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Abstract. Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting 

the response of the permafrost temperature to climate change requires accurate simulations of the Arctic snow and soil 15 

properties. This study assesses the capacity of the coupled models ISBA-Crocus and ISBA-ES to simulate snow and soil 

properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-interim reanalyses were used to 

drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal 

insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil 

properties are compared to measurements of thermal conductivity, temperature, and water content. The simulated snow density 20 

profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapour 

fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal 

conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-

Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature 

of the top soil could be better reproduced by representing adequately surface organic layers, i.e. mosses and litter, and in 25 

particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because 

the high basal snow thermal conductivity induces too rapid heat transfers between the soil and the snow in simulations. Hence, 

global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the 

basal snow layer, to perform accurate predictions of the permafrost evolution under climate change. 

  30 
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1 Introduction 

The Arctic is warming at twice the average planetary rate (Sweet et al., 2015). As climatological, hydrological and biological 

systems are fully coupled (Hinzman et al., 2005), climate change affects each Arctic ecosystem (Post et al., 2009; Serreze et 

al., 2000). Consequences are already observed, such as reduced sea ice extent and snow cover duration (Serreze et al., 2000), 5 

shifts in vegetation (Pearson et al., 2013), permafrost degradation (Smith et al., 2010), and faunal redistribution (Post and 

Forchhammer, 2008). 

Permafrost degradation is of major concern because of its feedback on the global climate system. Indeed, large amounts of 

organic carbon are stored in perennially frozen soils because of the limited microbial activity (Jonasson et al., 2001). Recent 

studies estimate that about 1300 Pg of soil organic carbon (SOC) are stored in permafrost (Hugelius et al., 2014), constituting 10 

one of the largest terrestrial carbon pool. As permafrost is warming and thawing occurs, SOC becomes available for microbial 

mineralization, resulting in the release of potentially very important amounts of greenhouse gases (GHG) to the atmosphere 

(Elberling et al., 2013; Schuur et al., 2015). This effect is considered as one of the strongest positive climate feedbacks and 

needs to be taken into account in global temperature predictions. However, the permafrost-carbon feedback has not been 

included in the climate projections of the IPCC Fifth Assessment Report (Schaefer et al., 2014), so that current warming 15 

projections may be significantly underestimated. 

Considerable uncertainties remain in the SOC decomposition rate and associated GHG emission in this climate change context. 

One of the main reasons is that the rate and extent of permafrost thaw is not well quantified, preventing accurate estimates of 

the potential magnitude of the permafrost-carbon feedback. In particular, how the permafrost thermal regime will respond to 

climate change is still poorly represented because of its high sensitivity to the properties of the surface. The snow cover and 20 

the vegetation type, by modifying surface energy exchanges, are the main local factors influencing the permafrost thermal 

regime (Sturm et al., 2001a; Zhang. 2005). A snow cover acts as a thermal insulator by limiting soil winter cooling, but its 

insulating properties are highly variable and insufficiently detailed in global climate models (GCMs). These characteristics, 

and how they will change with climate, therefore need to be considered to successfully simulate the current and future 

permafrost thermal regime. 25 

We attempt to contribute to these aspects by investigating the capacity of the soil multi-layer version of the land surface model 

ISBA (Interactions Soil Biosphere Atmosphere; Decharme et al., 2013) coupled with the detailed snowpack schemes Crocus 

(Vionnet et al., 2012) or to the simpler scheme ES (Explicit Snow, Boone and Etchevers, 2001; Decharme et al., 2016) to 

simulate snow and soil properties at a high Arctic location. Crocus is currently the most detailed snowpack scheme coupled to 

ISBA, and corresponds to the highest existing level of complexity for snowpack models. However, its relatively large 30 

computation time limits its use in global climate models. ES is a multilayer snowpack scheme of intermediate complexity. 

Based on Crocus parameterizations, ES will be used for the upcoming CMIP6 CNRM-CM simulations (Eyring et al., 2016). 
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Similar studies were performed over Siberian regions, using ISBA-Crocus (Brun et al., 2013) and ISBA-ES (Decharme et al, 

2016). Models were evaluated based on snow height, snow water equivalent and soil temperature, but processes related to the 

simulated snowpacks have not been studied in detail yet. 

Here, simulations are tested using field data obtained at one specific site on Bylot Island (73° N, 80° W), located north of 

Baffin Island in the Canadian Arctic archipelago., The mean annual air temperature for the period 1998-2013 is -14.3°C and 5 

permafrost thickness has been estimated to be over 400 m (Fortier and Allard, 2004). Site description and instrumentation are 

given in the first section, after which the main features of the models are detailed. Simulation results are shown and compared 

to field observations. A sensitivity analysis is performed to determine processes critical to simulate Arctic snow and soil, which 

are discussed in the last section of the paper. 

2 Methods 10 

2.1 Site description 

The study area is in the Qarlikturvik valley of the south-west plain of Bylot Island, around 73°10’ N, 80°00’ W (Fig. 1). The 

glacial retreat around 6000 years ago left fine grained wind-deposits and organic sediments to form the soil (Allard, 1996). 

The valley bottom consists of wetlands with typical permafrost landforms, including tundra polygons, thaw lakes and ponds. 

Vegetation is mainly comprised of sedges, graminoids and mosses (Cadieux and Gauthier, 2008). 15 

Our actual study site is located in wetlands of the valley floor, at 73°09'01.4” N, 80°00'16.6” W, in the middle of a low-center 

tundra polygon (Domine et al., 2016a). Vegetation consists of a typical herb tundra environment, covered by sedges, 

graminoids (Poa sp.), mosses (Aulacumnium turgidum, 2-3 cm thick) and small prostrate arctic willows (Salix herbacea). 

Albedo measurements were performed in July 2015, using a SVC HR-1024 spectroradiometer. Averaged over the 346-2513 

nm spectral range, the surface albedo of our very site was 0.17 (M. Belke-Brea, personal communication, 2015). The soil 20 

granulometry was analysed using a laser scattering particle size analyzer, which resulted in a combination of fine grain deposits 

comprised of 64% silt and 36% fine sand (Domine et al., 2016a), based on USDA classification. An organic litter layer (3.5 to 

6 cm thick) was present at the interface between the surface vegetation and the ground. Because of the difficulty to determine 

the boundaries between the living moss, the litter and the underlying mineral soil, we estimated a total thickness of about 10 

cm for both moss and litter. Field observations and simulations presented in this paper focus on this very spot. 25 

2.2 Site instrumentation and data 

As we investigate the coupled evolution of the atmosphere, snow and soil, various instruments have been installed to monitor 

meteorological conditions, along with snowpack and soil properties. The set of instruments was installed on the same tundra 

polygon, for the comprehensive monitoring of the spot. The protocol of instrumentation and measurement has been fully 

discussed in Domine et al. (2016a, b), thus only a brief description is given here. 30 
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Several automatic weather station (AWS) are operating on Bylot Island (CEN, 2016). In particular, a 10-m tower was installed 

in summer 2004 close to our study site, at 73°09’07.9” N, 79°59’19.0” W, to monitor air temperature and relative humidity, 

wind speed and direction and snow height. During summer 2013, an AWS (hereafter referred to as BylSta) was installed on 

the polygon of our study site (Domine et al., 2016a). It measures air temperature and relative humidity with a ventilated HC2S3 

sensor from Rotronic, wind speed with a cup anemometer, surface temperature from an infrared IR120 sensor, and upwelling 5 

and downwelling shortwave and longwave radiation with a CNR4 radiometer associated to a CNF4 heating/ventilating unit 

from Kipp & Zonen. An issue with the sensor caused erroneous air temperature measurements in the first year. This was fixed 

in summer 2014, providing a fairly complete meteorological dataset since then. 

