text added to Sec. 3.4, latexdiff p. 8 l.18-21

https://www.geosci-model-dev-discuss.net/gmd-2017-52/


R1/3.  Ignoring  the  temperature  sensitivity  of  CH4  oxidation  appear  to  be  a  flaw  in  your  approach.  There  is
substantial evidence that this temperature dependence is even larger than that for CH4 production. Further, since
the net surface emission is a small balance of production and oxidation rates, and you explicitly account for the CH4
production temperature sensitivity (eq. (5)), not including Delta(E_R) in your equation (7) seems unreasonable. a.
This concern propagates to the last sentence in your abstract. Oxidation often strongly affects the net CH4 emission,
which is the measurement you are using to calibrate. If parameters affecting oxidation are ‘not identifiable’, then it
seems unlikely that the production parameters are reasonable.

AR1/3 We re-performed the simulations and added Delta(E_R) in the parameters to be optimized. We add the relevant parts
to the discussion and reformulate the abstract to reflect the changes. We also added the Delta_E_oxid parameter to the
optimization, that regulates the temperature dependence of oxidation of the parameters. It is true that the oxidation and
production terms are  correlated,  and  this  is  something to  beb expected.  Nonetheless,  also  information  regarding  their
correlation is important and as such scientifically valuable, as their mutual relationship may still be well defined.

CR1/3 The parametrers are added to Sec. 3.4, parameters no 7 and 9, latexdiff p.9 l.13 and 17. Also, they are added to the
results, and tables at least to the following spots: prior information Table 3, Figs 3,4,6, and results in Table 4. Also latexdiff
p.18 around l.5, p.22 l. 22, p.23 l.7, p.26 l.1, p.26 l.5. 

R1/4. On line 21 of page 7, you state that V_R0 affects the rate of temperature dependent HR, but the T dependency
is actually governed by Delta(E_R) which is not used in the calibration (Table 2). In general, it is unclear in your
section 3.4 how the CH4 production occurs and its relationship with heterotrophic respiration.

AR1/4This is correct, the shape of the temperature response is governed by Delta(E_R). We clarify the functions of the
parameters regarding the HR in the text and also discuss the role of Delta(E_R) that was added in the new simulations.

CR1/4 This is actually covered by the description of parameter V_R0, parameter no. 6, latexdiff p.9. The short text there
explains roles of both of those parameters, and the equation where they function. The parameter DeltaE_R is now part of
optimization, see response CR1/3.

R1/5.  In section 4.1,  you say the model  was linearized,  but you did not show whether such a linearization is  a
reasonable approach. Please provide a quantitative evaluation of how appropriate this linearization

AR1/5This was an error in the text. The linearization was done for the posterior probability density function and not to the
model, and was used only in estimating the initial proposal covariance for MCMC. In the new simulations we do not use
this method and hence this part of the text is dropped. 

CR1/5 Sec. 4, latexdiff p. 13 l.20-21, removed text.

R1/6. Lines 22-25, page 9: Having to restart the model on January 1 of each year because realistic column gas
concentrations were otherwise not predicted is a red flag for a problem in the model. The model should be able to
run continuously without interruption. If this is a real problem in the model, you should rectify it. Once rectified and
described in the paper, restarting each year for computational efficiency and parallelization is reasonable. 

AR1/6The concentrations are realistic and stable and the reason for the restarting is just the optimization algorithm, which
allows using separate parallel simulations for different years. We wanted the peat column gas concentrations of any year in
the optimizations to be in the regime of the parameters to be optimized, but since the variations are small, we actually
believe, that this is more than enough. In the end the model will of course be run linearily in a single simulation, and this
can be done already now with only trivial changes required to the model.

CR1/6 We believe this is adequately explained in the text, but changed the text a little, latexdiff. p.14 l. 17.

R1/7. Section 4.2.4 seems to apply that your objective function is only based on annual values, but the text implies
that you use the annual values to linearize the model, and then perform the parameter calibration with observed
daily CH4 emissions. Please clarify.

AR1/7The annual component was dropped from the new simulations as they had no practical effect to the posterior. The
text is updated accordingly.

CR1/7 See CR1/5, also latexdiff p.14 l.25. Additionally, removed Annual CH4 fluxes section, latexdiff p.15 l. 11-20

Smaller comments: 



R1/8. Methane is the second most important anthropogenic GHG for warming (don’t forget water vapor).

AR1/8 This is now mentioned in the text.

CR1/8 p.2 l.11-12

R1/9. You describe annual calibration in they abstract, but not the fact that you used a ROM and then daily fluxes
for calibration (as far as I can tell). This approach should be described in the abstract.

AR1/9The annual values were dropped, see R1/7. Also, a reduced order model was not used, and in the updated work it is
not used even for covariance estimation.

CR1/9 No additional text changes needed as no ROM  nor annual estimates were in the end used 

R1/10. Line 13-15, page 2: cite recent methane model inter-comparisons here: Melton et al., Bohn et al.

AR1/10Citations were added to text.

CR1/10 Latexdiff: mention added in intro, p. 2/l. 27

R1/11. Your assertion (lines 33-34, page 2 to line 4, page 3) that flawed physics representations, numerical errors, and
coding errors are good reasons to calibrate a model is shocking. Calibrating a poorly constructed model is a cardinal
sin of modeling, although it is regularly done. I think you might re-think the organization of this paragraph.

AR1/11We clarify the text. However, we would like to point out that even excellent models require calibration. Model
parameter optimization is effectively inverse modeling, which can improve predictive performance, reveal bottlenecks, and
in the best cases provide information for analyzing the physical system. This being said, it is fully true that blindly done
model calibration can lead to strange results and a worse model. We reorganize the section to better clarify our views on the
topic. We also mention that proper description of the physics is important for the calibration exercise to make sense.

 CR1/11 latexdiff p.3, l.13-20

R1/12. Line 5, page 3: Possibly the most mechanistic and realistic terrestrial CH4 model available today is ecosys
(Grant, 2002), which you should cite.

AR1/12 Citation has been added to the text.

CR1/12 Citation added, latexdiff p.3 l.22

R1/13. Line 8, page 3: define ‘multi modality’

AR1/13The text has been clarified in regard to this.

CR1/13 latexdiff p.4 l. 26-27., text clarified.

R1/14. Your figures are cited out of order in the text (e.g., figure 11 cited just after figure 2).

AR1/14 The figures are now in order.

CR1/14 Figures and Tables are in order of appearance, and hence they are also in order in the text.

R1/15. Line 27, page 12: do you mean ‘inter-annual variability’ instead of ‘annual variability’? 

AR1/15Yes, fixed.

CR1/15 latexdiff p.18 l. 21

R1/16. Line 9, page 12: there is no figure 6g.

AR1/16Should have been 6 (b), fixed

CR1/16  latexdiff p.19 l. 14;  (due to ordering changes of the figures and changes in the figures, the numbers are now
different, and the old numbers are wrong; the cross validation figures are now 7b and 8)



R1/17. Does the model calculate the peat temperature? It is not clear from your description which T you are using to
estimate your temperature sensitivity. Air T? 

AR1/17The model uses any soil temperatures that it is given. In this work we used everywhere measured soil temperatures.
We clarify this point further.

CR1/17 clarified that it was measurement data  that was used. latexdiff p.5 l.31-32

R1/18. What happened to a discussion of figure 10?

AR1/18A short discussion was left out and is now added.

CR1/18 This figure is now discussed: latexdiff p.21 l.24-28. The figure was already touched upon earlier, this section is
latexdiff p.25 l.20-25.

R1/19. Where did the NPP come from? Describe in Methods.

AR1/19This is explained in the appendix, but is clarified in the main text now.

CR1/19  Regression modeling of NPP is now mentioned in methods (data description section),  latexdiff p.6 l.2-3.  The
detailed description is still left to the Appendix E.



Anonymous Referee #2

The objective of this paper is to use observed carbon flux time series in order to optimize parameters of a peatland
carbon flux model. In general, this is a timely and important work. However, I found several serious issues with this
manuscript including potential flaws in the method that does not allow a publication in the present form.

Please, indicate in abstract and introduction, what is the overall objective of this model e.g. in future applications?
Do you want to apply it exclusively for this one peat site and for which question? Do you want to apply it on a
continental to global scale, e.g. as part of a land surface scheme? In the latter case, several model assumptions are
not  useful  (effective  peat  depth,  C  pool-independent  decomposition  flux),  and  a  lot  of  work  on  parameter
optimization seems to be questionable when only data from one specific site is used.

The HIMMELI model will be used in both stand-alone configurations and as parts of land surface components of regional
and global models. We do not intend that the parameter optimization work here would be relevant to any wetland site –
rather we look at within-site variation of parameters. The model assumption-related problems are addressed in the points
below. We also further clarify the objectives of the research in the abstract and the introduction.

Changes to manuscript: Main results clarified in abstract and intro, latexdiff p.1 l. 11-17. Applicability, p.1 l. 7-9., p.3 l.11-
13.

Major comments to sqHIMMELI assumptions:

R2/1 In both aerobic and anaerobic cases, organic matter decay seems to be a constant parameter not depending on
substrate availability. When peat depth would have been set constant to the observed site-level value, then this could
be valid for the specific site but then we do not learn anything from the parameter optimization procedure for a
generally applicable dynamic model.

AR2/1In the model, the organic matter decay (anoxic peat decomposition, Eq. A6) is not a constant parameter but depends
also on the amount of peat and its temperature. And of course e.g. oxygen concentration affects the decay rates. We would
like to point out for clarity that Eq. 5 in itself does not determine the reaction rate. In addition to moving appendix A into
main text (as requesed in referee comment R2/15), we clarify in the text this point.

We re-performed the simulations with a 4m total  peat  column, which reflects our knowledge of the peat  depth at  the
Siikaneva site (Rinne et al. 2007). Anaerobic respiration of exudates on the other hand does not depend on the peat column
thickness. We clarify this in the text.

As peatlands differ widely from site to site, naturally these different types of wetlands have different parameters controlling
the organic matter decay. In the manuscript we look at the decay rates for a single site and as such the parameter values are
not directly generalizable everywhere. However, we believe that we could, by looking at data from other sites, calibrate the
model for various types of wetlands with e.g. hierarchical Bayesian methods, and this would make it possible to e.g. use the
model with land surface sceme. This is work still waiting to be done and beyond the scope of this manuscript.  

CR2/1 Change of peat depth mentioned: latexdiff Sec. 3 p. 6 l. 21. For peat decay dependence, latexdiff p. 11, l.21-22.
(In fact we ended up in the end using 85% of the maximum depth of 4 meters, as the reported depth was 2-4 meters.)

R2/2  Effective  peat  depth:  This  assumption  makes  no  sense  at  all.  Peat  depth  should  be  a  constant  value
corresponding to the site observation. See below for related flaws in eq 5.

AR2/2We have changed the peat depth to 4m that roughly represents the peat depth in Siikaneva. We no longer speak about
effective peat depth in the manuscript. The different simulations now refer to how deep the fine discretization of the peat
column goes. Please see also the answer to R1/1.

CR2/2 Only one discretization was used in the end. Text changed everywhere to reflect that we now use an approximation
of the actual peat depth, e.g. latexdiff p.8 l.7-11. All figures and tables that touched upon different peat depths are updated
(new numbers): Tables 4 and 5, and Figures 4,6,7,8,10,12,13,

R2/3 A2 Anaerobic respiration producing CH4: It seems from eq. A5-A8 that you apply a CH4:CO2 ratio of 1:1 for
anaerobic decomposition of root exudates. If so, please make this statement explicit and cite experimental literature
showing this ratio. 



AR2/3We initially optimized the ratio along with other  parameters,  but  due to covariability  with the z_exu parameter
without CO2 data, we left this parameter out as only z_exu or the ratio-determining parameter could be determined, and for
the first iteration we chose 1:3. However, with CO2 flux data, we are able to constrain the parameter, and therefore we add it
to the optimization and to the discussion.We now use data from (Nilsson & Öquist) to set the prior values and explicitely
state the final ratios.

CR2/3 f_exu^CH4 parameter added, latexdiff p.9 l.6, p.11 l.20, p.17, l.31-33, p.21 l.20, p.26 l.19, also Figs 3,4,6, Tables 3
and 4.

R2/4 In section 3 it is also fully unclear if you consider anaerobic CO2 production or not. 

AR2/4We do. This is now also clarified in the text.

CR2/4 Mentioned in Sec. 3 first paragraph; latexdiff p. 6 l. 11

R2/5 Eq. 5: is tau(cato) the mean residence time at 273.15 K? The unit (y) in Tab 3 is not correct because in eq. 5 you
do not multiply with a Cpool.

AR2/5Equation 5 just describes a rate parameter, equation A6 is the actual peat decomposition. When tau has the units of
time, A6 then has the time in the denominator which is correct.

CR2/5 We changed the presentation of the units and multiplicative factors in Table 4 (new number) to be more intuitive, eve
n though we believe that it was also correct previously. See Table 4.

R2/6 I expect the Finland peat being frozen with snowpack above over long time periods of the year. What are the
effects of <273K soil temperature on aerobic and anaerobic decomposition? What are the effects of soil ice on gas
transport and what are the effects of snow on gas transport?

AR2/6Ice and snow slow diffusion of gases into the atmosphere, but this has not been so far implemented in HIMMELI,
except for some very preliminary and simple efforts. We tried increasing the resistance of the top soil layer when top soil
temperature fell under 0 C but this did not improve the fit / change the results enough for that the change would have been
reasonable to keep. We have hence not included descriptions for processes such as diffusion through snow, or release of
accumulated gas bubbles under ice in spring time  as described by e.g. Mastepanov et al. (2013), Sriskantharajah et al.
(2012)  – this will be very interesting and will hopefully be done at a later stage.

CR2/6 References and explanations added, Sec. 3, latexdiff p.6 l. 26-28

R2/7 Please include in results and discussions the exudate pool values. 

AR2/7We add the exudate pool values and briefly discuss them.

CR2/7 The exudate pool is added to Fig. 9 and there is a short description of it on p. 22 l. 1-3 in the latexdiff.

R2/8 Peat depth: Prescribing an effective peat depth will hinder any application of that model in larger dynamic
models,  such as land surface schemes or DGVMs. Peat depth is no parameter there that you can prescribe but
included into the mass balance equations. If you define an effective peat depth then this would mean that you either
introduce a fully recalcitrant carbon pool (case peat depth > effective peat) or that you “produce” CH4 and CO2
from non-existing carbon (case peat depth < effective peat depth). That is not a valid and also not useful model
assumption.

AR2/8We are not modeling for peat depth changes in this model so far. Of course, the decay in m y^-1 can be calculated in
a straightforward way, but since we don’t know the speed of new peat formation we don’t know the change of the peat
column in time. This work will be done later. We have changed the peat column depth to reflect the real depth. We have
dropped the notion of effective peat depth.

CR2/8 Same changes apply as in CR1/1, CR2/1, CR2/2

Major comments on the parameter optimization:

R2/9 Tab 5: What is the reason for not including these parameters into MCMC optimization? I generally think that
the information content in the data is far too low for an optimization of all model parameters, hence a selection will
be useful. However, we need good reasons for such selection, either based on theory or based on a previous sensitivity
analysis.



AR2/9The selection was based on a previous preliminary analysis. This is now mentioned in the text. In practice not fixing
some of the parameters may lead to ending up in local minima that are unrealistic. However, more importanly, parameters
are interlinked via the model processes and in order to constrain the parameters determining the most important processes
we fix some of the less important ones. We now explain for all non-included parameters why they have not been included.

CR2/9. Latexdiff p. 8 / l.21-22, and Table 2, p. 49 in latexdiff / p. 38 in the manuscript and its caption.

R2/10 I assume there is additional CO2 flux data available at the site. It is totally unclear why this data has not been
used for constraining in addition to CH4 parameters such as decomposition and transport parameters as well as
oxidation parameters 

AR2/10We have reperformed the simulations also utilizing CO2 flux data. The setup description, results, and the discussion
have been updated.

CR2/10 The changes are wide-ranging because also methods had to be updated, including adding a further resampling step.
Latexdiff p.1 l.4, p.4 l. 26, p.5 l.2-29, p.14, l.23-31, p.15, l.3-6 and 14-17, Eq. 24, p.16 l. 5, p. 19 l.3-5, 20-21, 31-33, p.30,
l.7-12, 17, p.33 l.26, p. 34 l. 19-24. For the resampling, a section was added, p.35, l. 1- p.36, l.7. and p.38 l.13-20. The
section (latexdiff) p. 39 l.21- p. 40 l. 5 were dropped as obsolete.

R2/11 parameter values cannot be transferred to other similar models and even not to HIMMELI because of the peat
depth  parameter  and  because  of  important  differences  in  model  formulations:  root  depth  distribution,
decomposition parameterization, etc. What is the scientific value of the paper then? Do you plan to use this model
version in future studies and not the HIMMELI model?

AR2/11We plan to use both sqHIMMELI and HIMMELI in future studies. The decomposition parameterization is not part
of the HIMMELI model but it can still be used as a source of the anaerobic respiration, which is an input variable for
HIMMELI. We believe that the results are transferrable to other models variably: the optimal values of course are not so
straightforward, but correlations of the processes more so.  HIMMELI is a model more suitable for integration in land
surface schemes, whereas sqHIMMELI is a version of the model more designed to be used in stand-alone experiments and
settings such as MCMC studies. We will in future studies also integrate features from both model version’s development
into each other. What model version we use for future studies will depend on the research question at hand.

CR2/11  This was clarified as indicated  in changes to manuscript in response to general comments by referee #2: this
document, top of p. 6. In our view no other changes to the manuscript are needed in addition to those mentioned there.
(copied here: ”Main results clarified in abstract and intro, latexdiff p.1 l. 11-17. Applicability, p.1 l. 7-9., p.3 l.11-13.2”)

R2/12 section A4: I do not understand the sentence “Due to coding mistake, the fD,a and fD,w coefficients in the
aforementioned equations were set to 0.1 for gases other than CH4 in this work.” Why do you set both parameters to
0.1? With a huge pore volume in peat soils I would expect a value of 0.8 or 0.9. If that is a tuning parameter then you
should optimize it. These parameters are also not listed in Tab 5. Instead they are part of Fig 2 and this seems to be a
real flaw in the procedure?

AR2/12This flaw has been fixed in the new simulations.

CR2/12 p. 33 l.9 sentence removed. (Due to moving the appendix to the main text, latexdiff gets confused and this change
is not properly shown in the diff.) The new corresponding place is  (latexdiff) p. 12 l.23.

R2/13 For clarity, please put units on all parameters in tables and figures or when describing parameters in the text. 

AR2/13This has been done.

CR2/13 Changes all over in text, including the tables and figures. Units were added in parentheses. Manuscript  Figs 3,6,13,
and now Tables 1-4 have also units. 

R2/14 I cannot understand the a posteriori optimized parameter values of tau_exu in the order of magnitude 0.00001
s (tab 3) when range is 3 to 30 days with a prior of 14 days (tab 2). From Fig 3 it seems there is a mistake in units in
the table. I have similar problems with units of a posteriori V_0R which seems to be far too high. Zeta_exu seems to
be with 0.5 also quite high and it would be good to see some comparison to literature values if available in the
discussion. tau(cato) ranges from 2000 to 20000 years (unit in tab 3 wrong however) depending on peat depth just
because the model invalidly does not take the carbon pool into account for calculating the decomposition flux (eq. 5).



Then of course, the deeper the peat the more C available the higher you need to have turnover time for the same flux.
This is not a valid approach for a dynamic model.

AR2/14For the units, we believe that Table 3 is correct: if tau_exu x 0.00001 = 10, then tau_exu = 10^6, which is around
11.6  days.  Same is  true for  tau_cato  and  V_0R. The zeta_exu parameter  is  high because of  a  non-optimized another
parameter f_methane in the model.That parameter value has been added to the optimization. We would like to note also that
the decomposition flux is given by equation A6 – equation 5 gives just the reaction rate constant and if tau_cato has the
units of years, the peat decomposition flux given by A6 becomes, integrated over the depth, moles per second per square
meter. For the last sentence, we refer to replies to R2/1 and R2/5.

CR2/14  We changed the way the units and the magnitudes were presented, and even though we believe that it was also
previously correct, we feel it is now more intuitive. See “parameter”-column in Table 4 in the manuscript. (latexdiff had
serious difficulty formatting the differences in the table).

R2/15 A minor comment: I do not find it useful to have some methods description in the main text and some in
appendix A but both relate so strong to each other that one understands it only when reading both together. Please
move appendix A into main methods text.

AR2/15We have moved the appendix A into the main methods text.

CR2/15 Appendix A in the old version moved to be Sec. 3.5 in the new version.
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Abstract. Methane
:::::::::
Estimating

:::::::
methane

:
(CH4) emission estimation for

::::::::
emissions

:::::
from natural wetlands is complex and the

estimates contain large uncertainties. The models used for the task are typically heavily parametrized and the parameter values

are not well known. In this study we perform a Bayesian model calibration for a new wetland CH4 :::::::
emission

:
model to improve

quality of the predictions and to understand the limitations of such models.

The detailed process model that we analyze contains descriptions for CH4 production from anaerobic respiration, CH45

oxidation, and gas transportation by diffusion, ebullition, and the aerenchyma cells of vascular plants. The processes are

controlled by several tunable parameters. We use a hierarchical statistical model to describe the parameters and obtain the

posterior distributions of the parameters and uncertainties in the processes with adaptive MCMC,
::::::::::
importance

:::::::::
resampling

::::
and

::::::::
timeseries

:::::::
analysis techniques. For the estimation, the analysis utilizes measurement data from the Siikaneva flux measurement

site in Southern Finland.10

The model parameters are calibrated using six different modeled peat column depths, and the
::::::::::
uncertainties

::::::
related

:::
to

:::
the

:::::::::
parameters

:::
and

:::
the

::::::::
modeled

::::::::
processes

:::
are

::::::::
described

::::::::::::
quantitatively.

::
At

:::
the

:::::::
process

::::
level,

:::
the

::::
flux

:::::::::::
measurement

::::
data

:::
are

::::
able

::
to

:::::::
constrain

:::
the

::::
CH4::::::::::

production
::::::::
processes,

:::::::
methane

::::::::
oxidation

::::
and

:::
the

:::::::
different

:::
gas

::::::::
transport

::::::::
processes.

::::
The

::::::::
posterior

:::::::::
covariance

::::::::
structures

::::::
explain

::::
how

:::
the

::::::::::
parameters

:::
and

:::
the

:::::::::
processes

:::
are

::::::
related.

:::::::::::
Additionally,

:::
the

::::
flux

::::
and

:::
flux

::::::::::
component

:::::::::::
uncertainties

::
are

::::::::
analyzed

:::::
both

::
at

:::
the

::::::
annual

:::
and

:::::
daily

::::::
levels.

::::
The

::::::::
parameter

::::::::
posterior

::::::::
densities

:::::::
obtained

:::::::
provide

::::::::::
information

:::::::::
regarding15

:::::::::
importance

::
of

:::
the

::::::::
different

:::::::::
processes,

:::::
which

::
is

::::
also

:::::
useful

:::
for

:::::::::::
development

::
of
:::::::

wetland
::::::::

methane
::::::::
emission

::::::
models

:::::
other

::::
than

:::::::::::
sqHIMMELI.

:

:::
The

:
hierarchical modeling allows us to assess the effect

:::::
effects

::
of

:::::
some

:
of the parameters on an annual basis. The results of

the calibration and their
::
the

:
cross validation suggest that the early spring net primary production and soil temperatures could

be used to predict
:::::::::
parameters

:::::::
affecting

:
the annual methane emissions. The modeled peat column depth has an effect on how20

much the plant transport pathway dominates the gas transport, and the optimization moved most of the gas transport from the

1



diffusive pathway to plant transport. This is in line with other research, highlighting the usefulness of algorithmic calibration

of biogeochemical models.
:::::::::
production.

:

Modeling only 70 cm of the peat column gives the best flux estimates at the flux measurement site, while the estimates

are worse for a column deeper than one meter or shallower than 50 cm. The posterior parameter distributions depend on the

modeled peat depth. At the process level, the flux measurement data is able to constrain CH4 production and gas transport5

processes, but for CH4 oxidation, which is an important constituent of the total CH4 emission , the determining parameter is

not identifiable.
::::
Even

::::::
though

:::
the

:::::::::
calibration

::
is

:::::::
specific

::
to

:::
the

::::::::
Siikaneva

::::
site,

:::
the

::::::::::
hierarchical

::::::::
modeling

::::::::
approach

:
is
::::
well

::::::
suited

::
for

:::::
larger

:::::
scale

::::::
studies

:::
and

:::
the

::::::
results

::
of

:::
the

:::::::::
estimation

::::
pave

::::
way

:::
for

:
a
:::::::
regional

::
or

:::::
global

:::::
scale

::::::::
Bayesian

:::::::::
calibration

::
of

:::::::
wetland

:::::::
emission

:::::::
models.

1 Introduction10

Methane is the second
::::
third most important gas in the atmosphere in terms of its capacity to warm the climate,

::::
after

:::::
water

:::::
vapor

:::
and

::::::
carbon

:::::::
dioxide,

:
currently with the radiative forcing power of 0.97 Wm−2

:::::::::::
(IPCC, 2013). This is a sizable part of

the total effect of well-mixed greenhouse gases, which is approximately 3.0 Wm−2. According to IPCC (2013), the amount of

CH4 in the atmosphere has risen to its highest level in at least the last 800000 years due to human activity, and based on ice

core measurements, also its growth rate is presently very likely at its highest level in the last 22000 years.15

The sources of CH4 are both anthropogenic and natural. In years 2003-2012, 60% of the global emissions were anthro-

pogenic (range 50-65 %) and about one third came from natural wetlands. The most important source of uncertainty in the

global methane budget is attributable to emissions from wetlands and other inland waters. Combining top-down and bottom-up

estimates, natural wetland emissions range from 127 to 227 Tg CH4 yr−1 (Saunois et al., 2016). Anthropogenic sources include

rice paddies, landfills, enteric fermentation and manure, incomplete combustion of hydrocarbons, and natural gas leaks (Ciais20

et al., 2013).

The methane from wetlands is produced by prokaryotic archaea under anaerobic conditions. The main sink for atmospheric

CH4 is its oxidation in troposphere by OH ions and the average lifetime of a CH4 molecule in the atmosphere is 9.1 ± 0.9

years (Prather et al., 2012; IPCC, 2013).

The wetlands in the boreal zone are a significant contributor to the total CH4 emissions from wetlands (Kirschke et al.,25

2013), and for this reason the CH4 emissions from them have been intensively studied, also with models, during the past years

(Wania et al., 2010; Kaiser et al., 2016; Petrescu et al., 2015).
:::::::
However,

:::::
major

::::::::::::
discrepancies

:::::::
between

:::::::::
predictions

:::::
from

:::::
those

::::::
models

::::::
remain

::::::::::::::::::::::::::::::::
(Melton et al., 2013; Bohn et al., 2015).

:

The need for improved wetland methane emission modeling is amplified by the fact that although annual mean precipitation

is projected to increase in the boreal zone (Ruosteenoja et al., 2016), changes in the frequency and duration of severe drought30

may follow an alternate path (Lehtonen et al., 2014), manifesting the need to study wetland responses to extreme events.
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Changes to hydrological conditions such as draining or recurring low water table depth can alter the balance of greenhouse

gas emissions (Frolking et al., 2011; Petrescu et al., 2015). Modeling and calibrating for such exceptional events can be difficult,

as was found for instance by Mäkelä et al. (2016).

The HelsinkI Model of MEthane buiLd-up and emIssion for peatlands (HIMMELI) is a relatively full-featured wetland/peatland

CH4 emission model and it is described in detail in Raivonen et al. (2017). The model contains process descriptions for CH45

production from anaerobic respiration, O2 consumption and CO2 production from oxic respiration, and gas transport processes

via diffusion, ebullition, and plant transport. Modeling the concentrations of CH4, O2, and CO2 in the peat column is explicitly

included. The peat column depth can be set at any desired value, and the water table movement determines the part of the peat

column that is favorable for CH4 production. The version of HIMMELI in this work has additional processes, described in

Sec. 3.1, and the modified model is referred to as sqHIMMELI (square root HIMMELI), as it contains a description of CH410

production from root exudates.
:::
The

:::::::::::
sqHIMMELI

::::::
model

:
is
::::::
geared

:::::::
towards

:::::::
site-level

:::::::
studies,

:::::::
whereas

:::::::::
HIMMELI

::
is

:::::
more

:::::
suited

::
for

:::::::::
integration

:::::::
directly

::
as

::
a

:::::::::
component

::
in

:::
e.g.

::::
land

:::::::
surface

:::::::
schemes.

:

Computer
::::
Even

::::
well

::::::::::
constructed

::::::::
computer

:
models describing environmental processes accumulate error at many levels

(Sanso et al., 2007). The sources include time- and space discretization, incomplete
:::::::::::
compromises

::
in

::::::
model physics and bio-

chemistry descriptions
:::
due

::
to

::::::::::::
computational

:::::::::
constraints, insufficient information about the initial states of the modeland their15

time evolution, numerical errors, and coding ,
::::

and
:::::::::
numerical errors, along with parametrization-induced inaccuracies of the

subgridsize processes. This leads to a need to calibrate and optimize models, as the physical variables do not necessarily

::::::
exactly correspond to the model variables perfectly and hence they cannot be often

:::
and

::::::
hence

:::
the

:::::
model

::::::::::
parameters

::::::
cannot

::::
often

:::
be directly measured.

