
1 

 

Interactive comment on “Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the 

permafrost thermal regime at a high Arctic site” by Mathieu Barrere et al. 

-Reply to Anonymous Referee #1 

This paper evaluates model skill in reproducing snow and soil characteristics at a permafrost site in Canada. At this site, a 

variety of in-situ data were retrieved: snow height, snow stratigraphy, temperature, and conductivity. The aim of the study is 5 

to find out how good a coupled soil-snow model is at reproducing the transient temperature signal at this site, during two 

consecutive seasons (2013-2015). Model runs have been performed with the Crocus snow model and the ISBA soil model. 

Sensitivity experiments are performed one snow property and several soil properties. In addition, the simpler ES snow model 

has been included, for comparison. 

I think this study identifies important shortcomings in these snow models, some of which will apply to other models as well. 10 

The article is well structured and contains material that complements existing studies with Crocus. Unfortunately, the paper is 

not particularly well written and tends to ’jump to conclusions’ which undermines its academic quality. I recommend 

publication after the following issues have been addressed. 

We thank the reviewer for his positive comments and for taking the time to help us optimize our writing. Our responses are 

embedded in blue italics. 15 

 

Major comments 

The paper is too long in general. I believe it should fit on 3/4 of the current number of pages. Leave out unnecessary sentences, 

e.g. only summarize site instrumentation, and refer to full discussion in Domine (2016a). Rewrite long sentences. More use of 

academic language which is shorter. Focus on main results. Suggest to combine Results and Discussion. Perhaps make two 20 

new sections out of those: (1) Snow model results and (2) Soil model results. 

Thank you for the comment. The paper has been shortened following your suggestions. However, we chose to keep the Results 

and Discussion sections separated to facilitate the readability of the paper and also to avoid confusion as to what is actual 

result and what is discussion. 

Grammar: the paper could have a better use of linking words to create flow and thus make it easier to read. There are 25 

grammatical errors that need to be fixed before publication. I listed some at Specific Comments but I did not aim for 

completeness. 

Suggest to present the experiments in a table, instead of in the text. This would make them easier to refer to and would help to 

clarify the text, e.g. Sect. 2.3. Then, introduce the experiments earlier in the text, e.g. ’litter’ on page 7 line 1, ‘SOC’ on page 

7, line 8-14, ‘wind’ on page 8, line 8 . What confused me at first is that the additions are additions with respect to other 30 

experiments, not ‘base’. It would be great if this could be made more clear. 

Thank you for this useful suggestion. We accordingly changed the presentation of the different experiments to make them 

clearer. Experiments are introduced in the models description, P5, L12: “Based on a series of incremental runs, we 

particularly focus on the following model features: surface litter, soil organic carbon and density of the drifting snow.” And 

then run ‘base’ on p.6 l.27, ‘litter’ on p.7 l.3, ‘SOC’ on p.7 l.17, ‘wind’ on p.8 l.8, and ‘ES’ on p.9 l.11. All the experiments 35 

are presented in Table 1. We added details about the iterative experiments (p.9 l.16): “[…] we performed a series of runs with 

incremental complexities from August 2012 to June 2015 (Table 1). The run wind integrates all our changes, it consists in the 

most detailed configuration tested here with Crocus. ES uses the same configuration as the run wind.” 
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One of the main results is Figure 3, that shows that snow density is not well reproduced by the models. It is hypothesized by 

the authors that this is due to a missing process: upward vapour fluxes. Yet they have no run with this process included so they 

cannot conclude that this process is fully responsible, only partially, or not at all. The abstract is therefore misleading (Page 1, 

line 20-22) and should be changed. 

As of today, there is no snow model that describes water vapor transport induced by the temperature gradient. Including this 5 

process is a significant research project but is in fact very complex because of the very nature of current snow models that 

separate the snowpack in several layers of different thicknesses. Efforts are under way but will not lead to a new model for 

quite a while. That the water vapor flux is important is discussed in detail in Domine et al. (2016a). It is also proven by 

photographs of shrub branches buried in snow, where depth hoar crystals grow on the underside, demonstrating the existence 

of a strong flux (Fig. 1). Granted, nothing today proves that this flux is responsible for 100% of the discrepancy between 10 

models and observations, but models have other approximations anyway that would make a possible demonstration no more 

convincing than the observation of intensive crystal growth under shrub branches. In any case, we have modified the abstract 

(p.1 l.20): “The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation of 

the upward water vapour fluxes generated by the strong temperature gradients within the snowpack in snow models.” 

 

Figure 1. Picture of a shrub branch with depth hoar crystals stuck on the 

underside, demonstrating the existence of a strong upward water vapour 

flux within the snowpack. 

 15 

On page 8 line 8 the authors explain that compaction by drifting snow can now reach up to 600 kg/m3, compared to 350 kg/m3 

before. The argumentation for this change is anecdotal (‘we observed densities of 450 kg/m3’). Should the reader therefore 

regard this change as just a sensitivity test, rather than a real physical process that was misrepresented? Moreover, doing this 

you may be compensating for other biases / missing physics in the model, such as the missing upward vapour transport, and, 

my hypothesis, early melt and refreezing? This potential caveat is not discussed. 20 

Thank you for these questions. First of all, as stated p17, l. 23, “Numerical models can be viewed as descriptions of a set of 

complex processes where error compensation is optimized“. This is true for Crocus, for ISBA and any other snow or land 
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surface model. And this is why a model used in conditions very different from those it was designed for can lead to large 

errors: because error compensation is not optimized anymore. At first, as indicated p8, l.6, increasing the maximum density 

reached by drifting snow concerns a misrepresented physical process, because Arctic snow densities regularly exceed 350 kg 

m-3. In essence, yes, by changing snow density, we are trying to improve error compensation for Arctic conditions, while it is 

clear that this will in fact attempt to compensate for vertical water transport, which increases upper layer densities. This 5 

change was then used as a sensitivity test to assess the impact on snow and soil properties. Changing this parameter may 

affect other processes, in particular snow driftability and early melt (see next point). 

This is now stated on p11, l32: “[…] increasing the maximum density reached by drifting snow helps to reduce the 

underestimation in upper layers.” And in the discussion (P17, L1): “This change also partially compensates for vertical water 

transport, which increases upper layer densities.” 10 

I guess the goal of simulation ‘wind’ is to simulate a hardened top wind slab. Rather than changing the upper limit to 600 

kg/m3 in simulation ‘wind’, would it not be more effective to decrease the characteristic time scale in the drifting snow 

compaction (parameter Tau in Vionnet, 2012)? Looking at Figure 3, I see none of the model results exceed 300 kg/m3 at the 

top, so I wonder if 600 kg/m3 is ever reached at all. 

Changing the characteristic time scale (parameter Tau) was another concern of our work. The results show only slight 15 

differences (less than 10%) in snow densities between runs ‘wind’ (maximum density changed from 350 to 600 kg m-3) and 

‘windTau’ (characteristic time scale changed from 48h to 12h), see Fig. 2. Consequences are colder soil temperatures during 

winter with the run ‘windTau’, because of the overall more conductive snowpack. Even if the theoretical maximum density of 

600 kg m-3 is never reached in our simulations, we found interesting to discuss the impact of compensating errors resulting in 

an apparently well-simulated soil temperature by the run ‘wind’. The value 600 kg/m3 is used to change the shape of the 20 

relationship between wind speed and snow density, but it does not mean that this value should be reached in the simulations.  
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Figure 2. Vertical profiles of density measured on 14 May 2014 (left) and 12 May 2015 

(right), and simulated with Crocus on 14 May 2014 and 6 May 2015. 

 

In Figure 3, density in May 2014, the ‘wind’ experiment simulates lower density at the top than the others. This is counter-

intuitive, as you would expect always higher densities in this simulation. Could you provide a possible explanation to why this 

is? 

Good point. The increase in density of the sub-surface snow layer during spring is due to melt, not to wind-induced compaction. 5 

Spring melt is slower in run ‘wind’ compared to previous experiments, because snow temperatures are lower. This is explained 

by higher surface thermal conductivities, allowing cold waves to propagate easier to the bottom of the snowpack during winter. 

In spring, heat waves are also more easily transferred through the snowpack in run ‘wind’, while in previous experiments heat 

accumulates in low-conductivity surface snow layers, accelerating their melt-out. A brief explanation is now given on page 11 

line 30: “In May 2014, the wind experiment simulates yet lower densities in sub-surface snow layers than the other Crocus 10 

runs. This is attributed to early melting, which occurs slower in this run because of colder snow temperatures compared to 

previous experiments.” And in the snow temperature description (P13, L4): “The run wind simulates colder temperatures than 

previous experiments. This is attributed to the higher conductive upper layers, allowing cold waves to propagate through the 

snowpack during winter.” 

The analysis of snow temperature completely omits the effect of latent heat by rain and meltwater refreezing. What do the 15 

authors think is the importance of refreezing on temperature and how do the models simulate this? 
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Crocus computes heat fluxes by taking into account latent heat exchanges, including contributions from evaporation of liquid 

water and sublimation, and melt-refreeze cycle. It also includes a precipitation heat advection term when it is raining. This is 

detailed in (Vionnet et al., 2012), to which the reader is referred, and it therefore will not be repeated here. 

Snow melt and water percolation take place in a manner which is spatially very variable. Percolation follows channels in 

snow, water lenses form very irregularly at discontinuities in capillarities (such as at the base of wind slabs). Simulating this 5 

with a 1-D model is a challenge. Observing this using point measurements carries the problem of data representativity. Hence 

we feel that no interesting discussion on this point can be made here. If we had made an addition, it could only have been 

“Latent heat exchanges and percolation during snow melt are expected to modify the temperature profile and this is observed 

in the simulation on 19 May 2015, with the snowpack become almost isothermal. From our measurements, this happens on 10 

June. However, given the spatially highly variable nature of percolation, 1-D models and point measurements make any 10 

meaningful comparison difficult and of limited interest.” 

It is pretty clear to us that this adds little value to the paper, and for the sake of concision (recommended by the reviewer) we 

prefer not to develop this point. 

Another key result is Figure 5, that shows that a simple density relationship for thermal conductivity is not sufficient to 

reproduce most observations. That said, it does not deserve the qualification ‘totally inappropriate’ (P18, L30). 15 

Changed to ‘inadequate’ (P18, L17). 

P17, L5-6: the effect of missing effect of solar zenith angle is stated like a fact. Yet you have no results or reference to support 

this. Make clear that this is a hypothesis, not a given fact. 

Please see response to referee #2, point 2. 

The two previous comment exemplify a general critique that I have on this article: the wording is not precise enough. In the 20 

article, there are sentences without such modifiers that read like facts, but are in reality claims or beliefs of the authors. This 

must be addressed in the final version. 

The authors do not mention whether the model changes they did (litter/SOC/wind) have officially been incorporated into 

SURFEX. 

Litter and SOC have been integrated to SURFEX v8 (Decharme et al., 2016). Changes we made (maximum snow density value 25 

for wind compaction, litter thickness and SOC content) can be easily reproduced. 

 

Specific comments 

P1, L19: soil and snow thermal regime. Simulated soil and snow properties. 

Done.  30 

P1, L20: compared with → compared to, add comma after ‘temperature’ 

Done.  

P1, L21: suggest to change ‘erroneous’ to ‘unrealistic’ 

Done.  

P1, L29: climate change. 35 
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Done.  

P2, L31: ES is introduced as an intermediate complexity snow model. I would classify this as a simple (yet, multilayer) model, 

whereas Crocus is of intermediate complexity. A complex model is SNOWPACK (Lehning, 2002). 

Two distinct methods are frequently used to simulate snowpack evolution: the degree-day method used in hydrology and the 

energy-balance method used in land surface schemes of Numerical Weather Prediction (NWP) and climate models. In the 5 

following, we only discuss the complexity of snowpack models using the energy balance method. 

While there is no official categorization of snowpack models, it is generally agreed that several key components make the 

delineation between simple, intermediate complexity and sophisticated snowpack models. Simple models are generally single 

layer schemes used for numerical weather prediction or climate model land surface schemes (see e.g. Essery et al., 1999, 

Avanzi et al., 2016). Most operational NWP and climate models still use such snow components, while a few of them are 10 

gradually moving toward using multi-layer "intermediate complexity" models, with improved representation of heat storage 

and intrinsic snow processes, which requires multi-layer approaches (see e.g. Essery et al., 2013). ES clearly belongs to this 

category of models (Decharme et al., 2016). 