Snow height was automatically monitored with a SR50A acoustic gauge installed on the AWS. A few meters further, three 

TP08 heated needle probes (NPs) from Hukseflux were placed at 7, 17 and 27 cm above the ground in summer 2013 to measure 10 

the snow temperature and its thermal conductivity ksnow. They were lowered to 2, 12 and 22 cm in July 2014 to better match 

the snowpack structure observed in May 2014. Operating methods and data analysis pertaining to the NPs are detailed in 

Domine et al. (2015), Domine et al. (2016a) and Morin et al. (2010). Applied to snow, the NP method is suspected of presenting 

a low systematic error of 20% on average, related to the granular structure of the medium (Calonne et al., 2011; Domine et al., 

2015; Riche and Schneebeli, 2013). The anisotropy of the snow structure is another possible source of error, because 15 

horizontally inserted NPs measure a mixture of vertical and horizontal thermal conductivities. As heat exchanges between the 

ground and the atmosphere occur in the vertical dimension through the snow, the anisotropy of the snow thermal conductivity 

can produce errors up to 20% in measurements, resulting in a maximum total error of 29% (Domine et al., 2015). Compared 

to the large range of ksnow values (0.025-0.7 W m-1 K-1), and given that this method is the only suitable solution for remote field 

work, errors related to the use of NP are acceptable. 20 

Field campaigns took place in May 2014 and 2015 at the end of the snow season. The snow accumulation was highly variable, 

because of wind effects and of microtopography (Liston and Sturm, 2002). The SR50A automatic point measurements are 

therefore not necessarily representative of the average snow conditions. To explore the spatial variability of snow properties, 

we performed hundreds of snow heights measurements covering different areas with an avalanche probe. In addition, snow 

pits were dug at a dozen specific sites to describe the stratigraphy and to measure vertical profiles of density with a 100 cm³ 25 

box cutter, and temperature and thermal conductivity with a TP02 heated needle. As we are focusing on the station site, we 

will only use data from the 3 snow pits dug within 20 m of the station both years. 

 

Soil temperature and volumetric water content (VWC) have been monitored since July 2013 with Decagon 5TM probes, 

installed at depths of 2, 5, 10 and 15 cm. They were not calibrated for our specific soil, so we used the manufacturer’s 30 

calibration for mineral soils which may produce an error in water content of 3%. The temperature sensor accuracy is within 

±1°C. The active layer was 17 cm-thick at the time of installation so the sensors could not be placed deeper. A TP08 heated 

needle probe was inserted at 10 cm depth, just below the litter layer, to automatically monitor the soil thermal conductivity 

ksoil. The method used is the same as for the ksnow measurements, and data analysis is also detailed in Domine et al., 2016a. Our 
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instrumental methods impose to use the same heating power in the NPs for snow and soil. The heating power was optimized 

for snow to minimize heating and hence perturbation to metamorphism. Since soils have a higher thermal conductivity than 

snow, especially when frozen, the thermal signal of the NPs is low and noise for frozen soil thermal conductivity data is higher 

than what could be achieved using a higher heating power. Two field campaigns were conducted in July 2014 and 2015 during 

which we measured soil water content profiles using an EC5 sensor from Decagon, and temperature and thermal conductivity 5 

with a TP02 heated needle at several dozen sites (Domine et al., 2016a). 

2.3 Simulations 

Simulations were performed using SURFEX v8 (SURFace EXternalisée), the surface modelling platform developed by Météo-

France and partners (Masson et al., 2013). Used in stand-alone mode, it takes meteorological data as driving input. The snow 

cover and the underlying soil are coupled through a semi-implicit scheme (Decharme et al., 2016; Vionnet et al., 2012). 10 

Different configurations are tested and compared with field observations to evidence critical processes affecting the permafrost 

thermal regime. Based on a series of incremental runs, we particularly focus on the following model features: surface litter, 

soil organic carbon and density of the drifting snow. 

2.3.1 Meteorological driving data 

To calculate the energy and mass budget of the surface, the model needs the following input data: air temperature and specific 15 

humidity, wind speed, incoming shortwave and longwave radiation, precipitation rate (solid and liquid) and atmospheric 

pressure. We used observed local meteorological data when available, and missing data are filled with ERA-interim reanalysis 

(Dee et al., 2011). Available from 1979 to present, for a 0.7° grid with a 3-hourly time resolution, ERA-interim (ERAi) provides 

a continuous meteorological dataset available globally. 

Air temperature and wind speed observations are available since 2004 from the 10-m tower. After July 2014, we used the 20 

ventilated air temperature and humidity, and the wind speed measured at BylSta. Radiation measurements were not used 

because the radiometer shifted by about 5° from its horizontal position when the tripod that supported it sank with the active 

layer thawing, causing errors to the data. The atmospheric pressure and precipitation were not measured, so we used ERA-

interim reanalysis data for missing variables and possible data gaps. 

To make the ERAi data consistent with the original field data, they were corrected following the method of Vuichard and 25 

Papale (2015). This method consists in calculating the linear regression between ERAi data and available field measurements. 

The regression coefficients (slope and intercept) are used to correct systematic biases in ERAi data, in order to better match 

the local meteorological conditions. Hence, we found a mean bias of -2.3°C in air temperature, -2.7 10-4 g kg-1 in air humidity 

and +0.7 m s-1 in wind speed given by ERAi. The correction helped to reduce the standard deviation between the corrected 

ERAi and the observational data by respectively 20%, 4.6% and 10%. Differences in the correction performance mainly reflect 30 

the internal variability of the in-situ data. 
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The precipitation phase was recalculated using local and ERAi-corrected temperatures, with a threshold set at 1°C. During the 

ERAi reanalysis process, the precipitation fluxes are only predicted by the meteorological model with no assimilation of 

observations (Brun et al., 2013). Furthermore, our study site is surrounded by hills, altering the local aerology and therefore 

the precipitation amount. With no reliable precipitation gauge to evaluate the local variability, we consider the precipitation 

data as the highest uncertainty source of all the forcing data. Preliminary results indicated that an accurate snow height was 5 

critical to simulate correctly the soil thermal regime. Hence, we arbitrarily changed the ERAi precipitation data for Crocus to 

match the observed snow height at snow pits dug in the immediate vicinity of BylSta, which was achieved after reducing by 

30% the solid precipitation rate in winter 2013-2014. Neither liquid precipitations nor snowfall were modified for the winter 

2014-2015. ERAi radiation data were kept unchanged for lack of reliable measured values, as well as atmospheric pressure 

values which we assume suffer little from local variability.  10 

2.3.2 Soil scheme 

The land-surface parameterization is managed by the ISBA scheme (Noilhan and Mahfouf, 1996; Noilhan and Planton, 1989). 

It describes the exchanges of energy and water between the atmosphere, the vegetation and the soil, by solving the 1-D Fourier's 

law for heat transfer and the mixed-form of Richards' equation for water mass transfer within the soil (Decharme et al., 2011). 

They are computed using 20 layers down to a depth of 12 meters. The main parameters are the soil texture and the vegetation 15 

type, from which other parameters can be derived, e.g. the soil porosity, the saturated matric potential and the saturated 

hydraulic conductivity. Following our measurements, the soil texture is set to 36% sand and 64% silt. Boreal grass covers the 

surface with a root depth of 20 cm, and the snow-free albedo is 0.17. 

