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Abstract. Several land biogeochemical models used for studying carbon-climate 8 

feedbacks have begun explicitly representing microbial dynamics. However, to our 9 

knowledge, there has been no theoretical work on how to achieve a consistent scaling of 10 

the complex biogeochemical reactions from microbial individuals to populations, 11 

communities, and interactions with plants and mineral soils. We focus here on developing 12 

a mathematical formulation of the substrate-consumer relationships for consumer 13 

mediated redox reactions of the form A+B→
E

products , where products could be, e.g., 14 

microbial biomass or bio-products. Under the quasi-steady-state approximation, these 15 

substrate-consumer relationships can be formulated as the computationally difficult full 16 

Equilibrium Chemistry problem or approximated analytically with the Dual Monod (DM) 17 

or Synthesizing Unit (SU) kinetics. We find that DM kinetics are scaling inconsistent for 18 

reaction networks because: (1) substrate limitations are not considered, (2) contradictory 19 

assumptions are made regarding the substrate processing rate when transitioning from 20 

single- to multi-substrate redox reactions, and (3) the product generation rate cannot be 21 

scaled from one to multiple substrates. In contrast, SU kinetics consistently scale the 22 

product generation rate from one to multiple substrates, but predict unrealistic results as 23 
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consumer abundances reach large values with respect to their substrates. We attribute this 1 

deficit to SU’s failure to incorporate substrate limitation in its derivation. To address 2 

these issues, we propose SUPECA (SU Plus Equilibrium Chemistry Approximation) 3 

kinetics, which consistently impose substrate and consumer mass balance constraints. We 4 

show that SUPECA kinetics satisfy the partition principle, i.e., scaling invariance across a 5 

network of an arbitrary number of reactions (e.g., as in Newton’s Law of motion and 6 

Dalton’s law of partial pressures). We tested SUPECA kinetics with the equilibrium 7 

chemistry solution for some simple problems and found SUPECA outperformed SU 8 

kinetics. As an example application, we show that a steady-state SUPECA-based 9 

approach predicted an aerobic soil respiration moisture response function that agreed well 10 

with laboratory observations. We conclude that, as an extension to SU and ECA kinetics, 11 

SUPECA provides a robust mathematical representation of complex soil substrate-12 

consumer interactions and can be applied to improve ESM land models.  13 

 14 
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1. Introduction 18 

Near surface soils holds more than twice the carbon in the current atmosphere; 19 

therefore a small change in land carbon dynamics can imply significant feedbacks to the 20 

ongoing climate warming (Ciais et al., 2013). This sensitivity has motivated research to 21 

better understanding Earth’s land biogeochemical cycles, both for prediction and 22 

assessing the efficacy of climate mitigation and adaptation strategies. To date, however, 23 
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soil biogeochemical models suffer from high uncertainty (e.g., Arora et al., 2013; 1 

Bouskill et al. 2014; Friedlingstein et al., 2014; He et al. 2016). For instance, eight 2 

CMIP5 Earth System Models (ESMs) predicted that net land carbon uptake varies from 3 

22 to 456 Pg C for the 2006-2100 period under the Representative Concentration 4 

Pathway 4.5 (RCP4.5; Shao et al., 2013). Similarly, Todd-Brown et al. (2013) estimated 5 

that 16 CMIP5 ESMs predicted contemporary global soil carbon stocks ranging from 510 6 

to 3040 Pg C to 1 m depth, while the most recent empirical estimation is 1408±154 Pg C 7 

to 1 m depth and 2060±217 Pg C to 2 m depth (Batjes, 2016). 8 

  The predictive power of existing land biogeochemical models is diminished by 9 

uncertainties from structural design, numerical implementation, model parameterization, 10 

initial conditions, and forcing data (Tang and Zhuang, 2008; Tang et al., 2010; Luo et al., 11 

2015; Wieder et al., 2015a; Blanke et al., 2016; Tang and Riley, 2016). Among these, 12 

developing better model structures and mathematical formulations have been identified as 13 

priorities. One proposed structural improvement is to include explicit microbial dynamics 14 

(Wieder et al., 2015b), which may enable better predictions of global soil carbon stocks 15 

(Wieder et al., 2013), priming effects (Sulman et al., 2014), vertical soil carbon profiles 16 

(Riley et al., 2014; Dwivedi et al., 2017), and respiratory temperature sensitivity (Tang 17 

and Riley, 2015). A second proposal is to explicitly resolve ecosystem nutrient cycles, 18 

following the hypothesis that the potential for increasing land ecosystem carbon uptake 19 

from atmospheric CO2 fertilization could be limited by nutrient availability (Vitousek, 20 

1982; Shi et al., 2015; Wieder et al., 2015c).  21 

 A common feature that underlies these two proposed model structural 22 

improvements are substrate-consumer interactions, which affect microbial substrate 23 



 4 

decomposition (Grant et al., 1993; Tang and Riley, 2013a; Riley et al., 2014; Le Roux et 1 

al., 2016), mineral soil interactions with adsorptive substrates (Smith, 1979; Grant et al., 2 

1993; Resat et al., 2011; Tang and Riley, 2015; Dwivedi et al., 2017), and plant-microbe 3 

competition for nutrients (Grant, 2013; Zhu et al., 2016a, 2016b, 2017). In soil, because 4 

there are many consumers competing for many substrates in different places at different 5 

times, soil biogeochemical models must be able to scale consistently across space, time, 6 

and processes. Scaling across spatial and temporal dimensions is achieved through spatial 7 

and temporal discretization and integration, which has been intensively studied elsewhere 8 

(e.g., Kolditz et al., 1998; Mao et al., 2006). Here we examine scaling along the less 9 

studied third dimension (process), focusing on development of a consistent mathematical 10 

formulation of substrate-consumer interactions.  11 

Previously, we studied a simple configuration of this consumer-substrate 12 

interaction, i.e., the network of single-substrate Monod type reactions (discussed later), 13 

and developed a scaling method, the Equilibrium Chemistry Approximation (ECA) 14 

kinetics (Tang and Riley, 2013a). ECA kinetics significantly improved the modeling of 15 

plant-microbial nutrient competition in the ACME land biogeochemical model (Zhu and 16 

Riley, 2015; Zhu et al., 2016a, 2016b, 2017), and was recently cited as one of the most 17 

promising methods to improve representation of nutrient competition in ESMs (Achat et 18 

al., 2016; Niu et al., 2016). The ECA method also successfully explained why organo-19 

mineral interactions can slow soil organic matter decomposition rates and how lignin-20 

cellulose ratios (Melillo et al., 1989) can be stabilized during litter decomposition (Tang 21 

and Riley, 2013a, 2015).  22 
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 Following Tang and Riley (2013a), we start our analysis here by assuming a 1 

certain homogeneous space-time-process unit in soil, within which there are generally 2 

three types of substrate-consumer relationships: (1) single-substrate Monod type (aka A-3 

E type) reactions in the form of 	A→
E

products ; (2) two-substrate (aka AB-E type) redox 4 

reactions in the form of 	A+B→
E

products , where substrate 	A  and 	B  are called 5 

complementary because they both are required for the redox reaction to proceed; and (3) 6 

multi-substrate (>2) reactions 
	

Ai
i
∑ →

E

products . The scaling of single-substrate Monod 7 

type reactions has been extensively discussed in Tang and Riley (2013a), and is resolved 8 

with ECA kinetics (more discussion on ECA kinetics for process scaling will be provided 9 

in later sections when discussing SUPECA kinetics). Further, because many multi-10 

substrate reactions can be separated into a combination of single-substrate reactions and 11 

redox-reactions, our discussion below focuses on achieving a consistent kinetic scaling 12 

from a single redox reaction to many reactions in a network. 13 

 Mathematically, the problem can be addressed with an explicit formulation of all 14 

kinetic processes using ordinary differential equations accounting for all substrates and 15 

consumers (Chellaboina et al., 2009). However, such a formulation would require too 16 

many parameters and would be numerically very difficult to solve because of its multi-17 

temporal scale nature. By making the quasi-steady-state-approximation (QSSA), i.e., 18 

assuming that product generation from the consumer-substrate complex is much slower 19 

than equilibration between consumers, substrates, and consumer-substrate complexes 20 

(Briggs and Haldane, 1925; Pedersen et al., 2008), the full kinetic problem is reduced to 21 

the simpler Equilibrium Chemistry (EC) form (e.g., Chellaboina et al., 2009). However, 22 
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the EC formulation is also usually very difficult to solve numerically. Therefore, 1 

analytical approximations to the EC formulation are generally made.  2 

Two classic analytical approximations for modeling redox-reactions are Dual 3 

Monod (DM) kinetics (e.g., Yeh et al., 2001) and Synthesizing Unit (SU) approach 4 

(Kooijman, 1998; Brandt et al., 2003). Although both of these are special cases of the EC 5 

formulation (Kooijman, 2010; Tang and Riley, 2013a), they make different assumptions 6 

regarding the relative magnitudes of involved kinetic parameters. For this, Kooijman 7 

(2010) has shown that DM kinetics require the consumer-substrate complex dissociation 8 

rate to be much larger than the product generation rate from the complexes. In contrast, 9 

single-substrate Monod kinetics (Monod, 1949) or Michaelis-Menten (MM) kinetics 10 

(Michaelis and Menten, 1913; which is mathematically identical to the empirical Monod 11 

kinetics) do not impose this requirement on its parameters. Moreover, in applications to r-12 

K scaling (e.g., Tilman, 1982; Litchman and Klausmeier, 2008), single-substrate Monod 13 

kinetics require the product-generation rate to be faster than the dissociation rate of 14 

consumer-substrate complexes. This contrasting requirement on the relative magnitudes 15 

of parameters, as we will show later, implies that DM kinetics cannot achieve consistent 16 

scaling of substrate-consumer interactions for generic biogeochemical modeling.  17 

 We define a kinetic formulation to have consistent process scaling when the 18 

formulated substrate-consumer relationship: (1) can seamlessly transition from a single 19 

substrate-consumer pair to a network of many substrate-consumer pairs without changing 20 

its mathematical form (aka the partition principle as in Newton’s second Law of motion, 21 

Feynman et al., 1963) and (2) does not predict any singularity over the range of substrate 22 

and consumer concentrations (aka the non-singular principle, e.g., Schnell and Maini, 23 



 7 

2000; Tang, 2015). The full kinetics and EC formulations both satisfy these two criteria, 1 

which can be explained using the following example network of consumer-substrate 2 

relationships:  3 

		
Si +E j↔k1,ij−

k1,ij
+

E jSi→
k2,ij
+

Pij +E j  (1) 

where substrate 	Si  complexes with consumer 	
E j  to form complex 	

E jSi , which is then 4 

degraded into product 	
Pij  and free consumer. Throughout this study, forward and 5 

backward kinetic parameters are indicated with superscript “+” and “−”, respectively. 6 