Beyond, there is still a higher class of sophistication for snow models, which in particular includes explicit representations of 

snow microstructure and sophisticated approaches for handling e.g. solar radiation budget and liquid water percolation. 15 

Crocus and SNOWPACK feature approximately the same level of detail for the representation of snow microstructure and its 

evolution (through the use of semi-empirical variables such as dendricity, sphericity, sometimes replaced by specific surface 

area - see Carmagnola et al., 2014, and the associated evolution parameterizations), and both handle a large number of snow 

layers in a Lagrangian way. Liquid water treatment was recently improved in SNOWPACK using the Richards equation 

(Wever et al., 2014), also more recently implemented in Crocus (D'Amboise et al., 2017). The original version of Crocus uses 20 

three spectral bands to compute solar light radiative transfer and albedo, based on physical properties of snow and snow age 

(Vionnet et al., 2012), while SNOWPACK currently uses a broadband albedo parameterization. Following recent 

developments, Crocus is now equipped with a spectrally-resolved radiative transfer scheme (Libois et al., 2015), and a multi-

physics version of Crocus was recently published (Lafaysse et al., 2017- which includes parameterizations initially 

implemented in SNOWPACK). Clearly, SNOWPACK and Crocus belong to the same category of snowpack models, with 25 

comparably similar levels of sophistication depending on the process. 

As a consequence, we do not think it is necessary to change the description of ES and Crocus in the manuscript. 

P4, L30: snow pits are two words 

Corrected.  

P5, L12: SURFEX v8, as in title? 30 

Added.  

P5, L11: why did you not do bias correction on the radiation data? 

As indicated in the paper (p5 l.21), the radiometer shifted from its horizontal position. Therefore, as we added on page 6 line 

9: “ERAi radiation data were kept unchanged for lack of reliable measured values” 

P8, L8: ‘we increased this value to 600 kg/m3’ → only in simulation wind! 35 

Indicated.  

P9, L8: models not model 
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Done.  

P9, L28: units of thermal insulance are m**2 K / W , see your Figure 7. Units of thermal resistance are K/W. Rename to 

insulance, or change units to K/W. 

Changed to thermal insulance, thanks for this comment.  

P10, formula 5 and 6: parts are missing 5 

Corrected.  

P10, L20: this made me wonder, does SURFEX have a representation of snow cover fraction? 

SURFEX can indeed represent the surface cover fraction of snow, vegetation and bare ground. Here, we simply used a snow 

cover fraction of 0 when the surface was snow free, and of 1 when at least 1 mm of snow was covering the ground. We thus do 

not think it is relevant to add details about it in the paper as what we did on this aspect is pretty clear. 10 

P11, L1: Snow height was not well reproduced in 2013-2014 so a 30% reduction to precip has been applied in the model runs. 

The authors do not discuss the phase of precip. Did you experiment with the temperature threshold for snow? 

Changing the temperature threshold of ±1°C for the ERA-interim precipitation phase recalculation lead to changes of 9-10% 

in cumulated snowfall between August 2013 and August 2015. Because of the high uncertainty on the precipitation rate, and 

given that observed snow height is quite well reproduced in winter 2014-2015 without changing the snowfall amount or the 15 

temperature threshold for precipitation phase, we chose to arbitrarily reduce the snowfall amount for the winter 2013-2014. 

P11, L2: “in good agreement with the snowpits”. How about automatic gauge? 

Snow gauge data are shown in Figure 2. As stated in the text, automatic snow gauges give just one point measurement while 

snow pits yield several data points and are therefore more representative. We feel this was detailed enough in the text, e.g. 

page 4 line 21, page 10 line 16. 20 

P11, L6: “it seems to be “ is not academic English 

Changed for “which could be”. 

P11, L12: I’m missing the causal relationship here. Restate like belief or hypothesis. 

Please see response to referee #2, point 2. 

P11, L30-31: suggest to restate: this partially compensates for the underestimation of density in the upper layers 25 

Done (P11, L28), thanks for the suggestion.  

P12, L5-6: why is the mean density in ES higher than in Crocus? Is this due to the discretization only, or are there differences 

in the physics? 

This is due to the faster compaction rate in ES, because it does not account for the snow microstructural property whereas 

Crocus reduces compaction rates for crystals of depth hoar, frequently found in the Artic snowpack.  30 

P12, L9: Suggest to restate: thermal conductivity is primarily controlled by density. 

Changed to (P12, L4): “Since thermal conductivity is totally (in Crocus) or mostly (in ES) controlled by density”.  

P12, L25: ‘gross’ is not academic English. 

Changed to “very large”.  
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P13, L9: suggest to start the sentence with ‘In winter, . . .’ 

Done.  

P13, L21-22: suggest to move this to Methods. 

We prefer to let it here to facilitate the comprehension. 

P13, L23: unclear 5 

Changed to (P13, L17): “Litter and SOC additions have little effect on snow properties, the most noticeable being a reduction 

of less than 1 cm in snow height.” 

P14, L14: unclear 

Answered to referee #2, point 5. 

P14, L17: spelling error ‘sate’. Suggest to check entire Latex document using aspell. 10 

Done. 

P15, L1: ‘which confirms’ too strong? 

Changed to “which supports”. 

P15, L7: warm temperature -> high temperature, ‘and at the’ → ‘at all’ 

Done. 15 

P15, L20: suggest to change ‘It is because’ to ‘This is attributed to’ 

Changed to “This may be attributed”. 

P15, L27: Rˆ2 is used, yet Table 1 lists R. 

We are sorry, but Table 1 clearly states r2.  

P16, L7: suggest to remove ‘but’, and start sentence with ‘Although’ 20 

Done. 

P16, L22-26: discusses temperature, not soil water content. 

Removed. 

P16, L29: suggest to drop ‘important’ 

Removed. 25 

P16, L31: suggest to drop ‘considerable’ 

This is what shapes the Arctic snowpack. We do confirm that the impact is considerable. 

P17, L1-3: need reference 

There are already 2 references. The fact that density errors propagate to thermal conductivity is because thermal conductivity 

is determined solely by density, as already discussed in detail in many places in the paper. We feel there is no need to repeat 30 

this here. 
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P17, L5-6: need reference or rewrite. 

Rewrote as (P16, L23): “Further, downwelling shortwave absorption is lower in the Arctic because of the large zenith angle 

in late winter, and this is not accounted for in the original version of Crocus. Therefore, solar warming of the snowpack is 

exaggerated, resulting in incorrectly simulated melting episodes. 

P17, L8: move TARTES discussion to Methods. 5 

Done (P8, L21). 

P17, L17: maximum snow density reached by drifting snow 

Done. 

P17, L22: ‘main factor influencing soil properties’. Do you mean thermal and/or hydraulic properties? 

Both, changed accordingly (P17, L7). 10 

P17, L28: suggest to change ‘increases’ to ‘enhances’ 

Done. 

P18, L19: suggest to use ‘ERA-Interim’, not ‘ERAi’ 

Done. 

P19, L2: provide reference to SNOWPACK, Lehning et. Al. (2002) 15 

Done. 

P19, L12: Crocus is no longer ‘most sophisticated’. It is intermediate complexity. 

See the previous answer. 

P19, L15: to GCMs 

Done. 20 

P19, L19: Figures. 

Done. 

P22, L6: Reference Elberling et al. should start on new line. 

Done. 

Figure 7: units for ksnow are misspelled. Suggest singular form in caption (snow height, thermal conductivity). Rename 25 

resistance to insulance. 

Done. 

Figure 9: Depth has positive value in the soil. Switch to height if you prefer negative values. No model output between 10 and 

20 cm depth, why not include all points that the model has? 

Done. No points between 10 and 20 cm depth. 30 
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Interactive comment on “Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the 

permafrost thermal regime at a high Arctic site” by Mathieu Barrere et al. 

-Reply to Anonymous Referee #2 

 

Review of "Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime 5 

at a high Arctic site" by M. Barrere et al. 

The authors present an evaluation of the ability of different combinations of snow and soil developments within the SURFEX 

model platform, to simulate the snowpack and soil thermal dynamics at a high Arctic site. For that purpose, they collected very 

detailed and well-thought observations related to both snow and soil. These data are mostly used to validate the snow and soil 

schemes. Such observations are very rare in Arctic environments, and of great value for model validation. The paper mainly 10 

diagnoses forces and weaknesses in the current modelling of snow and soil by schemes of different complexity, one of which 

is to be run within the CMIP6-experiment. This diagnostic is important for climate modellers in the context of permafrost-

carbon climate feedback. 

Thank you for these positive comments and for giving us suggestions to improve our paper. Our responses are embedded in 

blue italics. 15 

However, first, there are a few shortcomings that undermine the scientific quality of the paper : 

* Important literature related to the topic of snow and permafrost is missing. Before the present study, Langer et al. 2013 

performed extensive sensitivity tests to assess the critical snow and soil parameters for the soil thermal modelling at a high 

Arctic permafrost site. Loewe et al. 2013 provided the first 2nd-order bounds for snow thermal conductivity, confirming the 

importance of anisotropy besides density for the estimation of the Ksnow tensor. 20 

Thank you for these references. They have been included in our paper (Langer et al., 2013 on p16, l1 and p17, l18; Löwe et 

al., 2013 on p12, l16 and p18, l18). 

* Together with Referee#1, I noticed that some hypotheses about the origin of biases assessed by the paper, are presented as 

facts and not hypotheses. Examples of that are : - the early melt erroneously simulated in May 2015 and supposedly caused by 

lacking zenithal angle dependency in the albedo parametrization (how about missparamatrized turbulent fluxes ? local 25 

temperature and wind conditions differences with respect to ERA-i ? ...) - the accelerated melt-out induced by albedo 

parametrization [p15 lines 24-25 : "Ultimately, the treatment of snow albedo in models is such that melt-out is accelerated, so 

that soil thawing is greatly accelerated in spring"] What is the exact parametrization set responsible for this acceleration, how 

does it differ from reality ?  

Further investigations have been conducted using the radiative transfer scheme TARTES implemented in Crocus, resulting in 30 

improved simulated melting episodes. This is why we suggest that the early melt is caused by the too simple albedo 

parameterization, and in particular by the absence of solar zenith angle dependency. We chose not to use TARTES because, 

as stated on page 8 line 23: “[…]the lack of data on snow impurities (nature, deposition, light-absorbing spectroscopy) 

prevented us from using TARTES in Bylot Island simulations”, as it led to other biases, the discussion of which are beyond 

the scope of this paper. Also, as stated in our response to Reviewer 1, models rely on error optimizations so that it may be 35 

difficult to attribute a given model shortcoming to a single cause. Reasonable suggestion can however be made. In any case, 

we changed the text as follows: 

(P11, L8): “We did not observe any signs of spring melt before 18 May during the field campaign. To test whether the inexact 

melt onset date simulated was caused by the lack of solar zenith angle consideration, we briefly tested Crocus coupled to 
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TARTES, which includes treatment of SZA. With TARTES, the melt onset date was accurately simulated, which leads us to 

suggest that not accounting for SZA is the main cause of the inadequate melt onset date simulation. However, a full 

implementation of TARTES in Crocus for this study would have required data on snow impurities.” 

(P15, L14): “Ultimately, the treatment of snow albedo in models is such that melt-out is enhanced under high latitudes, so 

that soil thawing may be greatly accelerated in spring.” 5 

(P16, L23): “Further, downwelling shortwave absorption is lower in the Arctic because of the large zenith angle in late winter, 

and this is not accounted for in the original version of Crocus. Therefore, solar warming of the snowpack is exaggerated, 

resulting in incorrectly simulated melting episodes.” 

 

-the possible impact of vapour flux on the snowpack density could maybe be assessed by simple estimations (order of 10 

magnitude) 

We added on page 16, line 17: “Domine et al. (2016a) estimated vertical water vapor fluxes in the snowpack, and came up 

with a mass loss of the basal layer of 2.6 kg m-2 over two months. It corresponds to a density decrease from 300 to 200 kg m-3 

for a 3 cm-thick layer, in line with the model overestimation of the basal layer density. Although this estimation is approximate, 

it supports the suggestion that the vertical water vapor flux is the main cause of the model misrepresentation of the density 15 

profile.” 

* Some statements lack the scientific accuracy that should be expected : - a linear regression is used to make ERAi data 

consistent with original field data; such a regression usually relies on the ordinary least-square method which provides an 

unbiased estimate. Hence, the statement (p6 line1) that "The correction led to reduce these respective biases by 20%, 3.3% and 

10%." is annoying. I believe that the authors meant a reduction in the standard deviation between the corrected ERAi and the 20 

observational data.  

Indeed, it was corrected. 