::
Of

::::::
course

::::
any

:::::::::
physically

::::::::
insightful

:::::::::::
interpretation

:::
of

:::::::::
calibration

::::::
results

::::::
makes

:::::
sense

::::
only

:::
for

::
a

:::::::::::::
well-constructed

:::::::
physical

::::::
model.

:
20

Several current CH4 models include the important physical processes controlling both CH4 production and transport in the

peat column (Kaiser et al., 2016; Lai, 2009b; Müller et al., 2015)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kaiser et al., 2016; Lai, 2009b; Müller et al., 2015; Grant and Roulet, 2002)

. The modeled peat column depth affects the total modeled CH4 emission from the peatlands and it is directly included in some

models (Lai, 2009b; Walter and Heimann, 2000). These models are in general highly sensitive to changes in the values of the

parameters (van Huissteden et al., 2009). However, even though algorithmic parameter optimization has been done in some25

studies, the stress is often on parameter efficiencies (van Huissteden et al., 2009), or optimal values (Müller et al., 2015), and

hence the full uncertainty of the values of parameters in these models is not well understood.

Methane models typically use measured values from field campaigns and parameters estimated from those studies where

applicable (Lai, 2009b; Walter and Heimann, 2000; Tang et al., 2010; Riley et al., 2011), and, when needed, include extra tuning

parameters for processes (Walter and Heimann, 2000). This is a practical and much used route as information regarding all of30

the needed parameters is not available at all sites (van Huissteden et al., 2009; Walter and Heimann, 2000). Wide variability

can be expected from some parameters, such as those controlling CH4 oxidation (Segers, 1998). Emissions from different areas

of the same wetland can also vary, due to microtopography and differences between how fast the peat decomposes in different

areas (Lai, 2009a; Cresto Aleina et al., 2016), making straightforward parameter value assignment difficult.
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Due to these uncertainties, values of parameters vary widely from research to research. For instance for the Q10-value

controlling the temperature dependence of CH4 production, Walter and Heimann (2000) use the value 6, handpicking it from

the interval of 1.7-16, whereas van Huissteden et al. (2009) use a range of 3-8, and Müller et al. (2015) constrain the value

between 1 and 10, with the default value of 1.33 and eventually optimizing it to the value of 1 for two of the three optimizations

presented. For other parameters, such as those controlling diffusion rates in peat, the situation is similar.5

Calibration done for the models is usually quite basic. Wania et al. (2010) tune their model by running it with parameters

from a parameter grid, containing only three values for each of the 7 parameters tested, and Riley et al. (2011) follow a similar

procedure for the wetland CH4 model component, CLM4Me, of the Community Land Model. Such crude sensitivity studies

obviously are not able to find out how a model is able to perform at its best. Müller et al. (2015) have further optimized

the CLM4Me model using an emulator combined with a simple minimization algorithm, with respect to several different10

sites, which are bound to have quite different physical characteristics, and are yielding optimal values often at the borders of

the prescribed allowed area of variation. In a sensitivity analysis of the PEATLAND-VU model, a derivative of the Walter-

Heimann model, van Huissteden et al. (2009) look at the efficiencies of the different parameters, but do not elaborate on other

qualities of the posterior. Modeled peat column depth, which is included in the research at hand, is not optimized for the models

generally, and for instance Walter and Heimann (2000) choose it based on expert knowledge.15

Using hierarchical modeling to estimate annually changing
::::::
varying

:
parameters is sensible, since the flux measurement site

has both properties that change from year to year (e.g. small changes in vegetation, plant roots, and microbe populations) and

properties that are more permanent (e.g. peat quality and plant species). With fixed parameter values for all years, the model

sometimes does not accurately and appropriately describe the observations. On the other hand, with different parameters for all

the years, the parameters are easily overfitted, meaning that while the resulting model fits the data well, it does not accurately20

predict future fluxes (Gelman et al., 2013). Hierarchical modeling provides a solution for these problems.

In the present study, the sqHIMMELI model is calibrated using adaptive Markov chain Monte Carlo (MCMC)
:::
and

:::::::::
importance

:::::::::
resampling techniques to evaluate a hierarchical statistical model for the model parameters. The calibration is done for the bo-

real Siikaneva site. This study complements the work in Raivonen et al. (2017) in describing the effects of various parameters

on the processes and fluxes, and analyzing what kinds of configurations best describe the studied boreal wetland.25

Classical optimization is often misleading
:::::
Merely

::::::::::
optimizing

:::::
model

::::::::::
parameters

::::
may

::::
lead

::
to

:::::::::
misleading

::::::
results

:
due to the

multi-modality
:::::::
presence

::
of

::::::
several

:::::
local

::::::
minima

:
in the objective function, as for example Müller et al. (2015) reported in a

study where they used a surrogate model to calibrate the parameters of the CH4 model component of the Community Land

Model. This multi-modality can be accommodated for by using MCMC techniques. Utilizing MCMC methods for optimizing

environmental models and studying their uncertainties is not new (Laine, 2008; Ricciuto et al., 2008; Hararuk et al., 2014), but30

to our knowledge they have not been used for wetland CH4 model parameter estimation before. Moreover, the research that

the authors are aware of does not investigate the interannual variability of parameters, as is done in this study.

The main objective of this work is to analyze the capabilities and limitations of a modern featureful wetland CH4 model

by looking into the shape of the posterior parameter distributions, parameter correlations, and the roles, identifiabilities, in-

terdependencies, and interconnections of the parameters and the processes they control. The simulations and the analyses are35
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performed with six different modeled peat depths, which allows for assessing how the modeled peat column depth affects

the model behavior, and how deep a peat column is optimal based on the flux measurement data used
:::
As

:
a
::::
part

::
of

::::
this

:::::
work,

:::::::::
knowledge

:::::
about

::::
how

:::
the

:::::::
methane

:::
and

::::::
carbon

:::::::
dioxide

:::
flux

::::
data

:::
are

::::
able

::::::::
constrain

:::
the

:::::::::
parameters

:::
and

:::::::::
processes,

::
is

:::::::
obtained.

2 Siikaneva wetland flux measurement site and model input data

Methane
:::
and

::::::
carbon

:::::::
dioxide flux measurements were needed for estimating the model parameters, and for that purpose obser-5

vational data from the Siikaneva peatland flux measurement site in southern Finland (61◦50’N, 24◦12’E) were used. The site

is a boreal oligotrophic fen with a peat depth of up to four meters. The data collection

:::::::::::
Measurement

::
of

:::::::::
ecosystem

:::::
scale

:::
gas

::::::
fluxes

:
started in 2005, and in this work eddy covariance (EC) CH4 ::

and
:::::

CO2:
flux

measurements from years 2005 to 2014 were used. In the current application of the EC method, the flux was
:::
gas

:::::
fluxes

:::::
were

calculated from the wind speed and direction, and CH4 concentration information, both of whose sampling frequency was
:::
and10

::::
CO2 :::::::::::

concentration
::::::::::
information.

:::
All

:::::
these

:::::::
variables

:::::
were

:::::::
sampled

::::
with 10 Hz

:::
and

::::::
fluxes

::::
were

::::::::
calculated

::::
over

::::::
30-min

:::::::::
averaging

::::
time

::
in

::::
order

:::::::
capture

:::
the

:::::
whole

::::::::
spectrum

::
of

::::::::
turbulent

::::::::
exchange. During the measurement period several different instruments

were used for methane concentration measurements: Campbell TGA-100 (2005-2007 and 04/2010-08/2010), Los Gatos RMT-

200 (01/2008-02/2014), Picarro G1301-f (04/2010-10/2011) and Los Gatos FGGA (2014).
::::::
Carbon

::::::
dioxide

::::::::::::
concentrations

:::::
were

::::::::
measured

:::::::::
throughout

:::
the

:::::
period

::::
with

::
a

:::::::
LI-7000

:::::::::::
manufactured

::
by

:::::
Licor

::::
Inc. The wind velocity vector was analyzed by a USA-115

acoustic anemometer by METEK (Rinne et al., 2007). All the EC-data were post-processed in a consistent manner using an

in-house software EddyUH (Mammarella et al. , 2016)
:::::::::::::::::::::
(Mammarella et al., 2016)

:
.
::::
Flux

::::
data

:::::
were

:::::::
screened

:::
for

:::::::::::
instrumental

:::::::
problems

::::
and

:::
for

:::::::::
insufficient

::::::::
turbulent

::::::
mixing.

::::
Due

::
to

:::::::::
instrument

:::::::::
problems,

::::
data

::::
from

:::::
2009

:::
was

:::
not

::::::::
available.

:

:::
For

:::
this

::::::
study

::::
daily

::::::
means

:::
of

::::
CH4::::::

fluxes
::::
were

:::::::::
calculated

:::::
from

:::
the

::::::::
screened

::::
data

::::
that

::::::::
contained

:::::
gaps.

::::
This

::
is
::

a
::::::
viable

::::::::
approach,

:::::
since

::::
CH4:::::

fluxes
:::
do

:::
not

:::::
show

:
a
::::
diel

::::::
pattern

::
at

::::
this

:::
site

::::::::::::::::
(Rinne et al., 2007)

:
.
::::::::
However,

::::::
before

:::::::::
calculating

:::
the

:::::
daily20

:::::
values

::
of

:::
net

:::::::::
ecosystem

::::::::
exchange

::
of

::::
CO2,

:::::::
standard

:::::::::
gap-filling

:::::::
methods

:::
for

:::::::
peatland

::::
CO2:::::

fluxes
::::
were

:::::::
applied

:::::::::::::::::::::
(Aurela et al., 2001, 2007)

:
.
::
In

:::::
short,

:::
the

:::::::::
gap-filling

::::::::
algorithm

::::::::
estimated

:::
the

::::
CO2::::

flux
::::::::::
dependency

::
on

:::::::::::::
photosynthetic

::::::
photon

:::
flux

:::::::
density,

:::
air

::::::::::
temperature

:::
and

:::::
water

:::::
table

:::::::
position

::::
and

:::
the

:::::::::
algorithm

::::
was

::::
used

::
to
:::

fill
:::::::

periods
:::::

when
:::::

CO2:::::
fluxes

:::::
were

::::::::
missing.

:::
See

:::::
more

::::::
details

:::
in

::::::::::::::::::::::
(Aurela et al., 2001, 2007)

::::
about

:::
the

:::::::::
gap-filling

:::::::::
procedure.

:::::
After

:::::::::
gap-filling

::::
the

::::
daily

::::::
means

::
of
:::::

CO2:::::
fluxes

:::::
were

:::::::::
calculated

:::
and

::::
used

::
in

:::
this

::::::
study.25

:::
For

:::::
using

:::
this

::::::
carbon

::::::
dioxide

::::
data

::::
with

:::
the

:::::::::::
costfunction,

:::
the

::::::::
CO2-flux

::::::::
produced

::
by

:::::::::::
sqHIMMELI

::::
was

:::::::
matched

::::
with

:::
the

::::
sum

::
of

:::
net

::::::::
ecosystem

::::::::
exchange

::::
and

:::
the

::
net

:::::::
primary

:::::::::
production

:::
of

::
all

::::::
plants.

:::
We

:::::::
assumed

::::
that

::
the

:::::
share

::
of

::::::::::::::
aerenchymatous

:::::
plants

::
is

::::
70%

::
of

:::
the

::::
total

::::
NPP.

::::
The

::::
fact

:::
that

:::
the

:::
net

:::::::
primary

:::::::::
production

::
is

:::
not

:
a
:::::::::
measured

:::
but

:::::::
modeled

:::::::
quantity

::::
(see

::::::
below)

:::::::::
introduces

::::
some

::::::::::
uncertainty

:::
into

:::
the

::::
CO2::::

flux
::::::
against

::::::
which

:::
the

:::::
model

::
is

::::::::
calibrated.

The required inputs for sqHIMMELI are daily soil temperatures, water table depths (WTD), net primary production (NPP),30

and leaf area indexes (LAI). The soil temperature profile for the grid used was generated by interpolating
:::
from

::::::::::::
measurement

:::
data

:
between the measurement depths (-5 cm, -10 cm, -20 cm, -35 cm and -50 cm) and assuming that at -3 meters and below

the temperature is a constant +7 °
:

◦C. This was the mean temperature of all the years at -50 cm depth. The WTD data used
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was available as measurement data, and where data was missing, it was gap-filled by repeating the previous measured value.

Net primary production cannot be measured in a direct way, and hence modeled values for it
:::::
values

:::::::
obtained

:::::
from

:
a
:::::::::
regression

:::::
model

:
were used. Also

:::
The

:::::::::::
methodology

::
is
::::::::
explained

:::
in

::::::::
Appendix

::
E

:::
and

::::
still

::::::
further

::
in

::::::::::::::::::
Raivonen et al. (2017)

:
.
::::::::
Similarly for

LAI, a simple model was used for obtaining the input. For more details , see
:::
The

::::::
details

:::
are,

::::::
again,

:::::
given

::
in Appendix E. A

summary of the data used is given in Table 1.5

3 The sqHIMMELI model

The HIMMELI (HelsinkI Model of MEthane buiLd-up and emIssion for peatlands) model (Raivonen et al., 2017) is a detailed

model for estimating CH4 emissions from wetlands. It was developed at the University of Helsinki in collaboration with the

Finnish Meteorological Institute and the Max Planck Institute for Meteorology in Hamburg. The model is designed to be

used as a submodel for different larger
:
in
::::::::

different
:
modeling environments, such as regional and global biosphere models. It10

contains processes describing the production of CH4 and CO2 ::::::::
including

::::::::
anaerobic

::::::::::
production

::
of

::::
CO2, the loss of CH4 and

O2, and transport of CH4, O2, and CO2 between the soil and the atmosphere. The CH4 transport can take place by diffusion in

peat (in water and in the air), by ebullition (transport by bubble formation), and by diffusion in the porous aerenchyma tissues

in vascular plants. The model is driven with peat temperature, WTD and LAI of the aerenchymatous plants. The process

descriptions are mainly adopted from previous wetland CH4 models such as Arah and Stephen (1998), Wania et al. (2010) and15

Tang et al. (2010). The version of the model used here differs slightly from that presented in (Raivonen et al., 2017), and is

therefore called with the different name of sqHIMMELI to avoid confusion.

The model simulates the processes in a discretized peat column. The number and thickness of the peat layers can be varied,

but in this work a variable number of
::
six

:
10 cm layers is used, similarly to e.g. Kaiser et al. (2016). Effectively, the total depth

of the peat column changes, not the thickness of the layers
:
,
::::
with

:::
one

::::::
thicker

::::::
bottom

:::::
layer

:::::
under

:::::
these,

::
so

:::
that

:::
the

::::
total

::::::::
modeled20

:::
peat

:::::::
column

:::::
depth

::
is

::::
85%

::
of

:::
the

:::::::::
maximum

:::::::
observed

::
4
::
m

:::::
depth

::
of

:::
the

:::::::
wetland,

:::
i.e.

:::
3.4

:::
m. The water table divides the column

into water-filled and air-filled parts, and CH4 is produced only in the inundated anoxic layers. In the present configuration,

the NPP-related CH4 production is allocated into the layers according to the vertical distribution of the root mass, described

in Sect. 3.2. The internal time resolution of the model is dynamically adjusted depending on the model state, and the output

interval is set to one day.25

::
At

:::::::
present,

:::
the

::::::
model

::::
does

::::
not

::::::
contain

::::::::::
descriptions

::::
for

::::::::
processes

::::::
related

::
to

:::::
snow

:::::
pack

::
or

:::
ice

:::::
such

::
as

::::::::
diffusion

:::::::
through

:::::
snow,

::
or

::::::
release

:::
of

:::::::::::
accumulated

:::
gas

::::::::
bubbles

:::::
under

:::
ice

:::
in

:::::
spring

:::::
time

::
as

:::::::::
described

:::
by

::::
e.g.

:::::::::::::::::::::
Mastepanov et al. (2013)

:::
and

:::::::::::::::::::::::
Sriskantharajah et al. (2012).

:

HIMMELI itself, as presented in Raivonen et al. (2017), does not simulate carbon uptake (photosynthesis) or peat carbon

pools but instead it takes as input the rate of anoxic respiration. The differences between HIMMELI and sqHIMMELI are30

described below in Sec. 3.1 and 3.2 and in Appendix
:::
Sec.

:
3.1.1.
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For each modeled process in sqHIMMELI, there are parameters regulating the process, affecting the concentrations of CH4,

O2 and CO2 in the peat column, and the wetland methane emissions. The equations describing the physics relevant to the

optimized parameters are listed in section 3.4. Other relevant model equations are listed in Appendix
:::
Sec.

:
3.1.

3.1 Root exudates and peat decomposition

Methanogens prefer recently assimilated fresh carbon as their energy source, for instance the root exudates of vascular plants5

(Joabsson and Christensen, 2001). A connection between ecosystem productivity and CH4 emission has been observed in

several wetland studies (Bellisario et al., 1999; Whiting and Chanton, 1993). However, anoxic decomposition of litter and

older peat also produces CH4 (Hornibrook et al., 1997). Many models form CH4 substrates by extracting directly a fraction of

the net primary production (van Huissteden et al., 2009; Wania et al., 2010), and some rely on heterotrophic peat respiration

only (Riley et al., 2011). In sqHIMMELI both primary production and anaerobic peat decomposition were included.10

The modified sqHIMMELI model contains an exudate pool description, from which it produces methane via
:
(Eq. 3 and 15).

The exudate pool itself is described by Eq. 4, detailing how the modeled NPP turns into root exudates. Effectively, a fraction of

NPP determined by the parameter ζexu ::
(-) produces root exudates, which are then distributed as anaerobic respiration according

to the root distribution into the peat column at the rate determined by the model parameter τexu ::
(s). The part ending up under

the water table produces CH4 and CO2, depending on the oxygen content of the water, and above the water table the exudates15

are respired into CO2.

The second source of anaerobic respiration, the anaerobic peat decomposition, is modeled in sqHIMMELI with a simple

Q10-model adopted from Schuldt et al. (2013). The peat under the water table is prescribed a turnover time, based on which

anaerobic respiration and CH4 are produced according to Eq. 5 and 16.

3.2 Root distributions20

The sqHIMMELI model differs from HIMMELI in the details regarding the root distribution model. Compared to measurement

data of root distributions of aerenchymatous sedges from Saarinen (1996), the original root distribution π(z), adopted from

Wania et al. (2010) and described by

π(z)∝ exp(−z/λrootroot
::

), (1)

does not describe the distribution of roots well. Here z is depth, and λroot:::::
λroot is a parameter describing the steepness of the25

decaying exponential curve. This formula is replaced with

π(z)∝ C0 exp

− (z− z0)2

λ2
root

(z− z0)2

λ2
root

::::::::

+C1. (2)

With the Gaussian shape, the new root density decreases faster with depth. Without this change, the optimization process

calibrates the model to have very high root masses below 50 cm underground. The other difference between the models is that

in the original model there are vanishingly few roots below the depth of one meter, but according to Saarinen (1996), sedge30

roots can reach to as low as 2.3 m under the surface. The term C1 in Eq. 2 was added to remedy this.
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Before starting the optimization, the parameters C0, C1, and z0 were fitted to data from Saarinen (1996), resulting in values

of C0 = 215, C1 = 6, and z0 = 0.105. The different root distributions are shown in Fig. 1.

3.3 Peat depth

Methane is produced from anaerobic peat decomposition at all peat depths in the sqHIMMELI model, and its transport and

oxidation affect the modeled CH4 emission. The homogeneous model description of the peat column is highly idealized, as in5

reality the peat column varies from place to place with respect to CH4 production rate, production depth, and gas transport.

Increasing peat depth in the model is a liability, since the deeper the column,
:::
We

::::::
model the more expensive the model is to

run (see Sect. ??). The model calibration is run for the peat depths of 40, 50, 70, 100, 150, and 200 cm in order to find the

optimal peat column depth for the model
:::
peat

:::::::
column

::
to

::
be

:::
3.4

::::::
meters

:::::
deep,

:::::
which

::
is

::::
85%

::
of

:::
the

:::::::::
maximum

::::::::
observed

:::::
depth

::
of

::
the

:::::::::
Siikaneva

:::::::
wetland.

:::::
Small

::::::::::
uncertainty

::
in

:::
the

::::
value

:::
of

:::
the

::::::::
parameter

::
is

:::::::::
acceptable

::::
since

:::
the

:::::::::
parameter

:::::
τcato,

:::::
which

::::::::
regulates10

::
the

::::
rate

::
of

::::
peat

::::::::::::
decomposition

::::
into

:::::
CH4,

:::
can

:::::
partly

::::::::::
compensate

:::
for

:::
this

::::::::::
uncertainty.

3.4 Parameter descriptions for sqHIMMELI

The parameters for the optimization were chosen to constrain the processes most important for the CH4 emission. Of the

optimized parameters, all but ζexu ::
(-) and Q10 are constant

::
(-)

:::
are

:::
the

:::::
same for all years. However, ζexu and Q10 change year

to year to reflect the changes in the relative CH4 input to the system from peat decomposition and NPP-based production. This15

will allow to analyze the year to year changes in relative importances of the production pathways. The setup is natural, as for

example Bergman et al. (2000) report the Q10-values changing from measurement date to another, even within a single year.

The parameters and
::
As

:::
the

::::::
values

:::::::
reported

::::
for

::::::::::::
minerotrophic

::::
lawn

::
in
:::::::::::::::::::

Bergman et al. (2000)
::::::
indicate

::::
that

::::
they

:::::
may

::::
vary

::::
quite

:::::::::
irregularly

::::::
within

:
a
:::::::
growing

::::::
season,

:::
the

::::::::
modeling

:::::::::
performed

::::
here

::::
does

::::
not

:::
take

:::::::::::
intra-annual

::::::::
variations

::::
into

::::::
account

::::
and

::::::::::
concentrates

:::
on

:::
the

::::
year

::
to

::::
year

::::::::
variation.

::::::::
Possible

::::::::::
mechanisms

:::
for

:::
the

:::::::::
parameter

:::::::::
variations

::::::
include

:::::::::
variations

::
in

::::::::
substrate20

:::::
supply

::::
and

:::::::::
desiccation

:::::
stress

:::
and

:::
are

::::::::
discussed

::
in
::::
e.g.

::::::::::::::::::
Davidson et al. (2006)

:
.
::::
Table

::
2
:::::
shows

:::
the

:::::::::
parameters

::::
that

:::
are

::::
used

::
in

:::
the

::::::::
equations

:::::
below

:::
but

:::
not

:::::::::
optimized

::
in

:::
this

:::::
work,

:::::
along

::::
with

::::
their

::::::
values

:::
and

:::::::::::
explanations

::
of

::::
why

::::
they

::::
were

:::
left

::::
out.

::::
The

:::
list

::
of

::::::::
calibrated

:::::::::
parameters

:::::
along

::::
with

:
their physical meanings are

:
is
::::::::
presented

::::::
below.

:

CH4 production-related parameters25

1. τexu ::
(s): Controls the decay rate of exudates, ν, from the root exudate pool Pexu,

ν =
Pexu

τexu
. (3)

2. ζexu ::
(-): Fraction of NPP carbon that goes to the root exudate pool.

dPexu

dt
=−ν+ψtζexu, (4)
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where ψt is the rate of NPP at time t, Pexu is size of the root exudate pool, and ν was given by Eq. 3.

3. τcato::::
τcato:::

(y): Controls the base rate of peat decomposition into CH4 in Eq. 5.

4. Q10 ::
(-): Controls the temperature dependence of the rate of peat decomposition into CH4 in anaerobic conditions via

factor kcato ::::
kcato, given by the equation

kcatocato
:::

=Q
(T−273.15)

10
10 /τ catocato

:::
. (5)5

5.
::::
f exu
CH4:::

(-):
::::::::
Fraction

:::::::::
controlling

:::
the

:::::::
methane

:::::::::
production

:::::
from

::::::::
anaerobic

:::::::::
respiration

::
of

::::
root

:::::::
exudates

::
in
::::
Eq.

:::
15.

Rexu
CH4

(z) =
f exu
CH4

dz
ν

π(z)

1 + ηCO2(z)
.

:::::::::::::::::::::::::::

::::
Here

::::
π(z)

::
is

:::
the

::::
root

:::::::::
distribution

:::::
from

:::
Eq.

::
2,

:::
and

::
ν
::
is

::::::::
described

::
in

:::
Eq.

::
3.

::::
The

:::::::
equation

::
is

::::::::
discussed

::
in

::::
Sec.

:::::
3.1.2.

:

Oxidation and respiration parameters

6. VR0 ::::
(mol

::::
m−3

::::
s−1): Respiration parameter controlling the rate of heterotrophic respiration, which consumes O2 and

produces CO2. This affects the rate of temperature dependent heterotrophic respiration, VR(z), given by

VR(z) = VR0 exp

(
∆ER
R

(
1

283
− 1

T (z)
)

)
. (6)10

Here ∆ER :
(J

:::::::
mol−1)

:
is a parameter affecting the temperature dependence of the heterotrophic respiration, R is the

universal gas constant, and T (z) is temperature at depth z.

7.
::::
∆ER::

(J
:::::::
mol−1):

:::::::::
Described

:::::
above

::
in

:::::::
context

::
of

:::
Eq.

::
6.

:

8. VO0 ::::
(mol

::::
m−3

::::
s−1): CH4 oxidation parameter controlling the potential rate of CH4 oxidation VO:

VO(z) = VO0 exp

(
∆Eoxid

R
(

1

283
− 1

T (z)
)

)
. (7)15

Here ∆Eoxid is a parameter affecting

9.
:::::::
∆Eoxid:

::::::::
Described

::
in
::::
Eq.

::
7,

:::::::
affecting

::::::::::
temperature

::::::::
response

::
of CH4 oxidationthat is not part of the optimization.

Gas transport-related parameters

10. λroot :::
(m): Controls how the root mass is distributed. See Eq. 2.

11. ρ
:::
(m2

:::::
kg−1): Root-ending area per root biomass, affecting root conductance, see Eq. 8.20
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12. τ
::
(m

:::::
m−1): Root tortuousity parameter affecting the root conductance KR. A tortuousity of 1 means that the roots are

not decreasing the conductance via their curvedness. The equation for the conductance is

KR(z) =
Dairmρπ(z)

τz
, (8)

where π(z) is the root mass density as a function of depth, over which the sum of the density is one, and m is the total

root mass per square meter, set to be proportional to LAI.5

13. fD,a ::
(-): Fraction of the diffusion rate in air-filled peat divided by the diffusion rate in free air. The parameter affects the

diffusion flux
:::
and

:::
the

:::::
plant

::::::::
transport

:::::
fluxes

:
in the model: the higher this parameter is, the more there is diffusion as it

takes a shorter time for the CH4 to exit the peat reducing the possibility of oxidation and increasing the concentration

gradient driving diffusion. The equation is

Dair = fD,aD
273
air

(
T

298

)1.82

, (9)10

where Dair is the diffusion rate in air-filled peat, D273
air is the diffusion base rate at 273K, and T is the temperature. This

parameter is also present in
:::
The

:::::
effect

:::
on

::::
plant

::::::::
transport

::::::
comes

:::
via Eq. 8 .

14. fD,w ::
(-): Same as above, but in water. The equation describing the peat-water diffusion rate is

Dwater = fD,wD
298
water

T

298
, (10)

where the terms are analogous to the ones in the previous equation
:::
Eq.

:
9.15

4 Model calibration and MCMC

The model calibration consisted of two steps: optimization and MCMC. Both of these steps were run separately for each

different number of peat soil layers assessed (4, 5, 7, 10, 15, and 20 layers, each layer corresponding to 10 cm of peat)

3.1
:::

The
::::::::::::
sqHIMMELI

::::::
model

::::::::
equations

:::
The

:::::::
version

::
of

:::::::::
HIMMELI

:::::::::
presented

::::
here

::::::::
describes

::::::::
processes

:::
for

:::::
CH4 :::::::::

production
::::
and

::::::::
transport.

::
It

::::::
differs

::::
from

:::
the

:::::::
version20

::::::::
presented

::
in

:::::::::::::::::::
Raivonen et al. (2017)

:
in

::::
that

:::
the

:::::
model

:::::::::
presented

::::
there

::::
does

::::
not

::::::
contain

:::
the

::::::::
processes

:::
for

:::::::::
anaerobic

:::::::::
respiration

:::
but

:::::
rather

:::
take

::
it
::
as

:::::
input,

:::
the

::::
idea

:::::
being

::::
that

::::
such

::::
input

::::::
would

::
be

::::::::
available

:::::
when

:::::
using

:::::::::
HIMMELI

::
as

:
a
::::
part

::
of

::
a

:::::
larger

::::::
model.

:::::
Hence

:::
the

:::::::::
equations

::::::::
presented

::
in

::::
Sec.

:::::
3.1.2

:::
are

:::::::
specific

::
to

:::
the

:::::::
version

::::
used

::
in

::::
this

:::::
study.

::::
The

:::::
other

::::::::
difference

::::::::
between

:::
the

::::::
models

::
is

:::
the

::::::::
difference

:::::::
between

:::
the

::::
root

::::::::::
distributions

:::::::::
described

::
in

::::
Sec.

:::
3.2.