Unless an ambiguity needs clarification, we assume all variable units are consistently 7 

defined. 8 

The full kinetic formulation for the network of equation (1) is: 9 

		

d Si⎡⎣ ⎤⎦
dt

= − Si⎡⎣ ⎤⎦ k1,ij
+ E j
⎡⎣ ⎤⎦( )

j
∑ + k1,ij

− E jSi⎡⎣ ⎤⎦( )
j
∑  (2) 

		
d E jSi⎡⎣ ⎤⎦
dt

= k1,ij
+ Si⎡⎣ ⎤⎦ E j

⎡⎣ ⎤⎦− k1,ij
− +k2,ij

+( ) E jSi⎡⎣ ⎤⎦  (3) 

		
d E j
⎡⎣ ⎤⎦
dt

= − E j
⎡⎣ ⎤⎦ k1,ij

+ Si⎡⎣ ⎤⎦( )
i
∑ + k1,ij

− +k2,ij
+( ) E jSi⎡⎣ ⎤⎦( )

i
∑  (4) 

where 	
x⎡⎣ ⎤⎦  indicates the concentration of 	x .  10 

The first summation in equations (2) and (4) satisfies the partition principle. For 11 

instance, for equation (4), by defining an appropriate mean specific substrate affinity 		k1, j
+ , 12 

the summation 
		

k1,ij
+ Si⎡⎣ ⎤⎦( )

i
∑  can be recast as k1, j

+ S⎡⎣ ⎤
⎦ , in which 

	
S⎡⎣ ⎤⎦ = Si⎡⎣ ⎤⎦

i
∑  resembles 13 
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Dalton’s law of partial pressures (and many other similar relationships in physics, e.g., 1 

Newton’s second law of motion (Feynman et al., 1963)).  2 

Meanwhile, that the full kinetic formulation satisfies the nonsingular principle can 3 

be verified by noting that, at any time: 4 

	
Si⎡⎣ ⎤⎦+ E jSi⎡⎣ ⎤⎦

j
∑ = Si⎡⎣ ⎤⎦T  (5) 

and that consumption of 	Si  is through generation of product from 
	
E jSi⎡⎣ ⎤⎦ . Therefore, by 5 

combining equations (2), (3), and (5), the overall consumption rate of 	Si  (i.e., 6 

		
k2,ij
+ E jSi⎡⎣ ⎤⎦

j
∑ ) is always smaller than 

		
Si⎡⎣ ⎤⎦T k2,ij

+

j
∑ , even when consumers have high 7 

abundances relative to their substrates, a common situation in in vivo cells (Sols and 8 

Marco, 1970) and in plant-microbial competition for limited soil nutrients (Vitousek, 9 

1982; Schimel and Bennett, 2004; Vitousek et al., 2010).  10 

Since the EC formulation is obtained by applying the QSSA to the full kinetic 11 

formulation (i.e., 		d E jSi⎡⎣ ⎤⎦ dt ≈0  for equation (3)), it automatically satisfies the two 12 

criteria for consistent process scaling. However, Monod kinetics is scaling inconsistent 13 

when it is applied, for example, to single-substrate competition by multiple populations, 14 

or to multi-substrate consumption by a single population (e.g., Williams, 1973; Schnell 15 

and Mendoza, 2000; Tang et al., 2010; Riley et al., 2011, 2014; Allison, 2012; Bouskill et 16 

al., 2012; Wieder et al., 2013, 2014). Specifically, that Monod kinetics violates the 17 

partition principle can be shown from the following inequality:  18 
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Fj = E j

⎡⎣ ⎤⎦
k2,ij
+ Si⎡⎣ ⎤⎦

Kij + Si⎡⎣ ⎤⎦i
∑ ≠ E j

⎡⎣ ⎤⎦

k2,ij
+ Si⎡⎣ ⎤⎦ Kij

i
∑
1+ Si⎡⎣ ⎤⎦ Kij

i
∑

 (6) 

Here 	
Fj describes the uptake of all substrates 	Si  by consumer 	

E j . The left hand side of 1 

the inequality is the uptake computed by directly applying Monod kinetics, while the 2 

right hand side is obtained by applying competitive Monod kinetics (e.g., Litchman and 3 

Klausmeier, 2008). Inequality (6) is even true when	
Kij  is independent of 	i . Besides 4 

being inconsistent with the partition principle, Monod kinetics also violates the non-5 

singular principle, which can be demonstrated by observing that, as 
	
E j
⎡⎣ ⎤⎦  approaches 6 

very large values, so does 	
Fj . This linear dependence of 	

Fj  on
 	
E j
⎡⎣ ⎤⎦  

results in large 7 

biases of predicted parametric sensitivities under high ratios of 
	
E j
⎡⎣ ⎤⎦  

with respect to 8 

substrates (Schnell and Maini, 2000; Tang and Riley, 2013a; Tang, 2015), and is 9 

inconsistent with the non-singularity implied in equation (5). 10 

 For competitive Monod kinetics on the right hand side of inequality (6), we may 11 

define 
	
K j = S⎡⎣ ⎤⎦ Si⎡⎣ ⎤⎦ Kij

i
∑⎛⎝⎜

⎞
⎠⎟

 (e.g., Murdoch, 1973), resulting in: 12 

		

Fj = E j
⎡⎣ ⎤⎦

k2, j
+ Si⎡⎣ ⎤⎦

i
∑⎛⎝⎜

⎞
⎠⎟
K j

1+ Si⎡⎣ ⎤⎦
i
∑⎛⎝⎜

⎞
⎠⎟
K j

= E j
⎡⎣ ⎤⎦

k2, j
+ S⎡⎣ ⎤⎦ K j

1+ S⎡⎣ ⎤⎦ K j

 (7) 

where 
	
S⎡⎣ ⎤⎦ = Si⎡⎣ ⎤⎦

i
∑  designates the total free concentrations of all substrates. Equation 13 

(7) therefore carries the same partition principle implied in the first summation in 14 

equation (4) of the full kinetic formulation, suggesting that competitive Monod kinetics 15 
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satisfy the partition principle for consistent scaling of substrate-consumer relationships. 1 

Nevertheless, because competitive Monod kinetics are linear in 
	
E j
⎡⎣ ⎤⎦ , as are classic 2 

Monod kinetics, they still violate the non-singular principle for consistent scaling. 3 

 In Tang (2015) (and also in Borghans et al. (1996) and Tang and Riley (2013a)), 4 

it was shown that the linear dependence of 	
Fj  on 

	
E j
⎡⎣ ⎤⎦  as predicted by Monod kinetics 5 

and similarly by competitive Monod kinetics is due to their failure to impose the substrate 6 

mass (or surface area) balance in deriving their mathematical formulations. This problem 7 

has been rectified in ECA kinetics (Tang and Riley, 2013a), which was shown to predict 8 

much more accurate parametric sensitivity than Monod kinetics when compared with 9 

analytical solutions (Tang, 2015). Since the success of all model calibrations relies on the 10 

accuracy of modeled response variables’ sensitivity to model parameters (e.g., Wang et 11 

al., 2001; Williams et al, 2005; Tang and Zhuang, 2009; van Werkhoven et al., 2009; 12 

Qian et al., 2015), and plant-microbial competitions of nutrients often occur under high 13 

consumer abundances with respect to their substrates (as corroborated by the nitrogen and 14 

phosphorus limitations that are commonly observed in natural ecosystems; e.g., Vitousek 15 

et al. (2010)), developing robust biogeochemical models requires substrate kinetics that 16 

give accurate parametric sensitivities under a wide range of parameter values. 17 

 We therefore ask the question: how should we achieve a consistent scaling from 18 

the simplest redox reaction 	A+B→
E

products  (i.e., AB-E type) to a network that mixes 19 

many redox reactions and even single substrate Monod-type reactions? Aside from the 20 

two criteria (i.e., the partition principle and non-singularity) discussed above, we suggest 21 

a third criterion that a consistent scaling of substrate-consumer relationships should 22 
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seamlessly transition from a single substrate A-E Monod-type reaction to the AB-E type 1 

redox reaction without making contradictory assumptions of the parameters in its 2 

theoretical derivation.  3 

In the following, we address the above process-scaling question by first 4 

presenting the step-by-step derivation of DM kinetics and SU kinetics from the EC 5 

formulation of the redox reaction 	A+B→
E

products . Conceptually, DM kinetics can be 6 

viewed as a direct application of chemical kinetics that the reaction rate of substrates 	A  7 

and 	B  with consumer 	E  is determined by the product of A and B’s binding probability to 8 

E (which in Monod form is 
	
A⎡⎣ ⎤⎦ KA + A⎡⎣ ⎤⎦( )  for substrate 	A , and 

	
B⎡⎣ ⎤⎦ KB + B⎡⎣ ⎤⎦( )  for 9 

substrate 	B ). Kooijman (1998) was the first to derive SU kinetics using queue theory 10 

(e.g., Gross et al., 2011) and Brandt et al. (2003) discussed its use for AB-E type redox 11 

reactions. The following derivation stresses scaling-inconsistencies implied in DM and 12 

SU kinetics, and we will show that DM kinetics cannot be extended for consistent 13 

process scaling of substrate-consumer relationships. We then present SUPECA kinetics, 14 

which remedies the inconsistencies in SU kinetics. We demonstrate the benefits of using 15 

SUPECA kinetics in terms of numerical accuracy and present a proof-of-concept 16 

example by modeling the moisture control of aerobic soil respiration. Finally, we discuss 17 

how one can apply SUPECA kinetics to trait-based modeling approaches in various 18 

biogeochemical systems (e.g., Bouskill et al., 2012; Follows et al., 2007; Litchman and 19 

Klausmeier, 2008).  20 

2. Derivation of ECA kinetics for AB-E type redox reaction 	A+B→
E

products  21 

2.1 Governing equations 22 
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We schematically represent the enzymatic redox reaction network as  1 

		 

E + A ↔
kA
−

kA
+

EA

+ +
B B

kB
− !kB

+ kB
− !kB

+

EB + A ↔
kA
−

kA
+

EAB →
k2
+

E + P

 (8) 

where it is assumed that the order of substrates A and B binding to consumer E does not 2 

affect the kinetic coefficients, as is done in most modeling studies (e.g., Yeh et al., 2001).  3 

By law of mass action and the total QSSA (tQSSA; e.g., see Borghans et al., 4 

1996; Tang and Riley, 2013a), we have the governing equations (appendix A): 5 

		
d A⎡⎣ ⎤⎦T
dt

= −k2
+ EAB⎡⎣ ⎤⎦  (9) 

		
d B⎡⎣ ⎤⎦T
dt

= −k2
+ EAB⎡⎣ ⎤⎦  (10) 

	
kA
+ E⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦+kB

− EAB⎡⎣ ⎤⎦ = kA
− +kB

+ B⎡⎣ ⎤⎦( ) EA⎡⎣ ⎤⎦  
(11) 

	
kB
+ E⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦+kA

− EAB⎡⎣ ⎤⎦ = kB
− +kA

+ A⎡⎣ ⎤⎦( ) EB⎡⎣ ⎤⎦  
(12) 

		kA
+ EB⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦+kB

+ EA⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ = kA
− +kB

− +k2
+( ) EAB⎡⎣ ⎤⎦  

(13) 

where 6 

	
A⎡⎣ ⎤⎦T = A⎡⎣ ⎤⎦+ EA⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦  

(14) 