- the explanation of the experimental noise in the ksoil data is vague : is the method really appropriate for frozen soils ? Even 

though the reader is referred to Domine et al. 2016, a brief assessment of the uncertainty and reliability of the NP method in 

frozen soils would be welcome here.  25 

We added on page 5 line 1: “Our instrumental methods impose to use the same heating power in the NPs for snow and soil. 

The heating power was optimized for snow to minimize heating and hence perturbation to metamorphism. Since soils have a 

higher thermal conductivity than snow, especially when frozen, the thermal signal of the NPs is low and noise for frozen soil 

thermal conductivity data is higher than what could be achieved using a higher heating power.” 

And restated (P14, L5): “As detailed above, the noise in the frozen soil data is due to the low power used to heat the NPs.” 30 

A second major point is that the description of the models and in-depth analyses, very much differ between the snow sections 

(where effects are well described and analysed), and the soil sections (where model description and analysis of phenomena are 

at times missing). Examples of that are (non exhaustively) listed below : The way organic carbon is included in the soil profile 

is not clearly described. In brief words, what are the thermal and hydrological consequences of organic carbon in the soils ? 

What are the thermal properties of the top organic layer featuring litter in ISBA ?  35 

The parameterization of SOC in ISBA is fully described in Decharme et al., 2016. Soil thermal and hydraulic properties are a 

combination of organic properties with the standard mineral soil properties. Including SOC affects the vertical profile of soil 

hydraulic (water retention, matric potential and hydraulic conductivity at saturation) and thermal (thermal conductivity, heat 
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capacity) properties, depending on the organic content in each soil layer (see Fig. 2 in Decharme et al., 2016). We added on 

page 7, line 9: “Briefly, depending on its content which decreases sharply with soil depth, including organic carbon reduces 

the dry soil thermal conductivity, increases its porosity and therefore its saturated hydraulic conductivity.” 

About the surface litter, ISBA assigns organic matter thermal properties to uppermost soil layers (P7, L1): “The thermal 

conductivity of organic matter is set to 0.05 W m-1 K-1 when dry, and to 0.25 W m-1 K-1 when wet.” 5 

Figure 9 shows differences in soil thermal conductivity and water content profiles before and after organic carbon additions 

(run litter, SOC and following). 

Model parameter values (thermal conductivity of the mineral soil, of organic matter, of litter...) should be added to help the 

reader assess the relevance of the model experiments performed and the added value of the ’increased sophistication’. 

Details and values were added on page 6 line 28: “The soil thermal properties, i.e. thermal conductivity and heat capacity, 10 

are computed as a combination of water, ice and soil properties, volumetric water content and soil porosity, following the 

parameterizations of Peters-Lidard et al. (1998). Hence, the soil thermal conductivity is expressed as a function of its 

saturation, porosity, quartz content, dry soil conductivity and phase of water (frozen or unfrozen), where the ice, water and 

quartz thermal conductivities are respectively 2.2, 0.57 and 7.7 W m-1 K-1.” 

In the current context, having very fine metrics (Tables 1 and 2) to assess the increase in performance gained by added 15 

complexity in the snow and soil schemes, is almost disproportionate. 

Indeed, the accuracy shown in Tables 2 and 3 (10-2) could be judged as excessive regarding the current context. However, it 

helps to distinguish differences between experiments, to identify important processes involved when simulating the permafrost 

thermal regime. 

As a result of poor description of the base model and its enhancements with respect to soil processes (litter, SOC), the Results 20 

and Discussion sections dedicated to soil are not always informative and omit (or too briefly go through) important potential 

causes of model errors : i) model parametrization ii) summer soil water content and its impact on the duration of the zero 

curtain iii) possible impact of the too early snow onset in 2013 on the soil cooling. A thorough improvement of these sections 

would considerably benefit the paper. 

We tried to improve the description of soil model parameterizations, as you suggested. Concerning the impact of summer soil 25 

water content on the duration of the zero curtain, we added details on page 15 line 24: “The main difference with observation 

is the timing of freezing and thawing. This is clearly influenced by temperature, so that the errors in simulated temperature 

impact this timing. However, the duration of latent heat exchanges are also determined by the water content.” Then on page 

15 line 32: “[…] it seems that the simulation of the water dynamics in the first cm of the soil is erroneous, and is better 

reproduced below -10 cm. The low simulated VWC values therefore partly explain the too fast simulated soil freezing. 30 

However, as discussed by Langer et al., (2013), the inadequate thermal properties of the snow cover is most likely the main 

source of error in the ground thermal regime.” 

About the early snow onset in 2013, it accelerates soil cooling because of the simulated high basal ksnow values (P15, L9): 

”This may be attributed to the thermal conductivity of the basal snow layer which is too high in simulations, allowing the soil 

to cool rapidly.” 35 

Finally, the manuscript is at times redundant and very precise regarding numeric values, whereas explanations and discussions 

of the processes could be more developed: A better balance would increase the quality of the paper. I recommend publication 

after the mentioned issues have been addressed. 
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Specific Comments : 

* about redundancies : - Whole manuscript : it is maybe not necessary to compare several detailed density or snow values from 

observations and simulations when the Figures obviously support the fact that the profiles severely differ. This of course 

belongs the author’s choice but it results in an abundance of precision that tend to hide the key message conveyed. - lines 4-

12 p 13 exhibit several redundancy and should be reformulated for more synthetic clarity  5 

Done. 

- Lines 6-8 p14 do not add new information w.r.t. preceding text and could be suppressed. 

Done. 

* others : p6 lines 8-10 : which model experiment is compared to snow observations to infer the precipitation correction ? 

Any Crocus experiment can be used to infer the precipitation correction, as they are very slight differences in snow height (see 10 

Fig. 7). Added on p6 l.6: “we arbitrarily changed the ERAi precipitation data for Crocus to match the observed snow height 

at snow pits dug in the immediate vicinity of BylSta” 

p9 sect 5.3.1. It should be stated that all experiments except ES are run with the snow model Crocus. I also agree with referee#1 

regarding the presentation of these "iterative" experiments. Mind the fact that Fig 4 and 6 have ’Crocus ’instead of ’wind’ in 

their legend (I guess). 15 

Done. Fig. 4 and 6 corrected. 

p10 line 1 : model-> models. p10 eq 5 and 6 : ’sim’ do not appear (probably an edition problem) 

Corrected. 

p 11 line 14 : the mentioned bottom DH density range [150-200] is not supported by Fig 3 where 2 among 8 densities measured 

in DH are clearly above 200 kg/m3. 20 

The given density range [150-200 kg m-3] reflects the very bottom snow layer (or basal layer) only, the layer at the interface 

with the ground. On the 2 profiles shown it is about 5 cm-thick. The 2 densities measured above 200 kg m-3 were taken in the 

depth hoar layer situated above the basal indurated depth hoar layer. 

Fig 5: Crocus and ES thermal parametrizations are illustrated here with the same symbol. However, they do not represent the 

same physical property : while Crocus’ ksnow solely accounts for conductive processes, ES-ksnow includes the thermal effects 25 

of latent heat fluxes within the snowpack, which makes it an ’apparent’ thermal conductivity. My non-expect view on the use 

of "apparent" vs "effective" for ksnow is the following: "effective" qualifies the ’representative’ property of an heterogeneous 

medium (ref : Gomez-Munoz et al., 2008 ) while "apparent" qualifies the fact that thermal diffusion through non-conductive 

processes can sometimes be accounted for with the same law as Fourier diffusion, making it possible to include the relevant 

diffusion coefficient into the Fourier conductivity. Please correct me on that if I am wrong. Otherwise, I think this key 30 

difference in the conductivities of Crocus and ES should be better highlighted on Fig 5 by the use of different symbols and/or 

in the caption. 

Yes indeed, ES calculates an apparent thermal conductivity. We followed your suggestion and changed the symbol for ES. We 

also added the following sentence in the caption: “Crocus computes ksnow from the density only following Yen’s 

parameterization, while ES includes the thermal effects of latent heat fluxes within the snowpack.” 35 
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Abstract. Global warming Climate change projections still suffer from a limited representation of the permafrost-carbon 

feedback. Predicting the response of the permafrost temperature to climate change requires accurate simulations of the Arctic 

snow and soil properties. This study assesses the capacity of the coupled models ISBA-Crocus and ISBA-ES to simulate snow 

and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-interim reanalyses were 

used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and 20 

thermal resistanceinsulance are examined to determine the critical variables involved in the soil and snow thermal regime. 

Simulated soil properties are compared to measurements of thermal conductivity, temperature, and water content. The 

simulated snow density profiles are erroneousunrealistic, which is most likely caused by the lack of representation in snow 

modelsbecause Crocus and ES do not represent  of the upward water vapour fluxes generated by the strong temperature 

gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, 25 

with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil 

temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by 

representing adequately surface organic layers, i.e. mosses and litter, and in particular their water retention capacity. Transition 

periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces 

too rapid heat transfers between the soil and the snow in simulations. Hence, global climate models should carefully consider 30 

Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions 

of the permafrost evolution under climate change.  
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1 Introduction 

The Arctic is warming at twice the average planetary rate (Sweet et al., 2015). As climatological, hydrological and biological 

systems are fully coupled (Hinzman et al., 2005), climate change affects each Arctic ecosystem (Post et al., 2009; Serreze et 

al., 2000). Consequences are already observed, such as reduced sea ice extent and snow cover duration (Serreze et al., 2000), 5 

shifts in vegetation (Pearson et al., 2013), permafrost degradation (Smith et al., 2010), and faunal redistribution (Post and 

Forchhammer, 2008). 

Permafrost degradation is of major concern because of its feedback on the global climate system. Indeed, large amounts of 

organic carbon are stored in perennially frozen soils because of the limited microbial activity (Jonasson et al., 2001). Recent 

studies estimate that about 1300 Pg of soil organic carbon (SOC) are stored in permafrost (Hugelius et al., 2014), constituting 10 

one of the largest terrestrial carbon pool. As permafrost is warming and thawing occurs, SOC becomes available for microbial 

mineralization, resulting in the release of potentially very important amounts of greenhouse gases (GHG) to the atmosphere 

(Elberling et al., 2013; Schuur et al., 2015). This effect is considered as one of the strongest positive climate feedbacks and 

needs to be taken into account in global temperature predictions. However, the permafrost-carbon feedback has not been 

included in the climate projections of the IPCC Fifth Assessment Report (Schaefer et al., 2014), so that current warming 15 

projections may be significantly underestimated. 

Considerable uncertainties remain in the SOC decomposition rate and associated GHG emission in this global warming climate 

change context. One of the main reasons is that the rate and extent of permafrost thaw is not well quantified, preventing 

accurate estimates of the potential magnitude of the permafrost-carbon feedback. In particular, how the permafrost thermal 

regime will respond to climate change is still poorly represented because of its high sensitivity to the properties of the surface. 20 

The snow cover and the vegetation type, by modifying surface energy exchanges, are the main local factors influencing the 

permafrost thermal regime (Sturm et al., 2001a; Zhang. 2005). A snow cover acts as a thermal insulator by limiting soil winter 

cooling, but its insulating properties are highly variable and insufficiently detailed in global climate models (GCMs). These 

characteristics, and how they will change with climate, therefore need to be considered to successfully simulate the current 

and future permafrost thermal regime. 25 

We attempt to contribute to these aspects by investigating the capacity of the soil multi-layer version of the land surface model 

ISBA (Interactions Soil Biosphere Atmosphere; Decharme et al., 2013) coupled with the detailed snowpack schemes Crocus 

(Vionnet et al., 2012) or to the simpler scheme ES (Explicit Snow, Boone and Etchevers, 2001; Decharme et al., 2016) to 

simulate snow and soil properties at a high Arctic location. Crocus is currently the most detailed snowpack scheme coupled to 

ISBA, and corresponds to the highest existing level of complexity for snowpack models. However, its relatively large 30 

computation time limits its use in global climate models. ES is a multilayer snowpack scheme of intermediate complexity. 

Based on Crocus parameterizations, ES will be used for the upcoming CMIP6 CNRM-CM simulations (Eyring et al., 2016). 
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Similar studies were performed over Siberian regions, using ISBA-Crocus (Brun et al., 2013) and ISBA-ES (Decharme et al, 

2016). Models were evaluated based on snow height, snow water equivalent and soil temperature, but processes related to the 

simulated snowpacks have not been studied in detail yet. 

Here, simulations are tested using field data obtained at one specific site on Bylot Island (73° N, 80° W), located north of 

Baffin Island in the Canadian Arctic archipelago., The mean annual air temperature for the period 1998-2013 is -14.3°C and 5 

permafrost thickness has been estimated to be over 400 m (Fortier and Allard, 2004). Site description and instrumentation are 

given in the first section, after which the main features of the models are detailed. Simulation results are shown and compared 

to field observations. A sensitivity analysis is performed to determine processes critical to simulate Arctic snow and soil, which 

are discussed in the last section of the paper. 

