Urban surface model

March 9, 2017

This document contains the description of configuration parameters and input files of Urban Surface Model (USM) which is an optional module of the model PALM.

A Configuration file PARIN

1 Section &d3par

New options were added into the original PALM variable data_output. All new data output variables have prefix "us_", most of them also one of suffixes "_roof", "_west", "_east", "_south", "_north". Suffix "_roof" means horizontal surfaces, e.g. ground or roof, the other represent walls facing into corresponding direction. Most of variables can also be averaged by "_av" suffix. Next list omits all prefixes and suffixes. Thus to include e.g. the surface temperatures of east walls into the output a quantity us_t_surf_east has to be added to data_output configuration variable.

Variable name	Explanation
surfz	height of surface
surfcat	category of the surface
surfalb	albedo of the surface
surfemis	emissivity of the surface
radnet	net radiation for given surface
rad_insw	total incoming shortwave radiation
rad_inlw	total incoming longwave radiation
rad_inswdir	incoming direct shortwave radiation
rad_inswdif	incoming diffusion shortwave radiation
rad_inswref	reflected shortwave radiation
rad_inlwdif	incoming diffusion longwave radiation
rad_inlwref	reflected longwave radiation
rad_outsw	total outgoing shortwave radiation
rad_outlw	total outgoing longwave radiation
rad_ressw	residua of sw radiation absorbed in surface after last reflection
rad_reslw	residua of lw radiation absorbed in surface after last reflection
rad_hf	heat flux caused by radiation
t_surf	surface temperature
t_wall_{k}	temperature of k-th layer of the wall/ground/roof corresponding to surface
wshf	surface heat flux
wghf	ground heat flux
lad	leaf area density in gridbox
$canopy_hr$	heat rate from absorbed radiation in canopy
$svf_{i}_{j}_{k}$	shape view factors of surface adjacent to gridbox i,j,k (diagnostic only)
$diff_{i}_{j}_{k}$	transparency factors of surface adjacent to gridbox i,j,k (diagnostic only)

2 Section &urban_surface_par

The presence of the section &urban_surface_par enables USM in PALM. The available configuration parameters are:

Parameter Name	FORTRAN	Default	Explanation
	Type	Value	
split_diffusion_radiation	L	.Т.	perform splitting of total sun/sky radiation to
			the direct/diffusion part
usm_energy_balance_land	L	.T.	calculate energy balance for horizontal surfaces
			(diagnostic only)
usm_energy_balance_wall	L	.T.	calculate energy balance for vertical surfaces
			(diagnostic only)
$usm_material_model$	L	.T.	calculate diffusion of heat in ground, walls and
			roofs
$usm_anthropogenic_heat$	L	.F.	calculate anthropogenic heat in USM model
$mrt_{-}factors$	L	.F.	compute factor for postprocessing calculation of
			MRT (mean radiant temperature)
nrefsteps	Ι	0	number of reflections in radiation model
ra_horiz_coef	R	1.0	coefficient for tuning of r_a for horizontal sur-
			faces
$land_category$	Ι	1	default category for land surface
pedestrant_category	Ι	2	default category for wall surface in pedestrian
			zone
wall_category	Ι	2	default category for wall surface over pedestrian
			zone
roof_category	Ι	2	default category for roof surface
write_svf_on_init	L	.Т.	write calculated svf and csf to files
read_svf_on_init	L	.Т.	read svf and csf from files instead of their cal-
			culation
usm_lad_rma	L	.T.	enables using one-sided MPI operations for dis-
			tribution of LAD values between processes

3 Section & canopy_par

A new value is available for parameter canopy_mode in canopy_par section:

canopy_mode read_from_file_3d read the 3D structure of plant canopy from file PLANT_CANOPY_DATA_3D (see later)

B Input files

1 URBAN_SURFACE

This file contains column-separated surfaces and their properties. Each gridbox [i,j] describes properties of corresponding horizontal surface (ground or roof) and possible walls adjacent to right (east) and north edge of the gridbox. The wall is described in three zones – pedestrian, wall and roof. The height of each zone can be configured independently for each gridbox [i,j]. The vertical structure described in this file have to exactly correspond to structure given in the file TOPOGRAPHY_DATA. Structure of each record follows:

Basic parameters:

i, j	coordinates
height	height of horizontal surface, i.e. ground or roof (m)
nz	height of horizontal surface in grid points
isroof	horizontal surface is roof (1) or ground (0)
dirwe	index of west-east wall $(=nz(i+1,j)-nz(i,j))$
dirsn	index of south-north wall $(=nz(i,j+1)-nz(i,j))$

Horizontal surface parameters: surfact number of category of surface

0000	number of category of same	00
surfalbedo	albedo of surface (overrides	albedo of the category)
roofthick	thickness of roof material	
Wall paramete	ers:	
wenz1		height of the pedestrian zone of
wecat1		category of the pedestrian zone
www.alb.ada1		albedo of the nodestrian range of

wealbedo1
wethick1
wenz2, wecat2, wealbedo2, wethick2
wenz3, wecat3, wealbedo3, wethick3
snnz1, sncat1, snalbedo1, snthick1,
snnz2, sncat2, snalbedo2, snthick2,
snnz3, sncat3, snalbedo3, snthick3

height of the pedestrian zone of the wall category of the pedestrian zone of the wall albedo of the pedestrian zone of the wall thickness of the pedestrian zone of the wall the same parameters for wall zone the same parameters for roof zone the same for south-north wall

2 SURFACE_PARAMETERS

This file describes categories of surfaces (ground, roofs and walls) and its properties (column-separated). Some parameters (emissivity, albedo and thickness) can be overwritten for particular surfaces in the file URBAN_SURFACE.

cat	number of category
albedo	albedo of the surface
emissivity	emissivity of the surface
$lambda_s$	heat conductivity between air and surface (W m ^{-2} K ^{-1})
roughness	roughness relative to concrete
csurf	surface skin layer heat capacity $(J m^{-2} K^{-1})$
thickness	thickness of the surface (wall, roof, land) (m)
rho_c	volumetric heat capacity $rho \cdot C$ of the material (J m ⁻³ K)
lambda_h	thermal conductivity lambda_h of the wall (W m ⁻¹ K ⁻¹)
name	description of category (only for readability of the file)

3 PLANT_CANOPY_DATA_3D

The file is column-separated and describes a three-dimensional structure and properties of the resolved plant canopy (trees, shrubs) within the grid of the model. First line contains a single integer number prescribing the number N of vertical levels (from model bottom) which may contain plant canopy. Further lines contain values of four variables that describe the plant canopy. Each line specifies values of one variable for one column of the model grid (x=i, y=j, z=*) as follows:

varnum	number of input variable
	$1 = \text{leaf area density (lad_s)}$
	2 = canopy drag coefficient (cdc)
	3 = leaf scalar exchange coefficient (lsec)
	4 = leaf surface concentration (lsc)
i,j	horizontal coordinates of the grid column
$v1, v2, \ldots, vN$	values of variable varnum for levels $[nzb, nzb+1,]$ where nzb
	is model bottom

Any non-specified values (i.e. coordinates that have no entry in the file and everything above level N) are treated as zero for all four variables.

4 ANTHROPOGENIC_HEAT

The file describes anthropogenic heat. Only the heat at surface is considered for now.

i, j coordinates of gridbox

aheat daily average of anthropogenic heat $(W m^{-2})$

5 ANTHROPOGENIC_HEAT_PROFILE

The file describes diurnal profiles of the anthropogenic heat.