	
B⎡⎣ ⎤⎦T = B⎡⎣ ⎤⎦+ EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦  (15) 

	
E⎡⎣ ⎤⎦T = E⎡⎣ ⎤⎦+ EA⎡⎣ ⎤⎦+ EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦  (16) 
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The derivation of substrate kinetics is therefore equivalent to solving for 	
EAB⎡⎣ ⎤⎦  from the 1 

EC problem defined by equations (11)-(16). However, because this set of equations is 2 

non-linear, and no analytical solutions are available (to our knowledge), some 3 

linearization is warranted to obtain analytical approximations. As we describe below, 4 

linearization with different assumptions lead to DM, SU, and SUPECA kinetics.  5 

 To clarify, we note that obtaining the substrate kinetics only requires solving 6 

equations (11)-(16); various production and destruction terms can be added to equations 7 

(9) and (10) to form a full dynamic model (e.g., Maggi and Riley, 2009) without affecting 8 

our derivation below.  9 

2.2 Dual Monod kinetics and synthesizing unit kinetics 10 

One method to linearize equations (11)-(16) is to assume that concentrations of 11 

consumer-substrate complexes are so small that free substrate concentrations are 12 

effectively equal to bulk concentrations (e.g., for substrate A: 
	
A⎡⎣ ⎤⎦T = A⎡⎣ ⎤⎦ ). This 13 

approach, when combined with different assumptions on the relative magnitudes of 14 

kinetic parameters, leads to the popular DM kinetics and the two-substrate SU kinetics. 15 

2.2.1 Dual Monod kinetics 16 

We now derive DM kinetics. Adopting the equilibrium approximation that 17 

forward binding between consumer and substrate is in rapid equilibrium with backward 18 

dissociation of consumer-substrate complex (e.g., Michaelis and Menten, 1913; Pyun, 19 

1971), we have the following 20 

	
EA⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ =

kB
−

kB
+ EAB⎡⎣ ⎤⎦ = KB EAB⎡⎣ ⎤⎦  (17) 
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EB⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦ =

kA
−

kA
+ EAB⎡⎣ ⎤⎦ = KA EAB⎡⎣ ⎤⎦  

(18) 

which then transforms equations (11) and (12) into 1 

	
E⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦ =

kA
−

kA
+ EA⎡⎣ ⎤⎦ = KA EA⎡⎣ ⎤⎦  (19) 

	
E⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ =

kB
−

kB
+ EB⎡⎣ ⎤⎦ = KB EB⎡⎣ ⎤⎦  

(20) 

By solving for 	
EAB⎡⎣ ⎤⎦  from equations (14)-(16) using equations (17)-(20), we 2 

obtain the consumer-substrate complex for DM kinetics (see Appendix B)  3 

		

d A⎡⎣ ⎤⎦T
dt

= −k2
+ E⎡⎣ ⎤⎦T

A⎡⎣ ⎤⎦
KA + A⎡⎣ ⎤⎦

B⎡⎣ ⎤⎦
KB + B⎡⎣ ⎤⎦

 (21) 

As one substrate, e.g., 	
A⎡⎣ ⎤⎦ , becomes unlimited, equation (21) can be reduced to 4 

the classical MM kinetics 5 

		

d A⎡⎣ ⎤⎦T
dt

= −k2
+
E⎡⎣ ⎤⎦T B⎡⎣ ⎤⎦
KB + B⎡⎣ ⎤⎦

 (22) 

We note that the half saturation coefficient 	KB = kB
− kB

+  in equation (22) is different from 6 

its usual definition (i.e., 		KB = k2
+ +kB

−( ) kB+ ) if one derives MM kinetics rigorously 7 

starting from a single substrate and single consumer system (e.g., Tang, 2015). For this 8 

reason, we assert that DM kinetics cannot achieve a self-consistent scaling from one-9 

substrate reaction to multiple-substrate reactions. More specifically, by substituting 10 

equations (17) and (18) into equation (13), one obtains 		k2
+ =0 , or at least 11 
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		 k2
+ ≪max kA− ,kB−( ) , which states that the consumer is very inefficient in processing the 1 

substrate. However, MM kinetics does not require the dissociation rate to be much higher 2 

than the product generation rate from the consumer-substrate complex, i.e.  3 

		 k2
+ ≪max kA− ,kB−( )  (e.g., Briggs and Haldane, 1925). Nor do the high dissociation rates of 4 

	
EA⎡⎣ ⎤⎦ , 	

EB⎡⎣ ⎤⎦ , and 	
EAB⎡⎣ ⎤⎦  

favor the consumer’s assimilation of substrates under usual 5 

substrate concentrations (e.g., Van Slyke and Cullen, 1914), even though a high 6 

dissociation rate of the enzyme-substrate complexes may possess some theoretical 7 

advantage under high substrate concentrations when the consumer is a single enzyme 8 

(Reuveni et al., 2014). To the contrary, most existing applications tend to assume 9 

		 k2
+ ≫ kA

−  and 		 k2
+ ≫ kB

−

 (e.g., Holling, 1959, 1966; Aksnes and Egge, 1991; Armstrong, 10 

2008; Bonachela et al., 2011), such that 		KB ≈ k2
+ kB

+  for MM kinetics and r-K selection 11 

can be explained by linking 		k2
+  with growth rate, and 	kA

+  and 	kB
+

 with substrate 12 

competitive ability (e.g., Litchman and Klausmeier, 2008). Therefore, for biogeochemical 13 

modeling, DM and MM (or Monod) kinetics are based on different assumptions of the 14 

relative magnitudes of kinetic parameters, and no smooth transition from single- (MM) to 15 

multi-substrate (DM) kinetics exists.  16 

2.2.2 Synthesizing unit kinetics 17 

In deriving SU kinetics for the redox reaction network represented in equation (8), 18 

consumer 	E  is viewed as a generalized enzyme that generates bio-products by processing 19 

substrates A and B. SU computes the specific reaction rate per unit concentration of 	E  as 20 

the product generation rate 		k2
+  times the probability that 	E  binds with both substrates A 21 
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and B (which is 
	
EAB⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦T ). SU kinetics requires the sufficient flux condition 1 

	 
kA
+ A⎡⎣ ⎤⎦≫ kB

−  and 	 
kB
+ B⎡⎣ ⎤⎦≫ kA

−

 
(Kooijman, 2010). Defining 		 

!k2
+ = kA

− +kB
− +k2

+ , equations 2 

(11)-(13) become 3 

	
kA
+ E⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦ = kB

+ B⎡⎣ ⎤⎦ EA⎡⎣ ⎤⎦  (23) 

	
kB
+ E⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ = kA

+ A⎡⎣ ⎤⎦ EB⎡⎣ ⎤⎦  (24) 

		 kA
+ EB⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦+kB

+ EA⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ =
!k2
+ EAB⎡⎣ ⎤⎦  (25) 

From equations (23)-(25), we obtain (see Appendix C) 4 

		 

d A⎡⎣ ⎤⎦T
dt

= −
k2
+ E⎡⎣ ⎤⎦T

!k2
+

1
!k2
+ +

1
kA
+ A⎡⎣ ⎤⎦

+ 1
kB
+ B⎡⎣ ⎤⎦

− 1
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦

 
(26) 

The two-substrate SU kinetics (equation (26)) can also be viewed as a special case 5 

of the general SU kinetics for any number of complementary substrates, which was first 6 

derived by Kooijman (1998) based on queue theory (e.g., Gross et al., 2011). Kooijman 7 

(1998) assumed that consumers act like synthesizing units, which process substrates in 8 

two steps: binding and production. He then assumed that all flux rates (including 9 

production rates 		k2
+  and substrate binding rates 	

kA
+ A⎡⎣ ⎤⎦  and 	

kB
+ B⎡⎣ ⎤⎦ ) are of Poisson 10 

distributions, and calculated the overall specific substrate consumption rate as the 11 

reciprocal of the expected total processing time (i.e., the denominator of equation (26)). 12 

The last term in the denominator of equation (26) comes from the assumption of parallel 13 

binding of substrates 	A  and 	B  to 	E , which disappears if sequential binding is assumed 14 

(e.g., Brandt et al., 2003).  15 
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 As one substrate, e.g., 	A , becomes unlimited, single-substrate Monod kinetics is 1 

recovered from equation (26): 2 

		 

d A⎡⎣ ⎤⎦T
dt

= −
k2
+ E⎡⎣ ⎤⎦T

1+
!k2
+

kB
+ B⎡⎣ ⎤⎦

= −
k2
+ E⎡⎣ ⎤⎦T B⎡⎣ ⎤⎦
!k2
+

kB
+ + B⎡⎣ ⎤⎦

 
(27) 

which has a half saturation coefficient similar to what would be derived for a single 3 

substrate, single consumer reaction (e.g., Tang, 2015). By assuming Poisson distribution 4 

of the kinetic parameters, it can also be shown for a single enzyme molecule that MM 5 

kinetics represent the statistical mean of the fluctuating activity of the enzyme (English et 6 

al., 2006; Reuveni et al., 2014). That kinetics of both single-substrate reactions and two-7 

substrate redox reactions can be similarly derived using statistical theory and that 8 

equations (26) and (27) can be obtained from the EC formulation using consistent 9 

assumptions of the relative magnitudes of kinetic parameters indicates, in contrast to DM 10 

kinetics, that SU kinetics is able to scale consistently between one- and two-substrate 11 

redox reactions.  12 

2.3. SUPECA kinetics 13 

In Tang and Riley (2013a) and Tang (2015), it was shown that the derivation of 14 

MM kinetics ignores the substrate mass balance constraint, resulting in MM kinetics 15 

predicting inaccurate parametric sensitivity over the wide range of substrate to consumer 16 

ratios (e.g., Figure 1 in Tang (2015)). This problem is particularly acute when consumer 17 

abundances are high with respect to their substrates, a situation that may occur in in vivo 18 

conditions (Sols and Marco, 1970; Schnell and Maini, 2000) or when consumers interact 19 
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with mineral surfaces, such as microbial decomposition of soil organic matter or plant-1 

microbial competition for soil nutrients (Schimel and Bennett, 2004; Vitousek et al., 2 

2010; Resat et al., 2011; Tang and Riley, 2015; Zhu et al., 2016a). In the above, we also 3 

note that the substrates’ mass balance constraints (equations (14) and (15)) are not used in 4 

deriving DM and SU kinetics, suggesting that both DM and SU kinetics may suffer from 5 

the same deficiency as MM kinetics. Further, since DM kinetics fail to consistently scale 6 

from a single to two substrates, we below focus on combining SU and ECA kinetics into 7 

SUPECA kinetics to achieve a scalable and non-singular formulation of redox reactions. 8 