2 Methods 10 

2.1 Site description 

The study area is in the Qarlikturvik valley of the south-west plain of Bylot Island, around 73°10’ N, 80°00’ W (Fig. 1). The 

glacial retreat around 6000 years ago left fine grained wind-deposits and organic sediments to form the soil (Allard, 1996). 

The valley bottom consists of wetlands with typical permafrost landforms, including tundra polygons, thaw lakes and ponds. 

Vegetation is mainly comprised of sedges, graminoids and mosses (Cadieux and Gauthier, 2008). Because uplands are better 15 

drained, mesic habitat dominates there with forbs, graminoids and erect vegetation. Erect vegetation is rather rare, covering 

less than 10% of the valley. It consists of willow shrubs (Salix arctica and Salix richardsonii), the higher shrubs being Salix 

richardsonii which commonly reaches 30 cm in height. 

Our actual study site is located in wetlands of the valley floor, at 73°09'01.4” N, 80°00'16.6” W, in the middle of a low-center 

tundra polygon (Domine et al., 2016a). Vegetation consists of a typical herb tundra environment, covered by sedges, 20 

graminoids (Poa sp.), mosses (Aulacumnium turgidum, 2-3 cm thick) and small prostrate arctic willows (Salix herbacea). 

Albedo measurements were performed in July 2015, using a SVC HR-1024 spectroradiometer. Averaged over the 346-2513 

nm spectral range, the surface albedo of our very site was 0.17 (M. Belke-Brea, personal communication, 2015). The soil 

granulometry was analysed using a laser scattering particle size analyzer, which resulted in a combination of fine grain deposits 

comprised of 64% silt and 36% fine sand (Domine et al., 2016a), based on USDA classification. An organic litter layer (3.5 to 25 

6 cm thick) was present at the interface between the surface vegetation and the ground. Because of the difficulty to determine 

the boundaries between the living moss, the litter and the underlying mineral soil, we estimated a total thickness of about 10 

cm for both moss and litter. Field observations and simulations presented in this paper focus on this very spot. 

2.2 Site instrumentation and data 

As we investigate the coupled evolution of the atmosphere, snow and soil, various instruments have been installed to monitor 30 

meteorological conditions, along with snowpack and soil properties. The set of instruments was installed on the same tundra 



19 

 

polygon, for the comprehensive monitoring of the spot. The protocol of instrumentation and measurement has been fully 

discussed in Domine et al. (2016a, b), thus only a brief description is given here. 

Several automatic weather station (AWS) are operating on Bylot Island (CEN, 2016). In particular, a 10-m tower was installed 

in summer 2004 close to our study site, at 73°09’07.9” N, 79°59’19.0” W, to monitor air temperature and relative humidity, 

wind speed and direction and snow height. During summer 2013, an AWS (hereafter referred to as BylSta) was installed on 5 

the polygon of our study site (Domine et al., 2016a). It measures air temperature and relative humidity with a ventilated HC2S3 

sensor from Rotronic, wind speed with a cup anemometer, surface temperature from an infrared IR120 sensor, and upwelling 

and downwelling shortwave and longwave radiation with a CNR4 radiometer associated to a CNF4 heating/ventilating unit 

from Kipp & Zonen. These atmospheric variables are recorded hourly 2.3 m above the ground. An issue with the sensor caused 

erroneous air temperature measurements in the first year. This was fixed in summer 2014, providing a fairly complete 10 

meteorological dataset since then. 

Snow height was automatically monitored with a SR50A acoustic gauge installed on the AWS. A few meters further, three 

TP08 heated needle probes (NPs) from Hukseflux were placed at 7, 17 and 27 cm above the ground in summer 2013 to measure 

the snow temperature and its thermal conductivity ksnow. They were lowered to 2, 12 and 22 cm in July 2014 to better match 

the snowpack structure observed in May 2014. Operating methods and data analysis pertaining to the NPs are detailed in 15 

Domine et al. (2015), Domine et al. (2016a) and Morin et al. (2010). Applied to snow, the NP method is suspected of presenting 

a low systematic error of 20% on average, related to the granular structure of the medium (Calonne et al., 2011; Domine et al., 

2015; Riche and Schneebeli, 2013). The anisotropy of the snow structure is another possible source of error, because 

horizontally inserted NPs measure a mixture of vertical and horizontal thermal conductivities. As heat exchanges between the 

ground and the atmosphere occur in the vertical dimension through the snow, the anisotropy of the snow thermal conductivity 20 

can produce errors up to 20% in measurements, resulting in a maximum total error of 29% (Domine et al., 2015). Compared 

to the large range of ksnow values (0.025-0.7 W m-1 K-1), and given that this method is the only suitable solution for remote field 

work, errors related to the use of NP are acceptable. Furthermore systematic errors due to NPs may be subsequently corrected 

(Domine et al., 2015). 

Field campaigns took place in May 2014 and 2015 at the end of the snow season. The snow accumulation was highly variable, 25 

because of wind effects and of microtopography (Liston and Sturm, 2002). The SR50A automatic point measurements are 

therefore not necessarily representative of the average snow conditions. To explore the spatial variability of snow properties, 

we performed hundreds of snow heights measurements covering different areas with an avalanche probe. In addition, snow 

pits were dug at a dozen specific sites to describe the stratigraphy and to measure vertical profiles of density with a 100 cm³ 

box cutter, and temperature and thermal conductivity with a TP02 heated needle. Methods are detailed in Domine et al., 2016b. 30 

As we are focusing on the station site, we will only use data from the 3 snow pits dug within 20 m of the station both years. 

 

Soil temperature and volumetric water content (VWC) have been monitored since July 2013 with Decagon 5TM probes, 

installed at depths of 2, 5, 10 and 15 cm. They were not calibrated for our specific soil, so we used the manufacturer’s 
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calibration for mineral soils which may produce an error in water content of 3%. The temperature sensor accuracy is within 

±1°C. The active layer was 17 cm-thick at the time of installation so the sensors could not be placed deeper. A TP08 heated 

needle probe was inserted at 10 cm depth, just below the litter layer, to automatically monitor the soil thermal conductivity 

ksoil. The method used is the same as for the ksnow measurements, and data analysis is also detailed in Domine et al., 2016a. Our 

instrumental methods impose to use the same heating power in the NPs for snow and soil. The heating power was optimized 5 

for snow to minimize heating and hence perturbation to metamorphism. Since soils have a higher thermal conductivity than 

snow, especially when frozen, the thermal signal of the NPs is low and noise for frozen soil thermal conductivity data is higher 

than what could be achieved using a higher heating power. In addition, tTwo field campaigns were conducted in July 2014 

and 2015 during which we measured soil water content profiles using an EC5 sensor from Decagon, and temperature and 

thermal conductivity with a TP02 heated needle at several dozen sites (Domine et al., 2016a). 10 

2.3 Simulations 

Simulations were performed using SURFEX v8 (SURFace EXternalisée), the surface modelling platform developed by Météo-

France and partners (Masson et al., 2013). Used in stand-alone mode, it takes meteorological data as driving input. The snow 

cover and the underlying soil are coupled through a semi-implicit scheme (Decharme et al., 2016; Vionnet et al., 2012). 

Different configurations are tested and compared with field observations to evidence critical processes affecting the permafrost 15 

thermal regime. Based on a series of incremental runs, we particularly focus on the following model features: surface litter, 

soil organic carbon and density of the drifting snow. 

2.3.1 Meteorological driving data 

To calculate the energy and mass budget of the surface, the model needs the following input data: air temperature and specific 

humidity, wind speed, incoming shortwave and longwave radiation, precipitation rate (solid and liquid) and atmospheric 20 

pressure. We used observed local meteorological data when available, and missing data are filled with ERA-interim reanalysis 

(Dee et al., 2011). Available from 1979 to present, for a 0.7° grid with a 3-hourly time resolution, ERA-interim (ERAi) provides 

a continuous meteorological dataset available globally. 

Air temperature and wind speed observations are available since 2004 from the 10-m tower. After July 2014, we used the 

ventilated air temperature and humidity, and the wind speed measured at BylSta. Radiation measurements were not used 25 

because the radiometer shifted by about 5° from its horizontal position when the tripod that supported it sank with the active 

layer thawing, causing errors to the data. The atmospheric pressure and precipitation were not measured, so we used ERA-

interim reanalysis data for missing variables and possible data gaps. 

To make the ERAi data consistent with the original field data, they were corrected following the method of Vuichard and 

Papale (2015). This method consists in calculating the linear regression between ERAi data and available field measurements. 30 

The regression coefficients (slope and intercept) are used to correct systematic biases in ERAi data, in order to better match 

the local meteorological conditions. Hence, we found a mean bias of -2.3°C in air temperature, -2.7 10-4 g kg-1 in air humidity 
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and +0.7 m s-1 in wind speed given by ERAi. The correction helped to reduce the standard deviation between the corrected 

ERAi and the observational data by respectively 20%, 4.6% and 10%. Differences in the correction performance mainly reflect 

the internal variability of the in-situ data. 

correction led to reduce these respective biases by 20%, 3.3% and 10%. Differences in the correction performance mainly 

reflect the internal variability of the in-situ data. 5 

The precipitation phase was recalculated using local and ERAi- corrected  temperatures, with a threshold set at 1°C. During 

the ERAi reanalysis process, the precipitation fluxes are only predicted by the meteorological model with no assimilation of 

observations (Brun et al., 2013). Furthermore, our study site is surrounded by hills, altering the local aerology and therefore 

the precipitation amount. With no reliable precipitation gauge to evaluate the local variability, we consider the precipitation 

data as the highest uncertainty source of all the forcing data. Preliminary results indicated that an accurate snow height was 10 

critical to simulate correctly the soil thermal regime. Hence, we arbitrarily changed the ERAi precipitation data for Crocus to 

match the observed snow height at snow pits dug in the immediate vicinity of BylSta, which was achieved after reducing by 

30% the solid precipitation rate in winter 2013-2014. Neither liquid precipitations nor snowfall were modified for the winter 

2014-2015. ERAi radiation data were kept unchanged for lack of reliable measured values, as well as atmospheric pressure 

values which we assume suffer little from local variability.  15 

2.3.2 Soil scheme 

The land-surface parameterization is managed by the ISBA scheme (Noilhan and Mahfouf, 1996; Noilhan and Planton, 1989). 

It describes the exchanges of energy and water between the atmosphere, the vegetation and the soil, by solving the 1-D Fourier's 

law for heat transfer and the mixed-form of Richards' equation for water mass transfer within the soil (Decharme et al., 2011). 

They are computed using 20 layers down to a depth of 12 meters. The main parameters are the soil texture and the vegetation 20 

type, from which other parameters can be derived, e.g. the soil porosity, the saturated matric potential and the saturated 

hydraulic conductivity. Following our measurements, the soil texture is set to 36% sand and 64% silt. Boreal grass covers the 

surface with a root depth of 20 cm, and the snow-free albedo is 0.17. 

The soil freezing-thawing processes are critical in permafrost regions. They are handled using the drying-wetting analogy 

based on the Gibbs free-energy method (Boone et al., 2000). It allows the calculation of the temperature for phase changes as 25 

a function of the soil matric potential, which depends on porosity and water content. During phase changes, the liquid water 

content decreases (increases) correspondingly to the increase (decrease) in ice content, thereby conserving the total water 

content in each soil layer. ISBA calculates the hydrology of the entire soil column in order to accurately represent the 

permafrost characteristics. Therefore, the model needs long simulation periods to guarantee that the water and heat profiles are 

equilibrated over the 12 meters soil depth. Water infiltration is limited by the presence of ice-rich permafrost, and because of 30 

the topographic hollow of our study site water is at times poorly drained and can occasionally fill the center of the polygon. 