:
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3.1.1
:::::::::
Governing

:::::::::
equations

:::
The

:::
gas

::::::::::::
concentrations

:::
of

::::
CH4,

::::::
carbon

:::::::
dioxide

:::
and

::::::
oxygen

:::
in

::
the

::::
peat

:::::::
column

:::
are

::::::::
governed

::
by

:::
the

::::::::
equations

:

TX(t,z) =Qdiff
X +Qplant

X +Qebu
X

:::::::::::::::::::::::::::
(11)

∂[CH4]

∂t
(t,z) =−TCH4

+Rexu
CH4

+Rpeat
CH4
−Roxid

CH4

::::::::::::::::::::::::::::::::::::::::

(12)

∂[O2]

∂t
(t,z) =−TO2

−Rpeat
aerob−Rexu

CO2
− 2Roxid

CH4

:::::::::::::::::::::::::::::::::::::::

(13)5

∂[CO2]

∂t
(t,z) =−TCO2

+Rexu
CO2

+Rpeat
CO2

+Roxid
CH4

+Rpeat
aerob,

::::::::::::::::::::::::::::::::::::::::::::::::

(14)

:::::
where

:::::::
TX(t,z)

::::::::
describes

::::::::
transport

::
of

:::
gas

::
X

:::::::::
containing

:::
the

::::::::
diffusion,

:::::::::
ebullition,

:::
and

:::::
plant

:::::::
transport

:::::::::::
components,

:::
and

::
R

::::::
stands

::
for

:::::::::
production

:::
or

:::::::::::
consumption.

::::
The

:::::::
different

:::::
terms

::
in

:::
the

::::::::
equations

:::
are

::::::::
described

::::::
below.

3.1.2
:::::::::
Anaerobic

::::::::::
respiration

:::::::::
producing

:::::
CH4

:::
The

::::::::
equations

::::::::
presented

::
in

:::
this

::::::
section

:::
are

:::::::
specific

::
to

:::
the

::::::
version

::
of

:::::::::
HIMMELI

::::
used

::
in

:::
this

:::::
study.

::::
The

::::::
version

::
in

:::::::::::::::::::
Raivonen et al. (2017)10

::::
takes

:::
the

::::
rate

::
of

::::::::
anaerobic

::::::::::::
decomposition

::
of

::::::
carbon

:::
as

::::
input

::::
and

::::
does

:::
not

::::
treat

:::
the

:::::::
different

:::::::
sources

::
of

:::
that

::::::
carbon

:::::::::
separately.

:

:::
The

::::::
carbon

::::
for

:::::::
methane

::::::::::
production

::
in

::::
this

::::::
model

::::::
version

::::::
comes

:::::
from

::::
two

:::::::
sources:

::::
root

::::::::
exudates

::::
and

:::::::::
anaerobic

::::
peat

::::::::::::
decomposition.

::::
The

::::::::
methane

:::::::::
production

:::::
from

::::::::
anaerobic

:::::::::
respiration

:::
of

:::
that

:::::::
carbon

::
is

:::::
given

::
by

::::
the

:::::
terms

:::::
Rexu
CH4::::

and
::::::
Rpeat
CH4

::::::::
described

:::
by:

Rexu
CH4

(z) =
f exu
CH4

dz
ν

π(z)

1 + ηCO2
(z)

::::::::::::::::::::::::::

(15)15

Rpeat
CH4

(z) = kcato(z)gQ10

CH4

ρcatofCcato

MC
,

::::::::::::::::::::::::::::::

(16)

:::::
where

::
in

:::
Eq.

:::
15

::
ν

::
is

:::
the

:::::
decay

::::
rate

::
of

::::
root

:::::::
exudates

:::::
from

:::
Eq.

::
3,
::
η
::
is

:::
an

::::::
oxygen

::::::::
inhibition

:::::::::
parameter,

:::::::
CO2

(z)
::
is
:::
the

:::::::
oxygen

:::::::::::
concentration

::
at

:::::
depth

::
z,

::::
and

::::
π(z)

::
is

:::
the

:::::::::
normalized

:::::::::
proportion

:::
of

:::
the

::::
total

::::::::
anaerobic

::::
root

:::::
mass,

::::
also

::
at

:::::
depth

::
z,

:::::
given

::
in

:::
an

:::::::::::
unnormalized

:::::
form

::
in

:::
Eq.

::
2.

::::
The

:::::
decay

::::
rate

::
of

::::
root

::::::::
exudates

::::
does

:::
not

::::::
depend

:::
on

:::
the

::::
peat

:::::::
column

::::::::
thickness.

::::
The

:::::::::
parameter

::::
f exu
CH4:::

(-)
:::::::::
determines

:::::
what

::::::
fraction

::
of

::::
root

::::::::
exudates

::
in

::::::::
anaerobic

:::::::::
conditions

:::
will

::::
turn

::::
into

::::
CH4.

::::::::
Equation

::
15

::
is
::::
only

::::
used

::::::
below20

::
the

:::::
water

:::::
table.

::::
The

::::::
anoxic

:::
peat

:::::::::::::
decomposition

::::::::
described

::
by

:::
Eq.

:::
16

:::::::
depends

::
on

:::
the

:::::::
amount

::
of

::::
peat

:::
and

::
its

:::::::::::
temperature,

::::::
among

:::::
others.

::::
The

::::::
factor

::::
gQ10
m :::

(-)
::
is

:::
the

:::::::::
proportion

::
of

::::
the

::::::::
anaerobic

::::
peat

::::::::::::
decomposition

:::::::
process

:::::::::
producing

:::::
CH4,

:::::
ρcato ::

is
:::
the

::::
peat

::::::
density

::
in

:::
the

::::::::
catotelm,

:::::
fCcato::

is
:::
the

:::::::
fraction

::
of

::::::
carbon

::
in

::::::::
catotelm

::::
peat,

:::
and

::::
MC::

is
:::
the

:::::
molar

:::::
mass

::
of

:::::::
carbon.

:::
The

:::::::::
parameter

:::::::::::::::::::::
kcato =Q

(T−273.15)
10

10 /τcato :
is
:::::::::
described

::
in

:::
Eq.

::
5,

:::
and

::
is

::::
zero

:::::
above

:::::
water

:::::
table.

:
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:::
The

::::::::
equations

:::
for

::::
CO2:::

are
:::::::
similar:

Rexu
CO2

(z) = νπ(z)−Rexu
CH4

(z)
::::::::::::::::::::::::

(17)

Rpeat
CO2

(z) = (1− gQ10

CH4
)kcato(z)

ρcatofCcato

MC
,

:::::::::::::::::::::::::::::::::::

(18)

:::
and

:::
the

::::::::
meanings

::
of

:::
the

:::::::
symbols

:::
are

:::::::::
analogous

::
to

:::
the

::::
ones

::
in

::::::::
equations

:::
for

::::
CH4. In the following, an experiment refers to one

of these MCMC runs.5

3.2 Calibration algorithms

For optimization, an initial parameter vector was first drawn from the prior,

3.1.1
::::
Peat

::::::::::
respiration

:::
and

::::::::
methane

:::::::::
oxidation

:::
Peat

:::::::::
respiration

::::::::
(aerobic

:::::::::
respiration)

::
is

::::::::
described

::::
with

:::
an

:::::::
equation

::
of

:::
the

:::::::::::::::
Michaelis-Menten

:::::
form

Rpeat
aerob(z) = VR(z)

αCwO2
(z)

KR +CwO2
(z)

,

:::::::::::::::::::::::::::

(19)10

:::::
where

::::
CwO2::

is
:::
the

::::::
oxygen

::::::::::::
concentration

::
in

:::::
water.

::::::
Above

:::
the

:::::
water

:::::
table

:::
we

::::::
assume

::
a
:::::
water

:::::
phase

::::
that

:
is
:::

in
::::::::::
equilibrium

::::
with

::
the

::::
gas

:::::
phase,

:::
i.e.

::::::::::::
CwO2

= αCaO2
.
::::
The

::::::::
parameter

::
α
::
is
::
a
::::::::::::
dimensionless

:::::
Henry

::::::::
solubility

::::::::
constant

:::
for

:::::::
oxygen.

::::::::
Parameter

::::
KR ::

is

::
the

::::::::::::::::
Michaelis-Menten

:::::::
constant

::
of

:::
the

:::::::
process,

:::
and

::::::
VR(z)

::
is

:::::
given

::
by

:::
Eq.

::
6.
::::::::
Methane

::::::::
oxidation

::
is

::::::::
controlled

:::
by

::::::::::::
dual-substrate

:::::::::::::::
Michaelis-Menten

:::::::
kinetics,

Roxid
CH4

(z) = VO(z)
CwO2

(z)

KO2
+CwO2

(z)

CwCH4
(z)

KCH4
+CwCH4

(z)
,

:::::::::::::::::::::::::::::::::::::::::::

(20)15

:::
and

::::
here

:::
the

:::::
terms

:::
are

::::::::
analogous

::
to

:::::
those

::
in

:::
Eq.

:::
19,

::::::
except

:::
for

:::
that

:::
the

::::
term

::::::
VO(z)

::
is

::::::::
described

:::
by

:::
Eq.

::
7.

3.1.2
::::
CH4:::::::::

transport

:::
The

::::::::
transport

::::
term

:::::::
TX(t,z)

::
in

:::
Eq.

:::
11

::::::
consist

::
of

:::
the

::::::::
following

::::::
terms:

Qdiff
X =DX

medium

∂

∂z
Cmedium
X

:::::::::::::::::::::::

(21)

Qplant
X (z) =

ρπ(z)DX
air

τ2

LAI

SLA

Cx(t,z)−Catm
X

z
:::::::::::::::::::::::::::::::::::::

(22)20

Qebu
X (z) =−kσppi,X

RT

∑
i ppi(z)− (Patm +Phyd(z))∑

i ppi(z)
.

::::::::::::::::::::::::::::::::::::::::::::

(23)

:::
The

::::
first

::
of

:::::
these

::
is
::::

the
::::::::
diffusion,

::::::
where

:::
the

::::::::
diffusion

::::::::::
coefficients

::
D

:::
are

:::::
given

:::
by

::::
Eq.

:
9
::::

and
:::
10,

::::
and

:::::::::
“medium”

:::::
refers

:::
to

:::::
either

::
air

:::
or

:::::
water.

::::
The

:::::::
second

:::::::
equation

::
is
::::

for
::::
plant

:::::::::
transport,

::::
with

::
ρ

::::
(m2

:::::
kg−1)

::::
and

::
τ

:::
(m

:::::
m−1)

::::::::
described

:::
in

::::::
context

:::
of

12



:::
Eq.

::
8,

:::::
π(z)

::
is

:::
the

::::::::::
normalized

::::
root

::::::::::
distribution

:::::::::
mentioned

::::::
above,

::::
and

:::::
Catm
X ::::::

refers
::
to

:::
the

:::::::::::
atmospheric

::::::
partial

:::::::
pressure

:::
of

:::
gas

:::
X .

::::
LAI

::::::
stands

:::
for

:::
the

::::
leaf

::::
area

::::::
index,

:::::
given

:::
as

:::::
input,

::::
and

:::::
SLA

::
is

:::
the

:::::::
specific

::::
leaf

:::::
area.

::::
The

::::
third

::::::::
equation

::
is
::::

the

::::::::
ebullition

:::::::::
component

:::
of

:::
the

:::
gas

:::::::::
transport,

:::::
where

::::
ppi :::::

refers
::
to
::::

the
:::::
partial

::::::::
pressure

::
of

::::::::
different

:::::
gases

:::::::
indexed

::::
with

::
i,
:::
R

::
is

::
the

::::::::
universal

:::
gas

::::::::
constant,

::
k

::
is

::
an

::::::::
ebullition

::::
rate

:::::::
constant,

::::
and

:
σ
::
is
:::
the

::::
peat

::::::::
porosity.

:::
The

:::::::::
parameters

:::::
Patm:

and the parameters

were then optimized against the costfunction described in Eq. 24. The algorithm used was the simplex-based BOBYQA,5

described in Powell (2009). In our tests, it was significantly faster to converge than NEWUOA (Powell, 2004), L-BFGS or

Nelder-Mead (Nelder and Mead, 1965). For each experiment, the model was optimized by running 350 model
::::::
Phyd(z)

:::::
refer

::
to

::
the

:::::::::::
atmospheric

:::::::
pressure

:::
and

::::::::::
hydrostatic

:::::::
pressure

::
at

:::::
depth

::
z,

::::::::::
respectively.

:

4
:::::
Model

::::::::::
calibration

:::
The

::::::
model

:::::::::
calibration

:::::::
consists

:::
of

::::::
several

:::::
steps,

::::
but

:::
can

:::
be

::::::::::
summarized

:::
as

::::
first

:::::::::
estimating

:::
the

::::::::
posterior

::::
with

:::::::
MCMC

::::
and10

:::
then

::::::
based

::
on

:::::
those

::::::
results,

::::::::::::
re-calibrating

:::
the

::::::::
objective

:::::::
function

::::
and

:::::
using

:::
this

::::
new

::::::::::
formulation

:::
for

::::::::::
importance

::::::::::
resampling.

:::::::::
Importance

::::::::::
resampling

::
is

:::::::
typically

:::::
used

:::
for

::::::::
obtaining

::::::::
posterior

:::::::::::
distributions

::::
from

::::::
minor

:::::::
changes

::
to

:::
the

::::::::
objective

::::::::
function

::::::::::
descriptions

:::::::::::::::::
(Gelman et al., 2013)

:
.
::::
This

::
is

:::
also

:::
its

:::::::
purpose

::::
here.

::
In

::::
more

:::::
detail,

::::
first,

::
a
:::::::
posterior

:::::::
estimate

::::
was

:::::
drawn

:::::::
running

::::::
500000

::::::::
iterations

::
of

:::::::::::
sqHIMMELI simulations with the minimization

algorithm , which was enough for finding a local minimum to start the MCMC sampling from.15

At the points obtained in the optimization,
::::::::
Adaptive

:::::::::
Metropolis

:::::::
Markov

::::
chain

::::::
Monte

:::::
Carlo

::::::::
algorithm

::::
with

:
a
::::::::::::::::
Laplace-distributed

::::
error

::::::::::
description

:::
and

::
a
::::
first

:::::
order

::::::::::::
autoregressive

:::::::
model,

::::::
AR(1),

:::
for

::::
the

::::::::
residuals.

:::::::
Second,

::::
for

:::::::
defining

:::
the

:::::
more

:::::::
refined

::::::::::
costfunction

:::
for

::::::::::
importance

:::::::::
resampling

:::
the

:::::::
optimal

:::::
order

:::
for

:::
an

::::::::::::
autoregressive

::::::
moving

:::::::
average

::::::::
(ARMA)

:::::::::
timeseries

::::::
model

::
for

::::
the

:::::
model

::::::::
residuals

::::
was

:::::::::
identified

::::
from

::::
the

:::::::::
maximum

:
a
:::::::::

posteriori
:::::::
estimate

:::
by

::::::::::
minimizing

:::
the

:::::::
Akaike

::::
and

::::::::
Bayesian

::::::::::
Information

::::::
Criteria

:::::
with

::::::
respect

::
to
:

the model was linearized and from the Jacobian a suitable initial proposal covariance20

matrix for MCMC was estimated. After this the MCMC sampling was performed to estimate the posterior distribution.
:::::
model

:::::
order.

:::
The

::::
third

::::
step

::::
was

:::::::
drawing

:
a
:::::::
random

::::::
sample

::
of

::::
size

::::
fifty

::::
from

:::
the

:::::::
posterior

::::::::
estimate

:::::::
obtained

::::
with

:::::::
MCMC,

::::
with

::::::
which

::
the

:::::
error

::::::
model

:::::::::
parameters

::
α

:::
and

::
γ,
:::::::::

described
::
in

::::::::::
conjunction

::
to

:::
the

::::::
details

::
of

:::
the

:::::
error

:::::
model

::
in

::::
Eq.

:::
A2,

:::::
were

::::::::
calibrated

:::
by

:::::::::
minimizing

:::
the

::::::::::::::
Kullback-Leibler

:::::::::
divergence

:::::::::::::::::::::::::
(Kullback and Leibler, 1951)

:::
with

::::::
respect

::
to
:::
the

::::::::
standard

::::::
Laplace

::::::::::
distribution

:::
for

::
the

::::::::
methane

:::
and

::::::
carbon

::::::
dioxide

:::::::::
separately.

::::
The

::::::
median

::
of

:::
the

:::::::
obtained

:::::::::
parameters

::::
was

::::::
chosen

:::
for

::
the

::::::
second

:::::::::::
costfunction

::::
used25

::
in

:::
the

:::::::::
importance

::::::::::
resampling.

:::::::
Fourth,

:
a
:::::::
random

::::::
sample

::
of

::::
size

:::::
10000

::::
was

::::::
drawn

::::
from

:::
the

:::::::
MCMC

::::::::
posterior

:::
and

::::::::::
importance

:::::::::
resampling

:::
was

:::::::::
performed

:::
by

:::::::
drawing

:
a
:::::::::
subsample

::
of

::::
size

::::
1500

::::::::
utilizing

::::::
weights

:::::::::
calculated

::::
with

:::
the

::::
new

::::::::::
costfunction

::::::
values

:::::::
obtained

::::
from

:::
the

:::::
above

:::::::::
mentioned

:::::
error

:::::
model

:::::::::
calibration

::
as
:::::::::
described

::
by

::::
e.g.

:::::::::::::::::
Gelman et al. (2013).

:

:::
The

::::
need

:::
for

:::
the

::::::::::
importance

:::::::::
resampling

:::::
arises

::::
from

::::
that

:::
the

::::
error

::::::
model

::::::::::
transformed

:::::::
methane

::::
and

::::::
carbon

::::::
dioxide

::::::::
residuals

::::::::
emerging

::::
from

:::
the

:::::::::
maximum

::
a

::::::::
posteriori

::::
and

:::::::
posterior

:::::
mean

:::::::::
estimates

::::
from

:::
the

:::::::::
calibration

:::::
with

:::
the

::::::
AR(1)

:::::
model

:::
are

::::
not30

::::
fully

::::::::::
independent

:::
and

:::::::::
identically

::::::::::
distributed.

:::
The

:::::::::::
recalibration

::
of

:::
the

::::
error

::::::
model,

:::
and

::::::::::
resampling

::::
from

:::
the

::::::::
simulated

::::::::
posterior

::::
using

::::::::::
importance

::::::::::
resampling,

:::::::
remedies

::::
this

::::::::
problem,

::
as

:::
can

::
be

::::
seen

::
in
:::
the

:::::::
residual

:::::::::
histogram

:::
and

:::::::::::::
autocorrelation

::::::::
functions

::
in

:::
Fig.

::
2.

:
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4.1
::::::::::

Hierarchical
::::::::::
description

::
of

:::::::::::
parameters

In order to be able to assess the annual parameter and CH4 transport pathway changes, a hierarchical description for two of the

parameters was used. These parameters were Q10 ::
(-) controlling the temperature dependence of the peat decomposition rate,

and ζexu ::
(-), regulating the production of root exudates from NPP.

The hyperparameters are the means and variances defining the Gaussian priors of the hierarchical parameters Q10 ::
(-)

:
and5

ζexu ::
(-). They were updated using fixed Gaussian hyperpriors with Gibbs sampling. The sampling distribution depends on the

current values of the hyperparameters. The role of the hyperprior is to constrain the distribution from which the hyperparameters

are sampled.

Technically, a Metropolis-within-Gibbs-method Gelman et al. (2013)
::::::::::::::::::
(Gelman et al., 2013) for sampling the hierarchical pa-

rameters, non-hierarchical parameters, and the hyperparameters was used, presented briefly in Appendix C. The model param-10

eters (i.e. everything except the hyperparameters) were sampled with the Adaptive Metropolis (AM) MCMC algorithm (Haario

et al., 2001), which uses a Gaussian proposal distribution, whose covariance matrix is adapted as the chain evolves, and over

time the acceptance rate gets closer to an optimal value, which is 0.23 for Gaussian targets in large dimensions (Roberts et al.,

1997). If the algorithm proposes values outside the hard parameter limits listed in table 3, the model will not be evaluated and

the value is rejected.15

Our empirical data for the hierarchical model were the nine years from 2006 to 2014, meaning that for each of these years

there were corresponding ζexu ::
(-)

:
and Q10 ::

(-)
:
parameters in the optimization. The model needed to be

:::
was spun up for each

annual flux estimation in order to have a realistic column of gas concentrations available. For this reason, the previous year was

always also simulated, and for the likelihood only the residuals from the latter year were included in the calculations. Therefore

year 2005 did not contribute directly to the values of the objective function. The different years were run in parallel to save20

execution time.

4.2 Objective function
::::::::
functions

:::
for

:::::::
MCMC

::::
and

::::::::::
importance

::::::::::
resampling

As in many practical MCMC
:::::::::
uncertainty

::::::::::::
quantification applications, a major part of the parameter estimation problem is the

proper definition of the objective function. It
::
For

:::::::
MCMC

::
it is defined here based on a priori information about the measure-

ment uncertainties, based on information from the model residuals, and based on annual flux estimates. Additionally prior25

informationabout the parameter values is also utilized
::::::::
additional

:::::
prior

::::::::::
information.

::::
For

:::
the

:::::::::
importance

::::::::::
resampling

::
we

:::::::
modify

::
the

:::::
error

:::::
model

:::
for

:::
the

::::
CO2:::

and
::::
CH4:::::::

residual
::::::::::
components

::
of
:::
the

::::::::
objective

:::::::
function

:::::
based

:::
on

::
an

:::::::
analysis

::
of

:::
the

:::::::
MCMC

:::::
results.

4.2.1 Model residuals and error model

The second component
::::
form

:
of the objective function contains

::
is

:::
the

::::
same

:::
for

::::
both

:::::::
MCMC

::::
and

:::::::::
importance

::::::::::
resampling.

::::
The

:::
first

::::
two

::::::::::
components

::
of

:::
the

::::::::
objective

::::::::
function

::::::
contain

:::
the

:::::::::::
contributions

:::::
from

:::
the

::::::::
modeled

:::::::::
differences

::
to

:
the daily CH4 :::

and30

::::
CO2 flux measurements. It

::
In

:::
the

::::::
MCMC

::::::::
objective

:::::::
function

::
it is assumed that the daily flux estimate uncertainty is dependent

on
::::::::::
uncertainties

:::
are

:::::::::
dependent

:::
on

::::::::::::
approximately

:
a fraction α of the flux measurement (Richardson et al., 2006) and some
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constant error, γ (e.g. measurement device precision). The model error is expected to follow a similar form, and hence α and

γ contain the contributions from both the model and measurement errors.

The combined error is described by a Laplace distribution. The flux observations are reported to follow a distribution of

this type, rather than a Gaussian distribution (Richardson et al., 2006).
:::
For

:::::::::
importance

::::::::::
resampling

:::
the

:::::::::
description

::
is

:::
the

:::::
same

:::::
except

:::
for

::::
that

:
a
::::::
14-day

:::::::
running

:::::
mean

::
of

:::
the

::::::::::
interannual

::::::::
variability

::
is
::::
used

:::
for

:::
α.

:::::
These

:::::::::
parameters

:::
are

:::
set

::::::::::::
independently

:::
for5

::::
both

::::
CH4 :::

and
:::::
CO2.

When determining the parameters γ and α, the resulting residuals end up being autocorrelated. Therefore they are treated

as such with the AR(1)-model
::
for

:::::::
MCMC

::::
and

::::
with

:::
the

::::::::::::::::
ARMA(2,1)-model

:::
for

:::
the

::::::::::
importance

:::::::::
resampling, described e.g. in

Chatfield (1989). Applying it, a set of Laplace-distributed residuals r∗ is obtained. The error model is explained in more detail

in Appendix A1.10

4.2.2 Annual CH4 fluxes

For future climate projections, the annual total emission of the snow-free period is one of the important quantities, as cumulative

emissions are what determine the radiative forcing. Therefore a Gaussian-distributed observation,Gobs, is included for the total

annual flux , with error variance σ2
G, where σG is set to 10

::::
Since

:::
the

:::::::
primary

::::::
interest

::
is

::
in

:::
the

:::::::
methane

::::::
fluxes,

::
the

::::::
carbon

:::::::
dioxide

:::::::
residuals

:::
are

::::::
scaled

:::::
down

::
to

:
a
::::
fifth

::
in

:::
the

::::::::::
importance

:::::::::
resampling

:::::::::::
costfunction,

:::::
which

::
is
:::::::
enough

::
to

:::::
guide

:::
the

::::::::
parameter

::::::
values15

::::
since

::::::
several

:::::
years

::
of

::::
CO2::::

flux
::::
data

:::
are

:::::
used.

:::::::::::
Furthermore,

::
as

:::
the

:::::
model

::::
does

::::
not

::::::
contain

::::::::::
descriptions

:::
for

:::
the

::::::
effects

::
of

:::::
snow

:::
and

:::
ice

::
on

:::
the

::::::
fluxes,

:::
the

::
fit

::::::
cannot

::
be

::::::::
expected

::
to

::
be

::::
very

:::::
good

::
in

:::
the

:::::
winter

:::::::
months.

::::::::
Therefore

:::
we

::::::
further

::::
only

::::::::
consider

::
20%

of the annual total flux for each year. The modeled total annual flux is denoted by GM . This term keeps the annual emission

estimates reasonable in the early stages of the sampling. As the annual flux estimate errors are small when sampling parameters

close to the posterior mode, this term has only a minor effect at the late stages of the MCMC
::::::::::
contribution

::
of

:::
the

::::::::
residuals

::
in20

::
the

::::::
winter

::::::
season

:::::
from

::::::::
December

:::
to

::::::::
February.

::::
The

:::::::
obtained

::::::::
residuals,

:::::::
denoted

:::
by

:::
the

::::::
ε-terms

:::
in

:::
the

::::::::
objective

:::::::
function,

::::
Eq.

:::
24,

::
are

::::::
treated

:::
as

::::::::::::::::
Laplace-distributed.

::::
The

:::
flux

::::::::::
observation

:::::
errors

:::
are

::::::::
reported

::
to

:::::
follow

::
a
:::::::::
distribution

:::
of

:::
this

:::::
type,

:::::
rather

::::
than

:
a
::::::::
Gaussian

:::::::::
distribution

:::::::::::::::::::::
(Richardson et al., 2006).

::::
The

::::
error

::::::
model

::
is

::::::::
explained

::
in

::::
more

:::::
detail

::
in
:::::::::
Appendix

:::
A1.

4.2.2 Prior information

The parameters affecting the CH4 production of the wetland model are not known well, but despite this, not setting any prior25

distributions on parameters can lead to nonphysical parameter values in the posterior distribution.

The parameter priors are set to zero outside prescribed bounds. Within these bounds, most
::
the

:
parameters are assigned

Gaussian priors, and for the others the priors are
::::
with

:::
the

::::::::
exception

::
of

::::
one

::::::::
parameter

::::::
whose

::::
prior

::
is
:

set to be flat. The prior

values are based on both literature and expert knowledge and the information regarding the parameter values is summarized in

Table 3.30
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4.2.3 The objective function

The objective function for the parameter optimization, J(θθθ), is the negative logarithm of the value of the
:::::::::::
unnormalized

:
posterior

probability density function at θθθ. It combines our statistical knowledge of flux observations, annual flux estimates,
:::
the

::::
flux

::::::::::
observations

:
and parameter priors presented in Sec. 4.2.1 – 4.2.2, and is given by:

J(
::
θθθ) =− log

:::::::

(
p(
:
θθθ|yyy)

)
=

N
CH4
obs∑
i=1

|εCH4
i |+

N
CO2
obs∑
j=1

|εCO2
j |+ 1

2

Npar∑
k=1

(θk −µk)2

σ2
k

::::::::::::::::::::::::::::::::::::::::

(24)5

Here |r∗t | :ε·t:are the AR(1)
::
or

::::::::::
ARMA(2,1)-transformed Laplace-distributed residuals, GM , Gobs and σ2

G are the components of

the annual flux term, and the last term is the prior contribution, where θi ::
θk:is the proposed parameter value, µi:::

µk is the prior

mean, and σ2
i ::
σ2
k:

is its variance. For
::::::
further technical details, see Appendix A1.

5 Results and discussion

The experiments yielded an MCMC chain for each modeled peat depth and the final number of model simulations varied10

from 78000 to 391000. To look at statistics, 50% of values
::::::
Markov

:::::
chain

::::::
Monte

:::::
Carlo

:::::::::
simulations

:::::::
yielded

:
a
:::::
chain

::
of

:::::::
500000

:::::::
samples.

:::::
From

:::::
these,

:::::
70% from the start of each MCMC

::
the

:
chain were discarded as warm-up . The posterior covariance

structures of the chains were found mostly to be similar to each other. The posterior distribution from the experiment with 70

cm of peat
::::
(Fig.

::
3).

::
A

::::::
revised

::::::::
posterior

:::::::::
distribution

::::::::
obtained

::
by

::::
first

::::::::
sampling

:::::
10000

::::::
entries

::::::::
randomly

::::
from

:::
the

:::::
chain,

::::
and

::::
after

:::
that

::::::::
obtaining

:::::
1500

:::::
entries

:::::
from

:::::
those

::::
with

:::::::::
importance

::::::::::
resampling is shown in Fig. 4, and the correlation features for all peat15

depths are shown in the upper triangle of that figure. For the different processes, Fig. 5 shows an example of the posteriors and

the process correlations.