The soil freezing-thawing processes are critical in permafrost regions. They are handled using the drying-wetting analogy 

based on the Gibbs free-energy method (Boone et al., 2000). It allows the calculation of the temperature for phase changes as 20 

a function of the soil matric potential, which depends on porosity and water content. During phase changes, the liquid water 

content decreases (increases) correspondingly to the increase (decrease) in ice content, thereby conserving the total water 

content in each soil layer. ISBA calculates the hydrology of the entire soil column in order to accurately represent the 

permafrost characteristics. Therefore, the model needs long simulation periods to guarantee that the water and heat profiles are 

equilibrated over the 12 meters soil depth. Water infiltration is limited by the presence of ice-rich permafrost and because of 25 

the topographic hollow of our study site water is at times poorly drained and can occasionally fill the center of the polygon. 

This process is reproduced by disabling lateral runoff when surface water is in excess (run base and following). 

The soil thermal properties, i.e. thermal conductivity and heat capacity, are computed as a combination of water, ice and soil 

properties, volumetric water content and soil porosity, following the parameterizations of Peters-Lidard et al. (1998). Hence, 

the soil thermal conductivity is expressed as a function of its saturation, porosity, quartz content, dry soil conductivity and 30 

phase of water (frozen or unfrozen), where the ice, water and quartz thermal conductivities are respectively 2.2, 0.57 and 7.7 

W m-1 K-1. Surface organic material like moss or litter, are known to greatly affect the thermal and hydraulic properties of the 

soil (Hinzman et al., 1991). ISBA cannot handle a surface moss cover, but it has the capacity to simulate a litter by conferring 
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to the uppermost soil layers the thermal properties of organic matter. The thermal conductivity of organic matter is set to 0.05 

W m-1 K-1 when dry, and to 0.25 W m-1 K-1 when wet. We evaluated the model sensitivity to the inclusion of a 10 cm-thick 

litter which affects thermal properties of the first 10 cm below the surface (run litter and following). Based on our 

measurements, the litter appears to have a high insulating capacity in summer while it becomes negligible in winter. To better 

reproduce the observations, the litter effect is therefore disabled as soon as 2 cm of snow covers the surface. The soil hydrology 5 

is not affected in the model, while in reality organic layers have a high hydraulic conductivity and a greater infiltration rate 

than mineral soils (Hinzman et al., 1991). The impact of this simplification will be evaluated with the results. 

ISBA includes the dependency of soil hydraulic and thermal properties on soil organic carbon (SOC) content as fully described 

in Decharme et al. (2016). Briefly, depending on its content which decreases sharply with soil depth, including organic carbon 

reduces the dry soil thermal conductivity, increases its porosity and therefore its saturated hydraulic conductivity. Accounting 10 

for the effect of SOC could significantly help improve the simulation of the soil thermal regime, especially in Arctic areas 

where soils store large amounts of SOC (Hugelius et al., 2014). From the Harmonized World Soil Database (HWSD, FAO 

2012) with a 1 km resolution, the SOC content for our study site is estimated at 5.05 kg m-3 for the first soil horizon (0–30 

cm), and 4.34 kg m-3 from 30 cm to 1-meter depth. A few soil samples were collected in July 2013 on the southern plain of 

Bylot Island for a radio-carbon analysis (ADAPT 2014). From two humid and three mesic sites, the carbon concentration was 15 

5.17 kg m-3 averaged over the first 30 cm of the soils. Given the excellent agreement with ADAPT data, we have a good 

confidence in the HWSD estimations used in our simulations (run SOC and following).  

2.3.3 Snowpack model: Crocus 

Crocus is a multilayer physical snow scheme designed to simulate the evolution of the snow cover as a function of energy and 

mass transfer between the snowpack, the atmosphere and the ground (Brun et al., 1989; Vionnet et al., 2012). Numerical snow 20 

layers are handled dynamically by the model, in order to keep their total number below a given number (typically 50), while 

respecting as much as possible the internal structure of the snowpack. Numerical snow layers are characterized by their 

thickness, density, temperature, liquid water content, and four variables representing microstructural properties (Vionnet et al., 

2012). The freshly fallen snow is usually considered as dendritic, and evolves toward non-dendritic snow under the action of 

internal processes such as snow metamorphism, compaction, thermal diffusion and phase change. 25 

These processes also affect the density of the snow layers, which is a key variable controlling other snow physical properties 

in Crocus. Density increases with compaction caused by the weight of upper layers, depending on the viscosity of the layer. 

The compaction rate is faster in the presence of liquid water, and it also depends on snow grain type. Angular grains such as 

depth hoar compact less. Wind events can also compact the surface layers, and due to frequent wind in the Arctic large amounts 

of snow are transported, compacted and sublimated (Liston and Sturm 2002; Sturm et al., 2001ab). Blowing snow occurs in 30 

the simulation when the wind speed is above a threshold value which depends on surface snow properties: microstructure and 

density (Guyomarc'h and Merindol, 1998; Vionnet et al., 2012). On average, blowing snow is observed for wind speed greater 

than 5 m s-1 (Sturm et al., 2001b; Vionnet et al., 2013). From the 10-m tower in Bylot Island, wind speeds greater than 5 m s-1 
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occurred during 7% of the 2013-2014 snow season, and during 6% of the 2014-2015 one. Crocus takes into account the 

compaction and the microstructural evolution of the surface snow caused by blowing snow events, depending on wind speed, 

snow density and its microstructural properties (Vionnet et al., 2012). In addition, Crocus calculates the snow mass lost by 

sublimation during blowing snow events (Brun et al., 2013; Gordon et al., 2006). However, Crocus does not handle the snow 

redistribution since the model is one-dimensional (Brun et al., 2013). In the standard version of Crocus, wind-compacted snow 5 

layers can reach a maximum density of 350 kg m-3. As we observed snow densities up to 450 kg m-3 in Bylot Island, and values 

up to 600 kg m-3 can be found in the literature (e.g. Sturm et al., 1997; Zhang, 2005), we increased this value to 600 kg m-3 

(run wind and following). Because the mobility of snow layers depends on their density, increasing the density of the snow 

can limit its driftability. 

The snow thermal conductivity ksnow, in W m-1 K-1, which is used to solve the thermal diffusion equation in the snowpack, is 10 

calculated from the density using the equation of Yen (1981): 

𝑘𝑠𝑛𝑜𝑤 = 𝑘𝑖𝑐𝑒 (
𝜌

𝜌𝑤
)
1.88

      (1) 

with kice the thermal conductivity of ice (2.22 W m-1 K-1), ρ the density of snow and ρw the density of liquid water (. 

Snow albedo depends on snow microstructure, on the amount of light-absorbing impurities and on the solar zenith angle 

(Warren, 1982). Crocus computes the snow albedo by considering microstructure to account for physical aspects and the age 15 

of the surface snow layer to account for chemical aspects, as exposed snow is subjected to impurity deposition. The incoming 

radiation is then transmitted and absorbed within the snowpack, following the exponential decay of radiation with depth as a 

function of the grain size and snow density (Vionnet et al., 2012). Because incoming radiation is preferentially scattered 

forward in the snow, light coming from a low sun angle penetrates less deep in the snowpack and the resulting albedo is higher. 

Despite its importance in Arctic regions, this last effect is not simulated in Crocus because it does not account for the solar 20 

zenith angle (SZA) in the albedo calculation. The physically-based radiative transfer model TARTES has been implemented 

in Crocus, making use of the SZA in the albedo calculation (Charrois et al., 2016; Libois et al., 2015) but also requiring 

knowledge on the vertical profile of light absorbing impurities (Tuzet et al., 2017). However, the lack of data on snow 

impurities (nature, deposition, light-absorbing spectroscopy) prevented us from using TARTES in Bylot Island simulations. 