This process is reproduced by disabling lateral runoff when surface water is in excess (run base and following). 
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The soil thermal properties, i.e. thermal conductivity and heat capacity, isare computed as a combination of water, ice and soil 

properties, volumetric water content and soil porosity, following the parameterizations of Peters-Lidard et al. (1998). Hence, 

the soil thermal conductivity is expressed as a function of its saturation, porosity, quartz content, dry soil conductivity and 

phase of water (frozen or unfrozen), where the ice, water and quartz thermal conductivities are respectively 2.2, 0.57 and 7.7 

W m-1 K-1. Surface organic material like moss or litter, are known to greatly affect the thermal and hydraulic properties of the 5 

soil (Hinzman et al., 1991). ISBA cannot handle a surface moss cover, but it has the capacity to simulate a litter by conferring 

to the uppermost soil layers the thermal properties of organic matter. The thermal conductivity of organic matter is set to 0.05 

W m-1 K-1 when dry, and to 0.25 W m-1 K-1 when wet. We evaluated the model sensitivity to the ran a simulation inclusion 

ofding a 10 cm-thick litter which reduces the thermal conductivityaffects thermal properties of the first 10 cm below the surface 

(run litter and following). Based on our measurements, the litter appears to have a high insulating capacity in summer while it 10 

becomes negligible in winter. To better reproduce the observations, the litter effect is therefore disabled as soon as 2 cm of 

snow covers the surface. The soil hydrology is not affected in the model, while in reality organic layers have a high hydraulic 

conductivity and a greater infiltration rate than mineral soils (Hinzman et al., 1991). The impact of this simplification will be 

evaluated with the results. 

ISBA includes the dependency of soil hydraulic and thermal properties on soil organic carbon (SOC) content as fully described 15 

in Decharme et al. (2016). Briefly, depending on its content which decreases sharply with soil depth, including organic carbon 

reduces the dry soil thermal conductivity, increases its porosity and therefore its saturated hydraulic conductivity. Accounting 

for the effect of SOC could significantly help improve the simulation of the soil thermal regime, especially in Arctic areas 

where soils store large amounts of SOC (Hugelius et al., 2014). From the Harmonized World Soil Database (HWSD, FAO 

2012) with a 1 km resolution, the SOC content for our study site is estimated at 5.05 kg m-3 for the first soil horizon (0–30 20 

cm), and 4.34 kg m-3 from 30 cm to 1-meter depth. A few soil samples were collected in July 2013 on the southern plain of 

Bylot Island for a radio-carbon analysis (ADAPT 2014). From two humid and three mesic sites, the carbon concentration was 

5.17 kg m-3 averaged over the first 30 cm of the soils. Given the excellent agreement with ADAPT data, we have a good 

confidence in the HWSD estimations used in our simulations (run SOC and following).  

2.3.3 Snowpack model: Crocus 25 

Crocus is a multilayer physical snow scheme designed to simulate the evolution of the snow cover as a function of energy and 

mass transfer between the snowpack, the atmosphere and the ground (Brun et al., 1989; Vionnet et al., 2012). Numerical snow 

layers are handled dynamically by the model, in order to keep their total number below a given number (typically 50), while 

respecting as much as possible the internal structure of the snowpack and in particular strong contrasts between the properties 

of distinct physical layers, and the fact that the discretized snowpack must comply with numerical constraints in particular the 30 

thickness of adjacent layers and the finer mesh size near the snowpack boundary. Numerical snow layers are characterized by 

their thickness, density, temperature, liquid water content, and four variables representing microstructural properties, i.e. 

dendricity, sphericity, grain size and one historical variable relating to the history of a given snow layer with respect to its past 
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exposure to liquid water and strong temperature gradient (Vionnet et al., 2012). The freshly fallen snow is usually considered 

as dendritic, and evolves toward non-dendritic snow under the action of internal processes such as snow metamorphism, 

compaction, thermal diffusion and phase change. 

These processes also affect the density of the snow layers, which is a key variable controlling other snow physical properties 

in Crocus. Density increases with compaction caused by the weight of upper layers, depending on the viscosity of the layer. 5 

The compaction rate is faster in the presence of liquid water, and it also depends on snow grain type. Angular grains such as 

depth hoar compact less. Wind events can also compact the surface layers, and due to frequent wind in the Arctic large amounts 

of snow are transported, compacted and sublimated (Liston and Sturm 2002; Sturm et al., 2001ab). Blowing snow occurs in 

the simulation when the wind speed is above a threshold value which depends on surface snow properties: microstructure and 

density (Guyomarc'h and Merindol, 1998; Vionnet et al., 2012). On average, blowing snow is observed for wind speed greater 10 

than 5 m s-1 (Sturm et al., 2001b; Vionnet et al., 2013). From the 10-m tower in Bylot Island, wind speeds greater than 5 m s-1 

occurred during 7% of the 2013-2014 snow season, and during 6% of the 2014-2015 one. Crocus takes into account the 

compaction and the microstructural evolution of the surface snow caused by blowing snow events, depending on wind speed, 

snow density and its microstructural properties (Vionnet et al., 2012). In addition, Crocus calculates the snow mass lost by 

sublimation during blowing snow events (Brun et al., 2013; Gordon et al., 2006). However, Crocus does not handle the snow 15 

redistribution since the model is one-dimensional (Brun et al., 2013). In the standard version of Crocus, wind-compacted snow 

layers can reach a maximum density of 350 kg m-3. As we observed snow densities up to 450 kg m-3 in Bylot Island, and values 

up to 600 kg m-3 can be found in the literature (e.g. Sturm et al., 1997; Zhang, 2005), we increased this value to 600 kg m-3 

(run wind and following). Because the mobility of snow layers depends on their density, increasing the density of the snow 

can limit its driftability. 20 

The snow thermal conductivity ksnow, in W m-1 K-1, which is used to solve the thermal diffusion equation in the snowpack, is 

calculated from the density using the equation of Yen (1981): 

𝑘𝑠𝑛𝑜𝑤 = 𝑘𝑖𝑐𝑒 (
𝜌

𝜌𝑤
)
1.88

      (1) 

with kice the thermal conductivity of ice (2.22 W m-1 K-1), ρ the density of snow and ρw the density of liquid water (1000 kg m-

3). 25 

Snow albedo depends on snow microstructure, on the amount of light-absorbing impurities and on the solar zenith angle 

(Warren, 1982). Crocus computes the snow albedo by considering microstructure to account for physical aspects and the age 

of the surface snow layer to account for chemical aspects, as exposed snow is subjected to impurity deposition. The incoming 

radiation is then transmitted and absorbed within the snowpack, following the exponential decay of radiation with depth as a 

function of the grain size and snow density (Vionnet et al., 2012). Because incoming radiation is preferentially scattered 30 

forward in the snow, light coming from a low sun angle penetrates less deep in the snowpack and the resulting albedo is higher. 

Despite its importance in Arctic regions, this last effect is not simulated in Crocus because it does not account for the solar 

zenith angle (SZA) in the albedo calculation. The physically-based radiative transfer model TARTES has been implemented 
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in Crocus, making use of the solar zenith angleSZA in the albedo calculation (Charrois et al., 2016; Libois et al., 2015) but 

also requiring knowledge on the vertical profile of light absorbing impurities (Tuzet et al., 2017). ButHowever, the lack of 

field data on snow impurities (nature, deposition, light-absorbing spectroscopy) prevented us from usingto use TARTES in 

Bylot Island simulations. 

 5 

2.3.4 Snowpack model: Explicit Snow 

Explicit Snow (ES) is a multilayer snowpack scheme of intermediate complexity (Boone and Etchevers, 2001; Decharme et 

al., 2016). It is based on parameterizations used in Crocus, which are simplified to reduce the computation time and to facilitate 

its integration in global climate models. The main differences with Crocus are a constant number of layers, usually 12, blowing 

snow is not sublimated, and the snow microstructural properties are not simulated. Hence, parameterizations of snow albedo 10 

and compaction rate are functions of the layers density only. However, as in Crocus, the evolution of snow density in each 

layer is due to snow compaction resulting from changes in snow viscosity and wind-induced densification of near-surface 

snow layers (Decharme et al., 2016). 

The ksnow calculation method is different from Crocus. In ES ksnow is computed from the density, based on the Yen’s equation 

(Eq. 1), with an additional term to account for latent heat transfer through sublimation-condensation processes during 15 

metamorphism (Sun et al., 1999): 

𝑘𝑠𝑛𝑜𝑤 = 𝑘𝑖𝑐𝑒 (
𝜌

𝜌𝑤
)
1.88

+
𝑃0

𝑃𝑎
×𝑚𝑎𝑥 (0, 𝑘1 −

𝑘2

𝑇𝑠−𝑘3
) (2) 

where Pa (Pa) is the air pressure, P0 a reference pressure equal to 1000 hPa, Ts (K) the temperature of the snow layer, and the 

coefficients k1 = -0.06023 W m−1 K−1, k2 = 2.5425 W m−1, and k3 = 289.99 K. 

Even though ES is not based on the explicit representation of the snow microstructure, it remains one of the most sophisticated 20 

snowpack models that will be used for the upcoming 6th edition of the Coupled Model Intercomparison Project (CMIP6, Eyring 

et al., 2016). The results of our simulations with ISBA-ES (run ES) are expected to reflect the capacity of the latest generation 

of GCMs to simulate Arctic snow and soil properties. 

2.3.5 Numerical experiments 

A first simulation was run from August 1979 to August 2012, constituting a 33 years initialization. This operation allowed 25 

reaching equilibrium between the ground properties and the local climate conditions, with the base configuration. Then, using 

the equilibrated soil profile as the initial state, we performed a series of runs with incremental complexities from August 2012 

to June 2015 (Table 1). The run wind integrates all our changes, it consists in the most detailed configuration tested here with 

Crocus. ES uses the same configuration as the run wind. 
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2.4 Evaluation metrics 

Field observations of snow and soil properties are available from August 2013 to June 2015, allowing the evaluation of model 

performance to simulate two winters and one entire summer. 

Simulated snow properties are compared to measurements of snow height, density, thermal conductivity and temperature. As 

we assess the ability of the model to reproduce the soil thermal regime, we particularly focus on the snow thermal properties. 5 

Snow is thermally characterized by its thermal conductivity ksnow. We also rely on an alternate variable that characterizes the 

thermal properties of the whole snowpack rather than those of each layer. The thermal resistance insulance of the snowpack 

RT (in m² K W-1) depends on the thickness h and the thermal conductivity of each layer i: 

𝑅𝑇 = ∑
ℎ𝑖

𝑘snow,𝑖
𝑖        (3) 

The simulated RT is computed from the respective density-ksnow correlation used in the snowpack model (Eq. 1 and 2) and 10 

simulated layer thickness, while observed RT is directly based on measurements of ksnow and layer thickness. To determine the 

respective contributions of the snowpack thickness and the thermal conductivity on RT, it is also necessary to look at the 

resulting mean thermal conductivity of the snowpack calculated as: 

𝑘snow =
ℎ

𝑅𝑇
      (4) 

ISBA simulation results are compared to measurements of soil temperature, as well as the thermal conductivity and the water 15 

content which governs the soil thermal regime. Vertical profiles show the vertical soil stratification. Performances of each run 

are evaluated by comparing their deviations with time-series observations at different depths, using the squared correlation 

coefficient (r²), bias (Eq. 5) and RMSE (Eq. 6) statistical errors. 

𝑏𝑖𝑎𝑠 =
1

𝑛
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)
𝑛
𝑖     (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2𝑛
𝑖    (6) 20 

where sim and obs refer to simulated and observed values respectively.  