For each MCMC chain, three different estimates for the parameters and fluxes were looked at
:::::
Three

:::::::
different

:::::::::
parameter

:::::::
estimates

::::::::
obtained

:::::
from

:::
the

::::::::
posterior

::::::::::
distribution

:::::
were

::::
used

::
to

:::::
look

::
at

:::
its

:::::::
features

:::
and

::::::
fluxes: the maximum a posteriori

(“MAP”
::::
MAP) estimate, posterior mean estimate(“PM”), and a “non-hierarchical” posterior mean estimate(“NHPM”), where20

the mean values of the parameters ζexu ::
(-) and Q10::

(-)
:
over the different years were used.

:::
The

::::::::
“default”

:::::::::
parameters

::
in

:::
the

::::
text

:::
and

::::::
figures

::::
refer

::
to

::::::
values

::::::
adapted

:::::
from

::::::::::::::::::
Raivonen et al. (2017).

::
If

:::
not

:::::
stated

:::::::::
otherwise,

:::
the

::::::::
maximum

::
a
::::::::
posteriori

:::
and

::::::::
posterior

::::
mean

::::::::
estimates

:::::
refer

::
to

:::
the

:::::
values

:::::::
obtained

:::::
from

:::
the

:::::::::
importance

::::::::::
resampling,

:::
not

:::::
from

:::
the

:::::::
MCMC.

5.1 Parameter valuesand modeled peat depth

The parameter values of the MAP and PM MCMC optimizations
::::
used

::
in

:::
the

:::::::
analyses are shown in Table 4. The catotelm carbon25

pool turnover time, τcato grows with the peat depth, and the reduction factor for the diffusion coefficient in air-filled peat, fD,a,

also grows slightly, increasing the diffusive permeability of the dry part of the column hence increasing conductance. The

root conductance gets larger with the increasing peat depth, by the influence of the parameter ρ, which grows slightly, and the

decrease in root tortuousity given by parameter τ .
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The MAP estimates of the different experiments disagree
:::
The

:::::
MAP

::::
and

:::::::
posterior

:::::
mean

:::::::::
estimates

:::::
agree on the value of

the water-diffusion rate coefficient fD,w ::
(-), and the posteriors shown in Fig. 6 (k) are wide, especially for the experiments

with less peat, meaning that especially in those cases this parameter is highly uncertain. However, with increasing peat depth,

the mass of the posterior distribution mass moves closer to 1 compensating the decreased conductance caused by the longer

distance to the surface. The
:::::
show

:::
that

:::
the

::::::::
estimates

:::
are

:::::
close

::
to

:::
the

::::::
middle

::
of

:::
the

:::::::
marginal

:::::::::::
distribution,

:::
and

:::::::
slightly

:::::
above

:::
the5

::::
prior

:::::
value.

::
In

::::
tests

::::
with

::
a
::::::::
shallower

::::
peat

:::::::
column,

::::::
smaller

::::::
values

::
of

:::
this

:::::::
variable

:::::
were

:::::::
obtained

::::
(not

:::::::
shown).

:::::::
Contrary

::
to

::::
this,

:::
the

:
air diffusion rate coefficient fD,a shows similar behavior, but with lower values as it is constrained by

the prior. For the 40-cm peat column optimization, the MAP estimate for fD,w is far from the others. This can be explained by

that in that particular case there is not much
::
(-)

:::::
finds

::
its

::::
best

:::::
values

:::::
lower

::::
and

:::
the

::::::::
variability

:::
of

:::
the

::::::::
parameter

::
is

:::::
larger

::::
than

:::
for

::
the

::::::::
diffusion

::::
rate

:::::::::
coefficient

::
in water-filled peatin the model leaving the parameter with less effect on the results. .

:
10

The root distribution parameter, λroot::::
λroot, is optimized larger than expected, and is closer to the prior value only in the

optimization with 15 and 20 layers. This is also true for the MAP estimates implying
:::::
again

:::
the

:::::
MAP

:::::::
estimate

::
is

:::::
close

::
to

:::
the

:::::::
posterior

:::::
mean.

:::::
This

::::::
implies

:
that the model optimizes best when the CH4 produced from the photosynthesis-induced exudate

production goes relatively far below the surface: with a value of 0.3, 49% of the roots are deeper than 25cm, 15% of the roots

are deeper than 50cm, and just 2.5% are deeper than 75cm, see Fig. 1. In relation to these numbers, the water table depth is15

most of the time above the depth of -20 cm. Additionally, a larger λroot:::::
λroot will facilitate the emission of the CH4 produced

by peat decomposition in the catotelm. The small values for the two experiments with the thickest peat column make the model

behave differently from how it functions with 40-100 cm of peat.

The results in Table 4 reveal that the parameter regulating

:::
The

::::::
values

::
of

:
the exudate pool turnover time , τexu , slightly decreases with the peat column depth implying a shorter20

period between photosynthesis and methane emission with morepeat
::
are

:::::
close

::
to

::::
the

::::::
default

:::::
value

::
of

::::
two

::::::
weeks,

:::::
with

:::
the

::::
MAP

::::::::
estimate

::
at

:
a
::::
little

:::::
under

:::
14

::::
days

::::
and

:::
the

::::::::
posterior

::::
mean

::
at
::::

two
::::
and

:
a
::::
half

::::
days

:::::
more.

::::
The

::::::
results

::::
from

:::
the

::::::::::
importance

:::::::::
resampling

:::::
show

:::
that

:::
the

::::::
spread

::
is

::::::
around

::::
three

::::
days

::::::
around

::::
this

:::::::
posterior

:::::
mean

:::::
value. However,

:::
the

::::
value

:::
of ζexu controlling

the amount of methane produced from exudates gets smaller until 100 cm, and the values for 150 and 200 cm of peat are

markedly larger. This implies, that CH4 production from exudates is closely linked to the depth of the root mass and λroot.25

The non-hierarchical parameter VO0 controlling the amount of CH4 oxidation taking place does not show a trend with

respect to the modeled peat column depth in the PM estimate, but there is a clear trend in the MAP estimates, shallow peat

depths favoring larger parameters and inducing more CH4 oxidation. The effect of the parameter on the total CH4 oxidation is

substantial, which is evident from part (a) of Fig. 12 With all peat depths,
::::::
amount

::
of

:::::::
exudates

::::::::
produced

:::::
from

:::::::::::::
photosynthesis,

:
is
:::::::
smaller

::::
than

:::
the

::::::
default

:::::
value

::
at

:::::::
roughly

::::::::
0.15-0.45

::::
with

:
the chains traverse in regions of both high and low VO0 as shown30

::::
MAP

::::
and

:::::::
posterior

:::::
mean

::::::::
estimates

::
at
:::::
0.343

::::
and

:::::
0.292

::::::::::
respectively.

:::
In

:::::::
contrast

::
to

:::
this

::::
and

::::::::
balancing

:::
the

:::::
effect

::
of

::
a

::::::::
relatively

:::
low

::::
ζexu,

:::
the

:::::::::
parameter

:::::
f exu
CH4 :::

(-),
:::::::::
controlling

::::
how

:::::
much

:::::::
methane

::
is
::::::::
produced

:::::
from

::::::::
anaerobic

::::::::::::
decomposition

:::
of

::::::::
exudates,

:::
has

:
a
::::::
skewed

::::::::
posterior

::::::::
marginal

::::::::::
distribution

::::
with

:::::
most

::
of

:::
the

:::::
mass

:::::
above

:::
the

:::::
value

::
of

::::
0.7,

::
as

::::
can

::
be

::::
seen

:
in Fig. 6(f). Another

parameter indirectly affecting
:
.
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:::
The

:::::::::::::::
non-hierarchically

:::::::::
optimized

::::::::
parameter

::::
VO0 ::::

(mol
::::
m−3

::::
s−1)

:::::::::
controlling

:::
the

:::::::
amount

::
of CH4 oxidation , the heterotrophic

respiration parameter VR0 :::::
taking

:::::
place

:
is
:::::
close

::
to

:::
the

::::::::
minimum

:::::::
allowed

:::::
value

::
at

:::
one

::::
fifth

::
of

:::
the

::::::
default

:::::
value.

:::::
This

:
is
::::
also

::::
true

::
for

::::
the

::::::::
parameter

::::::::::
controlling

:::::::::::
heterotrophic

::::::::::
respiration, drifts in all experiments

::::
VR0 ::::

(mol
:::::
m−3

::::
s−1),

::::::
whose

:::
all

:::::::::
optimized

:::::::
estimates

::::::
reside close to its minimum value reducing the amount of heterotrophic respiration taking place.

:::
The

:::::::::
posteriors

:::
are

::::
very

::::::
narrow.

::
In

:::::::
contrast

::
to

::::
these

::::::
narrow

:::::::::
posteriors,

:::
the

:::::::::
parameters

:::::::
∆Eoxid::

(J
::::::
mol−1)

::::
and

:::::
∆ER :

(J
:::::::
mol−1),

::::::
which

:::
are

::::::
present

::
in5

::
the

:::::
same

::::::::
equations

::
as
:::

the
::::
VO0::::

and
::::::::::::::
VR0-parameters,

::::
have

::::::
slightly

:::::
wider

::::::::
posterior

:::::::::::
distributions,

::::
with

:::
the

::::::
former

:::::::
slightly

:::::
under

:::
and

:::
the

::::
latter

:::::::
slightly

:::::
above

:::
the

::::::
default

::::::
values.

:

Table 4 shows that the hierarchical
:::::::::::
hierarchically

::::::::
optimized

:
parameter Q10 ::

(-), controlling the temperature dependence of

the CH4 production from peat decomposition, increases with peat column depth: the more peat there is, the stronger the peat

decomposition process responds to soil temperature changes. Contrasting with this, the
:::
has

::::::
slightly

::::::::
different

::::::
values

:::
for

:::
the10

::::
MAP

::::
and

::::::::
posterior

:::::
mean

::::::::
estimates,

:::::
with

:::
the

::::::::::::
Gibbs-sampled

:::::
mean

:::::
value

::::::
(mean

::
of

:::::
those

::::::
values

::
in

:::
the

::::
case

:::
of

:::
the

::::::::
posterior

:::::
mean)

::
at

::::
5.72

:::
and

::::
4.43

:::::::::::
respectively.

:::
The

:
parameter τcato:::

(y),
::::
also controlling the peat decomposition rate in the catotelmincreases with peat depth compensating

for changes in total peat volume and keeping the production volumes reasonable. Part (d) of Fig. 12 shows how increasing the

peat depth and keeping parameters constant drastically increases the total methane production,
:::::::::::
compensates

:::
for

::
the

::::::::::
differences15

::
of

::::
Q10 :::::::

between
:::
the

:::::
MAP

::::
and

::::::::
posterior

:::::
mean

::::::::
estimates

:::
by

::::::
having

::
a
:::::
faster

::::::::
turnover

::::
time

:::
for

:::
the

::::::::
posterior

:::::
mean

:::::
than

:::
the

::::
MAP

::::::::
estimate.

:::::
That

::::::::
parameter

::::
has

::
a

::::
wide

:::::::::
posterior,

::::::
ranging

:::::
from

::::::
around

::::::
10000

::
to
:::::::

30000,
:::::
which

::::
was

:::
the

::::::
value

::::
used

:::
by

::::::::::::::::::
Raivonen et al. (2017)

:::
and

:::
the

:::::
upper

::::
limit

:::
of

::
the

::::::::::
parameters

::
in

:::
our

:::::
work.

::::
Our

:::::::
posterior

::::::
density

:::::
goes

::
to

:::
zero

:::::::
towards

:::
the

::::::
higher

::::
limit,

::::
and

:::
the

:::::::
posterior

:::::
mean

::
is

:::::
found

::
at

:::
the

:::::
value

::
of

:::::
22690

:::::
years.

The annual20

:::
The

::::::::::
inter-annual

:
variability of Q10 is similar across all peat depths

::
(-)

::
is
::::::
mostly

:::::::
similar

::
for

:::::
both

:::::
MAP

:::
and

::::::::
posterior

:::::
mean

:::::::
estimates. For instance years 2013 and 2014 (and sometimes 2011) are years of high Q10, whereas in

:::
the

:::::
years

::
of

:::
the

:::::::
smallest

:::::
values

:::
are

:::::
2007

:::
and

:::::
2008

::
in

::::
both

:::::
cases,

::::
and

:::
the

:::::
values

::
of

:::
the

:::::
years

:
2006the parameter gets its lowest or second-lowest value

for all depths in the PM simulations.
:
,
:::::
2011,

::::
and

::::
2014

:::
are

:::
the

::::::
largest

::
in
:::::

both
:::::
cases.

:
For the other hierarchical

:::::::::::
hierarchically

::::::::
calibrated parameter, ζexu , these patterns

::
(-),

:::::
these

:::::::::
similarities

:
do not exist.25

5.2 Costfunction values and annual discrepancies
::::::
model

::
fit

The minimum costfunction values and annual biases provide information about how well the different configurations of the

model performed in the model calibration task.

Table 4 lists the costfunction values for the MAP
::
and

::::::::
posterior

:::::
mean estimates, and the annual errors for the MAP, PM, and

NHPM estimates
::::::::
posterior

:::::
mean,

::::
and

:::::::::::::
non-hierarchical

::::::::
posterior

:::::
mean

::::::::
estimates

:::
and

:::::::
default

::::::::
parameter

::::::
values

:
are shown for30

each MCMC experiment
::::::::
parameter

:::
set in Fig. 7. Among the MAP estimates, the

::::
The costfunction value is lowest with 7 layers

of peat (259) and then gradually higher for 10 (262), 15 (267), 20 (269), 5 (274), and 4 layers (295), the last of these being

significantly worse than the first ones. Figure 7 suggests that for the MAP and PM estimates, the annual total CH4 flux estimates

are less steady with only 40 or 50 cm of peat.
:::::::::::
unsurprisingly

:::::
lower

:::
for

:::
the

:::::
MAP

:::::::
estimate

::::
than

:::
for

:::
the

:::::::
posterior

:::::
mean

::::::::
estimate,
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::::::::
indicating

::
a

:::::
better

::
fit

::
in

:::::
terms

:::
of

:::
the

::::
error

:::::::
model. In figure Fig. 7 (g) the NHPM

::
b)

:::
the

::::::::::::::
non-hierarchical

:::::::
posterior

:
estimate

shows a very large variance of the annual errors, with early years having a sizable positive bias, and later years having a similar

negative bias. Incidentally the averages
::::::
average

::::::::::
discrepancy

:::::
from

::::::::::
observations

:
over the whole period for NHPM are small

::
the

::::::::::::::
non-hierarchical

::::::::
posterior

:::::
mean

:
is
:::::
small

:::
for

::::
both

::::::::
methane

:::
and

::::::
carbon

:::::::
dioxide,

:
as Fig. 8 (b) indicates.

::::::::
indicates.

::::::::
However,

::
the

::::::::
variation

:::
for

::::::::
methane

::
is

:::
the

::::::
largest,

::::::::
implying

::::
that

:::
the

::::::
annual

:::::::
variation

::
is
::::

not
:::::::
reflected

:::::
well. The model estimates of the5

annual fluxes are good and
::
in

::::
that the variance of its

:::
the

:
errors is small for both MAP and PM

:::::::
posterior

:::::
mean experiments,

especiallyfor peat column depths of at least 50 cm,
:::::

even
::::::
though

:::
the

::::::::
estimates

:::::
show

::
a
:::::::
negative

::::
bias

:::
of

::::
25%. Compared to

the default parameters, the
:::::
which

:::::::
strongly

::::::::::::
underestimate

:::::::
methane

::::::::
emissions

:::::
(and

::::
even

::::
more

:::::::::::
overestimate

:::
the

::::::
carbon

:::::::
dioxide

:::::::::
emissions),

:::
the

::::
flux

:
estimates are much improved. This is to be expected as the results shown are not for an independent

validation dataset. Rather, the motivation
:::
with

:::
the

:::::
MAP

::::
and

:::::::
posterior

:::::
mean

::::::::
estimates

:
is to see , how the model fit looks like10

for optimized parameters and how the features differ from the unoptimized ones.
::
It

::
is,

::::::::
however,

:::::
worth

::::::
noting

::::
that

:::
the

:::::
target

:::::::
objective

:::::::
function

:::
did

::::
not

:::
aim

::
at

::::::::::
minimizing

::::::
annual

:::::::::::
discrepancies

:::
but

::::
daily

::::::::
residuals

:::
that

:::::
were

:::::::::
considered

:::::::::
correlated.

A cross validation of the
::::::::
regression

::::::::
modeling

::
in
:::::
terms

:::
of

:::
the annual errors is shown for the experiments with 70 cm and

100 cm peat columns in Fig. 8 (g) and 7 (b)
:::
and

::
8. While the annual estimates are worse than the estimates with the optimized

parameters, compared to the NHPM estimate and the default parameter values
::
not

:::
on

::::::
average

::::::
better

::::
than

:::
the

::::
ones

:::::
from

:::
the15

::::::::
simulation

:::::
with

:::
the

:::::::::::::::
non-hierarchically

:::::::
obtained

::::::::
posterior

:::::
mean,

:::
the

::::::
spread

::
of

:
the errors are smaller

:::::::::
acceptable,

::::::::::
particularly

::
if

::
the

::::::
strong

:::::::
negative

::::
bias

::
in

:::::
2007,

::::::
which

::
is

::::::
mostly

:::
due

:::
to

:::
lack

:::
of

::::::::::
observations

::::::
during

:::
the

:::::::
season,

::
is

::::::::::
disregarded. Additionally

the overall biases are as good as
::::::::::
surprisingly

::::::
slightly

::::::
better

::::
than with the optimized parameters

:
,
:::
due

::
to
::::::

effects
:::
of

:::
the

:::::
prior,

:::::::
different

::::
data

::::::::
resolution

::
in

:::
the

:::::::::::
costfunction,

:::
and

:::
the

:::::::::
non-trivial

:::::
error

:::::
model

::::
used. The cross validation is described in Sec. 5.6.

:::
The

:::::::
positive

::::
bias

::
in

:::
the

::::
CO2:::::

may
:::::
partly

::
be

::::
due

::
to

:::
the

::::::::::
assumption

::::
that

::::
70%

::
of

:::
the

:::::
NPP

:::::
comes

:::::
from

:::
the

::::::::::::::
aerenchymatous20

:::::
plants,

::::
and

:::
this

:::::::
affected

:::
the

::::
data

:::
that

:::
the

:::::::::::
sqHIMMELI

::::::
model

:::::
results

:::::
were

:::::::
matched

:::::
with.

Almost all
:::
All years of hierarchically optimized experiments show at least a small negative annual bias

::
in

:::
the

:::::::
methane

::::
flux

when compared to the available observations. This can be due to the high day to day variability of the summertime fluxes, which

dominate year-round total fluxes, and the fact that the model can not, without data about the fine structure and heterogeneity

of the wetland, match the high variability fluxes. The proportional model-data residual error component α yt (Appendix A1)25

allows the model to underestimate the high peaks more than the low flux values. The error model favors the baseline of the

lower values during periods when observed variance is very high, for instance in the peak emission season of 2010. This is

also true for periods of increased ebullition, and such fluxes are very difficult to fit into. These periods contribute to both the

costfunction values and the underestimation of the total
::::::
methane

:
flux. Any temporal shifts of peaks of seasons are penalized

heavily, and the optimized parameter values rather produce less peaks than right size peaks at a slightly wrong time.30

:::::::
Another

:::::
reason

::
is

:::
that

:::
the

::::::
carbon

:::::::
dioxide

:::::
fluxes

:::
are

:::::::::::
overestimated

:::
by

:::
the

::::::
model,

::::::
leading

::
to

::::
need

::
to

:::::::
balance

:::::::
between

:::
the

::::
two,

:::
and

::
as

:::::::
methane

::::::::::
production

::
in

:::
the

::::::
wetland

::::
also

::::::::
produces

::::::
carbon

:::::::
dioxide,

:::
the

::::::::::
optimization

:::::::::
algorithm

:::
will

::::
find

:
a
:::::::
middle

::::::
ground

:::::::
between

:::
the

:::::::::
conflicting

:::::
needs

::
of

::::::::::
minimizing

::::::
carbon

::::::
dioxide

:::
and

::::::::::
maximizing

::::::::
methane

:::::::::
production.

:

::::::::::
Additionally,

:::
the

::::::::::
wintertime

:::::::
methane

:::::
fluxes

:::
are

:::::::::::::
underestimated

::::::::::::
systematically,

::::
and

:::
the

::::::::
emissions

::::
start

:::::::
slightly

:::
late

::
in

:::::
early

:::::::
summer,

:::::
which

::::::::
produces

:
a
:::::::
negative

::::
bias

::
to

:::
the

::::
total

:::
flux

::::
even

::::::
though

:::::::
visually

:::
the

::
fit

::
is

:::::
good,

::
as

:::
can

::
be

::::
seen

::
in

::::
Fig.

::
9.

::::
This

:::::
figure35
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:::
also

::::::
reveals

::::
that

:::
the

:::::::::::
observations

::
for

:::
the

::::
vast

::::::::
majority

:::
fall

:::::
within

:::
the

::::::::::
confidence

:::::::
margins

::::::::
suggested

:::
by

:::
the

::::::
ARMA

::::::
model

:::
for

::
the

::::::::
residual.

:::
The

::::::::
variation

::::
from

:::
the

:::
full

::::::::
posterior

::
is

:::::
higher

:::::::
because

:::
the

::::::::::
uncertainty

:::::
shown

::
in

::::
Fig.

:
9
:::::
does

:::
not

:::
take

:::
the

:::::::::
parameter

::::::::
variations

:::
into

::::::::
account.

:::
The

:::::
input

::::
data

:::
has

:
a
::::
role

::
in

:::::::
affecting

:::
the

::::::
model

::
fit

::
to

:::
the

::::
data,

:::
and

:::::
since

::::
NPP

::
is

:
a
::::::::
modeled

:::::::
quantity,

:::::
there

::
is

::::
some

:::::::::
additional

:::::::::
uncertainty

::::::::
stemming

:::::
from

:::
that

:::::::::
modeling

:::::::
involved.

::::
For

::::
LAI

:::
we

::::
note

:::
that

::::
even

::::::
though

:::
in

:::::
reality

::
it
::
is

:::
not

:::::::
identical

:::::
every

:::::
year,5

::
in

:::
the

:::::
model

::
it

::::::
follows

:::
the

:::::
same

::::::
pattern,

::::
(see

::::::::
Appendix

:::
E).

::::
The

::::::::
parameter

:::::::::
calibration

:::::
must

::::
then

::::
favor

::::::::::
parameters

::::::::
producing

::
a

::::
good

::
fit

::
in

:::::
terms

::
of

:::::::
average

:::::
model

::::::::::::
performance.

5.3 Parameter values and processes in sqHIMMELI

The sqHIMMELI model produces the CH4 from anaerobic respiration that originates from peat decay and the decay of root

exudates. These production components, along with the different output pathways, CH4 oxidation and model residuals, are10

plotted as functions of water table depth in Fig. 10 for the optima of various MCMC experiments, and for the unoptimized

:::::
MAP,

:::::::
posterior

:::::
mean,

::::::::::::::
non-hierarchical

::::::::
posterior

:::::
mean,

:::
and

:
default parameter values. The process correlations and covariances

are shown for the year 2008 from the experiment with 70 cm of peat
::::
2012

:
in Fig. 5.

In the following, all ebullition refers to any ebullition in the peat column regardless to whether the bubbles reach the peat

column surface. Ebullition refers to the part of “all ebullition” which reaches the surface. Most of the time the water table15

is under the peat surface, and at those times “ebullition” is zero, although “all ebullition” can be substantial. In that case the

ebullition flux does not go directly into the atmosphere, but into the first air-filled peat layer above the WTD
::::
water

:::::
table

::::
level,

and continues from there via other pathways. The reason for this separation comes from implementation details of HIMMELI.

In all experiments, ebullition reaching the surface is minor fraction of the total CH4 emission.

For the PM estimatewith the 100 cm column depth
::::::::
posterior

::::
mean

:::::::
estimate, the flux components and oxidation are shown as20

time series in Fig. 11. Having only four layers of peat leads to peat decay being inhibited when the water table is low as the

volume of the modeled catotelm decreases (
::::::::::
Optimizing

:::
the

:::::
model

:::::
leads

::
to

::::::::
increased

:::::::::
production

::
of
::::::::

methane
::::
from

::::
peat

::::::
decay,

::
as

:::
can

::
be

::::
seen

::
in
:
Fig. 10 (f)). The

:
.
::
A

::::::
similar effect is seen also in the plant transport component in Fig. 10 (b). Plant transport

becomes proportionally more important with increasing depth of the peat column with MAP, PM, and NHPM estimates (Fig. 7

(a-c)), even though the differences get quite small and the system seems to mostly stabilize already at 7 layers. For the default25

parameters, however, the trend is opposite (Fig. 7 (d)) as increasing the peat depth dramatically increases CH4 production and

as the default parameter set favors ebullition and diffusion over plant transport.

Comparing results from simulations with optimized parameters to results using the default parameter values (prior mean

values, shown in Table 3
:
4) shows that the optimization drastically increases

::::::::
somewhat

::::::::
decreases

:
the role of the plant transport

pathway at the expense
::
in

:::::
favor of the diffusion pathway.

:
,
::::::::
especially

:::
for

:::::
years

::::::
2010,

:::::
2011,

::::
and

:::::
2013.

:
Diffusion and all30

ebullition fluxes are closely tied to each other, as can be seen in Fig. 7 (a-d
:
a), in that in all cases

::::
many

:::::
years

:::::::::::
(2007-2008,

:::::::::
2012-2014)

:
their values are close to each other

:::
for

::
all

::::::::
estimates. This is also visible in the flux component time series in Fig.

11.
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5.3.1 Methane production and oxidation

Figures 12 and 5 show, that there is considerable annual
::::::::::
inter-annual

:
variation in the production of CH4 from both of the

production processes. Year 2007 has a high amount of production from peat decomposition, whereas year 2006 shows a lot

less, even though the ζexu-controlled proportion does not change much. This is not a general trend
::::::
equally

::::::
much.

::::::::
Generally,

though, and instead in years of high emissions the amount of CH4 from both of the production sources is increased. The shape5

of the NPP input, shown in Fig. 9, does not change remarkably from year to year, but the emissions change considerably, as

the model state and input affect the production non-linearly. For example in times of low WTD in the peak emission season,

the root exudates do not contribute to CH4 production
::
as

:::::
much

::
as

::::::
during

::::::
slightly

::::::
wetter

:::::
times, as much of the roots are located

in the dry part of the peat column and the exudates are deposited there
::::
(Fig.

:::
10

:::
(e)). Another explanation for changes in CH4

production comes through the production-determining parameters, whose variation is in Sect
:::
Sec. 5.6 found to be related to the10

springtime temperature and NPP.

The NPP-based CH4 production controlled by the parameter ζexu is
::
(-)

::
is
:::
not

:::::::
strongly

:
constrained by its hyperprior as can

be seen in Fig. 6 (b) and the values accepted in the chain are from the higher side of the Gaussian hyperprior, whose mean

and standard deviation are both 0.2
::::
MAP

:::
and

::::::::
posterior

:::::
mean

::::::::
estimates. The posterior means in table 4 are between 0.27 and

0.38, with standard deviations of 0.17-0.18
:::::
0.182

:::
and

:::::
0.323

:::
for

:::
the

:::::::
different

:::::
years. For the MAP values the deviations are even15

:::::
values

:::
are

::::::
slightly

:
higher, leading to wider fluctuations in the characteristics of the modeled wetland. As mentioned in Table 3,

the prior for
:
a
:::::
larger

:::::
input

::
to

::
the

::::
root

::::::::
exudates

::::
pool.

::::
The

:::::
effect

::
of ζexu was set quite low, and actually even these

::
on

:::
the

:::::::
exudate

::::
pool

::::
sizes

:::
can

:::
be

::::
seen

:::
by

:::::::::
comparing

:::
the

::::::::
posterior

:::::
mean

:::::
values

::
to

:::
the

:::::::
exudate

::::
pool

:::::
sizes

::
in

::::
Fig.

::
9.

::::
The values obtained here

are on the low side of the spectrum
::
in

:::
line

:::
of

:::::
values

:
reported by Walker et al. (2003), who gives a range of 0.2-0.84

::::::
roughly

::::::::
0.15-0.65 in terms of our ζexu-parameter. Our result hence agrees with ,

:::::
when

::::
also

::::::::::
considering

:::
the

:::::
mean

:::::
value

::
of

:::
the

::::::
fCH4

exu .20

::::
This

::::::::
parameter

::::
finds

:::
its

::::::::
maximum

::
a

::::::::
posteriori

::::
value

::
at

::::::
0.729,

:::::
which

::
is

::::
close

::
to

:::
the

:::::::::
prescribed

:::::
upper

::::
limit

::
of

:::::
0.77.

:::
The

::::::::
posterior

::::
mean

::
is
::
at
::::::
0.736.

:::::
From

::::
these

::::::
results

:::
we

:::
can

::::::::
conclude

:
that a relatively large portion of the photosynthesized sugar is respired

into methane.

The
:::
year

::
to

::::
year

::::::::
variation

::
of

:::
the

::::::::
posterior

::::::::::
distributions

::
of

:::
the

:::::::::::::
ζexu-parameter,

::::::
shown

::
in

::::
Fig.