 25 

2.3.4 Snowpack model: Explicit Snow 

Explicit Snow (ES) is a multilayer snowpack scheme of intermediate complexity (Boone and Etchevers, 2001; Decharme et 

al., 2016). It is based on parameterizations used in Crocus, which are simplified to reduce the computation time and to facilitate 

its integration in global climate models. The main differences with Crocus are a constant number of layers, usually 12, blowing 

snow is not sublimated, and the snow microstructural properties are not simulated. Hence, parameterizations of snow albedo 30 

and compaction rate are functions of the layers density only. However, as in Crocus, the evolution of snow density in each 
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layer is due to snow compaction resulting from changes in snow viscosity and wind-induced densification of near-surface 

snow layers (Decharme et al., 2016). 

The ksnow calculation method is different from Crocus. In ES ksnow is computed from the density, based on the Yen’s equation 

(Eq. 1), with an additional term to account for latent heat transfer through sublimation-condensation processes during 

metamorphism (Sun et al., 1999): 5 

𝑘𝑠𝑛𝑜𝑤 = 𝑘𝑖𝑐𝑒 (
𝜌

𝜌𝑤
)
1.88

+
𝑃0

𝑃𝑎
×𝑚𝑎𝑥 (0, 𝑘1 −

𝑘2

𝑇𝑠−𝑘3
) (2) 

where Pa (Pa) is the air pressure, P0 a reference pressure equal to 1000 hPa, Ts (K) the temperature of the snow layer, and the 

coefficients k1 = -0.06023 W m−1 K−1, k2 = 2.5425 W m−1, and k3 = 289.99 K. 

Even though ES is not based on the explicit representation of the snow microstructure, it remains one of the most sophisticated 

snowpack models that will be used for the upcoming 6th edition of the Coupled Model Intercomparison Project (CMIP6, Eyring 10 

et al., 2016). The results of our simulations with ISBA-ES (run ES) are expected to reflect the capacity of the latest generation 

of GCMs to simulate Arctic snow and soil properties. 

2.3.5 Numerical experiments 

A first simulation was run from August 1979 to August 2012, constituting a 33 years initialization. This operation allowed 

reaching equilibrium between the ground properties and the local climate conditions, with the base configuration. Then, using 15 

the equilibrated soil profile as the initial state, we performed a series of runs with incremental complexities from August 2012 

to June 2015 (Table 1). The run wind integrates all our changes, it consists in the most detailed configuration tested here with 

Crocus. ES uses the same configuration as the run wind. 

2.4 Evaluation metrics 

Field observations of snow and soil properties are available from August 2013 to June 2015, allowing the evaluation of model 20 

performance to simulate two winters and one entire summer. 

Simulated snow properties are compared to measurements of snow height, density, thermal conductivity and temperature. As 

we assess the ability of the model to reproduce the soil thermal regime, we particularly focus on the snow thermal properties. 

Snow is thermally characterized by its thermal conductivity ksnow. We also rely on an alternate variable that characterizes the 

thermal properties of the whole snowpack rather than those of each layer. The thermal insulance of the snowpack RT (in m² K 25 

W-1) depends on the thickness h and the thermal conductivity of each layer i: 

𝑅𝑇 = ∑
ℎ𝑖

𝑘snow,𝑖
𝑖        (3) 

The simulated RT is computed from the respective density-ksnow correlation used in the snowpack model (Eq. 1 and 2) and 

simulated layer thickness, while observed RT is directly based on measurements of ksnow and layer thickness. To determine the 

respective contributions of the snowpack thickness and the thermal conductivity on RT, it is also necessary to look at the 30 

resulting mean thermal conductivity of the snowpack calculated as: 
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𝑘snow =
ℎ

𝑅𝑇
      (4) 

ISBA simulation results are compared to measurements of soil temperature, as well as the thermal conductivity and the water 

content which governs the soil thermal regime. Vertical profiles show the vertical soil stratification. Performances of each run 

are evaluated by comparing their deviations with time-series observations at different depths, using the squared correlation 

coefficient (r²), bias (Eq. 5) and RMSE (Eq. 6) statistical errors. 5 

𝑏𝑖𝑎𝑠 =
1

𝑛
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)
𝑛
𝑖     (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2𝑛
𝑖    (6) 

where sim and obs refer to simulated and observed values respectively.  

3 Results 

3.1 Simulations of snow properties and comparison with field data 10 

3.1.1 Snow height 

Figure 2 shows snow height automatically measured with the SR50A snow gauge, along with manual observations performed 

in May 2014 and 2015 and simulations results. SR50A data are missing between 14 May and 26 July 2014 because of an issue 

with the sensor. Random snow height measurements were performed within 200 m of our site on 14 and 16 May 2014, and on 

12 May 2015. They evidence the large spatial variability in snow height, as already indicated in Table 2 of Domine et al., 15 

2016b. Snow-free areas were frequently encountered on the polygons edges, whereas snow heights up to 60 cm were found in 

the center of the polygons. Thus, one-point snow height monitoring may not be representative of the average snow 

accumulation. On 14 May 2014 the SR50A indicated 13 cm of snow, while we obtained a mean of 16.2 cm with a standard 

deviation of 13.7 cm from more than 300 measurements over the whole polygons area. We observed a noticeably lower snow 

accumulation under the station than a few meters away, which is confirmed by the 21 cm of snow averaged on the 3 snow pits 20 

dug in the vicinity of the station. On 12 May 2015, while the snow gauge indicated 35 cm, random measurements indicated 

25.3 ±13.1 cm of snow. From the 3 snow pits made, we obtained a mean snow height of 33 cm. Based on our observations, 

we explain these differences by a low snow year in 2013-2014 and a high wind redistribution (Domine et al., 2016b). Since a 

central objective of our simulations is to reproduce the ground thermal regime as measured by our instruments, and because 

the large spatial variability in snow height highly affects the ground temperature at the meter scale (Gisnas et al., 2016), the 25 

relevant snow height at our specific site is most likely given by the snow pits mean. 

After reducing the ERAi snowfall amount by 30% in winter 2013-2014, the resulting simulated snow height was in good 

agreement with the snow pits means obtained in May 2014 and 2015, respectively 23.0 and 30.4 cm from the run wind and 

22.4 and 32.8 cm with ES. Winter variations are well reproduced, but the beginning of the snow season occurs too early in 

2013: on 18 September in simulations while it was detected on 12 October from measurements. At this date the simulated 30 
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snowpack was already 4 cm-thick, which partly explains the slight overestimation compared to the mean height of May 2014 

snow pits. ES simulates lower snow heights than Crocus, which could be caused by a faster compaction rate in ES compared 

to Crocus. In May 2015, snowmelt occurs earlier in simulations than deduced from the snow gauge. A detailed analysis of the 

meteorological data and simulation outputs reveals positive air temperature between 6 and 11 May 2015, triggering the partial 

melting of the upper snow layers in simulations. With two strong wind events (peaks exceeding 10 m s-1) which occurred on 5 

5 and 12 May, these conditions caused the decrease of the simulated snow height along with the increase in the upper layers 

density. The air temperature cooled back down after this event, until 18 May when the final snowmelt started. We did not 

observe any signs of spring melt before 18 May during the field campaign. To test whether the inexact melt onset date simulated 

was caused by the lack of solar zenith angle consideration, we briefly tested Crocus coupled to TARTES, which includes 

treatment of SZA. With TARTES, the melt onset date was accurately simulated, which leads us to suggest that not accounting 10 

for SZA is the main cause of the inadequate melt onset date simulation. However, a full implementation of TARTES in Crocus 

for this study would have required data on snow impurities. Hence, for further comparisons with snow properties measured in 

May 2015, we will use simulations results of 6 May, just before the partial melting. 