As implied in equations (9)-(16), the derivation of substrate kinetics requires 9 

solving for 	
EAB⎡⎣ ⎤⎦  from nonlinear equations (11)-(16), whose analytical solutions are not 10 

available. To obtain improved solutions as compared to SU kinetics, we applied a first 11 

order closure approach (appendix D; which is the perturbation method truncated to first 12 

order accuracy that describes the first order term using appropriate mean states (e.g., 13 

Shankar, 1994; Tang et al., 2007)) to the system formed by equations (11)-(16), leading 14 

to SUPECA kinetics: 15 

		

d A⎡⎣ ⎤⎦T
dt

= −
E⎡⎣ ⎤⎦T

1
k2
+

fA fB fAB
fA fB fAB

+ 1
fA
+ 1
fB

−
fA fB + fA fB − fA fB

fA fB fAB

													 = −
k2
+ E⎡⎣ ⎤⎦T fA k2

+( ) fB k2
+( )

fA fB
k2
+ fAB

fAB
k2
+ +

fAB
k2
+ −

fA fB + fA fB − fA fB
k2
+ fAB

 (28) 

where 
	
fA = kA

+ A⎡⎣ ⎤⎦T , 
	
fB = kB

+ B⎡⎣ ⎤⎦T ,  
	
fA = fA +kA

+ E⎡⎣ ⎤⎦T , 
	
fB = fB +kB

+ E⎡⎣ ⎤⎦T , 	fAB = fA + fB , 16 

and 	fAB = fA + fB . In equation (28), we assumed 		 k2
+ ≫ kA

−  and 		 k2
+ ≫ kB

− , so that 		 k2
+ ≈ !k2

+  17 
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(this relationship will be used throughout the remainder of this paper). It can then be 1 

verified that if 
	 
E⎡⎣ ⎤⎦T ≪ A⎡⎣ ⎤⎦T  and 

	 
E⎡⎣ ⎤⎦T ≪ B⎡⎣ ⎤⎦T , SUPECA kinetics as represented in 2 

equation (28) becomes SU kinetics in equation (26). Further, if one of the two substrates, 3 

say 
	
B⎡⎣ ⎤⎦T , becomes unlimited, equation (28) is reduced to 4 

		

d A⎡⎣ ⎤⎦T
dt

= −
E⎡⎣ ⎤⎦T

1
k2
+

fA
fA
+ 1
fA

= −
fA E⎡⎣ ⎤⎦T

1+ fA
k2
+

 
(29) 

which, by using the definition of 	fA  and  	fA , becomes the single substrate ECA kinetics 5 

equation (Tang, 2015). 6 

 3. SUPECA kinetics for a network of reactions 7 

In actual biogeochemical systems, it is more common for many substrates to be 8 

processed by many consumers concurrently (and such an assumption is implicitly 9 

assumed in the space-time-process unit of any biogeochemical model). To consistently 10 

handle such situations, Tang and Riley (2013a) derived ECA kinetics (see Figure 1 for a 11 

graphic demonstration) for calculating the consumption of a substrate 	Si  by a consumer 12 

	
E j  in a network of single substrate reactions 	A→

E

products : 13 

		

d Si⎡⎣ ⎤⎦T , j
dt

= −
k2,ij
+ E j
⎡⎣ ⎤⎦T Si⎡⎣ ⎤⎦T Kij( )

1+ Sl⎡⎣ ⎤⎦T Klj( )
l=1

l=I

∑ + El⎡⎣ ⎤⎦T Kil( )
l=1

l= J

∑
 (30) 
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By defining the normalized substrate flux (with subscript “c” designating that the 1 

summation is over a column of the graph in Figure 1) 2 

		
Fc , j = Sl⎡⎣ ⎤⎦T Klj( )

l=1

l=I

∑ = Fc , j
l{ }

l=1

l=I

∑  (31) 

and its conjugate (with subscript “r” designating that the summation is over a row of the 3 

graph in Figure 1) 4 

		
Fr ,i = El⎡⎣ ⎤⎦T Kil( )

l=1

l= J

∑ = Fr ,i
l{ }

l=1

l= J

∑  (32) 

equation (30) can then be rewritten as 5 

		

d Si⎡⎣ ⎤⎦T , j
dt

= −k2,ij
+ E j
⎡⎣ ⎤⎦T

Fc , j
i{ }

1+Fr ,i +Fc , j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −k2,ij

+ Si⎡⎣ ⎤⎦T
Fr ,i

j{ }

1+Fr ,i +Fc , j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (33) 

The normalized substrate flux as defined in equation (31) and its conjugate in equation 6 

(32) implies that the consumption of substrate 	Si  by consumer 	
E j  as described by ECA 7 

kinetics in equation (33) may be interpreted as either (i) the potential substrate processing 8 

rate of 	
E j  (i.e., 		k2,ij

+ E j
⎡⎣ ⎤⎦ ) weighted by the relevant importance of the reaction pathway 9 

	Si→
E j

products  (i.e., 		Fc , j
i{ } ) under the influence of all competing substrate fluxes 		Fc , j

l{ }10 

(towards consumer 	
E j ) and all competing agents’ demands 		Fr ,i

l{ }  (towards substrate 	Si ) or 11 

(ii) the linear decay potential of 	Si ( i.e.,  		k2,ij
+ Si⎡⎣ ⎤⎦T ) weighted by the relevant importance 12 
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of 		Fr ,i
j{ }  under the influence of all competing substrate fluxes and competing agents’ 1 

demands.  2 

We note that equations (31) and (32) define some very interesting scaling 3 

relationships. For instance, from equation (31), we can define the effective substrate 4 

affinity for the bulk substrates (
	
S⎡⎣ ⎤⎦T , defined as the total of all substrates) that are 5 

accessible for consumer 	
E j  as 6 

		
KE , j = Sl⎡⎣ ⎤⎦T

l=1

l=I

∑⎛
⎝⎜

⎞
⎠⎟
Fc , j = S⎡⎣ ⎤⎦T Fc , j  (34) 

Similarly, we can define the effective affinity for substrate 	Si  resulting from all 7 

competing agents as 8 

		
KS ,i = El⎡⎣ ⎤⎦T

l=1

l= J

∑⎛
⎝⎜

⎞
⎠⎟
Fr ,i = E⎡⎣ ⎤⎦T Fr ,i  (35) 

Then by substituting equations (34) and (35) into equation (33), we obtain 9 

		

d Si⎡⎣ ⎤⎦T , j
dt

= −
k2,ij
+ E j
⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T KE , j( )

1+ S⎡⎣ ⎤⎦T KE , j + E⎡⎣ ⎤⎦T KS ,i

Fc , j
i{ }

Fc , j

																					=−
k2,ij
+ Si⎡⎣ ⎤⎦T E⎡⎣ ⎤⎦T KS ,i( )

1+ S⎡⎣ ⎤⎦T KE , j + E⎡⎣ ⎤⎦T KS ,i

Fr ,i
j{ }

Fr ,i

 (36) 

which again shows the linear partition in terms of 		Fc , j
i{ } Fc , j  and 		Fr ,i

j{ } Fr ,i .  10 
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By applying the above two scaling relationships and the three consistent scaling 1 

criteria (as we proposed in the introduction section) to SUPECA kinetics in equation (28), 2 

we obtain (in appendix E) the network form of SUPECA kinetics: 3 

		

d Ai⎡⎣ ⎤⎦T , jk
dt

= −
k2,ijk
+ Ek⎡⎣ ⎤⎦T Fc ,A ,k

i{ } Fc ,B ,k
j{ }

GA ,ikGB , jk
GAB ,ijk

Fc ,AB ,k +Fc ,AB ,k −
Fc ,A ,kGB , jk +GA ,ikFc ,B ,k −GA ,ikGB , jk

GAB ,ijk

 
(37) 

where 4 

		
Fc ,A ,k = Fc ,A ,k

l{ }
l
∑ = Al⎡⎣ ⎤⎦T K A ,lk

l
∑  (38) 

		
Fc ,B ,k = Fc ,B ,k

l{ }
l
∑ = Bl⎡⎣ ⎤⎦T KB ,lk

l
∑  (39) 

		Fc ,AB ,k = Fc ,A ,k +Fc ,B ,k  (40) 

		
Fr ,A ,i = El⎡⎣ ⎤⎦T K A ,il

l
∑  (41) 

		
Fr ,B , j = El⎡⎣ ⎤⎦T KB , jl

l
∑

 
(42) 

		GA ,ik = Fc ,A ,k +Fr ,A ,i  (43) 

		GB , jk = Fc ,B ,k +Fr ,B , j  (44) 

		GAB ,ijk =GA ,ik +GB , jk  (45) 
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For equation (37), one can verify that if 		Fc ,B ,k (or		Fc ,A ,k ) goes to very large values, 1 

SUPECA kinetics is reduced to ECA kinetics (equation (33)). Therefore, SUPECA 2 

kinetics as formulated in equation (37) are an extension of SU and ECA kinetics, and 3 

SUPECA is applicable for consistent scaling of substrate-consumer networks involving 4 

both single-substrate reactions and redox-reactions (a visual demonstration of SUPECA 5 

kinetics is in Figure 2). 6 

4. Numerical accuracy of SUPECA kinetics 7 

 Following Tang and Riley (2013a), we assume that the EC formulation is a good 8 

approximation to the law of mass action and use it to evaluate the numerical accuracy of 9 

SUPECA kinetics. Because of numerical complexity, we restricted the comparison to the 10 

AB-E problem as formulated by equations (11)-(16) with the assumption of 		kA
− = kB

− =0  11 

and included a substrate sorbent to mimic a class of biogeochemistry problems in soil, 12 

such as aerobic soil ammonium nitrification and aerobic soil organic carbon 13 

decomposition (formulated in appendix F; a graphic representation is available in 14 

supplemental material).  15 

We evaluated the numerical accuracy of SUPECA (equation (37)) and SU 16 

(equation (26)) over a wide range of parameter values. We fixed both substrates at a 17 

nominal value of 40 mol m-3, and 		k2
+ , the maximum substrate processing rate at 48 s-1. 18 

Then we sampled the affinity parameters exponentially over the range 	 0,1000⎡⎣ ⎤⎦  mol m-3 19 

and the microbe and sorbent concentrations uniformly over the range 	 0,1000⎡⎣ ⎤⎦  mol m-3. 20 