:::
13,

::
is

::::
large

::::
and

:::
this

:::::::::
difference

:::
has

::
an

::::::::
important

::::
role

::
in

::::::
driving

:::
the

::::::
annual

::::
CH4 :::::::::

production.
:::
For

:::::::::
especially

:::
the

::::
years

:::::
2007,

:::::
2008,

:::::
2012

:::
and

::::
2014

:::
the

::::::::::
importance25

:::::::::
resampling

:::
has

:::
the

:::::
effect

::
of

:::::::::
increasing

:::
the

:::::
value

::
of

:::
the

::::::::
parameter,

::::::::::::::
correspondingly

:::::::::
increasing

:::
the

:::::::::
production

::
of

::::::::
methane.

::::
This

:::::
effect

:
is
:::
not

::::::
visible

:::
for

:::
the

:::::
other

:::::::::::
hierarchically

:::::::
modeled

::::::::::::::::
production-related

:::::::::
parameter,

:::
the

::::
Q10,

:::::
whose

::::::::
posterior

::
is

:::
not

:::::::
affected

::
by

:::
the

:::::::::
resampling

::::::
despite

:::
the

:::::
more

:::::::::
permissive

:::::
prior.

:::
The

:
methane produced by the action of ζexu is distributed according to the root distribution, whose form is determined by

λroot :::
(m). The posterior means reveal, that that the contribution of the prior component of λroot to the costfunction is large. Its30

values might well be larger with a wider prior and more permissive prior, but in regard to how root distributions are in reality

(Fig. 3.2
:
1), larger values for the parameter would make its interpretation difficult. This parameter affects both how exudates

are allocated in the column and how deep the fast plant transportation reaches. Clearly there is a need to reach further down,

implying that the model performs more optimally when it transports CH4 faster to the atmosphere.
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The
::::::
exudate

::::
pool

::::
size

:::::::
follows

:::
the

:::
net

:::::::
primary

:::::::::
production

:::
in

::::
Fig.

:
9
:::::

with
:
a
::::::
delay,

::
as

::::
one

:::::
could

::::::
expect.

:::::::::
According

:::
to

:::
the

::::::::
modeling,

:::
the

::::
pool

:::::
sizes

:::
are

::
up

::
to

:::
0.5

::::::
moles

:::
per

:::::
square

::::::
meter,

:::
and

:::
the

:::::::
exudate

::::
pool

::
is

:::::::
depleted

:::::
from

:::::::::
December

::::
until

:::
the

::::
start

::
of

:::
the

:::::::
growing

::::::
season.

:

:::
The

:
methane production from decomposition of peat in anaerobic conditions is aided by the rather strongly correlated

parameters Q10 ::
(-)

:
and the catotelm carbon decay half-life τcato ::

(y)
::
as

::::
seen

::
in
::::
Fig.

::
4. Unlike with ζexu, the

::::
The prior means5

of Q10 ::
(-)

:
are mostly inside the 1-σ bounds of the hyperprior, and the temperature dependence of the anaerobic respiration

from peat decomposition is close to what was a priori expected.
:::
The

:::::::
MCMC

::::::
utilized

::
a
:::::
rather

:::::
strict

::::
prior,

::::::
which

::::::::::
constrained

::
the

:::::::::
parameter

::::::::::
exploration

:::::::::
somewhat.

::::::
Despite

::::
this,

::::
also

::::
very

:::
low

::::::
values

::::
were

:::::::::
proposed.

All years of the PM simulations have very little oxidation taking place with over 70 cm of peat and in the experiments

with up to 70 cm of peat
:::::::
Methane

:::::::::
oxidation

::
is

::::
quite

::::::
steady

::::::::
between

:::
the

::::::::
different

::::::::
estimates

::
as
::::

can
:::
be

::::
seen

::
in
::::

Fig.
:::

12
::

-10

:::::
except

:::
for

:::
the

::::::
default

::::::::::
parameters

::::::
values,

::::
with

::::::
which the amount of oxidation is higher (Fig. 12 (b)). In our analysis no easy

explanation was found for this feature and it is suspected that multiple processes involving the parameters governing the root

distributions and the availability of oxygen are behind the phenomenon. The MAP simulations (
::::::
several

:::
tens

::
of

::::::::
percents

:::::
more.

::::::::
However,

::::
there

::
is

:::::::::::
considerable

::::::::::
inter-annual

:::::::::
variability,

:::::
which

::::::
seems

::
to

::
be

::::::
related

::
to

:::
the

:::::::
varying

:::::::::
production

:::::
from

::::::::
exudates,

::
as

:::::
seems

::
to

:::
be

::::::::
suggested

:::
by

::::
Fig.

::
5,

:::
and

::::
also

:::
by Fig. 12(a)), however, show that the CH4 oxidation reduces gradually with the15

modeled peat depth, and that the simulations with the deepest modeled peat columns have parameter estimates with the lowest

VO0-parameters. The correlation between oxidation and the value of VO0 is high, at 0.8 for the year 2008
:
.

:::
The

:::::::
stronger

::::::::
oxidation

:
with 70 cm peat. With more modeled peat, the methane transportation time from the lower parts of

the catotelm increases, and to compensate for this
::
the

::::::
default

:::::::::
parameter

:::::
values

::::
can

::
be

:::
for

::
it

:::
part

::::
also

::::::
linked

::
to

:::
the

:::::
larger VO0

in the MAP covaryingly reduces CH4 oxidation so that the amount coming to the surface varies only a little (Table 4). This20

is also supported by that methane oxidation and production from root exudates covary negatively, as shown in
:::
(mol

:::::
m−3

::::
s−1)

::::::::
parameter,

:::::::
despite

:::
that

:::
the

:::::
other

::::::::
parameter

::::::::::
determining

::::::::
oxidation

::
in

:::
Eq.

::
7,

:::::::
∆Eoxid,

::
is
:::::::
slightly

:::::
lower

::::::
(50000

:::
vs.

:::::
53580

:::
for

::::
map

:::
and

:::::
55750

:::
for

::::::::
posterior

::::::
mean).

:::
The

:::::::
process

:::::::::
correlation

::::::
figure, Fig. 5 . That figure also shows ,

:::
also

:::::
shows

:
that the exudate and peat decomposition based

methane production terms are strongly negatively correlated, and that either of the terms can dominate production of CH425

within the
::
the

:::::::
exudate

:::::
based

:::::::::
production

::
is

::::::
roughly

:
50% confidence interval, even though in 2008 the 70 cm experiment shows

overall dominance of the peat decomposition process.
:::::::
stronger

::::
than

:::
the

::::
peat

:::::
decay

::::::
source.

:

The production and oxidation related parameters τcato, and VO0 correlate (Fig. 4), and ζexu and Q10 are affected via their

correlations with τcato. These parameters covary producing a total emission that minimizes the likelihood but this yields a

posterior, where some parameters like VO0 have wide marginal distributions (Fig. 6 (f)), as in the presence of several covarying30

parameters any of those covarying ones can to some degree compensate for the movement of the others. The

:::
The

::::
hard

:
prior bounds of VO0 ::::

(mol
::::
m−3

::::
s−1)

:
were tight and for example Segers (1998) reports that potential CH4 oxidation

can vary across three orders of magnitude. Hence, higher
::::
also

:::::
lower proportions of CH4 oxidation could have been seen with

a more permissive prior. This would have then resulted in wider posteriors also for the covarying parameters.
:::
also

::::::
altered

:::
the

::::::::
posteriors

::
of

:::
the

::::::
weakly

:::::::::
covarying

:::::::::
parameters,

:::::
most

::::::
notably

::::::
λroot.35
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Curiously,
:::
The parameter VR0 ::::

(mol
::::
m−3

::::
s−1)

:
controlling heterotrophic respiration correlates negatively in all experiments

weakly
:::::::
positively

:
with CH4 production via ζexu, and positively with parameter τcato. Removing oxygen from the column

reduces CH4 oxidation and in order to maintain the overall level of CH
::::
τexu ::

(s)
:::::::
(smaller

:::::
value

::::::::
enhances

:::::::
methane

:::::::::::
production),

:::
but

:::
the

::::::::::
correlations

::::
with

::::
Q10:::

and
:::::
τcato:::::

seem
::
to

::::::
cancel

:::
out

::::
each

:::::
other.

::::
The

::::::::::
correlations

:::
of

::::
ζexu :::

are
:::::
weak

:::::::
implying

::::
that

::::
that

::::::
process

::
is

::::
well

:::::::::
constrained

:::
by

:::
the

::::::::
combined

::::
CO2::::

and
:::
CH4 emission, production is reduced. The wide posterior of

::::
data.

:::::
There5

:
is
::::
also

::
a

::::
weak

:::::::::::::
anticorrelation

:::::::
between

:
VR0 in Fig. 6 implies that the day to day variation in the emissions and the combined

effects of other parameters dominate. In the MAP estimates, however, the parameter is close to the lower bound
:::
and

::::::
∆ER,

:::::
which

::
is

::
to

::
be

::::::::
expected

:::::
based

::
on

::::
Eq.

:
6.

5.3.2 Plant transport

The amount of plant transport in the calibrated models, shown in Fig. 7 , is close to 90
::
(a),

::
is
::::::::
between

::::
75%

:::
and

:::
95% which is10

slightly over the upper end of
:::
just

::::::
slightly

::::::
higher

:::
than

:
the range of 68-85% reported in Wania et al. (2010) in a study simulating

CH4 emissions for seven boreal peatlands. This is opposite to what was obtained with sqHIMMELI with the default (prior

mean) parameter values and 100 cm modeled peat, where the simulation routed 71% of the flux via diffusion.

The high optimized share of plant transport is
::::::
mainly due to the deep roots and high root conductance from the high values

of the root depth controlling parameter λroot and the
:::
(m)

:::
and

:::::
some

::
of

:::
the

:::::::::
difference

:::::::
between

::::
the

::::
MAP

::::
and

::::::::
posterior

:::::
mean15

:::::::
estimates

::
in
::::
Fig.

::
7

::
(a)

::::
may

::
be

:::::::::
explained

::
by

:::
the

:::::
higher

:
root ending cross section parameter

:::
area

::
in

:::
the

:::::
MAP

:::::::
estimate,

:::::::::
controlled

::
by

:::::::::
parameter ρ , and the low values of root tortuousity parameter τ . These parameters are close to the limits of what the

priors allow, and are the reason for that plant transport dominates the gas transport.
:::
(m2

::::::
kg−1).

:
Wania et al. (2010) used the

parametrization from Eq. 1 with λroot = 0.2517, and the root distributions from the PM estimates are
:::::::::
distribution

:::::
from

:::
the

:::::::
posterior

:::::
mean

:::::::
estimate

::
is
:
shown alongside that distribution in Fig. 1. Compared with measurements from Saarinen (1996),20

the amount of roots at 20-60 cm is exaggerated by all of the optimized parameter values. The model provides a better fit to the

data when the root conductance is maximized.

The parameter posteriors of λroot in the MCMC with 15 and 20 peat layers are apart from the others
::::
high.

:::::::::
However,

:::
the

:::::::
posterior

::::::::::
distribution

::
of

:::
the

:::
root

:::::::::
tortuousity

:::::::::
parameter in Fig. 6 , implying that an optimal rooting depth is an ambiguous notion.

The root distribution depths also correlate differently with other parameters in different depths - there is a negative correlation25

between ζexu and root depth (Fig. 4), which gets stronger with increasing peat column depth suggesting that more exudates

are needed for shallow roots, which is reasonable since the exudates above the water table are respired aerobically. The other

parameters affecting plant transport,
:
is

::::::
almost

:::::::
identical

::
to

:::
the

:::::
prior,

::
so

:::::::::
obviously

::::
there

::
is
:::
no

::::
need

::
to

:::::::::
maximize

::::
plant

::::::::
transport

:
at
::::
any

::::
cost.

:

::::
Since

:::
the

::::::::::
parameters ρ

:::
(m2

:::::
kg−1)

:
and τ both

::
(m

:::::
m−1)

::::
both

:::::
affect

:::::
plant

::::::::
transport

:::
and

:
are included in Eq. 8and ,

:
one could30

expect them to be tightly coupled. In the posterior, however, they are only slightly correlated, with coefficients
:::
the

:::::::::
correlation

::::::::
coefficient

:::
of

::::
only

::::
0.12 in Fig. 4from 0.16 to 0.31. The strict priors may play a role, as root tortuousity cannot go below the

value of 1. .
::::
This

::::::
might

::
be

:::
due

::
to

::
ρ
::::::
having

:::
the

:::::::
tendency

::
to
:::
be

::::
close

::
to

:::
its

:::
the

:::::
lower

::::
limit.

::::
The

::::::::::
root-ending

::::
area

::::::::
parameter

::
ρ

:::
has
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:
a
::::::
notable

::::::::
negative

:::::::::
correlation

::::
with

:::
the

::::::::::
air-diffusion

:::::::::
coefficient

:::::
fD,a :::

(-).
::::
This

::::::
follows

:::::::
directly

::::
from

::::
that

::::::::
increased

::::
root

::::::
ending

:::
area

::::::::
increases

::::
root

:::::::::::
conductance,

::
as

::::
does

:::::
faster

::::::::
diffusion

:::::::
through

::
the

::::::::
air-filled

::::::::::
aerenchyma

:::::
cells,

:::
via

:::
Eq.

::
8.

5.3.3 Diffusion

The masses of the diffusion coefficient parameters fD,a ::
(-) and fD,w ::

(-) in the posterior distributions (Fig. 6 (j) and (k)) are

above the priors. This is true especially for
:::::
within

::::
the

:::::
rather

:::::::::
permissive

:::::
priors

::::::
having

:::
the

::::::
values

::
of

::::
0.8.

:::
The

:::::::::
parameter

:
fD,w5

, which optimizes to
:
is
:::::::::
optimized

:
close to the upper limit of one, specifically for the experiments with 100 - 200 cm of peat.

Kaiser et al. (2016) note that these parameters are not well known, and use for both of them the value of 0.8, in which light the

prior for fD,a looks narrow. The PM estimates for fD,a in Table 4 are between 0.50 and 0.65 for the depths of 40 - 100 cm.

The parameter fD,a is correlated negatively with the root-ending area parameter ρ. This is because the air diffusion parameter

also affects the speed of CH4 transport in plant stems via Eq. 8, and by negatively correlating the two parameters the model can10

compensate for one of them by moving the other. Additionally, a smaller root conductance implies that more of the CH4 needs

to come out via the diffusive flux , which is also seen in the negative correlation of λroot and fD,w, especially in experiments

with peat depths of 70 and 100 cm.

Diffusion is correlated strongly with peat decay-based CH4 production and negatively with exudate-based production (Fig.

5), and these correlations extend to the hierarchical parameters defining the CH4 production (not shown). This is related to15

the strong connection between diffusion and ebullition, and that decaying peat produces CH4 lower in the peat column than

decaying exudates, production from which is more likely transported by plants (Fig. 5).

In general, the calibrations tend to end up facilitating the total CH4 transport as the depth increases, by the action of the

parameters ρ and τ affecting plant transport, and fD,a, and fD,w affecting diffusion, implying that there is a regime of optimal

conductance. Pertaining to this, Fig. 8 shows how the more modeled peat there is, the less important the diffusive component20

becomes. Going deeper down, plant transport becomes more competitive compared to diffusion in the MAP estimates.

:
.
::::::::::
Constraining

:::
the

::::::
model

::::
with

::
the

:::::
CO2 :::

flux
::::::::::::
measurements

::::::
results

::
in

::
the

::::::::
diffusion

:::::::::
component

:::
not

:::::::::
correlating

::::
with

:::
the

:::::::
amount

::
of

:::::::
methane

::::::::
produced

:::
via

::::::::
anaerobic

::::
peat

:::::::::::::
decomposition.

5.3.4 Ebullition

Ebullition is very strongly tied to diffusion in the flux estimates with parameters from the posterior, as is shown for the 7025

cm experiment in Fig. 5. The flux component timeseries in Fig. 11 shows that ebullition to the surface is a small fraction

(circa 0-3% with optimized parameters), of the total flux, and Fig. 8 shows, that the more there is peat, the less important the

ebullition flux is, including the part emitted as part of the diffusive flux. Similarly, Wania et al. (2010) report almost virtually

no ebullition to the surface. This result is highly dependent on the type of the wetland as for instance Kaiser et al. (2016)

report high ebullition fluxes for a polygonal tundra in the Siberian permafrost region, where the ice-free soil layer reaches only30

about 30 cm depth during summer. Variation between different sites is very large and depends on whether the water reaches

the surface at times of high CH4 emission.
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Contrasting with this, in the simulations with the default parametersand 100 cm of peat
:::::::::::::::
non-hierarchically

::::::::
optimized

:::::::::
parameters,

a major part of the diffusive flux,
::::::
which

::::::::
comprises

:::::::
around

::::
30%

::
of

:::
the

:::::
total

:::
flux

:::
for

:::::
most

:::::
years,

:
is transported by ebullition

(Fig. 8) and diffusion is the dominating
:
a
:::::
major flux component, even though ebullition to the surface accounts for only 5% of

the total flux. Since ebullition is a fast timescale process, it was not directly constrained in the optimization with parameters,

as preliminary tests revealed that daily data resolution would not be sufficient for this. While finer time resolution data would5

have been available, using it would not have been feasible as there is not enough knowledge about the fine structure of the

wetland and micrometeorological conditions affecting the footprint area of the flux tower. It is reasonable to believe that the

deviations from the daily averaged fluxes at a finer time resolution would only look like noise in the residuals not improving

our parameter posterior. Despite this, ebullition is controlled indirectly by letting CH4 production and transport parameters

control when the water column has enough CH4 available for ebullition. This happens when the sum of the partial pressures of10

dissolved gases is larger than the sum of atmospheric and hydrostatic pressures as shown in Eq. 23. The high ebullition-related

proportion of the diffusive flux strengthens the argument that the likelihood formulation results in model optimizing towards

parameter values that support rapid CH4 transport.

The results show that with deep roots and high root conductances the wet part of the peat column rarely creates the conditions

for ebullition to happen. Hence with less peat the amount of “all ebullition” increases, (Fig. 7 (b), 8 (a), and 10 (d)), as the15

produced CH4 needs to be stored in a smaller volume increasing its concentration. This way the modeled peat depth has a

major effect on how the model transports gases.

5.4 Parameter and process identifiability

The priors of the hierarchical CH4 production-related parameters Q10 ::
(-) and ζexu ::

(-) in Fig. 6 (b) and (d) are constrained by

the data, as are the hierarchical parameters themselves, shown in Fig. 13. The priors of these distributions are wider than their20

posteriors, which is also the case for the other production-related parameters τexu:::
(s) and τcato . The different posteriors of the

catotelm peat turnover time τcato are disjoint from each other as increasing simulated peat column depth is compensated for

by reducing the peat decomposition rate per volume
::
(y). Both process descriptions for obtaining the anaerobic respiration are

clearly needed for a good model fit, because the parameter posteriors do not have remarkable mass in the regions minimizing

either of these processes (hierarchical parameters at the lower bounds or turnover rate parameters τexu and τcato at the upper25

bound). The covariances in Fig. 5
:
4 and Fig. 4

:
5 show that the two production processes covary

::::::
slightly,

::::
with

::::::::::
correlation

::::::::
coefficient

:::::
-0.32, and hence they are partly

::
to

:::
that

::::::
extent interchangeable. Reasonable identifiability of the Q10-parameters is

not obvious, as for example Müller et al. (2015) optimizing a corresponding parameter end up with the parameter at the lower

bound of their prescribed range.
::::::::
However,

::::
half

::
of

:::
the

::::
mass

:::
of

::
the

::::::::::
production

:::::
terms

::
in

:::
the

::::::
process

::::::::::
correlation

::::
plot,

:::
Fig.

::
5,
::::
lies

:::::
within

:
a
::::::
region

:::
that

:::
for

:::::::::
production

:::::
from

:::::::
exudates

::
is

::::::
roughly

::::
10%

:::
of

::
the

::::
total

::::::::::
production

:::
and

:::
for

::
the

::::::::::
production

::::
from

::::
peat

:::::
decay30

::
of

:::
the

::::
order

::
of
::::::
35%„

:::
and

:::::
hence

:::
the

:::::::::
production

::::::::
processes

::::
can

::
be

::::
said

::
to

::
be

::::
well

::::::::::
constrained.

:

The posterior distributions of VR0 ::::
(mol

::::
m−3

::::
s−1)

:
show, that sqHIMMELI performs better when the heterotrophic respiration

is close to being minimized, but still away from the lower bound. With 100 cm of peat, the parameter has a clear mode further

from the lower bound, suggesting that the flux measurement data used also constrains this process, and that the prior does not
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indisputably rule out the best values. However, the oxidation parameter
:::::
which

::
is

::::
also

:::::
aided

::
by

:
a
::::::::
posterior

:::::
mean

:::::
value

::
of

:::::
∆ER

:
(J
:::::::
mol−1)

:::
that

::
is
:::::
lower

::::
than

:::
the

:::::
prior

:::::
mean.

:::
For

:::
the

::::::::
oxidation

::::::::::
parameters VO0 is not identifiable, and as the strong correlation

with the peat decay related parameter τcato shows, its function is partly to calibrate the total CH4 output of the the model

and to spread the posteriors of the covarying parameters. With this model and data, methane oxidation rates at the Siikaneva

site cannot be estimated without further constraints for e.g. the CH4 production
::::
(mol

::::
m−3

:::::
s−1)

:::
and

:::::::
∆Eoxid:::

the
::::::::
situation

::
is5

:::::::
different:

:::
the

::::::
former

::::
has

:::
the

::::::::
tendency

::
of

:::::
being

::::
very

:::::
small

:
-
:::
but

:::
the

:::::::::::
temperature

:::::::
response

:::
has

:::
the

::::::::
tendency

:::
of

:::::
being

:::::::
stronger

::::
with

:::::::
posterior

:::::
mean

:::
and

:::::
MAP

::::::
values

:::::
above

:::
the

::::
prior

:::::
mean.

All

:::::::
Whereas

:::
the

:::::::
fraction

::
of

:::::
plant

::::::::
transport

::
is

:::::
stable

::::
and

::::
high,

:::
but

::::
still

:::::::::::
constrained,

:::
not

::
all

:
the parameters affecting root con-

ductivity are constrained by the data to maximize the conductance
::
as

:::
the

::::
root

:::::::::
tortuousity

::::::::
posterior

::::::::::
distribution

:::::::
follows

::::
very10

::::::
closely

:::
the

::::
prior

::::
form. The root tortuousity parameter τ has narrow posteriors close to the lower bound of one, the root depth

parameter λroot is above its prior, and the root-ending area parameter ρ optimizes to very high values compared to the prior

distribution(
:::::
ending

:::::
cross

::::::::
sectional

::::
area,

::::::::
however,

:
is
::::::::::
constrained

::
to

:::
its

:::::
lower

:::
side

::::::
despite

:::::
there

:::::
being

::::
mass

::::
also

:::::
above

:::
the

:::::
prior

::::
mean

::::::
value.

:::
For

::::
this

::::::::
parameter

:::
the

::::::::::
importance

:::::::::
resampling

:::::::
resulted

::
in
::
a
:::::::
changed

::::::::
posterior

::
in

::::
that

::::
there

::
is
::
a

::
lot

:::::
more

:::::
mass

::
at

::
the

::::::
higher

:::
end

:::
of

::
the

:::::::::::
distribution,

::
as

:::
can

::
be

::::
seen

::
in

:
Fig. 6 (g-i)). The diffusion-related parameters fD,a and fD,w are optimized15

to high values and identifiable with the exception that with the shallowest peat depths the water diffusion rate coefficient has

little role and a wide posterior spanning all values from 0 to 1. Transport pathway shares are stable between the MAP and PM

optimizations
:::
h).

::
In

:::::::
addition

::
to

:::
this

:::::::::
difference,

:::
the

::::::
effects

::
of

:::
the

:::::::::
resampling

:::::
were

::::::
mostly

:::::
minor.

:::::
Still,

:::
the

:::::::::
resampling

::::::::
informed

:::
that

:::
the

::::
roots

::::::
should

::::::
reside

::::::
slightly

::::::
higher

::
in

:::
the

::::
peat

::::::
column

::::
than

:::::::::
suggested

::
by

:::
the

:::::::
MCMC,

::::
and

:::
that

:::
the

:::::
f exu
CH4::

is
::::::::::
constrained

::
to

:
a
::::::
higher

::::
value

:::
by

:::
the

::::
data

::::
than

::::::::
suggested

::
by

:::
the

::::::
initial

::::::
MCMC

::::
run.20

:::
The

::::::::
transport

::::::::
pathways

:::
are

::::
well

::::::::
identified

:::
as

:::
can

::
be

:::::
seen

::
in

:::
the

::::::
ranges

::
of

::::::::
variation

::
in

:::
the

::::::::
transport

::::::::::::
characteristics in Fig.

8 (a), and their annual variation is small, implying that the existence of the different pathways helps to optimize the model

fit
:
5.

:::::::
Notably

:::
the

::::::::
transport

::::::::
processes

:::
do

:::
not

:::::::
strongly

:::::::::::
anticorrelate

::::::::
implying

:::
that

:::::
they

:::
are

:::
not

::::::::
obviously

::::::::::::::
interchangeable

::::
with

::::
each

:::::
other.

:::
The

::::::::::
correlation

:::::::
between

::::::::
oxidation

::::
and

::::
plant

::::::::
transport

:::::::
suggest

:::
that

::::::::::
uncertainty

::
in

::::::::
oxidation

::
is

:
a
::::::

major
:::
part

:::
of

:::
the

:::::::::
uncertainty

::
in

:::
the

::::
plant

::::::::
transport

:::::::
portion.

:::
On

:::
the

::::
other

:::::
hand,

:::::
there

::
is

:::::::::
uncertainty

::
in

:::
the

:::::::
absolute

:::::::::
magnitude

::
of

:::
the

::::
total

::::
flux

:::
(in25

::::
terms

:::
of

:::
the

:::::::
posterior

:::::::::::
uncertainty)

:::
and

::::
this

:
is
::::::::
reflected

::
in

:::
the

::::::
strong

::::::
positive

::::::::::
correlation

:::::::
between

::::
plant

::::::::
transport

::::
and

:::
the

::::
total

::::
flux.

::::::
Similar

:::
but

::::::
weaker

:::::::
positive

::::::::::
correlations

::::
exist

:::::::
between

:::
the

::::
total

::::
flux

:::
and

::::::::
diffusion

:::
and

:::::::::
ebullition,

:::::
which

::
is
::
to

:::
be

::::::::
expected.

:::
The

::::::::
variation

::
of

::::::::
oxidation

::
is

::::::
around

:::
ten

::::::
percent

::
of

:::
the

::::
total

::::
flux.

5.5 Low WTD in 2006, 2010, and 2011

The
:::::::
calibrated

:
sqHIMMELI model is not able to estimate

::::
able

::
to

:::::::
describe

:
the CH4 flux correctly in times of low water tablein30

the 40 and 50 cm peat depth configurations. This is not unique to this particular model - also ,
::::::
which

::
is

:::
not

:::::::
obvious

::
as

:
other

studies have indicated the challenges in parametrizations of emission models in response
:::
with

::::::
respect

:
to the water table depth

(e.g. Zhu et al. (2014)). Figures 10 (b) and (f) reveal that in July 2006
:::::
Figure

:::
10

:::::
shows

::::
how

:::
the

:::::
model

:::::::::
processes

:::
are

::::::::
described

:::::
under

:::::
water

:::::
stress.

:::
In

:::::
times

::
of

:
a
:::::

very
:::
low

:::::
water

:::::
table,

:
the plant transport component and CH4 production from peat decay
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go effectively to zero during the period of the lowest WTD. This effect is not visible in the simulations with more peat, and

already the PM estimate with 7 layers gives a very nice fit for July 2006 (not shown) as the deeper peat column provides for

more freedom for flux adjustment. The underestimation of the emission is visible comparing the plant transport pathways and

total model residuals with respect to the water table depth at different depths in Fig. 10 (b), (f), and (h).

Other extended periods of low water table occur during the years 2010 and 2011, which explains why those years tend to5

be accentuatedly underestimated with respect to the observed flux with shallow simulated peat columns, as is shown
:::::::
methane

:::::::::
production

::::
from

::::
root

::::::::
exudates

:::
are

::::::::
decreased

::::::::::
somewhat,

::
as

::
is

::::::::
methane

::::::::
oxidation.

:::::
This

:::::
results

:::::::
directly

:::::
from

::::
how

:::
the

::::::
model

:
is
::::::::::

constructed
:::

as
:::::::
exudate

:::::::::
deposition

::
to

:::
the

::::
peat

:::::::
column

::
is

::::::::
allocated

:::::::::
depth-wise

:::::::::
according

::
to

:::
the

::::
root

:::::::
density

::::::
profile.

:::::
That

::
the

::::::
model

::::::::
continues

::
to

:::::::
perform

::::
well

::::::
during

:::::
these

:::::
years,

:::::::
implies

:::
that

::::
this

::::::
method

::
of

:::::::::
regulating

:::::::
methane

:::::::::
emissions

:::::
during

::::
dry

::::::
seasons

::
is

:::::::
realistic.