3.1.2 Snow density and thermal conductivity 

Figure 3 shows examples of snow stratigraphies observed close to the monitoring site in May 2014 and 2015. They are typical 15 

of Arctic snowpacks (Domine et al., 2016b), comprised mainly of a basal depth hoar layer (about 5 cm thick) and a top wind 

slab. The particularity in 2015 is the depth hoar layer that was indurated at the bottom of the snowpack, resulting from the 

transformation of a melt-freeze layer into depth hoar under a very high temperature gradient (Domine et al., 2016a, b). 

Indurated depth hoar is harder and retains a higher cohesion than typical depth hoar, but its development usually goes along 

with a decrease in density and thermal conductivity (Domine et al., 2012). 20 

Associated measured vertical profiles of density are also shown. As expected from typical Arctic snowpacks, the stratigraphies 

observed exhibit low density values for the bottom depth hoar layer (between 150 and 200 kg m-3), and high values for the 

upper wind slabs (exceeding 400 kg m-3). Crocus and ES simulate inverted profiles, with generally decreasing densities from 

the bottom to the top of the snowpack. This is particularly visible in 2015, with the highest density simulated at the bottom of 

the snowpack. In 2014 the density of the basal layer (below 5 cm) is successfully reproduced by Crocus, but it is overestimated 25 

by ES. In 2015, the density of the indurated depth hoar basal layer is greatly overestimated by both Crocus and ES, respectively 

1.4 and 2 times higher. It confirms that the snow compaction rate in ES is inappropriate to simulate a bottom depth hoar layer 

of low density. However, this partially compensates for the underestimation of density in the upper layers. Wind slabs densities 

in upper layers are highly underestimated in simulations (between 1.5 and 2 times lower), even for the run wind which allows 

higher maximum densities for drifting snow. In May 2014, the wind experiment simulates yet lower densities in sub-surface 30 

snow layers than the other Crocus runs. This is attributed to early melting, which occurs slower in this run because of colder 

snow temperatures compared to previous experiments. Otherwise, increasing the maximum density reached by drifting snow 

helps to reduce the underestimation in upper layers. Still, mean snowpack densities are lower in simulations than in 
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observations. ES simulates higher mean densities than Crocus because the snowpack is overall more compacted, due to the 

faster compaction rate. Therefore, the density of the basal layer is greatly overestimated, but the density of the upper layers are 

less underestimated. 

Since thermal conductivity is totally (in Crocus) or mostly (in ES) controlled by density, the ksnow vertical profiles are also 

inverted, as already evidenced in Domine et al. (2016a). For example in early May 2015 (Fig. 4), we measured ksnow = 0.028 5 

W m-1 K-1 2 cm above the ground while Crocus (run wind) indicates 0.24 W m-1 K-1 and ES 0.35 W m-1 K-1. At 24 cm, values 

obtained from measurements, Crocus and ES are respectively 0.28, 0.07 and 0.14 W m-1 K-1. Figure 5 summarizes the ksnow 

measurements performed during field campaigns, as a function of the corresponding measured densities and snow types. 

Simulated values obtained on 14 May 2014 and 6 May 2015 from runs wind and ES are also shown. It confirms that high 

density values (>400 kg m-3), mostly observed in wind slab layers, are neither reproduced by Crocus nor ES. For lower 10 

densities, it is well visible that density-ksnow correlations (Eq. 1 and 2) are not appropriate for our dataset. The simulated ksnow 

values are almost always higher than measurements, and accounting for the Sun et al. (1999) additional term (run ES) amplifies 

the error. The regression curve from Sturm and al. (1997) fits our measurements better, because this parameterization is based 

on Arctic and subarctic snows instead of focusing on alpine conditions. However for a given density, the ksnow value can vary 

by a factor of 4 to 5 (Domine et al., 2016a; Sturm et al., 1997) so that density-ksnow correlations cannot be used to accurately 15 

determine the thermal conductivity of Arctic snow. In fact, as demonstrated by Löwe et al. (2013), snow thermal conductivity 

depends on both density and microstructure. By adding second-order bounds based on a microstructural anisotropy parameter, 

they could improve the estimation of ksnow. In addition, our Fig. 5 strikingly corresponds to the theoretical Fig. 4 of Calonne et 

al. (2014). Our depth hoar values correspond to their lower bound, and our rounded grain snows (including wind slabs) 

correspond to their upper bound. Our data therefore confirms theoretical considerations which clearly demonstrate that 20 

parameterizing thermal conductivity as a function of density only simply should not be done, as it can produce very large 

errors.  

3.1.3 Snow temperature 

The snow density and ksnow are the variables controlling the heat transfer through the snowpack, but they are significantly 

erroneous in simulations. To evaluate the consequences on the temperature profile, Figure 6 presents the evolution of 25 

temperatures measured by the NPs at 2, 12 and 22 cm, the surface temperature measured by the infrared IR120 sensor and the 

corresponding simulated temperatures. The NPs perform measurements at 5:00 (local time) every other morning and record 

temperature only then. For this reason, simulated temperatures are shown every two days at about the same time. Because of 

the models’ output resolution (6 hours), simulated temperatures are actually shown at 7:00 local time, or 12:00 UTC. 

The high variability in snow heights makes it difficult to estimate the actual snow accumulation around the NPs. But it appears 30 

that temperatures in the middle of the snowpack are reproduced best. This is well visible at 22 cm, with the temperature being 

very accurately simulated after January 2015 while the NP is definitively buried in snow. To a first approximation, under 

steady state the temperature gradient is inversely proportional to ksnow. Since the simulated thermal conductivity profile is 
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inverted, we expect simulated snow surface temperatures to be colder than measurements while bottom temperatures should 

be warmer, given that simulated and measured temperatures are similar near the middle of the snowpack. This is indeed what 

Fig. 6 shows, with temperatures simulated by Crocus are about 5°C warmer than measured ones at the bottom of the snowpack. 

The run wind simulates colder temperatures than previous experiments. This is attributed to the more conductive upper layers, 

allowing cold waves to propagate through the snowpack during winter. Because ES computes higher ksnow values (Fig. 5), it 5 

results in an overall colder snowpack than Crocus. 

An extended warm spell started on 16 March 2015, with the air temperature reaching -2.2°C on 17 March associated with a 

significant snowfall (Fig. 2). This warmed up the entire snowpack, and from that date until the onset of simulated snowmelt, 

snow temperatures are well reproduced by the run wind. The snowmelt starts on 18 May, and as already discussed the snowpack 

is warming faster in simulations. 10 

3.1.4 Sensitivity analysis on the snow thermal insulance 

Properties of the snow pits studied in May 2014 and 2015 are summarized in Fig. 7, and compared to simulation outputs. In 

2015, we used simulations of 6 May before the early melting. Since we are investigating the link between the soil temperature 

and snow thermal properties, Figure 7 shows the snow height, the mean snow thermal conductivity 𝑘𝑠𝑛𝑜𝑤 and the resulting 

thermal insulance RT as given by Eq. (3) and (4). Given that the NP method induces a systematic error which underestimates 15 

ksnow by about 20% on average, we also increased the measured ksnow values by 20% (modified ksnow). 