Using a total of 1000 sets of randomly paired parameters, we compared how close 21 
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SUPECA and SU approximations are to the EC solution in terms of root mean square 1 

error (RMSE) and goodness of linear fit. Because SU kinetics do not allow a direct 2 

integration of the Langmuir adsorption into the calculation of microbe-substrate 3 

complexes, we followed Resat et al. (2011) and first solved the Langmuir isotherm to 4 

obtain the free substrate concentrations and then entered these free substrate 5 

concentrations into SU to obtain the microbe-substrate complex. This artificial ordering 6 

in calculation (as needed by the SU approach) suggests that the SU implementation may 7 

lead to significant numerical errors (similar numerical difficulties are associated with the 8 

popular MM kinetics (Resat et al., 2011; Tang and Riley, 2013a)). 9 

Our comparison (Figure 3 and Figure 4) indicates that SUPECA kinetics are 10 

superior to SU kinetics in computing the microbe-substrate complex in the presence of 11 

substrate binding competition between microbes and sorbent. SUPECA predictions are 12 

more accurate than SU predictions in terms of goodness of linear fitting and RMSE (for 13 

which the linear regressions are shown as black solid lines in the Figure 3). In magnitude, 14 

the RMSEs of SUPECA predictions are less than 10% of that of SU predictions (and also 15 

note that the y-axis ranges for SU predictions are 20 times of those for SUPECA 16 

predictions). The slope of linear fitting from SUPECA predictions is also much closer to 17 

the ideal value 1.0, whereas that from SU predictions is far greater than 1.0, suggesting 18 

that SU kinetics significantly overestimate microbe-substrate complexes under a wide 19 

range of conditions. When the model predictions are evaluated as a function of the 20 

relative abundances of consumers and substrates (Figure 4), SU overestimates are found 21 

under high ratios of consumer abundances with respect to substrates (Figure 4a, c). In 22 

contrast, SUPECA predictions agree well with EC predictions over the whole range of 23 
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relative abundances (Figure 4b, d). This very large overestimation by SU calculations is 1 

explained by the linear dependence of the consumer-substrate complexes on microbial 2 

abundances in deriving SU kinetics (equation (26)). Therefore, combined with the better 3 

numerical performance of ECA (Tang and Riley, 2013a; Tang, 2015) than MM kinetics, 4 

we contend that SUPECA kinetics are numerically more convenient and more accurate 5 

than SU kinetics in calculating the microbe-substrate complexes for situations involving 6 

microbes, enzymes, substrates, and soil minerals (e.g., Tang and Riley, 2015). In 7 

particular, because nutrient limitations tend to occur under high relative consumer 8 

abundances with respect to their substrates, the larger prediction bias of SU than 9 

SUPECA suggests that SUPECA should be preferred for soil biogeochemical modeling. 10 

However, for applications to real problems, the validity of SUPECA kinetics depends on 11 

the EC formulation and the tQSSA, and there are situations where even the EC 12 

formulation might fail (e.g., Maggi and Riley, 2009; Pedersen et al., 2008). 13 

5. Example application to modeling aerobic heterotrophic respiration 14 

 As a proof-of-concept example, we applied SUPECA kinetics to predict the 15 

moisture stress on aerobic soil respiration. We note that we are not suggesting that 16 

SUPECA kinetics replace existing soil BGC models, but rather that mechanistic analysis 17 

using a SUPECA-based model can inform process understanding and thereby improve 18 

such models. Following the CENTURY-like models’ approach in modeling topsoil soil 19 

carbon dynamics (Coleman and Jenkinson, 1999; Parton and Rasmussen, 1994) and the 20 

set up of Franzluebbers’ (1999) soil incubation experiments (from which the data were 21 

used for our model evaluation), this example (Appendix G) considers a homogenous 10 22 

cm thick topsoil with 2.0 mol C m-3 microbes and 3.0 mol C m-3 DOC (i.e., dissolvable 23 
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organic carbon; different DOC values affected our results negligibly as long as they were 1 

larger than 0.5 mol C m-3). We conceptualize transport of substrates (i.e., oxygen and 2 

DOC) in soil as a two-stage diffusion process  (e.g., Grant, 1991) with the first stage from 3 

the bulk soil matrix to the water film covering the microbial microsites and the second 4 

stage from the water film to the microbial transporters where substrates are processed. 5 

The diffusion processes in soil are calculated based on soil moisture status and the 6 

hydraulic properties of a hypothesized soil with a texture of 40% clay and 30% sand. The 7 

pedotransfer functions used for calculating soil hydraulic properties are from CLM4.5 8 

(Oleson et al., 2013).  9 

Our approach assumes that the inter-microsite (or aggregates) transport dominates 10 

intra-aggregate transport, consistent with pore scale simulations (Yang et al., 2014). The 11 

model is solved to steady state by assuming that the microbes, atmospheric oxygen, and 12 

DOC are in balance under the influence of Langmuir type DOC sorption by soil minerals. 13 

Calculations are conducted for three levels of soil minerals (with adsorption capacities at 14 

0, 90, and 180 mol C m-3) and two levels of microbial oxygen affinity (with default 15 

		KO2,w =3×10−5  mol m-3 and elevated 		KO2,w =3×10−3  mol m-3; Figure 5 and Figure 6).  16 

The calculation with elevated 		KO2,w  (compared to the default 		KO2,w ) indicates the 17 

effect of soil aggregates on moisture control of decomposition (see also Appendix G). We 18 

evaluated: (1) how close our predicted moisture response function is to incubation data 19 

from Franzluebbers (1999) and (2) how soil mineral DOC adsorption would affect the 20 

soil moisture response function. We also tested a widely used response function approach 21 

(e.g., Sierra et al., 2015) for comparison. 22 
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 When the respiration curves are normalized, we found that all curves have the 1 

same pattern that soil respiration first increases from dry soil with increasing moisture 2 

and then levels off after reaching a peak value (where the respiration is co-limited by 3 

oxygen and DOC bioavailability). The curve with the highest mineral soil carbon 4 

adsorption capacity (180 mol C m-3) and elevated 		KO2,w  value best approximates the 5 

incubation data from Franzluebbers (1999). As the sorption capacity becomes smaller, 6 

the moisture response function becomes sharper.  7 

When the oxygen affinity parameter is reduced to its default value (while keeping 8 

the adsorption capacity at 180 mol C m-3; see explanation in Appendix G), the soil 9 

moisture response function becomes the sharpest with the highest threshold moisture 10 

where the respiration peaks (see green line in Figure 5). Unlike Kausch and Pallud (2013) 11 

and Yang et al. (2014), we have not explicitly simulated the oxygen distribution inside 12 

the aggregates. Since the apparent oxygen affinity parameter (which we use here) 13 

generally increases with aggregate size (Griffin, 1968), the poorer agreement between 14 

data and predictions using the default oxygen affinity parameter indicates that soil 15 

aggregates may play an important role in controlling microbes’ response to soil moisture 16 

stress. Indeed, Franzluebbers (1999) indicated in his Figure 1 that there are many 17 

aggregates in his incubated soil. Moreover, the higher moisture threshold (where 18 

respiration peaks) with the default apparent oxygen affinity parameter is consistent with 19 

measurements that aggregates may facilitate anaerobic processes under well-ventilated 20 

conditions (by increasing the range of soil moisture conditions where oxygen limits 21 

aerobic processes; Renault and Stengel, 1994; Keiluweit et al., 2016).  22 
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When the moisture response function is evaluated, we found a higher R2 (0.84) 1 

than those predicted from SUPECA based methods, which (from top to bottom as in the 2 

legends) are 0.82, 0.81, 0.77 and 0.71 for the blue, red, black and green lines respectively. 3 

However, the response function approach overestimated the observed aerobic soil 4 

respiration rate at high soil moisture contents. This example illustrates that a higher 5 

overall R2 from the empirical response function can mask an important feature of soil 6 

respiration’s dependence on soil moisture.  7 

 Higher adsorption capacity resulted in significantly lower soil respiration (Figure 8 

6), consistent with results for temperature sensitivity described in Tang and Riley (2015). 9 

Combining results from Figure 5 and Figure 6, we conclude that because the soil 10 

moisture response function emerges from interactions between biotic and abiotic factors 11 

that co-regulate soil organic carbon decomposition (Manzoni et al., 2016), its functional 12 

shape is not deterministic. This result contradicts the popular approach used in many soil 13 

BGC models (including our own, e.g., Koven et al., 2013; Tang et al., 2013; and others, 14 

e.g., Sierra et al., 2015), where a deterministic soil moisture response function is applied 15 

to the moisture-unstressed decomposition rate. We also note that there are many different 16 

functional forms for the soil moisture response function used in soil BGC models (Sierra 17 

et al. 2015). 18 

 At the default oxygen affinity value (3 x 10-5 mol O2 m-3), the derived soil 19 

moisture response function is essentially insensitive to mineral soil carbon adsorption 20 

capacity (not shown). Since the oxygen affinity parameter reflects the impacts of 21 

aggregates, these results demonstrate how soil aggregates may influence soil carbon 22 
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decomposition rates, an insight that cannot be obtained by fitting response functions to a 1 

single dataset.  2 

6. Potential applications of SUPECA kinetics for trait-based biogeochemical 3 

modeling 4 

 Besides the example application above, SUPECA kinetics could be a powerful 5 

tool for trait-based modeling in various biogeochemical systems (e.g., Follows et al., 6 

2007; Bouskill et al., 2012; Litchman and Klausmeier, 2008; Merico et al., 2009). As we 7 

show above and below, SUPECA kinetics will enable more robust predictions with better 8 

numerical consistency and smaller parametric sensitivities than the popular family of 9 

Monod kinetics, and SUPECA will be applicable for any biogeochemical system that 10 

involves substrate-consumer binding and binding competition (of the AB-E or A-E type).  11 

 The assertion of smaller parametric sensitivity as predicted by SUPECA (than by 12 

Monod kinetics) can be verified using the single-substrate reaction network as an 13 

example. In this case, SUPECA is reduced to ECA kinetics, and for some substrate 	Si  in 14 

the reaction network, ECA kinetics predict the sensitivity of its consumption by 15 

consumer 
	
E j
⎡⎣ ⎤⎦  with respect to the maximum processing rate 		k2,ij

+ as 16 

∂

∂k2,ij
+

d Si⎡
⎣
⎤
⎦T , j

dt

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

E j
⎡
⎣

⎤
⎦T
Fc , j

i{ }

1+Fr ,i +Fc , j
			 < 			

E j
⎡
⎣

⎤
⎦T
Fc , j

i{ }

1+Fc , j
			 < 			

E j
⎡
⎣

⎤
⎦T
Fc , j

i{ }

1+Fc , j
i{ }

																																								ECA															Competitive										Monod
																																																																				Monod

 

(46) 
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where the term after the first “<” is prediction by competitive Monod kinetics and that 1 

after the second “<” is by Monod kinetics, suggesting that models using Monod kinetics 2 

for substrate competition are more sensitive to parameters and therefore more difficult to 3 

calibrate (e.g., Tang and Riley, 2013a).  4 

 To quantitatively evaluate our assertion that SUPECA kinetics predict lower 5 

parametric sensitivity, we applied equation (46) to 100 competing substrate fluxes of 6 

equal magnitude. We then have 		Fc , j =100Fc , j
i{ } . Meanwhile, if 		Fc , j

i{ } >1 , then the sensitivity 7 

predicted by competitive Monod kinetics is less than 1% of that by Monod kinetics. 8 