::::
The

:::::::
residuals

:
in Fig. 7 (f) , even though curiously the 50 cm MAP estimate also performs well. The lowest10

water table depth of the simulation period is in 2006, when on the 26th of August the water table drops to 38 cm below the

surface. In 2011 the WTD goes below 20 cm for a total of 77 days in a row, and in 2010 it recedes to -17 cm for a period of

71 days, the average of the period being -23 cm. Years 2010 and 2011 have the strongest tendency to underestimate the total

annual CH4 emission compared with the observations. A sufficiently deep peat column to accommodate for CH4 emissions

during the low WTD periods is needed for making accurate predictions
::
10

:::
(h)

::::::
further

:::::
show

:::
that

:::::
there

:
is
::
a

::::
only

:
a
:::::
slight

:::::::
positive15

:::::::
emission

::::
bias

::
at

:::
the

:::::
times

::
of

:::
the

::::
very

:::::
lowest

:::::
water

:::::
table

:::::
levels.

5.6 Optimal modeled peat depth for sqHIMMELI

Even though most of the parameters and processes are identifiable, all of the parameter posteriors vary with peat depth, the

most striking example of which is τcato (Fig. 6 (c)). For this reason, the validity and meaning of the parameter values must be

understood in each particular model setting.20

The objective function incorporating prior knowledge can be used to evaluate what peat column depth best represents the data

and still retains the physical interpretation of the parameters, information about which is in the prior parameter distributions.

In the MAP estimations, the costfunction values (Table 4) and the annual flux estimate errors (Fig. 8) are smaller starting with

the depth of 70 cm and especially the 40 cm optimizations are systematically worse in this respect than the others, due to

worse handling of periods of low WTD (Fig. 10). These problems do not exist with the 70 or 100 cm simulations, and are less25

pronounced already with 50 cm of peat.

With 150 or 200 cm of peat the correlations of the parameters shown in Fig. 4 show markedly different patterns from the

correlations with shallower modeled columns. For these thick peat columns the costfunction values are higher, the correlations

are not easy to explain, annual negative biases are not better, and model integration is more costly in terms of CPU time. For

these reasons there is no reason to believe that modeling deeper peat columns than 100 cm in sqHIMMELI would be superior.30

Rather, the optimal thickness lies between 50 and 100 cm.
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5.6 Predicting emissions with sqHIMMELI

Modeled CH4 flux estimates may have large errors as was shown in Fig. 8 (b) with the default parameter set. The negative

biases of less than ten percent in the calibration phase that were found with the PM
::::::::
maximum

::
a

::::::::
posteriori

:::
and

::::::::
posterior

:::::
mean

estimates are reasonable since the quality of the modeled input data from e.g. a land surface scheme will also contribute to

the uncertainty in the model predictions.
:::::::::::
Additionally,

:
a
:::::::

known
:::::::
constant

::::
bias

:::
can

:::
be

::::::::
relatively

::::::
easily

:::::::::
accounted

:::
for

::
if

:::
the5

::::::::::
inter-annual

::::::::
variability

::
is

::::::::
correctly

::::::::
modeled.

Compared to the estimate with the optimized annual variations of the Q10 :::::::
methane

:::::::::
production

::::::
related

:
parameters, the

:::::::::::::
non-hierarchical

:
posterior mean estimate without the hierarchical parameters (NHPM) does not produce very good good

:::::::
produces

:::::::::
reasonable

:
flux estimates over the assessment period(Fig. 7 (g)). With all peat depths, the total CH4 emission of

the first years is overestimated by up to 30 percents and for the last years there is a similar negative bias. ,
:::::

with
:::::
twice

:::
the10

::::::::
variability

::
in
::::::

fluxes
:::::::::
compared

::
to

:::
the

::::::::
posterior

:::::
mean

::::::::
estimate,

::::
even

::::::
though

::::
the

::::::
average

:::
of

:::
the

:::::
errors

::
is
::::::

closer
::
to

:::::
zero.

::::
The

::::::::
variability

::
is

::::
seen

::
in

::::
Fig.

::
7. The hierarchical posterior mean (PM) on the other hand does produce very steady estimates of the

CH4 flux , compared with observations , and for these estimates the model dynamics are similar between the estimates for the

peat depths of up to 100 cm.
::::
even

::::::
though

::::
there

::
is
::
a
:::::::::
downward

:::
bias

::
of

:::::
23%,

:

:::
and

:::
the

::::::
smaller

::::::::::
inter-annual

:::::::
variance

:::::::
implies

:::::
better

::::::::
predictive

:::::
skill.

:::
The

:::::
same

:
is
::::
true

::
to

:
a
:::::
lesser

::::::
extent

:::
also

:::
for

:::
the

:::::::::
maximum15

:
a
::::::::
posteriori

::::::::
estimate.

In order to be able to utilize the PM estimates
:::::::::
information

::::::::
regarding

:::
the

::::::
annual

:::::::::
variability

::
in

::
the

::::::::
posterior

:::::
mean

:::::::
estimate for

the future prediction of CH4 emissions, the values of the hierarchical parameters need to be estimated for the simulation years.

A simple regression analysis of the hierarchical variables with respect to relevant input data was performed in order to find

out if such estimation is possible. As the explaining variables, means, minimums, and maximums of NPP, water table depth,20

and soil temperature at different depths and over different periods of time were looked at. These time periods were June, July,

August, and various different amounts of days from the start of the year.

The analysis revealed that the mean soil temperature of the first 10 weeks
::
(70

:::::
days)

:
of the year at the depth of 30-40 cm,

denoted here by T 70
30−40, is the best single-variable predictor of the Q10-value for that year, and for ζexu, it is the sum of

NPP from the first 130 days of the year, denoted by NPP 130. This is hardly surprising, since the peat decomposition process25

regulated by the parameter Q10 is driven by soil temperature, and the anaerobic respiration from exudates controlled by the

parameter ζexu is driven by the NPP input.
:::::
These

:::::::
variables

::::
also

:::::::
indicate

:::
that

:::
the

::::::
timing

::
of

:::
the

::::
start

::
of

:::
the

:::::::
growing

::::::
season

:::::
might

:::
play

::
a
::::
role

::
in

::::::::::
determining

:::
the

::::::::::
parameters.

::::::::
Possible

::::::::::
mechanisms

:::::
could

:::::::
include

:::
e.g.

::::::
effects

::
of

:::
the

:::::
start

::
of

:::::::
growing

::::::
season

:::
on

::::::::::
development

::
of

:::
the

:::::::
microbe

::::::::::
populations

::
in

:::
the

::::::
spring.

::::::::
However,

::::::
further

:::::::
analysis

::::::
would

::
be

::::::
needed

::
to

:::::::
confirm

::::
this..

:

The p values summarizing the reliabilities of the regressions and the r2 values, which are the coefficients of determination30

of the fit, are presented in table 5. The r2 values explain what fraction of the variance of the dependent (predicted) variable is

explained by the independent (explaining) variables.

For the MCMC experiment with 40 cm of peat the p value of the regression is better when looking at the 20-30 cm average

soil temperature (p= 0.075, r2 = 0.38), than with the 30-40 cm temperature (p= 0.13, r2 = 0.30). It is understandable that
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estimating Q10 gets more difficult with a shallow peat column depth, because the parameter has less effect as in the summer a

majority of the whole peat column is dry. For the simulations with 150 or 200 cm of peat the regression for Q10 does not give

meaningful results and the
:::
The pvalues are large, implying that a deep active peat column might pose an additional degree of

difficulty for performing the CH4 emissions.

The best experiments in terms of the predictability of the hierarchical variables are those with 70 -
:

and 100 cm of peat,5

which also were the best performing peat column depths among the model calibration results (Table 4). For those depths,

the
::::::::
r2-values

:::::::
uncover

:::
that

:::
the

::::::::::
hierarchical

:::::::::
modeling

::::::
reveals

:
a
::::::::

clear-cut
:::::::
reliable

::::::::::
relationship

:::::::
between

:::
the

:::::
early

::::
NPP

::::
and

:::
the

::::::
optimal

:::::::::::::
ζexu-parameter

::::::::::::
(p= 5× 10−6,

:::::::::::
r2 = 0.957).

::::
This

:::::::
provides

::::
new

::::::
insight

:::
into

::::::
future

:::::
model

:::::::::::
development

:::
and

::::::::::
exemplifies

:::
why

:::::
such

:
a
::::::::::
hierarchical

:::::::::
description

::
of
::::::::
variables

::
is

:::::::
valuable

::
in

::::::::
Bayesian

:::::::::::
optimization

::
in

:
a
::::::::::
geophysical

::::::
model

:::::::
context.

:::
For

:::
the

::::
other

::::::::::::
inter-annually

::::::::
changing

:::::::::
parameter,

::::
Q10,

::::
the

:::
soil

:::::::::::
temperatures

::::::
explain

::::
only

:::::::
slightly

::::
over

::::
half

::
of

:::
the

::::::::
variation10

::::::::::
(p= 0.0185,

:::::::::::
r2 = 0.571).

:::::
Since

:::
the

:::::
effect

::
of

:::
this

:::::::::
parameter

:
is
::::
very

:::::::::
important

::
for

:::
the

::::
total

::::::::
methane

::::
flux,

:::
this

::::::
results

:::::
leaves

::::
lots

::
of

::::
room

:::
for

::::::
further

:::::::::::
analysis.The hierarchical parameters Q10 and ζexu for each year can be estimated with

Q7l
10 = 3.27 +1.71ζ7l

exu =−56000NPP 130 + 0.468Q7l
10 = 2.60 +2.67ζ10l

exu =−68300NPP 130 + 0.480, (25)

Q10 = 3.86T 70
30−40 + 1.76

:::::::::::::::::::::
(26)15

ζexu =−46500NPP 130 + 0.431
::::::::::::::::::::::::::

(27)

where the upper indexes 7l and 10l refer to the number of 10 cm peat layers, temperatures are in ◦C, and the units of NPP are

mol m−2 s−1.

The lower p and higher r2 values for the 70 and 100 cm models suggest that also in terms of predictive skill these

configurations are superior as the hierarchically varying variables can be more robustly estimated. A leave one out-cross20

validation (LOO-CV, see e.g. Gelman et al. (2013)) of the predicted fluxes was therefore performed on the 70 cm and 100 cm

models by optimizing them
::::::::
regression

::::::::
modeling

:::
was

:::::::::
performed

:::
by

:::::::::
optimizing

:::
the

::::::::::
hierarchical

:::::::::
parameters

:
with respect to the

costfunction in Eq. 24 leaving one year at a time out, calculating the estimates for the hierarchical parameters based on the

results obtained
:::
for

::::
other

:::::
years, and predicting the CH4 emissions for the year that was left out. The algorithm (BOBYQA)

and the number of iterations completed (350) were the same as before the MCMC and for the hierarchical parameters the25

priors were defined by the values defining the hyperprior. The results of the cross validation are shown in Fig. 7 (g
:
b) and

8(b). Compared to the NHPM estimateand the default parameter values the annual errors were reduced .
::::
The

:::::::::::::
cross-validated

:::::
results

:::
are

::::::::::
comparable

:::
in

:::::
terms

::
of

::::::
annual

:::::::::::
performance

::
to
::::

the
:::::::::::::
non-hierarchical

::::::::
posterior

::::::
mean.

:::::::
Despite

:::
the

::::::::
relatively

:::::
good

::::::::::
performance

::
of

:::
the

::::::::::::::
non-hierarchical

:::::::
posterior

:::::
mean

:::::::::
simulation,

:::
we

::::
note

:::
that

:::
the

:::::::::::::
cross-validated

:::::
result

:::::
should

:::
be

::::
more

:::::
relied

:::
on

::
for

:::::::::
prediction,

:::::
since

:::
the

:::::::::::::
well-predictable

:::::::::::::
ζexu-parameters

:::::::
contain

:::::
useful

::::::::::
information

:::
that

::
is

:::
not

:::::::
available

::
in
:::
the

::::::::::::::
non-hierarchical30

:::::::
posterior

:::::
mean

::::::::
estimate.

::
A

::::::
hybrid

:::::::
between

::::
these

::::::::::
approaches

:::::
could

:::
be

:::
also

:::::
used,

:::::
using

:::
the

:::::::::
regression

:::::::
modeled

::::::
values

:::
for

:::
the

:::::::::::::
ζexu-parameters and the mean annual errors were -4.95% and -3.01% with the standard deviations of 13.6% and 13.4 %, for
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the 70 cm and 100 cm peat column depths respectively. In comparison to the NHPM estimate the annual errors were reduced

for six out of the nine years. These results are promising, and as the analysis performed was extremely simple, there is room for

further development.
::::
Q10,

::
to

::::::::
minimize

:::
the

::::
risk

::
of

:::::
major

::::::
annual

:::::
biases

:::
due

:::
to

::::::::::
unsuccessful

:::::::::
prediction

::
of

:::
the

::::::::::::::
Q10-parameters.

::
As

::::
Fig.

:
7
:::
(b)

::::::
shows,

:::::
much

::
of

:::
the

::::
error

::
in
:::
the

:::::
cross

::::::::
validation

:::::::
actually

::::::
comes

::::
from

:::::::::
challenges

:::::::::
estimating

::::
year

:::::
2007,

:::::
which

::
is

::::::
missing

:::
the

:::::
peak

:::::
season

:::::::::::
observations,

::::
and

::::::::
therefore

:::
the

::::
error

:::::::::
percentage

:::
(in

:::::
terms

::
of

:::
the

::::::
annual

::::::::
observed

::::
flux)

::
is

:::::
easily

:::::
high,5

::::::::
especially

::
as

:::
the

::::
start

::
of

::::::
season

::
is

:::::::
modeled

::::
with

::
a
:::::
delay,

:::::
which

::
is

::::::
readily

::::::::
apparent

::
in

:::
Fig.

::
9,

::::
and

::
in

:::
this

:::::
sense

:::
the

:::::::
negative

::::
bias

::
in

:::
Fig.

::
7

::::
gives

:::
an

:::::::::::
unnecessarily

::::::::::
pessimistic

::::
view

::
of

:::
the

::::::
model

:::::::::::
performance.

:::
For

:::
the

::::
CO2::::::

fluxes,
::
it

:::
can

::
be

:::::
noted

::::
that

::::
there

::
is
::
a

::::::::
persistent

:::::::
positive

:::
bias

:::
of

::::
some

::::
tens

::
of

::::::::
percents,

:::
but

:::
the

:::::::::::
observations

:::
are

::::
very

:::::
noisy

::::
and

:::
due

::
to

:::
the

:::::::::
processing

:::
for

:::
the

::::
use

::
in

::
the

:::::::::::
costfunction,

::::
they

::::::
might

::::
have

::::::
biases.

:::
The

:::::
effect

:::
of

:
a
:::::
small

::::
bias

::
on

:::
the

:::::::::
parameter

:::::::
posterior

::::::::::
distribution

::
is,

::::::::
however,

::::::
minor,

::::
since

:::
the

::::::
carbon

:::::::
dioxide

::::::::::
observations

:::::
were

::::
given

::::
less

::::::
weight

::
in

:::
the

::::::::::
costfunction

::::
than

:::
the

::::::::
methane

:::::::::::
observations.

::::::
Hence,

:::::
given10

::::
their

:::::::::
uncertainty

:::
the

::::::::
optimized

:::
fit

::
to

:::
the

:::::::::::
measurement

:::
data

::::
can,

::::
also

::
in

:::
the

:::::::::::::
cross-validation

::
as

::
in

:::
the

:::::
other

::::::::::
experiments,

:::
be

::::
seen

::
as

:::::::::
acceptable.

:

6 Conclusions

In this study, Bayesian calibration of a new process-based wetland CH4 emission model, sqHIMMELI, was performed us-

ing MCMC methodsagainst observations
::::::
Markov

:::::
chain

::::::
Monte

:::::
Carlo

::::::::
methods,

::::::::::
hierarchical

:::::::::
statistical

::::::::
modeling

::
of

::::::::
methane15

:::::::::
production

::::::
related

:::::::::
parameters,

:::::::::::::::
Box-Jenkins-type

:::::::::
timeseries

::::::::
modeling,

::::
and

:::::::::
importance

::::::::::
resampling,

::::::
against

:::::
daily

:::::::
methane

::::
and

:::::
carbon

:::::::
dioxide

:::
flux

::::
data

:
from the Siikaneva flux measurement site in Finland. The results show that the modeled processes and

the estimated parameters are identifiable with the flux data, with the exception of CH4 oxidation. The depth of the modeled peat

column, for which an optimal range was found at around 70 cm, strongly affects the posterior distributions of the parameters,

and the optimal model functioning in terms of the gas transport pathway fractions and the relative importances of the sources20

of the anaerobic respiration. Such dependence on the chosen model setup suggests that using strict measurement-based priors

can cause the model to behave in an unintended manner. .
::::
The

::::::::
parameter

::::::::::
correlations

::::
and

::::::
process

:::::::::::
correlations

::::
from

:::::::
random

:::::::
sampling

:::
the

::::::::
posterior

:::::
reveal

:::
that

:::::
there

:::
are

::
no

:::::::::
redundant

::::::::
processes

::
in

::
the

::::::
model

::::::::::
description.

::::::::
However,

:
a
:::
few

::::::
strong

::::::::::
correlations

:::::::
between

:::::::::
parameters

:::::
exist

:::::::::
reminding

::
of

::::
the

::::::::
difficulty

::
of

:::::::
strictly

::::::::::
interpreting

::::::::
parameter

::::::
values

:::
to

::
be

:::::::::
connected

:::
to

:::::::
isolated

:::::::
physical

:::::::::
processes.

:::
The

:::::::::
optimized

::::::
model

:::
fits

::::
well

:::
to

:::
the

::::
data

::
in
::::

that
:::
the

::::::::
modeled

::::::
fluxes

::
fit

::::::
within

::
a

:::::
range

::::
from

::::
the

::::
data25

:::
that

::
is

:::::::
expected

:::::
based

:::
on

:::
the

::::
error

:::::::::
modeling.

Preliminary results obtained also suggest that estimation of the annually varying CH4 production-related parameters
::::::
annual

:::::::
variation

::
of

:::
the

::::::::::
parameters

:::::::::
controlling

::::::::
methane

:::::::::
production

:::::
from

::::::::
anaerobic

:::::::::
respiration

:::
of

::::
root

:::::::
exudates

:
is feasible and may

help to improve the future estimates of the boreal wetland CH4 emissions.

Since the flux observations were not enough to constrain the oxidation rates, a possible path forward is to estimate model30

and parameter states assimilating column concentrations with a method such as the one presented in Hakkarainen et al. (2012)

. Along that path
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:::
For

:::::
future

:::::::
studies, combining observations from several sites and optimizing them together with the methods presented

here in conjunction with independent validation can provide valuable information about the uncertainties related to wetland

emission modeling and about how to best improve the quality of predicting wetland methane emissions in land surface schemes

of climate models.

7 Code availability5

The HIMMELI source code is available as a supplement to the publication Raivonen et al. (2017).

8 Data availability

The model input data and the flux measurement data are available upon a
::::::::::
reasonable request from the lead author.

Appendix A: The sqHIMMELI
:::::
Error model equations

:::
for

::::::::
residuals

The version of HIMMELI presented here describes processes for CH4 production and transport. It differs from the version10

presented in Raivonen et al. (2017) in that the model presented there does not contain the processes for anaerobic respiration

but rather take it as input, the idea being that such input would be available when using HIMMELI as a part of a larger model.

Hence the equations presented in Sec. 3.1.2 are specific to the version used in this study. The other difference between the

models is the difference between the root distributions described in Sec. 3.2.

A1 Governing equations15

The gas concentrations of CH4, carbon dioxide and oxygen in the peat column are governed by the equations

TX(t,z) =Qdiff
X +Qplant

X +Qebu
X

∂[CH4]

∂t
(t,z) =−TCH4 +Rexu

CH4
+Rpeat

CH4
−Roxid

CH4

∂[O2]

∂t
(t,z) =−TO2 −Rpeat

aerob−Rexu
CO2
− 2Roxid

CH4

∂[CO2]

∂t
(t,z) =−TCO2 +Rexu

CO2
+Rpeat

CO2
+Roxid

CH4
+Rpeat

aerob,

(A1)

where TX(t,z) describes transport of gas X containing the diffusion, ebullition, and plant transport components, and R stands

for production or consumption. The different terms in the equations are described below.

A1 Anaerobic respiration producing CH420

The equations presented in this section are specific to the version of HIMMELI used in this study. The version in Raivonen et al. (2017)

takes the rate of anaerobic decomposition of carbon as input and does not treat the different sources of that carbon separately.
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The carbon for methane production in this model version comes from two sources: root exudates and anaerobic peat

composition. The methane production from anaerobic respiration of that carbon is given by the terms Rexu
CH4

and Rpeat
CH4

described by:

Rexu
CH4

(z) =
f exu
CH4

dz
ν

π(z)

1 + ηCO2
(z)

Rpeat
CH4

(z) = kcato(z)gQ10

CH4

ρcatofCcato

MC
, (A2)

where in Eq. 15 ν is the decay rate of root exudates from Eq. 3, η is an oxygen inhibition parameter, CO2
(z) is the oxygen5

concentration at depth z, and π(z) is the normalized proportion of the total anaerobic root mass, also at depth z, given in

an unnormalized form in Eq. 2. The parameter f exu
CH4

is a constant determining what fraction of root exudates in anaerobic

conditions will turn into CH4. Equation 15 is only used below the water table. In Eq. 16, gQ10
m is the proportion of the anaerobic

peat decomposition process producing CH4, ρcato is the peat density in the catotelm, fCcato is the fraction of carbon in catotelm

peat, and MC is mass of carbon. The parameter kcato =Q
(T−273.15)

10
10 /τcato is described in Eq. 5, and is zero above water table.10

The equations for CO2 are similar:

Rexu
CO2

(z) = νπ(z)−Rexu
CH4

(z)Rpeat
CO2

(z) = (1− gQ10

CH4
)kcato(z)

ρcatofCcato

MC
, (A3)

and the meanings of the symbols are analogous to the ones in equations for CH4.

A1 Peat respiration and methane oxidation

Peat respiration (aerobic respiration) is described with an equation of the Michaelis-Menten form15

Rpeat
aerob(z) = VR(z)

αCxO2
(z)

KR +CxO2
(z)

, (A4)

where α is a dimensionless Henry solubility constant for oxygen above the water table, and one below it, see Tang et al. (2010)

. The factor CxO2
refers to CwO2

below the water table, and to CaO2
above it. Here w

::
In

::::::
section

:::::
4.2.1

:::
we

::::::::
described

:::
the

:::::
error

::::::
models

::
as

::::::
AR(1)

:
/
::::::::::
ARMA(2,1)

::::::
models

::::::
where

:::
the

:::::::
residuals

:::
are

:::::::::::::::::
Laplace-distributed.

::::::::
Intuitively

:::::
these

::::::
models

::::
can

::
be

:::::::
thought

::
of

::
as

::::::::::::
characterizing

:::
the

:::::::
“inertia”

::
or

:::::::::
“memory”

::
in
:::
the

::::::::::::::::
model-observation

::::::::::
discrepancy.

::::::::
Formally

:::
the

::::::::::
observation

::::::::
equation

::
for

::::
our20

::::::::
statistical

:::::::
inference

::::::::
problem

:::
can

::
be

::::::
written

:::
as

yyyt
:

= xxxt +rrr∗t
:::::::

(A5)

xxxt
:

=M(xxxt−1,zzzt−1,θθθ)
:::::::::::::::

(A6)

:::
The

::::::
vector

:::::::
notation

:::
for

:
yyy
::::
and

::
rrr∗

::
in

:::
Eq.

:::
A5

::::::
refers

::
to

:::
that

::
at

::::
each

::::
time

::
t
::::
there

::::
can

::
be

:::::::::::
observations

::
of

::::
both

:::::::
methane

::::
and

::::::
carbon

:::::::
dioxide,

:
and a refer to whether the concentration is in the gaseous or in the liquid phase. ParameterKR is the Michaelis-Menten25

constant of the process, and VR(z) is given by Eq. 6.
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Methane oxidation is controlled by dual-substrate Michaelis-Menten kinetics,

Roxid
CH4

(z) = VO(z)
CxO2

(z)

KO2 +CxO2
(z)

CxCH4
(z)

KCH4 +CxCH4
(z)

, (A7)

and here α factors similar to the one
::
M

:
in Eq. 19 have been absorbed into the concentration terms - otherwise the terms are

analogous to those in Eq. 19, except for that the term VO(z) is described by Eq. 7.

A1 CH4 transport5

The transport term TX(t,z) in Eq. 11 consist of the following terms:

Qdiff
X =DX

medium

∂

∂z
Cmedium
X Qplant

X (z) =
ρπ(z)DX

air

τ2

LAI

SLA

Cx(t,z)−Catm
X

z
Qebu
X (z) =−kσppi,X

RT

∑
i ppi(z)− (Patm +Phyd(z))∑

i ppi(z)
.

(A8)

The first of these is the diffusion, where the diffusion coefficients D are given by Eq. 9 and 10, and “medium” refers to either

air or water. Due to coding mistake, the fD,a and fD,w coefficients in the aforementioned equations were set to 0.1 for gases

other than CH4 in this work.10

The second equation is for plant transport, with ρ and τ described in contextof Eq. 8, π(z) is the normalized root distribution

mentioned above, and Catm
X refers to the atmospheric partial pressure of gas X . LAI stands for the leaf area index, given as

input, and SLA is the specific leaf area. The note above regarding the fD,a values is also valid for plant transport, as it is a

factor determining DX
air.

The third equation is the ebullition component of the gas transport, where ppi refers to the partial pressure of different gases15

indexed with i
::
A6

:::::::
denotes

:::
the

::::::
model

::::::::::::
(sqHIMMELI)

:::::::::
advancing

:::
the

::::::
model

::::
state

:::::
xxxt−1:::::::

forward
::
in

:::::
time.

::::
The

::::
term

:::::
zzzt−1 ::

is
:::
the

::::::
external

::::::
model

::::::
forcing

:::::
data.

::
In

:::
this

:::::::
context, R is the universal gas constant, k is an ebullition rate constant, and σ is the peat

porosity. The parameters Patm and Phyd(z) refer to the atmospheric pressure and hydrostatic pressure at depth z, respectively.

Table 2 shows the parameters that are used in the equations above but not optimized in this work, along with their values.

Appendix B: Error model for residuals20

In section 4.2.1 we described the error model as an AR(1) model where the residuals are Laplace-distributed. The error of

each measurement was described as a fraction α on the absolute value of the observation at that time, plus a constant error

component, γ
:::
the

::::
error

::::::
model

:::
that

::
is
:::::::
referred

::
to

::
in
::::
text

:::::
refers

::
to

::::
how

:::
the

::::::::
rrr∗t -terms

:::
are

::::::::
modeled.

:::
The

:::::::::
modeling

:
is
::::::::
different

:::
for

::
the

:::::::
MCMC

::::
and

:::::::::
importance

:::::::::
resampling

:::::
steps.

::::::::
Residuals

::::::
terms

:::
for

:::::::
MCMC25

Let yyy′ = max(ccc,yyy), where ccc
::
For

::::
both

:::::
CO2 :::

and
::::
CH4,

:::
let

::::::::::::::
y′t = max(ct,yt),

::::::
where

::
ct is the 14-day running mean of the gap-filled

CH4 flux observations yyy, and where the maximum is understood to be taken over each pair separately. Let M be the model
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, xxxt the model state, and zzzt the forcing input data at time t. Then the
::::
flux

::::::::::
observations

:::
yt.::::

Due
::
to

:::
the

:::::::::::::::
heteroscedasticity

:::
of

::
the

::::::
model

:::::
error,

:::
we

::::
scale

:::
the

::::::::
residuals

:::
for

::::
error

:::::::::
modeling

::
by

:::::::
dividing

:::::
each

:::::
model

:::::::::
prediction

:::
and

::::::::::
observation

::::
with

:::::::::
α|y′t|+ γ,

:::::
where

::
α

:::
and

::
γ

:::
are

::::::::::::
pre-determined

:::::::::
constants.

:::
The

:
error-scaled residual at time t is

rt =
yt−M(xxxt−1,zzzt,θθθ)

δt
, (A1)

where δt = α|y′t|+ γ.
:::
then

:
5

rt =
r∗t

α|y′t|+ γ
.

::::::::::::

(A2)

Let φ denote the lag-1 autocorrelation coefficient, meaning the correlation of the residual timeseries with the same residual

timeseries one day later. The AR(1)-corrected residual for time t then becomes

r∗t = rt−φ r∗t−1. (A3)

The motivation10

rt = φ rt−1 + εt.
:::::::::::::

(A4)

:::
The

::::::
reason for the way of constructing yyy′ above is

::::
was to allow for a reasonable amount of error both in the case when there is

an emission spike upwards and when the same happens downwards, avoiding the problems where
:::::
when

:
if
:
in the summer there

is suddenly a day with zero CH4 emissions, and the likelihood would take the observation
::
the

::::::::::
observation

:::::
would

:::
be

::::
taken

:
to be

extremely precise (as α yt would be small) because of the low absolute value
::::
even

::::::
though

:::
the

:::
low

:::::
value

::
is

:::::
rather

:::
due

::
to

:::::
noise.15

The model was fitted against the data with a crude least-squares likelihood in order to determineα and γ. The AR(1)-transformed

residuals obtained follow the Laplace distribution with mean 0 and scale 1, when α= 0.08, and γ = 0.00025 µ mol s−1 m−2.