Litter and SOC additions have little effect on snow properties, the most noticeable being a reduction of less than 1 cm in snow 

height. Accounting for higher densities during wind compaction affects both the height and ksnow. Overall, the snow height is 

well reproduced in simulations, results are within the measured standard deviation obtained from snow pits. 𝑘𝑠𝑛𝑜𝑤  is 

overestimated for both years of simulations, resulting in lower simulated thermal insulance than measured. Compared to 20 

measurements, the run wind gives a mean thermal conductivity 46% higher in 2014 and 73% higher in 2015, while the 

respective RT are 24% and 38% lower. The error in RT is thus essentially induced by the ksnow simulation, and especially by the 

overestimation of the basal layer ksnow value. Because ES simulates very high ksnow values at the bottom of the snowpack (Fig. 

4), the error in RT is amplified. 

The larger error in 𝑘𝑠𝑛𝑜𝑤 simulated the second winter can be explained by considering snow stratigraphies (Fig. 3). In May 25 

2014, we observed a regular depth hoar basal layer whose density was successfully reproduced by Crocus. Its simulated ksnow 

is still 4 times greater than measured (run wind). The following winter, the indurated depth hoar basal layer formed from a 

melted-refrozen snow. Crocus and ES do reproduce the partial melting of the snow at the beginning of the season, but cannot 

simulate the following transformation into depth hoar under high temperature gradients (Domine et al., 2016a). As the water 

vapour flux through the snowpack is not represented, the models still consider a refrozen layer at the bottom of the snowpack 30 

with a very high ksnow (8 to 12 times greater than measured, Fig. 4). Hence, the mean simulated ksnow is more overestimated in 

May 2015 than in 2014. 
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3.2 Simulations of soil properties and comparison with field data 

3.2.1 Soil thermal conductivity 

The monitoring of the soil thermal conductivity (ksoil) at -10 cm shows a bimodal distribution between frozen and thawed state 

(Fig. 8). In summer, ksoil is around 0.73 W m-1 K-1 while it suddenly increases with freezing to 1.95 W m-1 K-1 on average 

(Domine et al., 2016a). As detailed above, the noise in the frozen soil data is due to the low power used to heat the NPs. ISBA 5 

simulated ksoil values from the run wind are shown at depths of 10 and 20 cm. A bimodal distribution is also visible with sharp 

transitions between thawed and frozen state. The mean ksoil value at -10 cm is 0.36 W m-1 K-1 in thawed conditions, and 2.04 

W m-1 K-1 in the frozen state. The winter value is close to the measured mean, but the summer simulated ksoil is lower than 

observations. Because the transition between litter and mineral soil occurs around 10 cm below the surface, measurements 

probably give a mixture of litter and mineral ksoil values, while the simulated value at -10 cm is that of the litter only. Simulated 10 

ksoil at 20 cm depth is 1.27 W m-1 K-1 in summer, and 1.89 W m-1 K-1 in winter. Averaging values between -10 and -20 cm 

results in a summer mean of 0.82 W m-1 K-1, and 1.97 W m-1 K-1 in winter, in very good agreement with our measurements. 

ksoil is also greatly dependent on the water content, so we need to look at the vertical profiles of soil properties to assess the 

stratification. 

Figure 9 shows vertical profiles of soil properties (ksoil, temperature and VWC) averaged from two measured profiles and 15 

simulated on 29 June 2014 to a depth of 20 cm. It illustrates the improvements caused by the litter addition in simulation: 

instead of staying constant at around 1.36 W m-1 K-1 in the absence of litter, ksoil values are highly reduced in the first 10 cm 

when a litter is added, in fairly good agreement with our observations. However, we measured an increase in ksoil with depth 

in the first 10 cm, from 0.19 W m-1 K-1 at -3 cm to 0.71 W m-1 K-1 at -10 cm, while the simulated ksoil is constant (0.35 W m-1 

K-1) through the litter layer. The same pattern is visible on the VWC profiles, attesting the water content dependence of ksoil. 20 

The lowest VWC value was found at -3 cm with 20% moisture, immediately increasing to more than 45% at -6 and -10 cm, 

while the simulated water content stays constant at 40% (runs wind and ES). The VWC difference at -10 cm is not sufficient 

to explain the ksoil underestimation in summer, meaning that measurements of ksoil are probably affected by both the litter and 

the underlying mineral soil. The water content starts to decrease below -10 cm, which supports the location of the lower limit 

of the litter. The presence of a litter in simulations finally improves the soil temperature profile between -10 and -20 cm, but 25 

the temperature is still too warm near the surface. 

3.2.2 Soil temperature 

Results of soil temperature simulations are shown in Fig. 10, along with measurements data from the Decagon sensors at 

depths of 5, 10 and 15 cm. 

The run base simulates too high temperatures in both summer and winter, at all 3 depths shown. By reducing the heat exchanges 30 

between the atmosphere and the soil, litter and SOC additions greatly improve simulations in summer. Consequences are well 

visible at -15 cm, with a good simulation of the observed temperature (+0.8°C bias) during summer 2014 (June – July – 
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August). For the same period, the temperature difference is +1.8°C at -5 cm, and +1°C at -10 cm. The same pattern is visible 

in Fig. 9, with a warm bias increasing toward the surface. The run wind improves the simulation of winter soil temperatures, 

resulting in the best simulation for the two years of measurements. Temperatures in winter months (December – January – 

February) are very well reproduced in 2014-2015, while in 2013-2014 there is a cold bias of 2.2°C in December, which 

becomes less than 1°C until snowmelt. ES produces soil temperatures up to 8°C colder in winter, because it highly 5 

underestimates the snow thermal insulance (Fig. 7). 

During the freezing and thawing periods, the models are not able to reproduce the observed soil temperature. The freezing of 

the active layer occurs in September and starts at the same time in simulations and observations, but it is too fast in simulations. 

The zero-curtain period lasts between 4 and 6 weeks in observations, but only a few days in simulations. This may be attributed 

to the thermal conductivity of the basal snow layer which is too high in simulations, allowing the soil to cool rapidly. The 10 

thawing at the end of the winter is also faster in the simulations, again most likely because of the high thermal conductivity of 

the snow. The formation of a highly conductive refrozen snow layer is simulated at the top of the snowpack (ksnow values up to 

0.5 W m-1 K-1 are simulated in mid-May 2015 at 25 cm), while we measured values between 0.25 and 0.3 W m-1 K-1. Ultimately, 

the treatment of snow albedo in models is such that melt-out is hastened at high latitudes, inevitably accelerating  soil thawing  

in spring.  15 

Table 2 summarizes the performance of each run to reproduce the measured soil temperature at 15 cm depth. Depths of 5 and 

10 cm give similar results. R² values are greater than 0.9, attesting the capacity of models to reproduce the observed variability. 

Statistics show a clear improvement as complexity is increased in the first 4 simulations. The presence of a litter noticeably 

improves the annual soil temperature simulation, while accounting for snow densities higher than 350 kg m-3 (run wind) 

drastically reduced the error in winter 2014-2015. The best results are obtained with the run SOC in 2013-2014 (+0.3°C for 20 

the whole year), and with the run wind in 2014-2015 (+0.5°C). Errors are very low for both years, of the order of the sensor 

accuracy. 

3.2.3 Soil water content 

Figure 11 shows simulations of the soil volumetric water content evolution at 5, 10 and 15 cm depths. The main difference 

with observation is the timing of freezing and thawing. This is clearly influenced by temperature, so that the errors in simulated 25 

temperature impact this timing. However, the duration of latent heat exchanges are also determined by the water content. 