3 Results 

3.1 Simulations of snow properties and comparison with field data 

3.1.1 Snow height 

Figure 2 shows snow height automatically measured with the SR50A snow gauge, along with manual observations performed 25 

in May 2014 and 2015 and simulations results. SR50A data are missing between 14 May and 26 July 2014 because of an issue 

with the sensor. Random snow height measurements were performed within 200 m of our site on 14 and 16 May 2014, and on 

12 May 2015. They evidence the large spatial variability in snow height, as already indicated in Table 2 of Domine et al., 

2016b. Snow-free areas were frequently encountered on the polygons edges, whereas snow heights up to 60 cm were found in 
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the center of the polygons. Thus, one-point snow height monitoring may not be representative of the average snow 

accumulation. On 14 May 2014 the SR50A indicated 13 cm of snow, while we obtained a mean of 16.2 cm with a standard 

deviation of 13.7 cm from more than 300 measurements over the whole polygons area. We observed a noticeably lower snow 

accumulation under the station than a few meters away, which is confirmed by the 21 cm of snow averaged on the 3 

snowpitsnow pits dug in the vicinity of the station. On 12 May 2015, while the snow gauge indicated 35 cm, random 5 

measurements indicated 25.3 ±13.1 cm of snow. From the 3 snowpitsnow pits made, we obtained a mean snow height of 33 

cm. Based on our observations, we explain these differences by a low snow year in 2013-2014 and a high wind redistribution 

(Domine et al., 2016b). Since a central objective of our simulations is to reproduce the ground thermal regime as measured by 

our instruments, and because the large spatial variability in snow height highly affects the ground temperature at the meter 

scale (Gisnas et al., 2016), the relevant snow height at our specific site is most likely given by the snowpitsnow pits mean. 10 

After reducing the ERAi snowfall amount by 30% in winter 2013-2014, the resulting simulated snow height was in good 

agreement with the snowpitsnow pits means obtained in May 2014 and 2015, respectively 23.0 and 30.4 cm from the run wind 

and 22.4 and 32.8 cm with ES. Winter variations are well reproduced, but the beginning of the snow season occurs too early 

in 2013: on 18 September in simulations while it was detected on 12 October from measurements. At this date the simulated 

snowpack was already 4 cm-thick, which partly explains the slight overestimation compared to the mean height of May 2014 15 

snowpitsnow pits. ES simulates lower snow heights than Crocus, which . It seems tocould be caused by a faster compaction 

rate in ES compared to Crocus. In May 2015, snowmelt occurs earlier in simulations than deduced from the snow gauge. A 

detailed analysis of the meteorological data and simulation outputs reveals positive air temperature between 6 and 11 May 

2015, triggering the partial melting of the upper snow layers in simulations. With two strong wind events (peaks exceeding 10 

m s-1) which occurred on 5 and 12 May, these conditions caused the decrease of the simulated snow height along with the 20 

increase in the upper layers density. The air temperature cooled back down after this event, until 18 May when the final 

snowmelt started. Because wWe did not observe any signs of spring melt before 18 May during the field campaign. To test 

whether the inexact melt onset date simulated was caused by the lack of solar zenith angle consideration, we briefly tested 

Crocus coupled to TARTES, which includes treatment of SZA. With TARTES, the melt onset date was accurately simulated, 

which leads us to suggest that not accounting for SZA is the main cause of the inadequate melt onset date simulation. However, 25 

a full implementation of TARTES in Crocus for this study would have required data on snow impurities., we found that this 

simulated early partial melting is caused by the lack of solar zenith angle consideration in the albedo calculation. Hence, for 

further comparisons with snow properties measured in May 2015, we will use simulations results of 6 May, just before the 

partial melting. 

3.1.2 Snow density and thermal conductivity 30 

Figure 3 shows examples of snow stratigraphies observed close to the monitoring site in May 2014 and 2015. They are typical 

of Arctic snowpacks (Domine et al., 2016b), comprised mainly of a basal depth hoar layer (about 5 to 10 cm thick) and a top 

wind slab. The particularity in 2015 is the depth hoar layer that was indurated at the bottom of the snowpack, resulting from 



27 

 

the transformation of a melt-freeze layer into depth hoar under a very high temperature gradient (Domine et al., 2016a, b). 

Indurated depth hoar is harder and retains a higher cohesion than typical depth hoar, but its development usually goes along 

with a decrease in density and thermal conductivity (Domine et al., 2012). 

Associated measured vertical profiles of density are also shown. As expected from typical Arctic snowpacks, the stratigraphies 

observed exhibit low density values for the bottom depth hoar layer (between 150 and 200 kg m-3), and high values for the 5 

upper wind slabs (exceeding 400 kg m-3). Crocus and ES simulate inverted profiles, with generally decreasing densities from 

the bottom to the top of the snowpack. This is particularly visible in 2015, with the highest density simulated at the bottom of 

the snowpack. In 2014 the density of the basal layer (below 5 cm) is successfully reproduced by Crocus, but it is overestimated 

by ES. In 2015, the density of the indurated depth hoar basal layer is greatly overestimated by both Crocus and ES, respectively 

1.4 and 2 times higher (310 kg m-3 for the run wind and 374 kg m-3 for the run ES compared to the mean observed of 181 kg 10 

m-3). It confirms that the snow compaction rate in ES is inappropriate to simulate a bottom depth hoar layer of low density. 

However, this partially compensates for the underestimation of density in the upper layers.it helps to reduce the error in upper 

layers densities.  Wind slabs densities in upper layers are highly underestimated in simulations (between 1.5 and 2 times lower), 

even for the run wind which takes into accountallows higher maximum densities for drifting snow. In 2014, the mean density 

for layers between 10 and 20 cm is 404 kg m-3 for observations, 202 kg m-3 for the run wind and 228 kg m-3 for ES. In 2015, 15 

observations indicate a mean of 394 kg m-3 while the run wind predicts 197 kg m-3 and ES 301 kg m-3 for layers between 10 

and 20 cm.. In May 2014, the wind experiment simulates yet lower densities in sub-surface snow layers than the other Crocus 

runs. This is attributed to early melting, which occurs slower in this run because of colder snow temperatures compared to 

previous experiments. Otherwise, increasing the maximum density reached by drifting snow helps to reduce the 

underestimation in upper layers. Still, mean snowpack densities are lower in simulations than in observations. ES simulates 20 

higher mean densities than Crocus because the snowpack is overall more compacted, due to the faster compaction rate. 

Therefore, the density of the basal layer is greatly overestimated, but the density of the upper layers are less underestimated.But 

the layering do not match the observations, and the greatly overestimated basal density is compensated by the underestimation 

in upper layers. 

Consequently, mean snowpack densities are lower in simulations than in observations. Observed profiles from 3 snowpits in 25 

2014 result in 286 ±87 kg m-3, and Crocus simulations give 203 ±2 kg m-3. In 2015, we measured a mean density of 294 ±58 

kg m-3, while simulations with Crocus range between 179 and 194 kg m-3. ES simulates higher mean densities compared to 

Crocus because the snowpack is overall more compacted. It results in mean densities of 261 and 264 kg m-3 in May 2014 and 

2015 respectively, in good agreement with measurements. However, the layering do not match the observations and the greatly 

overestimated basal density is compensated by the underestimation in upper layers. 30 

Since thermal conductivity is totally (in Crocus) or mostly (in ES) primarily controlled by density in both Crocus and ES 

calculate thermal conductivity mainly from density, the ksnow vertical profiles are also inverted, as already evidenced in Domine 

et al. (2016a). For example in early May 2015 (Fig. 4), we measured ksnow = 0.028 W m-1 K-1 2 cm above the ground while 

Crocus (run wind) indicates 0.24 W m-1 K-1 and ES 0.35 W m-1 K-1. At 24 cm, values obtained from measurements, Crocus 
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and ES are respectively 0.28, 0.07 and 0.14 W m-1 K-1. Figure 5 summarizes the ksnow measurements performed during field 

campaigns, as a function of the corresponding measured densities and snow types. Simulated values obtained on 14 May 2014 

and 6 May 2015 from runs wind and ES are also shown. It confirms that high density values (>400 kg m-3), mostly observed 

in wind slab layers, are neither reproduced by Crocus nor ES. For lower densities, it is well visible that density-ksnow correlations 

(Eq. 1 and 2) are not appropriate for our dataset. The simulated ksnow values are almost always higher than measurements, and 5 

accounting for the Sun et al. (1999) additional term (run ES) amplifies the error. The regression curve from Sturm and al. 

(1997) fits our measurements better, because this parameterization is based on Arctic and subarctic snows instead of focusing 

on alpine conditions. However for a given density, the ksnow value can vary by a factor of 4 to 5 (Domine et al., 2016a; Sturm 

et al., 1997) so that density-ksnow correlations cannot be used to accurately determine the thermal conductivity of Arctic snow. 

In fact, as demonstrated by Löwe et al. (2013), snow thermal conductivity depends on both density and microstructure. By 10 

adding second-order bounds based on a microstructural anisotropy parameter, they could improve the estimation of ksnow. In 

addition, as demonstrated by Calonne et al. (2014), snow thermal conductivity depends on both density and microstructure 

(see their Fig. 4). Oour Fig. 5 strikingly corresponds to their theoretical Fig. 4 of Calonne et al. (2014). where oOur depth hoar 

values correspond to their lower bound, and our rounded grain snows (including wind slabs) correspond to their upper bound. 

Our data therefore confirms theoretical considerations which clearly demonstrate that parameterizing thermal conductivity as 15 

a function of density only simply should not be done, as it can produce very large and can only lead to gross  errors.  

 

3.1.3 Snow temperature 

The snow density and ksnow are the variables controlling the heat transfer through the snowpack, but they are significantly 

erroneous in simulations. To evaluate the consequences on the temperature profile, Figure 6 presents the evolution of 20 

temperatures measured by the NPs at 2, 12 and 22 cm, the surface temperature measured by the infrared IR120 sensor and the 

corresponding simulated temperatures. The NPs perform measurements at 5:00 (local time) every other morning and record 

temperature only then. For this reason, simulated temperatures are shown every two days at about the same time. Because of 

the models’ output resolution (6 hours), simulated temperatures are actually shown at 7:00 local time, or 12:00 UTC. 

The high variability in snow heights makes it difficult to estimate the actual snow accumulation around the NPs. But it appears 25 

that temperatures in the middle of the snowpack are reproduced best. This is well visible at 22 cm, with the temperature being 

very accurately simulated after January 2015 while the NP is definitively buried in snow. To a first approximation, under 

steady state the temperature gradient is inversely proportional to ksnow. Since the simulated thermal conductivity profile is 

inverted, we expect simulated snow surface temperatures to be colder than measurements while bottom temperatures should 

be warmer, given that simulated and measured temperatures are similar near the middle of the snowpack.Since the simulated 30 

thermal conductivity profile is inverted, we expect simulated snow surface temperatures to be colder than measurements while 

bottom temperatures should be warmer. To a first approximation, under steady state the temperature gradient is inversely 

proportional to ksnow. Since simulated ksnow values are low near the top, the temperature gradient is expected to be greater and 
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therefore surface temperatures lower than measured, given that simulated and measured temperatures are similar near the 

middle of the snowpack. With similar reasoning, simulated basal snow temperatures are expected to be higher than measured. 

This is indeed what Fig. 6 shows, with . The Crocus Ttemperatures simulated by Crocus snow temperaturesare are about 5°C 

warmer than measured ones at the bottom of the snowpack and 10°C colder at the surface of the snowpack than measured in 

winter (run wind). The run wind simulates colder temperatures than previous experiments. This is attributed to the highermore 5 

conductive upper layers, allowing cold waves to propagate through the snowpack during winter. Because ES computes higher 

ksnow values (Fig. 5), it results in an overall colder snowpack than Crocus. snow temperatures are generally lower than Crocus 

because the simulated snowpack is more conductive. This is most pronounced at the bottom of the snow, where the ksnow 

overestimation is considerable (Fig. 4), resulting in a bias of -5°C compared to measurements in February. 

An extended warm spell started on 16 March 2015, with the air temperature reaching -2.2°C on 17 March associated with a 10 

significant snowfall (Fig. 2). This warmed up the entire snowpack, and from that date until the onset of simulated snowmelt, 

snow temperatures are well reproduced by the run wind. The snowmelt starts on 18 May, and as already discussed the snowpack 

is warming faster in simulations. 

3.1.4 Sensitivity analysis on the snow thermal resistanceinsulance 

Properties of the snowpitsnow pits studied in May 2014 and 2015 are summarized in Fig. 7, and compared to simulation 15 

outputs. In 2015, we used simulations of 6 May before the early melting. Since we are investigating the link between the soil 

temperature and snow thermal properties, Figure 7 shows the snow height, the mean snow thermal conductivity 𝑘𝑠𝑛𝑜𝑤 and the 

resulting thermal resistanceinsulance RT as given by Eq. (3) and (4). Given that the NP method induces a systematic error 

which underestimates ksnow by about 20% on average, we also increased the measured ksnow values by 20% (modified ksnow). 

Litter and SOC additions have little effects on the snow properties, are low. the most noticeable being a reduction of They are 20 

essentially due to differences of less than 1 cm in snow height. Accounting for higher densities during wind compaction affects 

both the height and ksnow. Overall, the snow height is well reproduced in simulations, results are within the measured standard 

deviation obtained from snowpitsnow pits. 𝑘𝑠𝑛𝑜𝑤 is overestimated for both years of simulations, resulting in lower simulated 

thermal resistanceinsulance than measured. Compared to measurements, the run wind gives a mean thermal conductivity 46% 

higher in 2014 and 73% higher in 2015, while the respective RT are 24% and 38% lower. The error in RT is thus essentially 25 

induced by the ksnow simulation, and especially by the overestimation of the basal layer ksnow value. Because ES simulates very 

high ksnow values at the bottom of the snowpack (Fig. 4), the error in RT is amplified. 