The AR(1) parameter φ was set to 0.2. The

:::
The

:::::::
MCMC

::::::::::
experiment

:::
was

:::::::::
performed

::::
with

::
a
::::::::::
costfunction

::::
that

:::::::::::
permissively

:::::::
allowed

:::
for

:::::::::
exploration

:::
of

:::
the

:
parameter δt

in Eq. A2 and the annual flux term in Eq. 24 were finally scaled so that the contribution from the residuals was 80%, and20

the contributions from the annual fluxes and prior were 10% each in terms of the number of summands. This was done to

prevent being overconfident with the parameter estimates and to account for that the value of 0.2 for φ was on the low side,

since the transformed residuals still are autocorrelated with
:::::
space.

::::
The

::
α

:::
and

::
γ

::::
were

::::
0.4

:::
and

:::::::
0.00075

:::
for

:::::
CH4 :::

and
:::
1.0

::::
and

:::::
0.029

::
for

:::::
CO2,

::::::::::
respectively,

::::
and

:::
the lag-1 correlation coefficient between 0.45 and 0.65 for the PM and MAP estimates. Other

uncertainties motivating such treatment are
:::::::::::::
autocorrelation

::::::::
coefficient

::::
used

::::
was

:::
0.6.

:::::::::::
Uncertainties

:::::::::
motivating

::::
such

::
a
:::::::::
permissive25

::::
error

:::::::::
description

:::::::
include uncertainties in the NPP model, inadequacies in the model description of the peat column and lack

of spatial heterogeneity in the model description, filled gaps in the water table depth data, errors from interpolation of the soil

temperature data and heat transfer, and other unknown error sources. The same model error description was used for all
:::::::
MCMC

:::::
model

:
simulations.

The residual histograms of the 70 cm PM estimates show that the error model transformed unscaled residuals closely30

34



::::::::
Residuals

:::
for

:::::::::::
importance

::::::::::
resampling

:::
The

::::
sum

::
of

:::
the

:::::::
absolute

::::::
values

::
of

:::
the

:::::::
εt-terms

:::::::
appears

::
in

:::
the

::::::::
objective

::::::::
function,

:::
Eq.

:::
24,

:::
but

:::
the

:::::::::::::
AR(1)-modeled

::::::
values

:::
are

::
in

::
the

::::
end

:::
not

:::::::::::
independent

:::
and

:::
do

:::
not

:::::::::
accurately follow the Laplace distribution

:
,
::
in

::::
part

:::::::
because

:::::::
generous

::::::
values

:::::
were

::::::
chosen

::
for

::
α
::::
and

:
γ
::::
that

:::::::
allowed

::
for

::::::
easier

:::::::::
exploration

::
of

:::
the

:::::::::
parameter

:::::
space.

::::
The

::::::::
objective

:::::::
function

::::
used

:::
for

:::::::::
importance

::::::::::
resampling

::::
fixes

::::
these

:::::::::
problems.5

:::
For

::::::::
choosing

:::
the

::::
order

:::
of

::::::::::::
autoregressive

::::::
moving

:::::::
average

:::::
model

::::
(the

:::::::::::
ARMA(p,q)

:::::::
model),

:::
the

:::::::
different

::::::
models

:::
up

::
to

:::::
order

::::::::
p= q = 4

::::
were

:::::
fitted,

::::
and

:::
the

:::
one

::::::
whose

:::::
fitting

:::::::
yielded

:::
the

::::::
lowest

:::::::
Bayesian

:::::::::::
Information

:::::::
Criterion

::::
was

::::::
picked.

:::::
After

:::::::
making

:::
sure

::::
that

:::
the

::::
fitted

::::::::
residuals

:::
are

::::::::::
independent

::
by

::::::::::
calculating

:::
the

::::::::::::
Durbin-Watson

:::::::
statistic,

:::
the

:::::
order

::
of

::::::::::::
(p,q) = (2,1)

:::
was

:::::::
chosen.

::
In

::::
place

:::
of

:::
Eq.

:::
A4,

:::
the

:::::
error

:::::
model

:::
for

:::
the

:::::::
residuals

::
is
::::
then

::::::
written

:::
as

rt = φ1 rt−1 +φ2 rt−2 + θεt−1 + εt,
:::::::::::::::::::::::::::::

(A5)10

:::::
where

:::
the

:::::::::::
φ-parameters

:::
are

:::
the

:::
AR

::::::
model

:::::::::
parameters

::::
and

:::
the

:
θ
::
is
:::
the

::::::::
MA-part. There is a slight extra concentration of mass

on the lower side, which is explainable with the overall negative bias of a few percents in

:::
The

::::::
scaling

:::
of the emission estimate,which was

:::::
model

::::::::
residuals

:::
for

::::::::
choosing

:::
the

::::::
ARMA

::::::::::
parameters

:::
and

:::
the

::::::
values

:::
for

::
α

:::
and

::
γ

:::::
above

:::::::::
(separately

:::
for

:::
the

::::
CH4:::

and
:::::
CO2 :::::::::

timeseries)
::::
was

::::
done

::
by

:::::::::
effectively

::::::::::
calculating

:::
the

::::::
2-week

:::::::
running

:::::
mean

::
of

:::
the

::::::::
variances

::
of

:::
the

:::
flux

:::::
from

::::::::::
observations

:::
for

::::
each

::::
day

::
of

::::
year.

:::::
More

::::::::
explicitly,

:::
let15

ŷt =
√

(Vdoi=t[yt])
:::::::::::::::

(A6)

:::::
denote

:::
the

::::::::
standard

::::::::
deviation

::
of
::::

the
::::::::
observed

:::::
fluxes

:::
for

::
a
:::::
given

:::
day

:::
of

::::
year

::::
over

:::
the

::::::
whole

::::::::::
observation

:::::::
dataset.

:::::
Then

:::
the

:::::::
residuals

:::
are

::::::
scaled

::
as

:::::
before

:::
by

rt =
r∗t

αhhhT ŷyyt + γ
:::::::::::::

(A7)

:::::
where

:::
hhhT

::
is

:
a
::::::

vector
::
of

::::::
length

:::
14

::::
with

::::
each

:::::::
element

::::::
having

:::::
value

:::

1
14 :::

and
::̂
yyyt::

is
:::

the
::::::

vector
::::
with

::::::::
elements

::::::::::::
ŷt−7, . . . , ŷt+6.

::::
Let20

:::::
Ψ(bi) ::::::

denote
::
the

:::::
value

:::
of

:
a
:::::::::::
discretization

::
of
:::

the
::::::::

standard
:::::::
Laplace

:::::::::
distribution

::
at
:::::
point

:::::::::::::::
bi ∈ {b1, . . . , bNb

},
::::
and

::
let

:::::::::::
Sφ̃1,φ̃2,θ̃
α,β (bi)

:::::
denote

:::
the

::::::::
empirical

::::::::::
probability

::::::
density

:::::::
function

::
of

:::
the

:::
set

::
of

:::
the

:::::::::::
transformed

::::::
residual

::::::
terms,

:::
the

:::::::
εt-terms

::
in

:::
Eq.

::::
A5,

:::::
again

::
at

::::
point

:::
bi. :::

The
::::::::::
parameters

:::::
φ̃1, φ̃2,

::::
and

:
θ̃
:::
are

:::
the

:::::::::
optimized

::::::
ARMA

::::::
model

:::::::::
parameters

::::
from

::::::
fitting

:::
the

::::::
model.

:::
The

::::::::::
ARMA(2,1)

::::::
model

:::::::::
parameters

:::
and

:::
the

:::::::::
parameters

::
α
:::
and

::
γ
:::
are

:::::::::
determined

:::
for

:::
the

:::::::::
importance

::::::::::
resampling

::
by

::::::::::
minimizing

::
the

::::::::::::::
Kullback-Leibler

::::::::::
divergence,

:
25

DKL(Ψ‖Sφ̃1,φ̃2,θ̃
α,γ ) =−

i=Nb∑
i=1

logΨ(bi)
Sφ̃1,φ̃2,θ̃
α,γ (bi)

Ψ(bi)
,

:::::::::::::::::::::::::::::::::::::::::

(A8)

:::::
which

::
is

:
a
::::::::

measure
::
of

:::::::::
similarity

:::::::
between

:::::::::::
distributions.

:::::::::
Effectively

:::
we

:::
fit

:::
the

:::::
error

:::::
model

::::::::::
parameters

::
to

:::::
make

::::
sure

::::
that

:::
the

:::::::
modeled

:::::::
residuals

::::::
really

::
are

:::::::::::::::::
Laplace-distributed

:::
and

:::::::::::
independent.

:::
The

::::::::::
parameters

:
α
::::
and

:
γ
:::
are

::::
then

::::::
chosen

::
to
:::
be

α,γ = argmin
α,γ

DKL(Ψ‖Sφ̃1,φ̃2,θ̃
α,γ ),

:::::::::::::::::::::::::::

(A9)
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:::
and

:::
the

::::::::::::::::
ARMA-parameters

::::
are

::::::
chosen

::
to

:::
be

:::
the

:::::
ones

::::
from

::::
the

:::::
model

:::
fit

::::
with

:::::
those

::::::::::
parameters

::
α

::::
and

:
γ
::::::::::

minimizing
::::

the

::::::::::::
KL-divergence.

::::
The

:::::::::
BOBYQA

:::::::::::
optimization

::::::::
algorithm

:::::::::::::
(Powell, 2009)

:::
was

::::
used

::
to

:::::
carry

:::
out

:::
the

::::::::::::
minimization.

:::
The

:::::::::
procedure

:::
was

:::::::::
performed

:::
for

:::
50

:::::::::
parameters

::::::
vectors

:::::::::
randomly

:::::::
sampled

:::::
from

:::
the

:::::::
posterior

:::
of

:::
the

:::::::
MCMC

:::
run

:::
and

:::
the

::::::::
medians

::
of

:::::
these

::::::
values,

:::::
which

:::::
were

:::
for

::
all

::::::::::
parameters

:::::::
narrowly

::::::::::
distributed,

::::
were

::::
the

::::
final

::::
ones

::::::
picked

:::
for

:::
the

:::::::::
likelihood

::::
used

::
in

::::::::::
importance

:::::::::
resampling.

::::
The

::::::
actual

::::::
values

::
of

:::::
these

::::::::::
parameters

:::
for

::::::::
methane

:::::
were:

:::::::::::::
αCH4 = 0.594,

::::::::::::::::::
γCH4 = 1.38× 10−6,

::::::::::::
φCH4

1 = 1.30,5

:::::::::::::
φCH4

2 =−0.325,
::::
and

::::::::::::::
θCH4 =−0.770;

:::::::::::::
correspondingly

:::
for

::::::
carbon

::::::
dioxide

:::::::::::::
αCO2 = 0.443,

:::::::::::::::::
γCO2 = 3.96× 10−3,

::::::::::::
φCO2

1 = 1.21,

:::::::::::::
φCO2

2 =−0.242,
::::
and

::::::::::::::
θCO2 =−0.738.

:::
The

::::::::::
histograms

::
of

:::
the

:::::::
εt-values

::::
and

:::
the

::::::::::::
autocorrelation

::::::::
functions

:::
are

:
shown in Fig. 8

:
2.

Appendix B: A basic outline of MCMC

Markov Chain
::::::
Markov

:::::
chain Monte Carlo (MCMC) methods are a class of Bayesian methods that can be used for obtaining

the probability distribution p(θθθ|yyy) for a parameter vector θθθ ∈RRRn given data yyy ∈RRRk. According to Bayes’ theoremfrom 1763,10

this can be written as

p(|) =
p(yyy|θθθ)p(θθθ)
p(yyy)

, (B1)

p(θθθ|yyy) =
p(yyy|θθθ)p(θθθ)
p(yyy)

,

:::::::::::::::::

(B2)

where p(yyy|θθθ) is the likelihood (in this work the first two terms on the right hand side of Eq. 4.2.3
::
24), and p(yyy)

::::
p(θθθ) is the15

prior (the last term). The evidence, p(yyy) is often very difficult to evaluate, but in MCMC this is not needed, because MCMC

algorithms evaluate ratios of successive evaluations of p(θθθ|yyy), making the denominators to cancel out and hence the evidence

term can be dropped.

MCMC sampling starts by taking some starting value θθθ , and calculating the objective function (also known as costfunction)

value J(θθθ) ∈RRR
::::::::
J(θθθ) ∈ R

:
-
:::
the

:::::::
notation

::::
here

::
is

:::
the

::::
same

:::
as

::
in

:::
Eq.

::
24. The algorithm then draws a new sample of the parameter20

vector, θθθ′ from a prescribed proposal distribution q(θθθ), and evaluates J(θθθ′). It accepts the new parameter vector with a proba-

bility that depends on the value of J(θθθ′) and the objective function value of the previous accepted parameter, J(θθθ). If the value

is accepted, the chain will move to position θθθ′ (setting θθθ← θθθ′), and if θθθ′ is rejected, the value θθθ will be repeated in the chain.

After this a new value, sampled from q(θθθ) (which is possibly a different distribution from the one used at the previous iteration

as θθθ may have changed) will be proposed and the whole process is repeated. In the end the procedure will produce a chain of25

parameter values.

This chain of parameter vectors will theoretically, given infinitely many iterations, converge to the
:::::::::
According

::
to

:::::::
Markov

::::
chain

::::::
theory,

:::
the

:::::::
sampled

:::::::::
parameter

::::::
values

:::
will

:::::::::
eventually

::::::
follow the target distribution of the Markov process,

:::::
p(θθθ|yyy)

:
mean-

ing, that in such a case picking a random element from the chain amounts to drawing a sample directly from the target distri-
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bution. As real-life Markov chains are of finite length, the posterior distribution obtained from the chain is an approximation

of the underlying target distribution.

In practice this means, that with MCMC it is possible to find a good approximation of the probability density function of

the parameter vector θθθ in cases, where the model is too complicated
:::
not

:::::::
suitable for analytical treatment. From this probability

density function, valuable information such as modes, variances, and correlations of the parameters can be analyzed. The5

posterior also reveals, what parameters are constrained by the data, and what are not.

For efficient convergence of the chain to the posterior distribution a good estimate of q(θθθ) is needed. The Adaptive Metropolis

algorithm automatically calibrates the proposal during the MCMC.

Appendix C: Metropolis within Gibbs sampling of the parameters

The hierarchical parameters Qyear
10 and ζyear

exu are denoted here generically by θi, where i refers to the different years. The priors10

of these parameters are defined by the hyperparameters µi and σi that determine the prior of θi by

θi ∼N(µi,σ
2
i ). (C1)

θi ∼N(µi,σ
2
i ).

::::::::::::
(C2)

The unknown hyperparameters µi and σ2
i have probabilistic models15

µi∼N(µ0, τ
2
0 )σ2

i∼ Inv-χ2(n0,σ
2
0), (C3)

µi
:
∼N(µ0, τ

2
0 )

::::::::::
(C4)

σ2
i

::
∼ Inv-χ2(n0,σ

2
0),

::::::::::::::
(C5)

where µ0 and τ2
0 define the mean and variance of the hyperprior of µi, n0 ∈N

::::::
n0 ∈ N defines the number of degrees of20

freedom of the Inv-χ2 distribution, and σ2
0 is the expected value of the scaled Inv-χ2 distribution.

In Gibbs sampling the full conditional posterior distributions of the hyperparameters and the parameters θi are sampled

in turns. Due to the conjugacy of the normal distribution and the scaled Inv-χ2 distribution, closed form expressions exists

for sampling from p(µi|σ2,µ0, σ2
0 ,θ

i) and p(σ2
i |σ2

0 ,n0,θ
i), where µ is the current mean of the parameters θi and σ2 is their

variance. The Gibbs sampling therefore consists of three steps:25

1. Draw µi from

µi|µ,σ2 ∼N
niθi

σ2 + µ0

τ2
0

ni

σ2 + 1
τ2
0

,
1

ni

σ2 + 1
τ2
0

, (C6)
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µi|µ,σ2 ∼N

 niθi

σ2 + µ0

τ2
0

ni

σ2 + 1
τ2
0

,
1

ni

σ2 + 1
τ2
0

 ,
:::::::::::::::::::::::::::::::

(C7)

2. draw σ2
i from

σ2
i |,∼Inv-χ2n0 +ni,

σ2
0n0 +

∑ni

j=1(θij −µj)2

n0 +ni
, and (C8)

5

σ2
i |θθθ,µµµ∼ Inv−χ2

(
n0 +ni,

σ2
0n0 +

∑ni

j=1(θij −µj)2

n0 +ni

)
, and

:::::::::::::::::::::::::::::::::::::::::::::::::

(C9)

3. draw the parameters θi (and the non-hierarchical parameters) with MCMC, since closed-form expression for p(θθθ|φ,yyy),

where φ denotes all the different hyperparameters, is not available.

In this work, the value of the parameter τ2
0 was set to the value of σ2

0 , ni is the number of years, and the value of n0 was set

to 9. The means and variances obtained this way describe the interannual variability of the parameters, and not including them10

as parameters in the MCMC sampling reduces the dimension of space that the MCMC sampler needs to explore, speeding up

convergence of the posterior distribution.

Appendix D:
::::::::::
Importance

::::::::::
resampling

:::::::::
Importance

::::::::::
resampling

::
is

:
a
:::::::
method

:::
for

::::::::
obtaining

:::::::
samples

:::::
from

:
a
:::::::

desired
:::::::::::::
(unnormalized)

::::::::::
distribution

::::
q(θθθ)

:::
by

:::::::::::
re-evaluating

::::::
samples

:::::
from

:
a
::::::
similar

::::::::::
distribution

::::
from

::::::
which

:
it
::
is

:::::
know

::::
how

::::::
samples

:::
are

:::::::::
generated,

:::::
p(θθθ).

:
It
::
is

::::::
usually

::::::::::
remarkably

:::::
faster

::::
than15

::
for

:::::::
instance

::::::::::::
re-performing

::
an

:::::::
MCMC

::::::::::
experiment.

:

:::
The

:::::::
samples

::::::::
θθθ1 . . .θθθN :::

are
:::
first

::::::
drawn

::::
from

:::::
p(θθθ)

::
(in

::::
our

::::
case

::::::::
randomly

::::::
picked

::::
from

:::
the

:::::::
MCMC

::::::
chain),

::::
and

::
at

::::
these

::::::
points

::
the

::::
new

::::::::
posterior

::::::
density

::::
q(θθθ)

::
is

:::::::::
evaluated.

:::
For

::::
each

::
of

:::::
these,

:::
the

:::::::
weights

:::
are

::::::
defined

:::
by

::::::::::::
w(θθθi) = q(θθθi)

p(θθθi)
.
:::
The

:::::::
samples

:::::
from

:::
the

:::::::::
distribution

::::
q(θθθ)

:::
are

::::
then

::::::::
generated

::
by

::::::::
sampling

::::::::
according

::
to
:::
the

:::
set

::
of

:::::::::
normalized

::::::::
weights,

::::::::::::::::
w̃(θθθi) = w(θθθi)∑N

j=1w(θθθj)
.
::::
The

::::::::
sampling

:
is
:::::::::
performed

:::::::
without

:::::::::::
replacement.

:::
For

::::::
further

::::::
details,

:::
see

:::
e.g.

:::::::::::::::::
Gelman et al. (2013)

:
.20

Appendix E: NPP and LAI

We estimated the net photosynthesis rate, Pn, of vascular plants of Siikaneva for years 2005-2014 by utilizing regression

models of gross photosynthesis, Pg , and autotrophic respiration Ra formulated for peatland vegetation (Riutta et al., 2007a,

b; Raivonen et al., 2015). The model of the Pg of sedge and dwarf shrub canopy (Riutta et al., 2007a) simulates the carbon

uptake driven by photosynthetically active radiation (PAR), WTD and air temperature. The model ofRa (Raivonen et al., 2015)25

simulates the respiration rate driven by air temperature and WTD and was parameterized for sedges only.

38



Both Pg and Ra models simulate the carbon fluxes per soil surface area and the rate depends on the LAI. We simulated

the LAI using a lognormal function presented by (Wilson et al., 2007). Parameter values of the LAI model were obtained

by averaging the values reported by (Wilson et al., 2007) for the vascular species abundant at Siikaneva. For the growing

season peak LAI we used the maximum LAI observed at the eddy covariance footprint area, viz. approximately 0.4 m2 m−2

(Riutta et al., 2007b). We also included a constant wintertime LAI since a significant green sedge biomass may overwinter,5

approximately 15% of the maximum (Saarinen, 1998; Bernard and Hankinson, 1979). The overwintering LAI at Siikaneva

would thus be 0.05 m2 m−2 . The same LAI was used for all the years and this LAI also was given as the input for the CH4

transport model.

The daily averages of Pn were calculated by subtracting Ra from Pg . The models were run with measured meteorological

data. We determined the photosynthetically active seasons based on snowmelt dates in spring or arrival of snowcover in autumn10

from the reflected PAR data, or based on air temperature (permenently
::::::::::
permanently greater than 5 ◦C assumed to be the growing

season). After the calculation, we compared the resulting Pn of vascular vegetation of year 2005 to eddy covariance CO2 fluxes

from Siikaneva. We used the GPP derived from the measured NEE by (Aurela et al., 2007). This was the only available year

of processed CO2 flux data. The GPP was on average 4.5-fold compared with our Pn , with a R2 of 0.9. GPP also includes

the photosynthesis of Sphagnum mosses as well as CO2 released in autotrophic respiration. Sphagnum accounted for 20-40%15

of the GPP in the study by (Riutta et al., 2007a) and autotrophic respiration has been observed to be roughly 50% of GPP

(Gifford, 1994). Consequently, the NPP of vascular vegetation can be estimated by multiplying the GPP with 0.7× 0.5. This

estimate was still 1.56-fold compared with the Pn for the year 2005. Since the Pn also was lower than generally reported for

peatlands, we chose to trust the eddy covariance measurement and scaled the Pn of all the years upwards by multiplying with

1.56. For further details, please consult Raivonen et al. (2017).20

Appendix F: Supplementary information

E1 Details regarding the AM algorithm usage

In order to infer about the posterior distribution, the MCMC chain needs to be long enough, and converged to produce the right

statistics. The MCMC chains driven by the AM algorithm mixed well, example of which as can be seen in Fig. ?? showing

the chain from the experiment with 100 cm of peat. The proposal distribution of the AM algorithm was adapted when the25

iteration number was a square of an integer, and for the adaptation 20% from the start of the chain was discarded. In the early

stages of each experiment, the initial approximation for the proposal covariance, calculated from the Jacobians of the model,

was allowed to dominate until after accepting enough proposed points there was sufficient data to start the proposal covariance

adaptation procedure.

E1 Computational requirements30

39



Even though the model runs fast, in around five to thirty seconds for the ten-year period on a multicore laptop, due to the large

number of simulations, the MCMC experiments needed to be performed on a CRAY XC-20 supercomputer using a single

node for a single MCMC chain and running all the experiment in the RAM of the computer minimizing hard drive utilization.

Shared-memory parallellization was used to run the different years at the same time and the MCMC experiments were run for

a month during which all the MCMC experiments completed between 78000 and 391000 forward model simulations.5
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Table 1. Description of the data used

Data Description Usage Units Source Comments

LAI leaf area index input - modeled Gaussian curve to approximate the seasonal cycle

WTD water table depth input m measured gap-filled at various times

NPP net primary prod. input mol m−2 s−1 modeled generated by a separate NPP model

Tsoil :::
Tsoil soil temperature input ◦C measured interpolated from fewer observation depths

CH4 CH4 flux objective function mol m−2 s−1 measured used in the objective function formulation

::::
CO2 ::::

CO2 :::
flux

:::::::
objective

::::::
function

: :::
mol

::::
m−2

:::
s−1

:::::::
measured

: :::
used

::
in
:::
the

:::::::
objective

::::::
function

:::::::::
formulation

:
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Figure 1. The different root distribution descriptions. The original description is shown as the decaying exponential, and the graph with

discrete steps shows measurement data from Saarinen (1996). The new root distribution curve with optimized parameters are shown along

with the curves resulting from the MCMC optimization. The original distribution gives more root mass to depths of 50-80cm, than the

MCMC-optimized curves of the new root distribution. All curves are normalized to the same total root mass.
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Table 2.
::::::::
Parameters

::::
that

::::
were

:::
not

::::::::
calibrated.

::::::
Based

::
on

:::
an

:::::
initial

::::::::
sensitivity

:::::::
analysis,

:::
the

::::::::::::::
Michaelis-Menten

:::::::::
parameters

::
K

:::::
were

:::
not

::::::::
constrained

:::
by

::
the

::::
data

::::::
enough

::::::
strongly

:::
and

:::::::::
consistently

::
to
::::::
include

::::
them

::
in
:::
the

::::::::::
optimization.

:::
The

:::::
same

:::::
applies

:::
for

:::
the

:::::::
ebullition

:::::::
half-life,

::::
which

::
is
::::::::::::
understandable

::::
given

:::
the

:::::::
temporal

::::::::
resolution

::
of

::
the

:::::::
observed

::::
data.

::::
The

:::
peat

:::::::
porosity

:::
was

:::::::
dropped

::::
from

:::::::::
optimization

::
in
:::::

favor
::
of

::
the

::::::::
diffusivity

:::::::::
parameters

::::
fD,w:::

and
:::::
fD,a,

:::
and

:::
the

::::::
specific

:::
leaf

:::
area

::::
was

:::
not

:::::
chosen

:::
for

:::::::::
optimization

:::::
since

::
the

::::::::
optimized

:::::::::
parameters

:
τ
:::
(m

::::
m−1)

:::
and

:
ρ
::::
(m2

::::
kg−1)

:::
are

::::::
already

:::
part

::
of

:::
the

::::::
equation

::
22

:::::
where

::::
SLA

:::::::
appears.

:::
The

:::::::
parameter

:::::
gQ10
CH4:::

was
:::
left

:::
out

::
in

::::
favor

::
of

:::::::
parameter

:::::
τcato,

:::::
despite

::::
their

:::::::
functions

:::::::
regarding

::::
CO2:::::

being
:::::::
different,

::
but

::::::
trusting

:::
the

::::
prior

:::::
value.

:::::::
Parameter

: :::::::
Equation

::::
Value

: ::::
Units

: :::::::::
Description

:::::
Source

:

::::
gQ10
CH4: ::

16
::
0.4

: :
-

:::
peat

:::::
decay

::
to

:::
CH4:::::::

fraction
:::::::::::::::
Schuldt et al. (2013)

:::
KR ::

19
::::
0.022

: :::
mol

::::
m−3

:::::::::::::
Michaelis-Menten

:::::
coeff.

::::::::::::::::::::
Nedwell and Watson (1995)

:::::
KCH4 ::

20
::::
0.044

: :::
mol

::::
m−3

:::::::::::::
Michaelis-Menten

:::::
coeff.

:::::::::::::::::::::
Nedwell and Watson (1995)

::::
KO2 ::

20
::::
0.033

: :::
mol

::::
m−3

:::::::::::::
Michaelis-Menten

:::::
coeff.

:::::::::::::::::::::
Nedwell and Watson (1995)

::::
SLA

::
22

::
23

::::::
m2kg−1

: ::::::
specific

:::
leaf

:::
area

: :::::::::::::
Vile et al. (2005)

:
k
: ::

23
::::::::::
log(2)/1800

:::
s−1

:::::::
ebullition

:::
rate

:::::::
constant

:
-

:
σ
: ::

23
::
0.5

: :
-

:::
peat

:::::::
porosity

::::::::::::::::::
Rezanezhad et al. (2016)
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Low High Units Prior µ Prior σ Source

fD,a 0.01 1.0 - 0.1
::
0.8

:
0.2 (Iiyama and Hasegawa, 2005)

:::::::::::::::::
(Raivonen et al., 2017)

fD,w 0.1
:::
0.01

:
1.0 - (0.5)

::
0.8

:
-
::
0.2

:
-
:::::::::::::::::
(Raivonen et al., 2017)

VR0 2× 10−5
:::::::
2× 10−6

:
3× 10−4

:::::::
1× 10−4

:
mol m−3 s−1 4× 10−5

:::::::
1× 10−5

:
2× 10−5 (Nedwell and Watson, 1995; Watson et al., 1997)

VO0 2× 10−5
:::::::
2× 10−6

:
3× 10−4 mol m−3 s−1 1× 10−4

:::::::
1× 10−5

:
6× 10−4

:::::::
2× 10−5

:
Order of magnitude from (Segers, 1998),almost flat prior.

::::
Same

::
as

::::::::::::::::
(Raivonen et al., 2017)

:
,
:::
also

:::::::::::
(Segers, 1998)

:
,

λroot 0.01 0.4 m 0.125 0.05 Fitted to data in (Saarinen, 1996)

τ 1.0 5.0 m m−1 1.5 0.5
::
0.2

:
(Stephen et al., 1998)

ρ 0.05 0.4 m2 kg−1 0.085 0.0425 (Stephen et al., 1998)

τexu 3 30 days 14 2.5 (Wania, 2007)

τcato :::
τcato: 1000 30000 years (11111) -

:
- Value affected by peat depth, hence using a flat prior .