The VWC simulation in summer are improved by the addition of litter and SOC, but are still too low at -5 and -10 cm. Disabling 

the surface runoff helped to conserve high water contents in summer, but the moisture peak observed on 31 July 2014 at -5 cm 

is not simulated. On the ERAi precipitation data, a rain event did occur that day but it was less than 3 mm h-1, not sufficient to 

increase the VWC by 20% as observed. Because of the high uncertainty on ERAi precipitation data, the actual precipitation 30 

rate could be underestimated.  Figure 9 shows that the simulated VWC is constant in the first 10 cm of soil while the observed 

profile is more variable. Thus, it seems that the simulation of the water dynamics in the first cm of the soil is erroneous, and is 

better reproduced below -10 cm. The low simulated VWC values therefore partly explain the too fast simulated soil freezing. 
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However, as discussed by Langer et al., (2013), the inadequate thermal properties of the snow cover is most likely the main 

source of error in the ground thermal regime. 

In winter, the different runs have a low impact on the water content, which is very well reproduced with around 6% of water 

remaining liquid while temperature reaches -30°C. This effect is explained by surface tensions applied on water confined in 

small pores, lowering its freezing temperature (Penner, 1970). The 6% threshold observed here is consistent with values found 5 

in the literature for a mixture of silt and fine sand. 

Table 3 presents errors for each run in VWC simulation, at the depth of 15 cm. Results at depths of 5 and 10 cm are similar. 

R² are lower than those from temperature simulations, ranging from 0.39 for the whole year (run base) to more than 0.9 in 

winter. SOC addition greatly improves simulations. It results in the lowest errors for the two winters and the lowest bias for 

annual simulations. Errors in winter are lower than the sensor resolution (3%), while annual simulations give RMSE greater 10 

than 7%, reflecting the limit of the model to reproduce the summer moisture variability. 

4 Discussion 

4.1 Snowpack simulations 

In the Arctic, snowpacks are subjected to upward water vapour fluxes generated by strong temperature gradients between the 

atmosphere and the ground. These fluxes lead to mass transfers from the lower (warmer) to the upper (colder) snow layers. 15 

Consequently, this process has a considerable contribution to snow metamorphism by decreasing densities at the base of the 

snowpack and increasing densities of its upper parts (Domine et al., 2016a; Sturm and Benson, 1997). Domine et al. (2016a) 

estimated vertical water vapor fluxes in the snowpack, and came up with a mass loss of the basal layer of 2.6 kg m-2 over two 

months. It corresponds to a density decrease from 300 to 200 kg m-3 for a 3 cm-thick layer, in line with the model overestimation 

of the basal layer density. Although this estimation is approximate, it supports the suggestion that the vertical water vapor flux 20 

is the main cause of the model misrepresentation of the density profile. The resulting vertical ksnow profiles are inverted in 

simulations, with high ksnow at the bottom part of the snowpack and low ksnow in the upper section, which affects the temperature 

gradient in the snowpack and the boundary fluxes. Further, downwelling shortwave absorption is lower in the Arctic because 

of the large zenith angle in late winter, and this is not accounted for in the original version of Crocus. Therefore, solar warming 

of the snowpack is exaggerated, resulting in incorrectly simulated melting episodes. 25 

Despite their significant variability, averaged snow height obtained from snow pits in May 2014 and 2015 are well reproduced. 

To obtain that, the snowfall amount in winter 2013-2014 had to be reduced by 30%. Without this artificial modification, the 

models were not able to reproduce this low snow year. Given the importance of blowing snow events in the Arctic, accounting 

for snow redistribution by wind could also improve the simulated snow height (Gisnas et al., 2016; Libois et al., 2014). Even 

if relatively few strong wind events were recorded on Bylot Island in winter, Sturm et al. (2001b) showed that a single event 30 

could transport important amounts of snow. Hence, snow compaction and sublimation caused by wind are also critical to 

simulate accurately snow height and density in the Arctic, which was already improved after increasing the maximum snow 
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density reached by drifting snow to 600 kg m-3. This change also partially compensates for vertical water transport, which 

increases upper layer densities. However, the models are not able to reproduce wind slab formation and the resulting increase 

in density as observed. But as already mentioned by Domine et al., 2016a: “The Crocus representation of the wind-packing 

process cannot be evaluated here, as the density increase also has contributions from water vapour deposition due to the upward 

flux and their respective contributions cannot be observed separately.” 5 

4.2 Soil simulations 

Granulometry is the main factor influencing soil thermal and hydraulic properties, so it is essential to analyze the soil 

composition of the studied site. Including SOC and especially litter greatly improved simulations of soil temperature and water 

content. Summer soil temperature is better reproduced at 15 cm depth than close to the surface. The addition of a litter improves 

simulation results, but the model is still restrained by a limited representation of surface organic covers. A detailed analysis of 10 

measured and simulated vertical profiles of soil properties highlighted that the difference between the surface moss and the 

dead litter leads to a stratification in the first 2-3 cm of soil, with a lower thermal conductivity (i.e. a higher insulating capacity) 

for the moss. A moss surface also enhances the water infiltration (Beringer et al., 2001), resulting in a dryer soil surface and a 

greater storage of moisture in lower layers. Because ksoil and the freezing process are highly dependent on the water content, 

improving the hydraulic properties of the soil scheme by considering a moss cover could help better reproduce the zero-curtain 15 

period and the soil thermal regime for layers close to the surface. 

In light of the results of the snow-soil coupled evolution, it appears that errors in simulating the soil thermal regime manifest 

themselves mostly during freezing and thawing. In a similar study, Langer et al. (2013) found that the permafrost thermal state 

was mostly governed by the snow thermal properties. Here, the too rapid simulated soil freezing and thawing may be caused 

by the high thermal conductivity of the basal snow layer. For thawing, this is enhanced because of the early simulated 20 

snowmelt, linked to inadequate albedo simulations, which have a critical impact in May. It is interesting that the most 

sophisticated model experiment (run wind) is able to reproduce quite accurately the ground thermal regime at all depths in 

winter (Fig. 10), even though the thermal properties of the snow are not accurately simulated. Numerical models can be viewed 

as descriptions of a set of complex processes where error compensation is optimized. Therefore, we suggest that the insufficient 

insulating properties of the simulated snowpack are compensated by the inverted thermal conductivity profile, because the 25 

simulated insulating top snow layer damps air temperature fluctuations and thus limits heat transfer during cold spells. Under 

periodic diurnal temperature fluctuations, cold waves cannot penetrate into the simulated snowpack as well as when a 

conducting layer is present, so that the overall heat loss would be reduced by the inverted stratification. Of course, this is just 

a hypothesis that needs to be tested in future work, but some process exists, that compensates for the insufficiently insulating 

simulated snowpack, to explain the excellent soil temperature simulation most of the time.  30 
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4.3 Representativity of observations 

The very large spatial variability of snow properties makes the comparison between simulations outputs and observations 

difficult. In particular the snow height appeared to vary a lot with the microtopography at the 50-cm scale, thus only 

measurements performed in the immediate vicinity of the station can be used to assess the link between snow and soil properties 

measured at one specific site. 5 

The lack of precipitation measurements is a major concern, because most of the snow and soil properties depend on the amount 

of precipitation. In particular, precipitation controls the snow height and the soil water content. It is well known that measuring 

precipitation in the Arctic is a challenge, especially in winter when snow falls in windy conditions and precipitation gauges 

are only catching between 20 to 70% of the actual amount of snow (Goodison et al., 1998; Liston and Sturm, 2002). But using 

a shielded precipitation gauge and correcting data using wind speed data should help reduce the large uncertainty that we have 10 

using ERA-interim precipitation data alone, as already recommended by Bokhorst et al. (2016). 