The larger error in 𝑘𝑠𝑛𝑜𝑤 simulated the second winter can be explained by considering snow stratigraphies (Fig. 3). In May 

2014, we observed a regular depth hoar basal layer whose density was successfully reproduced by Crocus. Its simulated ksnow 

is still 4 times greater than measured (run wind)overestimated to 0.11 W m-1 K-1, while we measured less than 0.03 W m-1 K-30 

1. The following winter, the indurated depth hoar basal layer formed from a melted-refrozen snow. In May 2015, signs of early 

season melt-freeze were observed in the basal depth hoar layer, which was indurated. Crocus and ES do reproduce the partial 
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melting of the snow at the beginning of the season, but cannot simulate the following transformation into depth hoar under 

high temperature gradients (Domine et al., 2016a). As the water vapour flux through the snowpack is not represented, the 

models still consider a refrozen layer at the bottom of the snowpack with a very high ksnow (8 to 12 times greater than measured, 

Fig. 4). Hence, the mean simulated ksnow is more overestimated in May 2015 than in 2014. 

With precipitations adjusted, Crocus and ES manage to reproduce the observed snow heights at our specific site, but the 5 

simulated snow layer densities are erroneous. The related vertical profiles of ksnow are inverted in simulations, with 

consequences on the snow thermal resistance and the resulting heat transfers through the snowpack. Errors are amplified in 

ES, mainly because of very high simulated ksnow values at the bottom of the snowpack.  

3.2 Simulations of soil properties and comparison with field data 

3.2.1 Soil thermal conductivity 10 

The monitoring of the soil thermal conductivity (ksoil) at -10 cm shows a bimodal distribution between frozen and thawed state 

(Fig. 8). In summer, ksoil is around 0.73 W m-1 K-1 while it suddenly increases with freezing to 1.95 W m-1 K-1 on average 

(Domine et al., 2016a). As detailed above, Note thatthe noise in the experimentalfrozen soil data is due to the low power used 

to heat the NPs, so that the temperature signal is low, especially when the soil is frozen and the dissipation of the heat from 

the NP efficient. ISBA simulated ksoil values from the run wind are shown at depths of 10 and 20 cm. A bimodal distribution 15 

is also visible with sharp transitions between thawed and frozen state. The mean ksoil value at -10 cm is 0.36 W m-1 K-1 in 

thawed conditions, and 2.04 W m-1 K-1 in the frozen state. The winter value is close to the measured mean, but the summer 

simulated ksoil is lower than observations. Because the transition between litter and mineral soil occurs around 10 cm below 

the surface, measurements probably give a mixture of litter and mineral ksoil values, while the simulated value at -10 cm is that 

of the litter only. Simulated ksoil at 20 cm depth is 1.27 W m-1 K-1 in summer, and 1.89 W m-1 K-1 in winter. Averaging values 20 

between -10 and -20 cm results in a summer mean of 0.82 W m-1 K-1, and 1.97 W m-1 K-1 in winter, in very good agreement 

with our measurements. ksoil is also greatly dependent on the water content, so we need to look at the vertical profiles of soil 

properties to assess the stratification. 

Figure 9 shows vertical profiles of soil properties (ksoil, temperature and VWC) averaged from two measured profiles and 

simulated on 29 June 2014 to a depth of 20 cm. It illustrates the improvements caused by the litter addition in simulation:s. In 25 

the absence of litter, the simulated ksoil profile from the run baseinstead of staysing constant at around 1.36 W m-1 K-1. in the 

absence of litter,  The 10 cm-thick litter reduces ksoil values are highly reduced in the first 10 cm when a litter is added, in fairly 

good agreement which is more consistent with our observations. However, we measured an increase in ksoil with depth in the 

first 10 cm, from 0.19 W m-1 K-1 at -3 cm to 0.71 W m-1 K-1 at -10 cm, while the simulated ksoil is constant (0.35 W m-1 K-1) 

through the litter layer. The same pattern is visible on the VWC profiles, attesting the water content dependence of ksoil. The 30 

lowest VWC value was found at -3 cm with 20% moisture, immediately increasing to more than 45% at -6 and -10 cm, while 

the simulated water content stays constant at 40% (runs wind and ES). The VWC difference at -10 cm is not sufficient to 
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explain the ksoil underestimation in summer, meaning that measurements of ksoil are probably affected by both the litter and the 

underlying mineral soil. The water content starts to decrease below -10 cm, which confirms supports the location of the lower 

limit of the litter. The presence of a litter in simulations finally improves the soil temperature profile between -10 and -20 cm 

deep, but the temperature is still too warm near the surface. 

3.2.2 Soil temperature 5 

Results of soil temperature simulations are shown in Fig. 10, along with measurements data from the Decagon sensors at 

depths of 5, 10 and 15 cm. 

The run base simulates too warm high temperatures in both summer and winter, and at all the 3 depths shown. By reducing 

the heat exchanges between the atmosphere and the soil, litter and SOC additions greatly improve simulations in summer. 

Consequences are well visible at -15 cm, with a good simulation of the observed temperature (+0.8°C bias) during summer 10 

2014 (June – July – August). For the same period, the temperature difference is +1.8°C at -5 cm, and +1°C at -10 cm. The 

same pattern is visible in Fig. 9, with a warm bias increasing toward the surface. The run wind improves the simulation of 

winter soil temperatures, resulting in the best simulation for the two years of measurements. Temperatures in winter months 

(December – January – February) are very well reproduced in 2014-2015, while in 2013-2014 there is a cold bias of 2.2°C in 

December, which becomes less than 1°C until snowmelt. ES produces soil temperatures up to 8°C colder in winter, because it 15 

highly underestimates the snow thermal resistanceinsulance (Fig. 7). 

During the freezing and thawing periods, the models are not able to reproduce the observed soil temperature. The freezing of 

the active layer occurs in September and starts at the same time in simulations and observations, but it is too fast in simulations. 

The zero-curtain period, during which the soil temperature remains at 0°C while available water is freezing and latent heat is 

released, is lastsing between 4 and 6 weeks in observations, but onlyvs. justIn simulations, the soil totally freezes in a few days 20 

and cools too earlyin simulations. When models simulate the early snow onset on 18 September 2013, and basal ksnow values 

are about 0.08 W m-1 K-1 with Crocus and 0.12 W m-1 K-1 with ES, the cooling of the soil accelerates and soil becomes totally 

frozen down to 15 cm depth. This may be attributed to It is because the thermal conductivity of the basal snow layer which is 

too high in simulations, allowing the soil to cool rapidly. The thawing at the end of the winter is also faster in the simulations, 

again most likely because of the high thermal conductivity of the snow. During melting, tThe formation of a highly conductive 25 

refrozen snow layer is simulated at the top of the snowpack. For example in mid-May 2015, Crocus simulates (ksnow values up 

to 0.5 W m-1 K-1 are simulated in mid-May 2015 at 25 cm), while we measured values ranging between 0.25 and 0.3 W m-1 K-

1. Heat is thus easily transferred from the atmosphere to the soil in simulations. Ultimately, the treatment of snow albedo in 

models is such that melt-out is acceleratedenhancedhastened at under high latitudes, inevitably accelerating so that soil thawing 

may beis greatly accelerated in spring.  30 

Table 21 summarizes the performance of each run to reproduce the measured soil temperature at 15 cm depth. Depths of 5 and 

10 cm give similar results. R² values are greater than 0.9, attesting the capacity of models to reproduce the observed variability. 

Statistics show a clear improvement as complexity is increased in the first 4 simulations. The presence of a litter noticeably 



32 

 

improves the annual soil temperature simulation, while accounting for snow densities higher than 350 kg m-3 (run wind) 

drastically reduced the error in winter 2014-2015. The best results are obtained with the run SOC in 2013-2014 (+0.3°C for 

the whole year), and with the run wind in 2014-2015 (+0.5°C). Errors are very low for both years, of the order of the sensor 

accuracy. 

3.2.3 Soil water content 5 

Figure 11 shows simulations of the soil volumetric water content evolution at 5, 10 and 15 cm depths. The main difference 

with observation is the timing of freezing and thawing. This is clearly influenced by temperature, so that the errors in simulated 

temperature impact this timing. However, the duration of latent heat exchanges are also determined by the water content. 

The VWC simulation in summer are improved by the addition of litter and SOC, but are still too low at -5 and -10 cm. Disabling 

the surface runoff helped to conserve high water contents in summer, but the moisture peak observed on 31 July 2014 at -5 cm 10 

is not simulated. On the ERAi precipitation data, a rain event did occur that day but it was less than 3 mm h-1, not sufficient to 

increase the VWC by 20% as observed. Because of the high uncertainty on ERAi precipitation data, the actual precipitation 

rate could be underestimated.  Figure 9 shows that the simulated VWC is constant in the first 10 cm of soil while the observed 

profile is more variable. Thus, it seems that the simulation of the water dynamics in the first cm of the soil is erroneous, and is 

better reproduced below -10 cm. The low simulated VWC values therefore It partly explains the too fast simulated soil freezing. 15 

However, as discussed by Langer et al., (2013), the inadequate thermal properties of the snow cover is most likely the main 

source of error in the ground thermal regime. but errors in simulated VWC cannot explain solely errors in simulated soil 

temperature. Indeed, models simulate too fast soil response to water phase changes, even when the VWC is well reproduced 

(e.g. at -5 cm in fall 2013). Moreover, the slight differences in simulated VWC between experiments are not sufficient to cause 

differences in soil temperature as shown on Fig. 10. Hence, it supports the hypothesis that snow thermal properties are mostly 20 

responsible for the soil thermal regime, as also advanced by Langer et al. (2013).There is also an offset on the phase changes 

timing between simulations and observations at depths of 10 and 15 cm. Compared to observations, the liquid water peak 

which follows the snowmelt occurs too early in simulations, and the freezing begins too soon. This is the consequence of 

inaccuracies in simulating the soil temperature during freezing-thawing periods. Phase changes are well reproduced for the 

2013-2014 season at -5 cm. 25 

In winter, the different runs have a low impact on the water content, which is very well reproduced with around 6% of water 

remaining liquid while temperature reaches -30°C. This effect is explained by surface tensions applied on water confined in 

small pores, lowering its freezing temperature (Penner, 1970). The 6% threshold observed here is consistent with values found 

in the literature for a mixture of silt and fine sand. 

Table 32 presents errors for each run in VWC simulation, at the depth of 15 cm. Results at depths of 5 and 10 cm are similar. 30 

R² are lower than those from temperature simulations, ranging from 0.39 for the whole year (run base) to more than 0.9 in 

winter. SOC addition greatly improves simulations. It results in the lowest errors for the two winters and the lowest bias for 
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annual simulations. Errors in winter are lower than the sensor resolution (3%), while annual simulations give RMSE greater 

than 7%, reflecting the limit of the model to reproduce the summer moisture variability. 

Despite the limitations of Crocus to reproduce the observed snow density profiles and the resulting thermal properties of the 

snow, the temperature of the soil is quite successfully reproduced in winter. The largest errors in temperature simulation are 

found during periods of phase changes, with too fast simulated soil freezing and thawing. Because ES simulates a very low 5 

snowpack thermal resistance, heat transfers are enhanced and the soil cools too much in winter. Soil properties are well 

reproduced at depths below 10 cm, but it seems there is a deficiency in the first cm below the surface. 

4 Discussion 

4.1 Snowpack simulations 

In the Arctic, snowpacks are subjected to important upward water vapour fluxes generated by strong temperature gradients 10 

between the atmosphere and the ground. These fluxes lead to mass transfers from the lower (warmer) to the upper (colder) 

snow layers. Consequently, this process has a considerable contribution to snow metamorphism by decreasing densities at the 

base of the snowpack and increasing densities of its upper parts (Domine et al., 2016a; Sturm and Benson, 1997). Domine et 

al. (2016a) estimated vertical water vapor fluxes in the snowpack, and came up with a mass loss of the basal layer of 2.6 kg 

m-2 over two months. It corresponds to a density decrease from 300 to 200 kg m-3 for a 3 cm-thick layer, in line with the model 15 

overestimation of the basal layer density. Although this estimation is approximate, it supports the suggestion that the vertical 

water vapor flux is the main cause of the model misrepresentation of the density profile. In snowpack models, the lack of 

representation of the vertical water vapour flux inevitably brings erroneous density profiles, which propagate to thermal 

conductivity values. The resulting vertical ksnow profiles are inverted in simulations, with high ksnow at the bottom part of the 

snowpack and low ksnow in the upper section, which affects the temperature gradient in the snowpack and the boundary fluxes. 20 

Further, downwelling shortwave absorption is lower in the Arctic because of the large zenith angle in late winter, and this is 

not accounted for in the original version of Crocus. Therefore, solar warming of the snowpack is exaggeratedthe absence of 

solar zenith angle consideration in the albedo calculation exaggerate the error in the surface heat flux in fall and spring, 

resulting in incorrectly simulated melting episodes. 