:::
Flat

::::
prior

:

::::
∆ER: :::

5000
: :::::

200000
: :

J
:::::
mol−1

: ::::
50000

: :::
5000

: :::::::::::::::::::::
(Nedwell and Watson, 1995)

::::::
∆Eoxid :::

5000
: :::::

200000
: :

J
:::::
mol−1

: ::::
50000

: :::
5000

: :::::::::::::::::::::
(Nedwell and Watson, 1995)

::::
fexu
CH4: ::

0.5
: :::

0.77
: :

-
::::
0.635

: :::
0.06

: ::::::::::::::::::::
(Nilsson and Öquist, 2013)

Q10 1.7 16.0 - 5.9 2.0
:::
0.5*

:
(Juottonen, 2008; Gedney et al., 2004; Bergman et al., 2000)

ζexu 0.01 0.99 - 0.2
::
0.5

:
0.2

:
*
:

Lower bound of (Walker et al., 2003)

Table 3. Parameter limits and prior distribution parameters. The priors are truncated Gaussian, with mean values µ and standard deviations

σ, truncated at the values in the columns low and high. The
::::
*For

::::::::
importance

:::::::::
resampling,

:::
the

:::::::::
hierarchical

::::::
modeled

:::::::::
parameters’

::::
(Q10:::

(-)
:::
and

:::
ζexu:::

(-))
:::::
priors

::::
were

::::::
relaxed

::
by

:
a
:::::

factor
::
of

:::::
three,

::
to

::::
allow

:::
for

:
a
:::::
more

::::::::::::
data-constrained

:::::::::
resampling,

:::
and

::
to

:::::::::::
accommodate

::
the

::::
low values in

:
of
::::
Q10:::::::

reported
::
by

:::::::::::::::::::::::::::::::::::
Szafranek-Nakonieczna and Stepniewska (2014)

:
.
::::
Note

:::
that

:
the “Prior µ” column are used as values in

::
of the “default”

simulations, results from which are shown in e.g. Fig. 10 and 7
:::
prior

:::
for

::::
these

::::
two

::::::::
parameters

::::
were

:::::::
sampled

::
at

:::
each

:::::::
iteration

::::
with

:::::
Gibbs

:::::::
sampling.

.
:
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Figure 2.
:::::::
Residual

::::::::
histograms

:::
and

:::::::::::
autocorrelation

:::::::
functions

::
of

:::
the

::::
error

::::
terms

::
εt::

in
::
the

:::::::
objective

:::::::
function,

:::
Eq.

:::
24,

::::
show

:::
that

:::::
neither

:::
the

::::
CO2

::
nor

:::
the

::::
CH4:::::::

residuals
:::
are

::::::::::
autocorrelated

:::
and

::::
that

:::
they

::::::
closely

:::::
follow

:::
the

:::::::::::::::
Laplace-distribution.

:::
The

::::::
results

:::::
shown

:::
are

::
for

:::
the

:::::::
residuals

::::
from

::
the

:::::::
posterior

::::
mean

:::::::
estimate.
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Figure 3.
::::::
MCMC

:::::
chains

:::::::
showing

:
a
::::::
thinned

:::::
sample

::
of
:::

the
::::
half

:::::
million

:::::
values

::
in

:::
the

:::::
chain.

:::
The

:::
first

::::
70%

:::
was

::::::::
discarded

::
for

:::
the

:::::::
analyses

::
as

::::::
warm-up

::::
and

:
is
::::::

grayed
:::
out

::
in

:::
the

:::::
figures.

::::
The

:::::::::
hierarchical

::::::::
parameters

::
in
:::

(b)
:::
and

:::
(d)

::::
show

:::
the

::::
mean

:::::
value

::
in

:::
the

:::::
middle

::
as

::
a
::::
black

:::::
mass,

:::
and

::
the

:::::::
colorful

:::::::::
surroundings

:::
are

:::
the

:::::
values

::
of

:::
the

::::::::
parameters

:::
for

:::
the

:::::::
individual

:::::
years.

:::
The

:::
last

:::::
figure

:::
(o)

:::::
shows

:::
the

::::
value

::
of

:::
the

:::::::
objective

::::::
function.

52



4

6
Q

10

2

3

τ c
at

o

×104

1.
0

1.
5

2.
0

τ

1.
25

1.
50

τ e
x
u

×106

0.
6

0.
8

1.
0

f D
,w

0.
5

1.
0

f D
,a

0.
30

0.
35

0.
40

λ
ro

ot

0.
05

0.
10

ρ

2.
0

2.
2

2.
4

V
R

0

×10−6

2.
0

2.
2

2.
4

V
O

0

×10−6

3

4

5

∆
E
R

×104

5

6

∆
E

ox
id

×104

0.
2

0.
4

ζexu

0.
65

0.
70

0.
75

f
ex

u
C
H

4

0.85

τcato

2.
5

5.
0

Q10

0.1

τ

0.15

2 3

τcato
×104

-0.22

τexu

-0.18

-0.05

1 2

τ

-0.05

fD,w

-0.06

0.18

-0.1

1.
25

1.
50

τexu ×106

-0.08

fD,a

-0.02

0.24

0.54

0.04

0.
75

1.
00

fD,w

0.03

λroot

0.02

0.16

0.03

0.11

-0.05

0.
5

1.
0

fD,a

0.17

ρ

0.13

0.12

-0.65

0.02

-0.85

-0.01

0.
3

0.
4

λroot

0.21

VR0

0.18

0.1

-0.45

0.06

-0.29

-0.11

0.44

0.
05

0.
10

ρ

-0.17

VO0

-0.14

0.07

-0.08

0.09

0.07

0.24

0.0

-0.06

2.
00

2.
25

VR0×10−6

0.06

∆ER

0.03

0.04

0.16

-0.0

0.13

0.14

-0.16

-0.24

0.01

2.
00

2.
25

VO0×10−6

0.07

∆Eoxid

0.07

0.16

0.0

0.1

0.03

0.06

-0.01

-0.01

-0.01

-0.0

3 4 5

∆ER
×104

-0.01

f exu
CH4

-0.05

0.0

-0.16

-0.03

-0.2

-0.05

0.21

0.08

-0.14

0.05

0.04

5 6

∆Eoxid
×104

-0.02

ζexu

0.02

0.06

-0.02

0.0

0.03

-0.15

0.05

-0.06

0.07

-0.07

-0.03

-0.18

Figure 4. Posterior distributions of the parameters from the MCMC
::::::::
importance

:::::::
sampling. The two-dimensional marginal distributions of the

posterior distribution from the experiment with 70 cm peat depth are
::
is shown in the triangle on the lower left (labels on the left and at the

bottom), and the correlations between parameters are shown in the upper triangle on the right (labels on the left and on
::
at the top). The images

in the lower left triangle show the 90% (black) 50% (red), and 10% (blue) contours, and roughly a one-thousandth of the points sampled.

The first 50% of each chain was discarded as
::::
from a warm-up period

::::::
random

:::::
sample

::
of
:::
the

:::::::
posterior

:::::
(black

::::
dots). On the upper right, each

plot shows correlation coefficients between parametersfor all experiments, color-coded to show negative correlations in blue and positive in

red. Left-to-right and top to bottom in each color-coded square, the depths are 40, 50, 70, 100, 150, and 200 cm of peat. The values from

the posterior of the 7-layer experiment, referring to 70 cm peat and shown also in the lower left part of the figure,
::::
units are marked

::::
listed in

boldface
::::
Table

:
4.

53



2

3

4

5
D

iff
us

io
n

×10−4

2.
0

2.
2

2.
4

P
la

nt
tr

an
sp

or
t

×10−3

1

2

3

E
bu

lli
ti

on

×10−5

2

3

4

5

A
ll

E
bu

lli
ti

on

×10−4

3.
5

4.
0

4.
5

C
H

4
fr

om
ex

ud
at

es

×10−3

1.
0

1.
5

2.
0

2.
5

3.
0

C
H

4
fr

om
p

ea
t

de
ca

y

×10−3

2.
25

2.
50

2.
75

Total flux
×10−3

−2
.0
−1
.8
−1
.6

O
xi

da
ti

on

×10−3

0.23

Plant
transport

2 4

Diffusion

×10−4

0.94

Ebullition

0.27

2.
0

2.
2

2.
4

Plant
transport

×10−3

1.0

All
Ebullition

0.24

0.95

1 2 3

Ebullition

×10−5

0.17

CH4 from
exudates

0.81

0.22

0.18

2 4

All
Ebullition

×10−4

0.02

CH4 from
peat decay

-0.08

0.0

0.01

-0.32

3.
5

4.
0

4.
5

CH4 from
exudates

×10−3

-0.0

Oxidation

-0.41

-0.0

-0.0

-0.57

0.05

1 2 3

CH4 from
peat decay

×10−3

0.65

Total flux

0.82

0.67

0.66

0.65

-0.02

-0.19

Figure 5.
::::::
Posterior

::::::::::
distributions

:::
and

:::::::::
correlations

::
of

:::
the

::::::
annual

:::::
means

::
of

:::
the

:::::
output

::::
from

:::
the

:::::::
modeled

:::::::
processes

:::
for

:::
the

::::
year

::::
2012.

::::
The

:::::::
dynamics

:::
for

::
the

:::::
other

::::
years

:::
are

:::::
mostly

::::::
similar

::
but

:::
the

:::::::
strengths

::
of

:::
the

:::::::::
correlations

::::
vary

::::::::
somewhat.

:::
The

::::::
results

:::::
shown

:::
are

::::
based

:::
on

::::
1000

:::::
random

:::::::
samples

::::
from

::
the

::::::::
parameter

:::::::
posterior

:::::::::
distribution.

:::
The

:::::::::::::
two-dimensional

:::::::
marginal

:::::::::
distributions

::
in

:::
the

::::::
triangle

::
on

:::
the

::::
lower

:::
left

::::
have

:::
their

:::::
labels

::
on

:::
the

:::
left

:::
and

:
at
:::
the

::::::
bottom,

:::
and

:::
the

:::::::::
correlations

::::::
between

:::
the

:::::::
processes

::
in

:::
the

::::
upper

::::::
triangle

::
on

:::
the

::::
right

:::
have

::::
their

:::::
labels

::
on

:::
the

::
left

::::
and

::
on

:::
the

:::
top.

:::
The

::::::
images

::
in

::
the

:::::
lower

:::
left

::::::
triangle

::::
show

:::
the

::::
90%

:::::
(black)

::::
50%

:::::
(red),

:::
and

::::
10%

::::
(blue)

::::::::
contours.

:::
The

::
all

::::::::
ebullition

:::
and

::::::
diffusion

:::::
fluxes

:::::::
correlate

:::::
almost

::::
fully

:::::::
showing

:::
that

::
the

::::::::::::
“diffusion”-flux

:::
has

:
a
:::::
strong

:::::::::
contribution

::::
from

::::::::::
underground

::::::::
ebullition.
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Table 4. Parameter values obtained in the optimization of the models
::::::::::
sqHIMMELI

:::::
model

:
with the different peat depths

::::::::
importance

::::::::
resampling. Values shown are for the

:::
The maximum a posteriori (MAP) / posterior,

:::::::
posterior

:::::
mean,

::::::::::::
non-hierarchical mean (PM

::::
mean

:::::
values

:::
used

:::
for

::::::::::
hierarchically

::::::
varying

:::::::::
parameters)estimates

:
,
:::
and

:::::
values

::::
from

:::::::::::::::::
Raivonen et al. (2017)

::
are

:::::
shown. The horizontal line in the middle

separates the hierarchically optimized parameters (including their priors) from the others.

Peat depth 40 cm 50 cm
:::::::
Parameter

:
70 cm

::::
MAP 100 cm

::::::
Posterior

:::::
mean 150 cm

:::::::
Non-hier.

::::
mean

:
200 cm

::::::
Default

τcato × 10−3(
::::::::
τcato(×104

:
y) 2.35 / 3.02 3.02 / 4.00 5.10 / 6.04

::::
2.872 9.12 / 10.1

::::
2.269 15.9 / 15.1

::::
2.269 21.9 / 24.7

::
3.0

:

τ
::
(m

::::
m−1)

:
1.29 / 1.31 1.13 / 1.28 1.18 / 1.19

::::
1.462 1.05 / 1.14

::::
1.581 1.01 / 1.05

::::
1.581 1.04 / 1.07

::
1.5

:

τexu × 10−5(s) 11.6 / 10.8 9.86 / 9.73
:::::::::
τexu(×106s)

:
8.67 / 8.83

::::
1.187 9.47 / 8.75

::::
1.411 8.56 / 8.98

::::
1.411 7.05 / 7.15

:::
1.21

fD,w::
(-)

:
0.78 / 0.55 0.55 / 0.56 0.65 / 0.64

::::
0.866 0.74 / 0.81

::::
0.887 0.99 / 0.80

::::
0.887 0.60 / 0.74

::
0.8

:

fD,a ::
(-) 0.58 / 0.50 0.55 / 0.54 0.52 / 0.54

::::
0.427 0.72 / 0.65 0.86 / 0.84

:::
0.65

:
0.73 / 0.84

::
0.8

:

λroot:::
(m)

:
0.30 / 0.30 0.28 / 0.29 0.33 / 0.32

::::
0.314 0.34 / 0.35

::::
0.333 0.21 / 0.21

::::
0.333 0.23 / 0.20

::::
0.252

:

ρ
::
(m2

:::::
kg−1)

:
0.14 / 0.15

::::
0.081 0.15 / 0.15

::::
0.049 0.15 / 0.16

::::
0.049 0.21 / 0.18

::::
0.085

:

:::::::::
VR0(×10−6

:::
mol

::::
m−3

::::
s−1) 0.23 / 0.24

::::
2.366 0.24 / 0.22

::::
2.153

::::
2.153

:::
10.0

VR0 × 105
:::::::::
VO0(×10−6

::::
mol

::::
m−3

:::
s−1)

:
2.86 / 3.92

::::
2.013 2.15 / 3.63

:::
2.09

:
3.97 / 3.67

:::
2.09

:
2.83 / 4.49

:::
10.0

:::::::::
∆ER(×104

:
J
::::::
mol−1)

:
2.86 / 3.31

::::
3.478 2.52 / 4.43

::::
3.647

::::
3.647

::
5.0

:

VO0 × 104
:::::::::::
∆Eoxid(×104

:
J
::::::
mol−1) 2.87 / 1.31

::::
5.358 1.63 / 1.50

::::
5.575 2.95 / 1.86

::::
5.575 1.45 / 1.13

::
5.0

:

::::
fexu
CH4:::

(-) 0.866 / 1.06
::::
0.729 0.233 / 1.51

::::
0.736

: ::::
0.736

::
0.5

:

ζexu ::
(-) 0.49 / 0.38 0.38 / 0.31 0.34 / 0.28

::::
0.343 0.31 / 0.26

::::
0.292 0.38 / 0.33

:
-
:

0.23 / 0.30
:
-

ζstdexu ::
(-) 0.15 / 0.18 0.12 / 0.17 0.13 / 0.17

::::
0.128 0.15 / 0.18

::::
0.157 0.26 / 0.18

:
-
:

0.20 / 0.18
:
-

Q10 :
(-)

:
1.85 / 3.80 3.59 / 4.58 3.81 / 4.85

::::
5.721 4.22 / 5.15

::::
4.425 5.22 / 4.90

:
-
:

6.16 / 6.78
:
-

Qstd
10 ::

(-) 1.55 / 1.70 1.88 / 1.74 1.35 / 1.73
::::
0.587 1.11 / 1.70

::::
0.616 1.26 / 1.69

:
-
:

1.46 / 1.91
:
-

ζ2006exu :
(-)

:
0.53 / 0.34 0.40 / 0.28 0.25 / 0.24

::::
0.212 0.23 / 0.17

::::
0.182 0.30 / 0.28

::::
0.292 0.25 / 0.26

::
0.4

:

ζ2007exu :
(-)

:
0.44 / 0.24 0.17 / 0.18 0.13 / 0.13

::::
0.251 0.10 / 0.10

::::
0.244 0.09 / 0.18

::::
0.292 0.09 / 0.16

::
0.4

:

ζ2008exu 0.48 / 0.35 0.40 / 0.31 0.37 / 0.27
::
(-) 0.28 / 0.25 0.33 / 0.31

::::
0.276 0.19 / 0.29

::::
0.292

::
0.4

:

ζ2009exu :
(-)

:
0.51 / 0.42 0.52 / 0.30 0.29 / 0.31

::::
0.202 0.37 / 0.29

::::
0.243 0.34 / 0.37

::::
0.292 0.24 / 0.35

::
0.4

:

ζ2010exu :
(-)

:
0.65 / 0.50 0.52 / 0.37 0.35 / 0.35

:::
0.34

:
0.48 / 0.33

::::
0.314 0.32 / 0.39

::::
0.292 0.25 / 0.36

::
0.4

:

ζ2011exu :
(-)

:
0.55 / 0.45 0.52 / 0.37 0.31 / 0.31

::::
0.251 0.27 / 0.25

::::
0.258 0.18 / 0.22

::::
0.292 0.18 / 0.18

::
0.4

:

ζ2012exu :
(-)

:
0.50 / 0.37 0.42 / 0.32 0.39 / 0.34

::::
0.327 0.32 / 0.30

::::
0.324 0.33 / 0.38

::::
0.292 0.29 / 0.32

::
0.4

:

ζ2013exu :
(-)

:
0.59 / 0.51 0.59 / 0.42 0.45 / 0.38

::::
0.368 0.55 / 0.44

::::
0.313 0.54 / 0.58

::::
0.292 0.51 / 0.53

::
0.4

:

ζ2014exu :
(-)

:
0.43 / 0.39 0.59 / 0.30 0.29 / 0.30

::::
0.334 0.32 / 0.26

::::
0.323 0.40 / 0.42

::::
0.292 0.36 / 0.37

::
0.4

:

Q2006
10 ::

(-) 1.87 / 2.88 2.42 / 3.50 3.19 / 3.90
::::
5.946 3.95 / 4.57

::::
4.488 4.18 / 3.96

::::
4.425 4.56 / 5.33

::
3.5

:

Q2007
10 ::

(-) 2.33 / 3.96 4.02 / 4.28 4.11 / 4.38
::::
4.882 4.67 / 4.74

::::
3.857 5.25 / 4.52

::::
4.425 5.80 / 6.30

::
3.5

:

Q2008
10 ::

(-) 2.29 / 3.24 2.96 / 3.67 3.09 / 4.14
::::
4.017 3.97 / 4.23

::::
3.684 3.57 / 3.80

::::
4.425 5.53 / 4.90

::
3.5

:

Q2009
10 ::

(-) 2.82 / 3.77 2.81 / 5.02 4.27 / 4.89
::::
5.469 4.31 / 5.02

:::
4.14

:
4.98 / 4.74

::::
4.425 6.45 / 6.53

::
3.5

:

Q2010
10 ::

(-) 2.29 / 3.34 3.38 / 4.64 4.49 / 4.86
::::
5.337 4.11 / 5.16

::::
4.284 5.99 / 5.19

::::
4.425 7.22 / 7.50

::
3.5

:

Q2011
10 ::

(-) 2.58 / 3.41 2.90 / 4.26 4.37 / 4.71
::::
6.306 4.92 / 5.49

::::
4.305 6.73 / 6.27

::::
4.425 7.65 / 9.03

::
3.5

:

Q2012
10 ::

(-) 2.89 / 3.53 3.34 / 4.15 3.82 / 4.40
::::
5.377 4.65 / 5.00

::::
4.193 5.96 / 4.98

::::
4.425 6.38 / 7.55

::
3.5

:

Q2013
10 ::

(-) 4.43 / 4.82 3.76 / 5.72 5.05 / 6.30
::::
5.219 4.17 / 5.72

::::
4.211 5.71 / 5.23

::::
4.425 6.77 / 7.63

::
3.5

:

Q2014
10 ::

(-) 3.46 / 3.76 2.56 / 4.96 4.99 / 5.29
::::
6.438 4.82 / 5.93

::::
4.332 5.24 / 4.72

::::
4.425 6.35 / 7.10

::
3.5

:

Costfunction value 294.85 / - 274.37 / -
::::::
1205.22 258.93 / -

::::::
1227.01

:
261.58 / - 266.83 / - 268.67 / -

Model simulations 391000 340000 277000 171000 92000 78000
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Figure 6. Posterior marginal and prior distributions for all
:::
from

:
MCMC experiments and

::::::::
importance

::::::::
resampling

:::
for all parameters: (a-d)

:::
and

::
(n)

:
are the production-related, (e-f)

:::
and

::::
(l-m) the respiration and oxidation related, and (g-k) the gas transport related parameters. The

:::
blue

:::
and

:::::
orange curves shown for the MCMC experiments are smoothed slightly using Gaussian kernel estimates for readability. To make these

figures, 50
:
70% from the start of each

::
the

::::::
MCMC chain was discarded as warm-up

::::::
(orange

::::
line). The dotted vertical lines show the default

parameter
:::
prior

:::::
mean values

:::
and

:::
the

:::::
sample

:::::
means

::::
from

::::
both

::::::
MCMC

:::
and

:::::::::
importance

:::::::
sampling. For the parameters ζexu (b) and Q10 (d),

the prior distribution drawn is the hyperprior.
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Annual CH4 production in g m−2 from root exudates (colored part) and peat decomposition (white part). Oxidized CH4 is shown as gray

and negative. (a) shows MAP estimate, (b) the posterior mean, (c) the non-hierarchical posterior mean estimate, and (d) the results with the

default parameter values.
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Figure 7. On the left side(a-d): proportions of flux components as a function of the year. Diamonds are for plant transport, dots are
:::
balls

:
for

the diffusion flux, and crosses describe the total ebullition taking place. The figures
::::
figure

:
on the right (e-h) show

::::
shows

:
the annual model-

observation mismatch in percents
::
for

::
the

:::::::
methane

:::
flux, where only residuals from days with observation data available have been taken into

account. The x-axes of sub-figures
:::
data

::
in
::::::::
sub-figure

:
(a-d

:
a) have

:::
has been spread slightly for readability

:
in

:::
the

:::::
x-axis

:::::::
direction. The dashed

lines
:::::
orange

:::
line in sub-figure (g

:
b) represent the results from the cross validation discussed in Sec. 5.6.

::::
Note

:::
that

::
the

::::::::::
optimization

:::::
target

:::
was

::
not

::
to

::::::
directly

::
fit

:::::
annual

::::::::
emissions.
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Figure 8. (a) Fractions of the annual diffusive fluxes of the total fluxes. Means and 1-σ error bars are shown. Almost all ebullition takes

place when the water table is below the peat surface and hence it is emitted to the atmosphere as part of the diffusion flux. Plant transport

is not shown, as it is very close to the complement of the diffusive flux: together these two streams add up to more than 98% of the total

flux. Plant transport variation is very close to that of diffusion. Part (b) shows
::
On

:::
the

:::
right

::::
side

::
of

:::
the

::::
figure

:
the average annual errors with

similar 1-σ errorbars
::
are

:::::
shown

:
for the interannual variation

::
of

::
the

:::::
fluxes. The results of the cross validation

::
of

:::
the

:::::::
regression

::::::::
modeling

::
of

::
the

:::::::::::
hierarchically

::::::
varying

::::::::
parameters,

:
discussed in Sec. 5.6

:
, are drawn in orange.

::
The

::::::::
“Default”

::::::::
parameters

:::::::
produce

:::::
carbon

::::::
dioxide

:::::
fluxes

:::
that

::
are

:::::
above

:::
the

::::
upper

::::
limit

::
of

:::
the

::::
chart.
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Figure 9. Output fluxes
:::
CH4:::

flux
::::
(red

::::
dots) with parameters from the posterior mean,

:
.
:::::::
Methane

:::::::::
observations

:::::
(black

::::::
crosses)

::::
and

:::::::
predicted

::::
fluxes

:
with 100 cm

::::::::
confidence

:::::::
intervals

::::
from

:::::::::
ARMA(2,1)

:::::::
modeling

:
of peat

:
a
::
set

::
of

::::
1000

::::::
residual

::::::::
timeseries

:::
are

:::::
shown,

::
as
:::

are
:::
the

::::
input

:::
net

::::::
primary

::::::::
production

:::::
(green

::::
dots)

::::
and

::
the

::::::
exudate

::::
pool

::::
sizes

::::::
(brown

::::
line).

:::::
Most

::
of

::
the

::::::::::
observations

:::
are

:::::
inside

::
the

:::::::::
confidence

:::::::
intervals,

:::
but

:::
note

:::
that

:::
the

:::::
effects

::
of
:::
the

::::::::
parameter

:::::::
variations

::
in
:::
the

:::::::
posterior

:::
are

::
not

::::
part

::
of

::::
these

::::::::
confidence

:::::::
intervals. The constituents of the total flux

are shown in Fig. 11.
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Figure 10. Means of total CH4 emission (a), its components (b-c), total ebullition taking place (d), CH4 production (e-f), CH4 oxidation

(g), and model residuals (h) as functions of water table depth. Shaded areas show the 5th and 95th percentiles. To look at the effect of the

optimization, compare the black and the green
::::::
blue/red lines.
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Figure 11. Diffusion, plant transport, ebullition, CH4 production, and CH4 oxidation time series for parameter values from the posterior

mean estimatewith 100 cm .
:::
The

:::::
figure

:::::
shows

:::
how

::::
only

:
a
:::::
minor

:::
part

:
of peat

:::::::
ebullition

:
in
:::
the

:::
end

:::::
comes

::
to

:::
the

:::::
surface

::
as

:::::::
ebullition. The total

flux and the observations are shown in Fig. 9.
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Figure 12.
::::::
Annual

:::
CH4:::::::::

production
:
in
:::::
grams

:::
per

:::::
square

:::::
meter

::::
from

:::
root

:::::::
exudates

::::::
(colored

::::
part)

:::
and

::::
peat

:::::::::::
decomposition

:::::
(white

::::
part)

::
for

:::
the

::::::
different

:::::
years.

:::::::
Oxidized

::::
CH4 :

is
:::::
shown

::
as
::::
gray

:::
and

:::::::
negative.
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Figure 13. Posterior marginal distributions of the hierarchical parameters for all
:::
from

::::
both

:
MCMC experiments

:::
and

::::::::
importance

::::::::
sampling,

along with the hyperpriors. The (ax
:
a-) sub-figures are for the parameters ζ, and the (bx

::
b-)

::::::::
sub-figures for Q10. The curves shown for the

MCMC experiments are smoothed slightly using Gaussian kernel estimates for readability. To make these figures, 50
::
70% from the start of

each
::
the

::::::
MCMC

:
chain was discarded as warm-up. The dotted vertical lines show the default parameter values .Posterior distributions and

correlations of the annual means
::::
mean

:::::
values

:
of the output from the modeled processes for the year 2008 with 70 cm peat. The dynamics

for the other years and peat depths are mostly similar. The results shown are based on 1000 random samples from the parameter posterior

distribution. The two-dimensional marginal distributionsin the triangle on
:
.
:::::::::
Importance

::::::::
resampling

:::
had

:
the lower left have their labels on

::::::
tendency

:::
of

::::::
moving the left and at

:::::::
posteriors

::
of the bottom

::::::::::
ζ-parameters

::::::
slightly

:::::
higher, and the correlations between the processes in the

upper triangle on the right have their labels on the left and on the top. The images in the lower left triangle show
:::::
despite

:
the 90% (black)

50% (red), and 10% (blue) contours
:::::
weaker

::::
prior

::::
used

::
for

:::
that

::::
step.
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Table 5. p and r2 values of the regressions of
::
the

:
Q10 ::

(-)
::::::::
parameters

:
against the mean soil temperature of the 10 first weeks of the year at

the depth of 35 cm, and
:::
the ζexu ::::::::

parameters against the sum of
::
the net primary production of the first 130 days of the year.

Peat depth pQ10 r2Q10
pζexu r2ζexu

40 cm 0.13 0.30 0.040 0.47 50 cm 0.027 0.53 0.070 0.39 70 cm 0.011 0.63 0.015 0.60 100 cm 0.0068 0.67 0.027 0.53 150 cm 0.34 0.13 0.040 0.48 200 cm 0.17
:::::
0.0185 0.25

::::
0.571 0.043

::::
4.8e×

::::
10−6

:
0.46

::::
0.957

Parameters that were not part of the optimization procedure Parameter Equation Value Units Description Source ∆ER 6 50000 J mol−1

heterotrophic respiration parameter Nedwell and Watson (1995)∆Eoxid 7 50000 J mol−1 CH4 oxidation parameter Nedwell and Watson (1995)

fexu
CH4

15 0.25 - root exudates to CH4 fraction close to Riley et al. (2011)gQ10
CH4

16 0.4 - peat decay to CH4 fractionSchuldt et al. (2013) KR 19

0.22 mol m−3 Michaelis-Menten coeff. Nedwell and Watson (1995)KCH4 20 0.44 mol m−3 Michaelis-Menten coeff. Nedwell and Watson (1995)

KO2 20 0.33 mol m−3 Michaelis-Menten coeff. Nedwell and Watson (1995) SLA 22 23 m2kg−1 specific leaf area Vile et al. (2005) k 235

log(2)/1800 s−1 ebullition rate constant - σ 23 0.8 - peat porosity Rezanezhad et al. (2016)MCMC chains from the experiment with 100 cm

of peat. The hierarchical parameters in (b) and (d) show the mean value in the middle as a black mass, and the colorful surroundings are the

values parameters for the individual years. The last figure (l) shows the value of the objective function.
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