Further, if the competing efforts from all agents is comparable to the overall substrate 9 

fluxes, i.e., 		Fr ,i ≈ Fc , j , then the parametric sensitivity predicted by ECA is about 50% of 10 

that by competitive Monod kinetics. Therefore, ECA (and by extension, SUPECA) 11 

prediction is much less sensitive with respect to 		k2,ij
+  than that by competitive Monod 12 

kinetics and Monod kinetics. Moreover, with equations (30) and (37), one can verify that 13 

the more substrates and consumers represented in the system, the smaller the resulting 14 

sensitivity predicted by ECA (and SUPECA) kinetics for each 		k2,ij
+ . One can also verify 15 

lower SUPECA uncertainty for other parameters, including substrates and consumer 16 

abundances. That including more substrates and consumers will lead to more robust 17 

model predictions is a premise underlying trait-based modeling (e.g., Follows et al., 18 

2007; Bouskill et al., 2012), and SUPECA kinetics explicitly integrates this presumption 19 

in its formulation.  20 
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 The assertion of wide applicability with SUPECA kinetics has been demonstrated 1 

by a number of successful applications that we have published with ECA kinetics. In a 2 

series of studies (Zhu and Riley, 2015; Zhu et al., 2016a, 2016b, 2017), we showed that 3 

ECA kinetics significantly improved the modeling of nutrient competition between 4 

plants, microbes, and mineral soils. In Tang and Riley (2013a), where ECA kinetics was 5 

first proposed, lignin decomposition dynamics were accurately captured without a priori 6 

imposing a target lignocellulose index. In Tang and Riley (2013a, 2015) and this study, 7 

ECA kinetics were able to seamlessly incorporate Langmuir type substrate adsorption 8 

without invoking an ad hoc numerical order that is prerequisite to MM (or Monod) 9 

kinetics for modeling mineral, microbe, and substrate interactions. 10 

 Finally, we expect SUPECA kinetics will provide a robust approach to resolve the 11 

redox ladder in soil biogeochemistry. Existing approaches have imposed the redox ladder 12 

following some specific order, e.g.,13 

	O2 	 H2O( ) ,	NO3- 	 N2( ) ,	MnO2 Mn2+( ) ,	Fe OH( )3 Fe2+( ) ,	SO42- H2S( ) ,	CO2 CH4( ) , and  14 

	H2O	 H2( )  (e.g., Grant, 2001). In contrast, SUPECA kinetics will allow all these redox-15 

couples to operate concurrently (in any space-time-process unit), a situation that is more 16 

consistent with natural soils. Such a feature will also allow microbial biogeochemistry 17 

models (most of which are considered to be valid at pore scale) to be valid at the scale of 18 

well-mixed bulk soils (~cm3).  19 

7. Conclusions 20 
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 In this study, we showed that the popular Monod family kinetics and synthesizing 1 

unit (SU) kinetics are not scaling consistent for a reaction network involving mixed 2 

	A→
E

products  type and 	A+B→
E

products  type reactions. SUPECA kinetics, by 3 

accounting for mass balance constraints of substrates and consumers, is able to represent 4 

an arbitrary number of substrates and consumers without changing mathematical 5 

formulation. Our numerical tests indicate that SUPECA kinetics is superior to SU 6 

kinetics both in numerical accuracy and numerical robustness, particularly under high 7 

relative abundances of consumers with respect to substrates (a typical feature in plant-8 

microbial competition for limited soil nutrients; Schimel and Bennett, 2004; Vitousek et 9 

al., 2010). SUPECA kinetics were also able to predict the moisture response function of 10 

aerobic soil respiration, providing mechanistic insights not available from the response 11 

function approach. Finally, because SUPECA kinetics represents measurable microbial 12 

traits and the mechanisms by which they affect soil biogeochemical dynamics, we 13 

conclude that this approach can benefit interpretation of observed dynamics and thereby 14 

improve soil BGC models. 15 

8. Code and data availability 16 

The source code and data used in this manuscript are available upon request to the 17 

corresponding author. 18 

Appendix A: Deriving the governing equations 19 

The law of mass action formulation of the redox reaction (8) is 20 
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d EA⎡⎣ ⎤⎦
dt

= kA
+ E⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦+kB

− EAB⎡⎣ ⎤⎦− kA
− +kB

+ B⎡⎣ ⎤⎦( ) EA⎡⎣ ⎤⎦  (A1) 

	

d EB⎡⎣ ⎤⎦
dt

= kB
+ E⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦+kA

− EAB⎡⎣ ⎤⎦− kB
− +kA

+ A⎡⎣ ⎤⎦( ) EB⎡⎣ ⎤⎦  (A2) 

		
d EAB⎡⎣ ⎤⎦
dt

= kA
+ EB⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦+kB

+ EA⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦− kA
− +kB

− +k2
+( ) EAB⎡⎣ ⎤⎦  (A3) 

		
d P⎡⎣ ⎤⎦
dt

= k2
+ EAB⎡⎣ ⎤⎦  (A4) 

	

d A⎡⎣ ⎤⎦
dt

= −kA
+ E⎡⎣ ⎤⎦+ EB⎡⎣ ⎤⎦( ) A⎡⎣ ⎤⎦+kA

− EA⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )  (A5) 

	

d B⎡⎣ ⎤⎦
dt

= −kB
+ E⎡⎣ ⎤⎦+ EA⎡⎣ ⎤⎦( ) B⎡⎣ ⎤⎦+kB

− EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )  (A6) 

We now apply the total quasi-steady-state approximation (e.g., Borghans et al., 1996) to 1 

obtain the Equilibrium Chemistry formulation of the system. Specifically, we obtain 2 

equations (11)-(13) by respectively setting the time derivatives of equations (A1)-(A3) to 3 

zero. Equation (9) is obtained by adding together equations (A1), (A3) and (A5), and 4 

using the definition of 
	
A⎡⎣ ⎤⎦T by equation (14). Equation (10) is obtained by adding 5 

together equations (A2), (A3) and (A6) with the definition of 
	
B⎡⎣ ⎤⎦T by equation (15).  6 

Appendix B: Deriving the dual Monod kinetics in equation (21). 7 

 Replacing 	
EA⎡⎣ ⎤⎦  in equation (17) with that obtained from equation (19), we obtain 8 

	
EAB⎡⎣ ⎤⎦ =

A⎡⎣ ⎤⎦
KA

B⎡⎣ ⎤⎦
KB

E⎡⎣ ⎤⎦  (B-1) 
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By solving 	
EA⎡⎣ ⎤⎦  from equation (19), 	

EB⎡⎣ ⎤⎦  from equation (20) and combining 1 

these with equation (B-1) into equation (16), we find 2 

		
E⎡⎣ ⎤⎦T = 1+

A⎡⎣ ⎤⎦
KA

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
1+

B⎡⎣ ⎤⎦
KB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
E⎡⎣ ⎤⎦  (B-2) 

 Now solve 	
E⎡⎣ ⎤⎦  from (B-2) and enter the result into equation (B-1), we then get  3 

	
EAB⎡⎣ ⎤⎦ =

A⎡⎣ ⎤⎦
KA + A⎡⎣ ⎤⎦

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B⎡⎣ ⎤⎦
KA + B⎡⎣ ⎤⎦

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
E⎡⎣ ⎤⎦T  (B-3) 

 We thence obtain dual Monod kinetics by entering equation (B-3) into equation 4 

(9). 5 

Appendix C: Deriving the synthesizing unit kinetics in equation (26) 6 

 Since SU kinetics assumes that substrates are not limiting the biogeochemical 7 

reaction, we then, from equations (23) and (24), obtain 8 

	
EA⎡⎣ ⎤⎦ =

kA
+ A⎡⎣ ⎤⎦
kB
+ B⎡⎣ ⎤⎦

E⎡⎣ ⎤⎦  (C-1) 

	
EB⎡⎣ ⎤⎦ =

kB
+ B⎡⎣ ⎤⎦
kA
+ A⎡⎣ ⎤⎦

E⎡⎣ ⎤⎦  (C-2) 

By entering equations (C-1) and (C-2) into equation (13), and solving for 	
EAB⎡⎣ ⎤⎦ , 9 

we find 10 

		 
EAB⎡⎣ ⎤⎦ =

E⎡⎣ ⎤⎦
k2
+ +kA

− +kB
− kA

+ A⎡⎣ ⎤⎦+kB
+ B⎡⎣ ⎤⎦( ) = E⎡⎣ ⎤⎦

!k2
+ kA

+ A⎡⎣ ⎤⎦+kB
+ B⎡⎣ ⎤⎦( )  (C-3) 

 Now if we combine equations (C-1)-(C-3) with equation (16), we get 11 



 35 

		 

E⎡⎣ ⎤⎦ =
E⎡⎣ ⎤⎦T

1+ kA
+ A⎡⎣ ⎤⎦
kB
+ B⎡⎣ ⎤⎦

+
kB
+ B⎡⎣ ⎤⎦
kA
+ A⎡⎣ ⎤⎦

+
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦
!k2
+

						 =
E⎡⎣ ⎤⎦T

kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦( )2
kA
+ A⎡⎣ ⎤⎦( ) kB+ B⎡⎣ ⎤⎦( ) +

kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦
!k2
+ −1

 (C-4) 

which, when combined with equation (C-3), leads to 1 

		 

EAB⎡⎣ ⎤⎦ =
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦
!k2
+

E⎡⎣ ⎤⎦T
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦( )2
kA
+ A⎡⎣ ⎤⎦( ) kB+ B⎡⎣ ⎤⎦( ) +

kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦
!k2
+ −1

												 =
E⎡⎣ ⎤⎦T

!k2
+

1
!k2
+ +

kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦
kA
+ A⎡⎣ ⎤⎦( ) kB+ B⎡⎣ ⎤⎦( ) −

1
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦

											 =
E⎡⎣ ⎤⎦T

!k2
+

1
!k2
+ +

1
kA
+ A⎡⎣ ⎤⎦

+ 1
kB
+ B⎡⎣ ⎤⎦

− 1
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦

 (C-5) 

When 	
EAB⎡⎣ ⎤⎦  from equation of (C-5) is entered into equation (9), we then obtain 2 

equation (26). 3 

Appendix D: Deriving SUPECA kinetics equation (28) 4 

We first derive the set of linear equations using the first order closure approach 5 

(i.e., the perturbation method truncated to first order accuracy; Shankar, 1994; Tang et 6 

al., 2007). By entering equations (14)-(16) into equation (23), we have 7 
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kB
+ EA⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦T − EB⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( ) = kA+ A⎡⎣ ⎤⎦T − EA⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( )

× E⎡⎣ ⎤⎦T − EA⎡⎣ ⎤⎦− EB⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( )  (D-1) 

Now if we expand equation (D-1), and keep only the 0th and 1st order terms of 	
EA⎡⎣ ⎤⎦ , 1 

	
EB⎡⎣ ⎤⎦  and 	

EAB⎡⎣ ⎤⎦ , we obtain 2 

	

kB
+ B⎡⎣ ⎤⎦T EA⎡⎣ ⎤⎦ = kA

+ E⎡⎣ ⎤⎦T A⎡⎣ ⎤⎦T − EA⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( )
−kA