5 Conclusion 

Applying the coupled snowpack-soil models ISBA-Crocus and ISBA-ES to a high Arctic site reveals major deficiencies related 

to typical Arctic conditions. The main weakness lies in the simulation of snow physical properties, because the absence of a 

modelled upward water vapour flux prevents reproducing the observed density profiles. The resulting vertical profiles of ksnow 15 

are inverted in simulations, producing erroneous heat transfers through the snowpack. This work also illustrates that 

determining snow thermal conductivity from density only is inadequate especially (but not only) in the Arctic, confirming the 

theoretical work of Löwe et al. (2013) and Calonne et al. (2014). Considering also a microstructural variable, or perhaps snow 

type, appears mandatory (Lehning et al., 2002). 

The soil temperature is the least well simulated during freezing and thawing periods. The main reason is the too conductive 20 

basal snow layer, which allows the soil to cool and warm too rapidly. Still, ISBA-Crocus manages to reproduce the temperature 

of the soil satisfactorily in summer and winter. Our results suggest that errors in the ksnow stratification can compensate errors 

in simulated ksnow values in winter. Hence, despite its apparent good results, Crocus is not better adapted than simpler models 

like ES to simulate Arctic snow thermal properties. The snow height has also a major influence on the winter soil temperature, 

but it is highly variable because of the wind-induced snow redistribution. Finally, a better representation of surface organic 25 

layers should improve simulations of the top soil properties, in particular the water content which controls the soil thermal 

properties and the water phase changes. The water content also governs the amount of water vapour transferred from the soil 

to the snow. 

There are therefore strong uncertainties in climate projections related to the permafrost-carbon feedback, because even the 

most sophisticated snow models cannot accurately simulate heat transfers through Arctic snowpacks. In particular the soil 30 

freezing and thawing processes need to be carefully simulated, because they determine most of the permafrost properties 

(Hinzman et al., 1991). The dual challenge to GCMs is thus to improve the representation of snow Arctic processes, in 
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particular the water vapour fluxes and the resulting density and thermal conductivity profiles, and to include sub-grid snow 

height heterogeneities (Liston, 2004) in order to accurately simulate the thermal regime of permafrost. 

6 Data and code availability 

Forcing data used for this research and evaluation data of Figures 2, 6, 8, 10 and 11 are available for further use in the scientific 

community at Nordicana D, doi:10.5885/45460CE-9B80A99D55F94D95. The strong differences between Arctic and alpine 5 

snowpack types encourage to incorporate such datasets in the upcoming model intercomparison exercises, in particular ESM-

SnowMIP (http://www.geos.ed.ac.uk/~ressery/ESM-SnowMIP.html) which currently does not include sites featuring tundra 

snow types. The model is open source, it is available via the SURFEX platform which can be downloaded at http://www.umr-

cnrm.fr/surfex/. The simulations presented in this paper were realized with SURFEX version 8.0, revision 4006. 
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Figure 1. Location of the study site in the south-west plain of Bylot Island, in the Canadian Arctic archipelago.  
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Figure 2. Snow height evolution over the 2 years of observations. Results of several hundred measurements using an avalanche probe 

(random measurements) and of a few snow pit data close to our site, performed in May 2014 and 2015, are also shown. 5 
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Figure 3. Stratigraphies and vertical profiles of density measured on 14 May 2014 (left) and 12 May 2015 (right), and simulated 

densities on 14 May 2014 and 6 May 2015. 
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Figure 4. Vertical profiles of snow thermal conductivities measured on 14 May 2014 (left) and 12 May 2015 (right), and simulated 

on 14 May 2014 and 6 May 2015. 
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Figure 5. Measured and simulated snow thermal conductivity values as a function of density. Crocus computes ksnow from the density 

only following Yen’s parameterization, while ES includes the thermal effects of latent heat fluxes within the snowpack. Regression 

curves from Yen (1981) and Sturm et al. (1997) are also shown, as well as observed snow types. 5 
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Figure 6. Evolution of simulated and observed temperatures within the snowpack during winter 2014-2015. Observations at 2, 12 

and 22 cm come from the NPs, and the surface temperature is measured by the IR120 sensor. 

  5 



32 

 

 

 

Figure 7. Overview of snow height (top), mean thermal conductivity (middle), and thermal insulance (bottom) measured during May 

2014 and 2015 field campaigns, and simulated values. 
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Figure 8. Evolution of the soil thermal conductivity measured at 10 cm depth, and simulated (run wind) at depths of 10 and 20 cm.  
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Figure 9. Vertical profiles of ksoil, soil temperature and volumetric water content measured on 29 June 2014 and simulated in the 

first 20 cm below the surface. Horizontal bars indicate the standard deviation of measurements. The runs litter, SOC, wind and ES 

simulated the same soil temperature profiles. 5 
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Figure 10. Observed and simulated daily mean soil temperature at 5, 10 and 15 cm deep.  
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Figure 11. Observed and simulated daily mean soil volumetric water content at depths of 5, 10 and 15 cm. 
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Table 1. Configurations of the numerical experiments, all realized with Crocus except for ES. Changes are incremented in addition 

to the previous configuration. 

Run name Run configuration 

base base simulation using SURFEX version 8.0 (rev. 4006), for a mineral soil 

litter addition of a 10 cm-thick surface litter 

SOC addition of organic carbon within the soil profile 

wind increase the maximum density for wind-induced snow compaction, from 350 to 600 kg m-3 

ES use the ES snow scheme instead of Crocus, same configuration as wind 
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Table 2. Statistical indicators of the differences between observations and model results of the soil temperature (°C) at -15 cm on a 

6-hour timestep. Bold values correspond to the best scores. 

year period type 
runs 

base litter SOC wind ES 

2013-2014 

annual 

bias 1.48 0.37 0.32 -0.92 -4.42 

rmse 3.41 2.62 2.61 2.54 5.91 

r² 0.92 0.94 0.94 0.95 0.95 

winter 

(DJF) 

bias 1.85 1.54 1.33 -1.42 -8.01 

rmse 1.94 1.66 1.45 1.62 8.06 

r² 0.94 0.94 0.94 0.88 0.93 

2014-2015 

annual 

bias 3.31 2.08 2.04 0.50 -2.96 

rmse 4.34 3.49 3.52 2.63 4.86 

r² 0.94 0.94 0.94 0.95 0.92 

winter 

(DJF) 

bias 3.64 3.06 2.89 0.38 -5.07 

rmse 3.68 3.12 2.95 0.61 5.39 

r² 0.97 0.97 0.97 0.98 0.96 
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Table 3. Statistical indicators of the differences between observations and model results of the soil volumetric water content (%) at 

-15 cm on a 6-hour timestep. Bold values indicate the best scores. 

year period type 
runs 

base litter SOC wind ES 

2013-2014 

annual 

bias -3.18 -4.18 -2.21 -2.38 -3.20 

rmse 11.85 8.90 8.37 8.19 8.01 

r² 0.48 0.73 0.72 0.74 0.77 

winter 

(DJF) 

bias -2.97 -2.99 -1.67 -1.83 -2.13 

rmse 2.97 2.99 1.67 1.83 2.14 

r² 0.93 0.93 0.93 0.85 0.90 

2014-2015 

annual 

bias -2.31 -3.66 -1.41 -1.97 -2.69 

rmse 12.30 8.33 7.97 7.29 7.99 

r² 0.39 0.75 0.72 0.78 0.74 

winter 

(DJF) 

bias -1.81 -1.85 -0.52 -0.67 -0.93 

rmse 1.81 1.85 0.53 0.67 0.93 

r² 0.89 0.90 0.90 0.90 0.89 

 