 The physically-based radiative transfer model TARTES is implemented in Crocus, making use of the solar zenith angle in the 25 

albedo calculation (Charrois et al., 2016; Libois et al., 2015). But the lack of field data on snow impurities (nature, deposition, 

light-absorbing spectroscopy) prevented us to use TARTES in Bylot Island simulations. 

Despite their significant variability, averaged snow height obtained from snowpitsnow pits in May 2014 and 2015 are well 

reproduced. To obtain that, the snowfall amount in winter 2013-2014 had to be reduced by 30%. Without this artificial 

modification, the models were not able to reproduce this low snow year. Given the importance of blowing snow events in the 30 

Arctic, accounting for snow redistribution by wind could also improve the simulated snow height (Gisnas et al., 2016; Libois 

et al., 2014). Even if relatively few strong wind events were recorded on Bylot Island in winter, Sturm et al. (2001b) showed 
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that a single event could transport important amounts of snow. Hence, snow compaction and sublimation caused by wind are 

also critical to simulate accurately snow height and density in the Arctic, which was already improved after increasing the 

maximum snow density reached by drifting snow to 600 kg m-3. This change also partially compensates for vertical water 

transport, which increases upper layer densities. However, the models are not able to reproduce wind slab formation and the 

resulting increase in density as observed. But as already mentioned by Domine et al., 2016a: “The Crocus representation of 5 

the wind-packing process cannot be evaluated here, as the density increase also has contributions from water vapour deposition 

due to the upward flux and their respective contributions cannot be observed separately.” 

4.2 Soil simulations 

Granulometry is the main factor influencing soil thermal and hydraulic properties, so it is essential to analyze the soil 

composition of the studied site. Including SOC and especially litter greatly improved simulations of soil temperature and water 10 

content. Summer soil temperature is better reproduced at 15 cm depth than close to the surface. The addition of a litter improves 

simulation results, but the model is still restrained by a limited representation of surface organic covers. A detailed analysis of 

measured and simulated vertical profiles of soil properties highlighted that the difference between the surface moss and the 

dead litter leads to a stratification in the first 2-3 cm of soil, with a lower thermal conductivity (i.e. a higher insulating capacity) 

for the moss. A moss surface also increases enhances the water infiltration (Beringer et al., 2001), resulting in a dryer soil 15 

surface and a greater storage of moisture in lower layers. Because ksoil and the freezing process are highly dependent on the 

water content, improving the hydraulic properties of the soil scheme by considering a moss cover could help better reproduce 

the zero-curtain period and the soil thermal regime for layers close to the surface. 

In light of the results of the snow-soil coupled evolution, it appears that errors in simulating the soil thermal regime manifest 

themselves mostly during freezing and thawing. In a similar study, Langer et al. (2013) found that the permafrost thermal state 20 

was mostly governed by the snow thermal properties. Here, Tthe too rapid simulated soil freezing and thawing may be caused 

byare due to the high thermal conductivity of the basal snow layer. For thawing, this is enhanced because of the early simulated 

snowmelt, linked to inadequate albedo simulations, which have a critical impact in May. It is interesting that the most 

sophisticated model run experiment (run wind) is able to reproduce quite accurately the ground thermal regime at all depths in 

winter (Fig. 10), even though the thermal properties of the snow are not accurately simulated. Numerical models can be viewed 25 

as just the descriptions of a set of complex processes where error compensation is optimized. Therefore, we suggest that the 

insufficient insulating properties of the simulated snowpack are compensated by the inverted thermal conductivity profile, 

because the simulated insulating top snow layer damps air temperature fluctuations and thus limits heat transfer during cold 

spells. Under periodic diurnal temperature fluctuations, cold waves cannot penetrate into the simulated snowpack as well as 

when a conducting layer is present, so that the overall heat loss would be reduced by the inverted stratification. Of course, this 30 

is just a hypothesis that needs to be tested in future work, but some process exists, that compensates for the insufficiently 

insulating simulated snowpack, to explain the excellent soil temperature simulation most of the time.  
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4.3 Representativity of observations 

The very large spatial variability of snow properties makes the comparison between simulations outputs and observations 

difficult. In particular the snow height appeared to vary a lot with the microtopography at the 50-cm scale, thus only 

measurements performed in the immediate vicinity of the station can be used to assess the link between snow and soil properties 

measured at one specific site. 5 

The lack of precipitation measurements is a major concern, because most of the snow and soil properties depend on the amount 

of precipitation. In particular, precipitation controls the snow height and the soil water content. The winter 2013-2014 was a 

particularly low snow year, with high wind redistribution. We thus arbitrarily changed the snowfall amount given by ERAi to 

reproduce the mean snow accumulation observed at our site. It is well known that measuring precipitation in the Arctic is a 

challenge, especially in winter when snow falls in windy conditions and precipitation gauges are only catching between 20 to 10 

70% of the actual amount of snow (Goodison et al., 1998; Liston and Sturm, 2002). But using a shielded precipitation gauge 

and correcting data using wind speed data should help reduce the large uncertainty that we have using ERA-interim 

precipitation data alone, as already recommended by Bokhorst et al. (2016). 

5 Conclusion 

Applying the coupled snowpack-soil models ISBA-Crocus and ISBA-ES to a high Arctic site reveals major deficiencies related 15 

to typical Arctic conditions. The main weakness lies in the simulation of snow physical properties, because the absence of a 

modelled upward water vapour flux prevents reproducing the observed density profiles. The resulting vertical profiles of ksnow 

are inverted in simulations, producing erroneous heat transfers through the snowpack. This work also illustrates that 

determining snow thermal conductivity from density only is totally inappropriatemisleading,inadequate especially (but not 

only) in the Arctic, confirming the theoretical work of Löwe et al. (2013) and Calonne et al. (2014). Considering also a 20 

microstructural variable, or perhaps snow type, appears mandatory (Lehning et al., 2002). 

The soil temperature is the least well simulated during freezing and thawing periods. The main reason is the too conductive 

basal snow layer, which allows the soil to cool and warm too rapidly. Still, ISBA-Crocus manages to reproduce the temperature 

of the soil satisfactorily in summer and winter. Our results suggest that errors in the ksnow stratification can compensate errors 

in simulated ksnow values in winter. Hence, despite its apparent good results, Crocus is not better adapted than simpler models 25 

like ES to simulate Arctic snow thermal properties. The snow height has also a major influence on the winter soil temperature, 

but it is highly variable because of the wind-induced snow redistribution. Finally, a better representation of surface organic 

layers should improve simulations of the top soil properties, in particular the water content which controls the soil thermal 

properties and the water phase changes. The water content also governs the amount of water vapour transferred from the soil 

to the snow. 30 

There are therefore strong uncertainties in climate projections related to the permafrost-carbon feedback, because even the 

most sophisticated snow models cannot accurately simulate heat transfers through Arctic snowpacks. In particular the soil 
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freezing and thawing processes need to be carefully simulated, because they determine most of the permafrost properties 

(Hinzman et al., 1991). The dual challenge to GCMs is thus to improve the representation of snow Arctic processes, in 

particular the water vapour fluxes and the resulting density and thermal conductivity profiles, and to include sub-grid snow 

height heterogeneities (Liston, 2004) in order to accurately simulate the thermal regime of permafrost. 

6 Data and code availability 5 

Forcing data used for this research and evaluation data of Ffigures 2, 6, 8, 10 and 11 are available for further use in the scientific 

community at Nordicana D, doi:10.5885/45460CE-9B80A99D55F94D95. The strong differences between Arctic and alpine 

snowpack types encourage to incorporate such datasets in the upcoming model intercomparison exercises, in particular ESM-

SnowMIP (http://www.geos.ed.ac.uk/~ressery/ESM-SnowMIP.html) which currently does not include sites featuring tundra 

snow types. The model is open source, it is available via the SURFEX platform which can be downloaded at http://www.umr-10 

cnrm.fr/surfex/. The simulations presented in this paper were realized with SURFEX version 8.0, revision 4006. 
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Figure 1. Location of the study site in the south-west plain of Bylot Island, in the Canadian Arctic archipelago.  
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Figure 2. Snow height evolution over the 2 years of observations. Results of field observationsseveral hundred measurements using 

an avalanche probe (random measurements) and of a few snow pit data close to our site, performed in May 2014 and 2015, are also 5 
shown. 
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Figure 3. Stratigraphies and vertical profiles of density measured on 14 May 2014 (left) and 12 May 2015 (right), and simulated 

densities on 14 May 2014 and 6 May 2015. 
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Figure 4. Vertical profiles of snow thermal conductivities measured on 14 May 2014 (left) and 12 May 2015 (right), and simulated 

on 14 May 2014 and 6 May 2015. 
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Figure 5. Measured and simulated snow thermal conductivity values as a function of density. Crocus computes ksnow from the density 

only following Yen’s parameterization, while ES includes the thermal effects of latent heat fluxes within the snowpack. Regression 

curves from Yen (1981) and Sturm et al. (1997) are also shown, as well as observed snow types. 5 
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Figure 6. Evolution of simulated and observed temperatures within the snowpack during winter 2014-2015. Observations at 2, 12 

and 22 cm come from the NPs, and the surface temperature is measured by the IR120 sensor. 
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Figure 7. Overview of snow heights (top), average mean thermal conductivitiesy (middle), and thermal resistanceinsulance (bottom) 

measured during May 2014 and 2015 field campaigns, and simulated values. 
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Figure 8. Evolution of the soil thermal conductivity measured at 10 cm depth, and simulated (run wind) at depths of 10 and 20 cm.  
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Figure 9. Vertical profiles of ksoil, soil temperature and volumetric water content measured on 29 June 2014 and simulated in the 

first 20 cm below the surface. Horizontal bars indicate the standard deviation of measurements. The runs litter, SOC, wind and ES 

simulated the same soil temperature profiles. 5 
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Figure 10. Observed and simulated daily mean soil temperature at 5, 10 and 15 cm deep.  
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Figure 11. Observed and simulated daily mean soil volumetric water content at depths of 5, 10 and 15 cm. 
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Table 1. Configurations of the numerical experiments, all realized with Crocus except for ES. Changes are incremented in addition 

to the previous configuration. 

Run name Run configuration 

base base simulation using SURFEX version 8.0 (rev. 4006), for a mineral soil 

litter addition of a 10 cm-thick surface litter 

SOC addition of organic carbon within the soil profile 

wind increase the maximum density for wind-induced snow compaction, from 350 to 600 kg m-3 

ES use the ES snow scheme instead of Crocus, same configuration as wind 
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Table 2. Statistical indicators of the differences between observations and model results of the soil temperature (°C) at -15 cm on a 

6-hour timestep. Bold values correspond to the best scores. 

year period type 
runs 

base litter SOC wind ES 

2013-2014 

annual 

bias 1.48 0.37 0.32 -0.92 -4.42 

rmse 3.41 2.62 2.61 2.54 5.91 

r² 0.92 0.94 0.94 0.95 0.95 

winter 

(DJF) 

bias 1.85 1.54 1.33 -1.42 -8.01 

rmse 1.94 1.66 1.45 1.62 8.06 

r² 0.94 0.94 0.94 0.88 0.93 

2014-2015 

annual 

bias 3.31 2.08 2.04 0.50 -2.96 

rmse 4.34 3.49 3.52 2.63 4.86 

r² 0.94 0.94 0.94 0.95 0.92 

winter 

(DJF) 

bias 3.64 3.06 2.89 0.38 -5.07 

rmse 3.68 3.12 2.95 0.61 5.39 

r² 0.97 0.97 0.97 0.98 0.96 

 

  5 



56 

 

 

Table 3. Statistical indicators of the differences between observations and model results of the soil volumetric water content (%) at 

-15 cm on a 6-hour timestep. Bold values indicate the best scores. 

year period type 
runs 

base litter SOC wind ES 

2013-2014 

annual 

bias -3.18 -4.18 -2.21 -2.38 -3.20 

rmse 11.85 8.90 8.37 8.19 8.01 

r² 0.48 0.73 0.72 0.74 0.77 

winter 

(DJF) 

bias -2.97 -2.99 -1.67 -1.83 -2.13 

rmse 2.97 2.99 1.67 1.83 2.14 

r² 0.93 0.93 0.93 0.85 0.90 

2014-2015 

annual 

bias -2.31 -3.66 -1.41 -1.97 -2.69 

rmse 12.30 8.33 7.97 7.29 7.99 

r² 0.39 0.75 0.72 0.78 0.74 

winter 

(DJF) 

bias -1.81 -1.85 -0.52 -0.67 -0.93 

rmse 1.81 1.85 0.53 0.67 0.93 

r² 0.89 0.90 0.90 0.90 0.89 

 