+ A⎡⎣ ⎤⎦T EA⎡⎣ ⎤⎦+ EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )
 (D-2) 

which after some rearrangement becomes 3 

	

kA
+ A⎡⎣ ⎤⎦T +kA

+ E⎡⎣ ⎤⎦T +kB
+ B⎡⎣ ⎤⎦T( ) EA⎡⎣ ⎤⎦+kA

+ A⎡⎣ ⎤⎦T EB⎡⎣ ⎤⎦

+kA
+ A⎡⎣ ⎤⎦T + E⎡⎣ ⎤⎦T( ) EAB⎡⎣ ⎤⎦ = kA

+ A⎡⎣ ⎤⎦T E⎡⎣ ⎤⎦T
 (D-3) 

Using the definitions of 
	
fA = kA

+ A⎡⎣ ⎤⎦T , 
	
fB = kB

+ B⎡⎣ ⎤⎦T and 
	
fA = fA +kA

+ E⎡⎣ ⎤⎦T , we may 4 

rewrite equation (D-3) as 5 

	
fA + fB( ) EA⎡⎣ ⎤⎦+ fA EB⎡⎣ ⎤⎦+ fA EAB⎡⎣ ⎤⎦ = fA E⎡⎣ ⎤⎦T  (D-4) 

Because substrates 	A  and 	B  are symmetric in forming the consumer substrate 6 

complexes, a similar linear equation can be derived by switching 	A  and 	B  in equation 7 

(D-4) (or by repeating procedures to the derivation of equation (D-4) but using equations 8 

(14)-(16) and (24)) 9 

	
fB EA⎡⎣ ⎤⎦+ fA + fB( ) EB⎡⎣ ⎤⎦+ fB EAB⎡⎣ ⎤⎦ = fB E⎡⎣ ⎤⎦T  (D-5) 

Now substitute equations (14)-(16), (23) and (24) into equation (25) and assume 10 

		 
!k2
+ ≈ k2

+

 (i.e., unbinding is much smaller compared to the product genesis rate), we have 11 
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kA
+ A⎡⎣ ⎤⎦T − EA⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( )+kB+ B⎡⎣ ⎤⎦T − EB⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( ){ }

× E⎡⎣ ⎤⎦T − EA⎡⎣ ⎤⎦− EB⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( ) = k2+ EAB⎡⎣ ⎤⎦
 (D-6) 

Once again, by dropping the second and higher order terms of the consumer-1 

substrate complexes, equation (D-6) can be reduced to 2 

		

kA
+ A⎡⎣ ⎤⎦T +kB

+ B⎡⎣ ⎤⎦T( ) E⎡⎣ ⎤⎦T = kA
+ A⎡⎣ ⎤⎦T +kB

+ B⎡⎣ ⎤⎦T( )
× EA⎡⎣ ⎤⎦+ EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )+kA+ E⎡⎣ ⎤⎦T EA⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )
+kB

+ E⎡⎣ ⎤⎦T EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )+k2+ EAB⎡⎣ ⎤⎦

 (D-7) 

which by aid of  
	
fA = kA

+ A⎡⎣ ⎤⎦T , 
	
fB = kB

+ B⎡⎣ ⎤⎦T ,  
	
fA = fA +kA

+ E⎡⎣ ⎤⎦T , 
	
fB = fB +kB

+ E⎡⎣ ⎤⎦T , 3 

	fAB = fA + fB , and 	fAB = fA + fB  becomes 4 

		 fA + fB( ) EA⎡⎣ ⎤⎦+ fA + fB( ) EB⎡⎣ ⎤⎦+ k2
+ + fAB( ) EAB⎡⎣ ⎤⎦ = fAB E⎡⎣ ⎤⎦T  (D-8) 

Now we solve for 	
EAB⎡⎣ ⎤⎦  

from the set of linear equations
 
(D-4),

 
(D-5) and (D-8)

 
5 

using Cramer’s rule (e.g., Habgood and Arel, 2012), and find the denominator as  6 

		

det Md( ) =
fA + fB fA fA
fB fA + fB fB

fA + fB fA + fB k2
+ + fAB

 (D-9) 

and the numerator as 7 

		

det Mn( ) = E⎡⎣ ⎤⎦T

fA + fB fA fA
fB fA + fB fB

fA + fB fA + fB fAB

 (D-10) 

Equations (D-9) and (D-10) together lead to 8 
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EAB⎡⎣ ⎤⎦ =
det Mn( )
det Md( ) =

fA fB fAB E⎡⎣ ⎤⎦T
k2
+ fA fA + fB fB + fA fB( )+ fA fB fAB

=
fA fB fAB E⎡⎣ ⎤⎦T

k2
+ fAB fAB − fA fB − fA fB + fA fB( )+ fA fB fAB

=
E⎡⎣ ⎤⎦T

k2
+ fAB
fA fB

−
fA fB + fA fB − fA fB

fA fB fAB

⎛

⎝⎜
⎞

⎠⎟
+
fA fB fAB
fA fB fAB

=
E⎡⎣ ⎤⎦T k2

+

1
k2
+

fA fB fAB
fA fB fAB

+ 1
fA
+ 1
fB

−
fA fB + fA fB − fA fB

fA fB fAB

⎛

⎝⎜
⎞

⎠⎟  

 

(D-11) 

which, when entered into equation (9), leads to equation (28).  1 

Appendix E: Deriving SUPECA for a network of substrates and consumers 2 

In the second equation of equations (33), we show that the consumption of a 3 

certain substrate as represented in ECA kinetics is determined by the consumer reaction 4 

potential 		k2,ij
+ E j
⎡⎣ ⎤⎦T multiplied with the relative contribution of the specific consumption 5 

pathway with respect to all competing pathways (		Fc , j
r{ } 1+Fr , j +Fc , j( )). Since SUPECA 6 

kinetics is a compatible extension of ECA kinetics, SUPECA kinetics should have its 7 

numerator indicating the potential reaction rate of the specific pathway, and its 8 

denominator indicating the efforts of all interacting pathways. Bearing this partition 9 

equivalence in mind, therefore, we assert that 		fA k2
+  in equation (29) should be 10 

equivalent to 		Fr ,i +Fc , j  in equation (33). This assertion then leads to equations (38), (41) 11 

and (43) for 	A  substrates. Similarly, equations (39), (42) and (44) are for 	B  substrates. 12 

With the definitions of 		fA k2
+ , 		fB k2

+ , 		fA k2
+  and 		fB k2

+ , using the partition 13 
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equivalence, we can easily define the network form of 	fAB  in equation (40), and the 1 

network form of 	fAB  in equation (45). Further, we observe that the denominator of the 2 

last equation in equation (28) could be rewritten as 3 

		

fA k2
+( ) fB k2

+( ) fAB k2
+( )

fAB k2
+( ) + fAB k2

+( )− fA k2
+( ) fB k2

+( )+ fA k2
+( ) fB k2

+( )− fA k2
+( ) fB k2

+( )
fAB k2

+( )  

4 

which, after replacing 		fA k2
+ , 		fB k2

+ , 		fA k2
+ , 		fB k2

+ , 		fAB k2
+   and 		fAB k2

+  with their 5 

corresponding network forms (i.e. equations (38)-(45)), leads to SUPECA kinetics 6 

equation (37). 7 

Appendix F: Formulation of the kinetics-benchmarking problem 8 

Following equations (23)-(25), the Equilibrium Chemistry (EC) problem used to 9 

benchmark synthesizing unit (SU) and SUPECA predictions is defined as 10 

		kBS1 B⎡⎣ ⎤⎦ S1⎡⎣ ⎤⎦ = kBS2 S2⎡⎣ ⎤⎦ BS1⎡⎣ ⎤⎦  (F-1) 

		kBS2 B⎡⎣ ⎤⎦ S2⎡⎣ ⎤⎦ = kBS1 S1⎡⎣ ⎤⎦ BS2⎡⎣ ⎤⎦  (F-2) 

		kBS1 BS2⎡⎣ ⎤⎦ S1⎡⎣ ⎤⎦+kBS2 BS1⎡⎣ ⎤⎦ S2⎡⎣ ⎤⎦ = k2
+ BS1S2⎡⎣ ⎤⎦  

(F-3) 

		KMS1 MS1⎡⎣ ⎤⎦ = M⎡⎣ ⎤⎦ S1⎡⎣ ⎤⎦  
(F-4) 

which are subject to the constraints 11 

		 S1⎡⎣ ⎤⎦T = S1⎡⎣ ⎤⎦+ MS1⎡⎣ ⎤⎦+ BS1⎡⎣ ⎤⎦+ BS1S2⎡⎣ ⎤⎦  (F-5) 

		 S2⎡⎣ ⎤⎦T = S2⎡⎣ ⎤⎦+ BS2⎡⎣ ⎤⎦+ BS1S2⎡⎣ ⎤⎦  (F-6) 

		 B⎡⎣ ⎤⎦T = B⎡⎣ ⎤⎦+ BS1⎡⎣ ⎤⎦+ BS2⎡⎣ ⎤⎦+ BS1S2⎡⎣ ⎤⎦  (F-7) 
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		 M⎡⎣ ⎤⎦T = M⎡⎣ ⎤⎦+ MS1⎡⎣ ⎤⎦  (F-8) 

To relate these equations to a dynamic system, 		S1  and 		S2  are substrates, 	B  is 1 

microbial population, and 	M  is some sorbent that can reversibly adsorb substrate 		S1 . The 2 

corresponding graphic representation of the problem is available in the supplemental 3 

material.   4 

For benchmarking, 		 BS1S2⎡⎣ ⎤⎦  is solved from equations (F-1)-(F-8) using a fixed-5 

point iteration algorithm (see supplemental materials) for each set of parameters. Unlike 6 

the Newton-Raphson iteration, the fixed-point iteration ensures positive mass of all 7 

variables, and mass balance relationships from (F-5)-(F-8) are automatically satisfied by 8 

the numerical solution. 9 

Appendix G: Derivation of relevant kinetic parameters for the steady state aerobic 10 

respiration problem 11 

The aerobic respiration problem is formulated as 12 

		

d O2⎡⎣ ⎤⎦g ,s
dt

=
O2⎡⎣ ⎤⎦a − O2⎡⎣ ⎤⎦g ,s( )
Ra +Rs( )Z −F B , O2⎡⎣ ⎤⎦g ,s ,S ,M( )  (G-1) 

where 		 O2
⎡⎣ ⎤⎦g ,s  is gaseous oxygen concentration in bulk soil. 		 O2⎡⎣ ⎤⎦a is atmospheric oxygen 13 

concentration (set to 8.45 mol m-3), 	S  is dissolvable organic carbon (DOC) concentration 14 

(set to 3 mol m-3; we note that SUPECA is able to accommodate more specific carbon 15 

compounds (like in Riley et al (2014)), yet our recent analysis (Dwivedi et al., 2017) 16 

suggests that a lumped DOC is sufficient for simple applications like the one we present 17 

here), and 	M  is soil mineral sorbent concentration (with variable values). All 18 
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concentrations are defined with units (mol m-3). 	Ra  is aerodynamic resistance, which is 1 

set to 50 s m-1. 	Rs is soil resistance (s m-1) calculated using the approach in Tang and 2 

Riley (2013b). 	Z  is soil depth (set to 10 cm, following the incubation set up of 3 

Franzluebbers (1999)). 
		
F B , O2⎡⎣ ⎤⎦g ,s ,S ,M( )  is the oxygen consumption rate calculated 4 

using SUPECA kinetics, whose kinetic parameters are derived as following. The steady-5 

state problem is solved by setting the temporal derivative of equation (G-1) to zero, and 6 

solved for 		 O2
⎡⎣ ⎤⎦g ,s  through iterations. The shape of the flux 

		
F B , O2⎡⎣ ⎤⎦g ,s ,S ,M( )  is then 7 

compared to that derived from incubation studies in Franzluebbers (1999). 8 

In this aerobic respiration problem, microbes are assumed to form microsites 9 

sitting uniformly inside pores of the bulk soil. O2 approaches the microsites through both 10 

aqueous and gaseous diffusion, and only the aqueous phase is used for microbial 11 

respiration. These assumptions lead to the relationship between near cell aqueous O2 12 

concentration and the diffusive flux:  13 

		
vm
d O2⎡⎣ ⎤⎦w ,0
dt

= −kO2,w ,1 X⎡⎣ ⎤⎦ O2⎡⎣ ⎤⎦w ,0 +κO2 O2⎡⎣ ⎤⎦w − O2⎡⎣ ⎤⎦0( )  (G-2) 

where the conductance 		κO2  is 14 

		

κO2
4π

⎛

⎝⎜
⎞

⎠⎟

−1

= δ
Dw ,O2rm rm +δ( ) +

1
DO2 rm +δ( )  (G-3) 

and  	rm  is the radius of the microsite (or aggregate), δ  is thickness of the water film that 15 

covers the microsite (Grant and Rochette, 1994), 	νm  is the microsite volume (m3 site-1), 16 
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and 	 O2⎡⎣ ⎤⎦  is the aqueous oxygen concentration in the bulk soil matrix. 	
X⎡⎣ ⎤⎦  is the cell 1 

density (mol cell site-1). The unit of 		kO2,1 is then m3 (mol cell)-1 s-1.   2 

The bulk aqueous diffusivity in equation (G-3) is  3 

		
DO2 =θDO2,w +

ε
αO2

DO2,g  (G-4) 

Now if we assume steady state (aka 		d O2⎡⎣ ⎤⎦0 dt ≈0 ) of equation (G-2), we obtain 4 

		

O2⎡⎣ ⎤⎦w ,0 =
O2⎡⎣ ⎤⎦w

1+ kO2,w ,1 X⎡⎣ ⎤⎦
κO2

 
(G-5) 

which leads to the revised affinity parameter: 5 

		 
!KO2 =

k2
kO2,w ,1

1+
kO2,w ,1 X⎡⎣ ⎤⎦T

κO2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (G-6) 

where the zero order approximation is made by taking 
	
X⎡⎣ ⎤⎦ ≈ X⎡⎣ ⎤⎦T . 6 

Now assume that the ball-like microbe is covered with 	N  disc-like transporters, 7 

whose mean radius is 	
rp . Assuming that the binding is limited by diffusion, then using 8 

the chemoreception theory by Berg and Purcell (1977), we have 9 

		
kO2,w ,1 = 4πDO2,w ,0rc

Nrp
Nrp +πrc

cell−1  (G-7) 

where the term 
	
Nrp Nrp +πrc( )  accounts for the interference between different 10 

transporters of a cell. Thus assuming 
	
X⎡⎣ ⎤⎦T =m  cell site-1, we get 11 
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!KO2 =

k2
kO2,w ,1

1+
kO2,1 X⎡⎣ ⎤⎦T

κO2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= KO2,w 1+

Nrp
Nrp +πrc

mrc
rm +δ

δ
rm

+
DO2,w ,0
DO2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  (G-8) 

With similar procedure, for DOC we have the following 1 

		 
!KDOC =

k2
kDOC,w ,1

1+
kDOC,w ,1 X⎡⎣ ⎤⎦T

κ DOC

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= KDOC 1+

Nrp
Nrp +πrc

mrc
rm +δ

δ
rm

+
DDOC ,w ,0
DDOC

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  (G-9) 

and 2 

		
kDOC,w ,1 = 4πDDOC,w ,0rcNA

Nrp
Nrp +πrc

mol ⋅cell( )−1  (G-10) 

where 		NA =6.02×1023mol−1 . 3 

Below we provide some estimates for the parameters to support the above model 4 

of moisture dependence of microbial decomposition. The microbial cell radius 	rc  is on 5 

the order of 10-6 m, and 	
rp rc  is about 10-3. At 25 °C, the aqueous diffusivity of O2 is 6 

about 2.9×10-9 m2 s-1, therefore, assuming 		N =3000  transporters per cell (which covers 7 

only 0.3% of the cell’s surface area), we have 		kO2,w ,1 =1.0×10
10 	m3	 mol	cell( )−1 s−1 .

  
8 

Similarly, since the aqueous diffusivity of DOC is about 10-9 m2 s-1, assuming 		N =3000  9 

transporters per cell, we have 		kDOC,w ,1 =3.7×10
9 	m3	 mol	cell( )−1 s−1 . Suppose the 10 

respiration is bottlenecked by a single respiratory enzyme, and since the enzyme activity 11 

varies on the order of 10~1000 s-1 (English et al., 2006), then by taking 12 

		k2 =100N 	s
−1 =3×105s−1  per cell, we have 		KO2,w =3×10−5 	mol	m-3 , which agrees well 13 

with parameters reported for microbes in aqueous solutions in Button (1985). However, 14 

Grant (1991) estimated 		KO2,w =3.0×10−3 	mol	m-3 ; Borden and Bedient (1986) estimated 15 
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		KO2,w =3.1×10−3 	mol	m-3
 
for application in soil. We therefore elevated the numerical 1 

value to 		KO2,w =3.0×10−3 	mol	m-3 .
 
According to equations (G-7) and (G-8), such 2 

elevation could occur either by increasing the maximum substrate processing rate 		k2 or 3 

decreasing the diffusion 		kO2,w ,1  controlled parameter (through the formation of micro-4 

pores in aggregates; e.g., Kausch and Pallud, 2013; Yang et al., 2014). Based on similar 5 

magnitude analysis, we obtain 		KDOC,w =8.1×10−5mol	m−3 , which falls to the lower end of 6 

the values reported for many hydrocarbon compounds as reported in Button (1985). We 7 

did not elevate the value of 		KDOC,w  
because it could

 
vary over four orders of magnitudes 8 

(Button, 1985), and our number leads to a good fit between model predictions and data. 9 

Taking all these numbers together, we have 10 

		 

!KO2,w = KO2,w 1+0.48× mrc
rm +δ

δ
rm

+
DO2,w,0
DO2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

										 =3×10−3 1+0.48× mrc
rm +δ

δ
rm

+
DO2,w,0
DO2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

 (G-11) 

		 

!KDOC = KDOC 1+0.48× mrc
rm +δ

δ
rm

+
DDOC,w,0
DDOC

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

								 =8.1×10−5 1+0.48× mrc
rm +δ

δ
rm

+
DDOC,w,0
DDOC

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  

(G-12) 

Since at 25 °C, the Bunsen solubility coefficient of oxygen is 0.032, we have 11 

		 
!KO2,g =

!KO2,w

0.032 = 9.4×10
−2 1+0.48× mrc

rm +δ
δ
rm

+
DO2,w,0
DO2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  (G-13) 
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The water film thickness is a function of soil water potential (Tokunaga, 2009) 1 

and we calculate it using the approach in ECOSYS (Grant, 2001), which is 2 

	δ =max 10−6 ,exp −13.65−0.857log −ψ( )( )( )  (G-14) 

where the soil matric potential is of unit m, and water film thickness is restricted to at 3 

least 1 µm. 4 

 For model applications, microbes are often in the unit of mol C m-3. Bratbak and 5 

Dundas (1984) reported that the wet biomass density of bacteria is over the range 1.1~1.2 6 

g cm-3, of which about 40% is dry biomass, and about 50% of dry biomass is carbon. 7 

Therefore, with the medium cell density 1.15 g cm-3, 1 mol C m-3 microbial biomass is 8 

about 52.17 cm3, by further taking 		rc =10
−6 	m=10-4 	cm , the cell number density is 9 

2.1×10-11 mol cell m-3. Therefore, for 		k2 =100	s
−1  per porter, given each cell has 3000 10 

transporters, the maximum respiration rate is 6.3×10-6 s-1 for 1 mol C m-3 dry microbial 11 

biomass, which was then elevated to 3.8×10-4 s-1 to obtain a better fitting between data 12 

and model prediction. This required elevation in maximum respiration rate indicates that 13 

the data as obtained (after 24 days of incubation) in Franzluebbers (1999) are 14 

representative of fast growing microbes.  15 
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Figure 1. Graphical representation of ECA kinetics as derived in Tang and Riley (2013a). 2 
The equation below the table shows the uptake of substrate 	Si  by consumer 	

E j  as a 3 

function the normalized substrate flux 		Fc , j  and its conjugate flux 		Fr ,i . Subscript “c” 4 

designates column, and “r” designates row. When 	
Kij  is very large compared to other 5 

entries in the matrix, the interaction between substrate 	Si  and consumer 	
E j  can be 6 

ignored. 7 
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Figure 2. Graphic representation for the relationships between substrates, consumers, and 2 
normalized fluxes and their conjugates for a block unit of a large substrate-consumer 3 
network.  4 
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 1 
Figure 3. Benchmark of the SU (left column) and SUPECA (right column) predictions 2 
against those by the full EC formulation. We note that the y-axes of the left panels are of 3 
much larger scale than those on the right. The problem is formulated in Appendix F. 4 
Panels (a) and (b) are for the case when 		M =0 ; panels (c) and (d) are for uniformly 5 
distributed 		M >0 . The black solid lines are the linear regression of SU or SUPECA 6 
predictions with respect to the EC solution, whose statistics are shown on the figure. The 7 
related distributions of parameters are in Figure S1 of the supplemental material.  8 
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 1 
Figure 4. Model predicted consumer-substrate complexes as a function of the relative 2 
abundance of consumers with respect to substrates. Corresponding to Figure 3, panels (a) 3 
and (b) are for the case when 		M =0 ; panels (c) and (d) are for uniformly distributed 4 
		M >0 . 5 
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 1 
Figure 5. Comparison of predicted normalized soil moisture response functions to that 2 
derived from incubation data from Franzluebbers (1999).  All response functions are 3 
normalized with their respective peak respiration. The R-squared coefficients of 4 
determination for the different response function curves from top to bottom are, 5 
respectively, 0.82, 0.81, 0.77, 0.71 and 0.84. Note that the curve of 	

f s( )  has been 6 
normalized to set its maximum value at 1, making it slightly above the majority of the 7 
data points.    8 
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 1 
Figure 6. Simulated moisture response functions using elevated affinity parameter for O2. 2 
The respiration data are normalized with the peak value from the case with zero soil 3 
minerals (i.e., black line in Figure). 4 
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