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Dear Editors Jason Williams and Astrid Kerkweg, 
 

We appreciate your editorial handling of our submitted paper “The SUPECA kinetics for scaling 
redox reactions in networks of mixed substrates and consumers and an example application to aerobic 
soil respiration”. We gladly accept the constructive criticisms from the 1st anonymous reviewer, which 
have led to improvements in the manuscript.  

However, we found the criticisms from the 2nd reviewer to consist largely of misunderstandings, 
fundamentally incorrect criticisms, and poorly constructed suggestions for improving the manuscript. 
We did, however, respond to each point in the attached document. Our experience indicates that it is 
unlikely that such a reviewer, who rejects a manuscript based on fundamental misunderstanding and 
mischaracterizations will be able to change his/her mind. We therefore request a third reviewer’s 
opinion of our manuscript to ensure a fair peer review of our work.  

We sincerely appreciate your understanding and patience in handling this situation. Please don’t 
hesitate to contact us with questions or concerns about our request. 

 
Best regards. 
 
Sincerely 
  
Jinyun Tang (jinyuntang@lbl.gov) and William J. Riley (wjriley@lbl.gov) 
Climate and Ecosystem Sciences Division 
Earth and Environmental Sciences Area 
Lawrence Berkeley National Laboratory 
 



Response to reviewer 1 
 
Comments: This is an elegant mathematical formulation of a generalized model that can 
be applied to a broad range of physico-chemical reactions. I enjoyed the thoroughness of 
the stepwise progress through the derivations needed to reject alternative approaches and 
develop the final SUPECA format. I also appreciate the applications, which demonstrate 
proof-of-concept. Nonetheless, I don’t think many soil scientists will be convinced to use 
it or find it very useful, for several reasons (below). 
Response: We sincerely thank the reviewer’s appreciation of our work. We below 
address the reviewer’s specific comments with the hope to alleviate some of his/her 
concerns regarding whether others will find it useful. In this regard, we note that the ideas 
based on the Equilibrium Chemistry Approximation are being currently applied 
(admittedly by us, so far) to evaluate site-level nutrient interactions (Zhu et al. 2016a,b; 
Zhu et al. 2017) and to develop the global land model (ALM) integrated in the Earth 
System Model ACME (Tang and Riley submitted). 
 
Comments: From a soil ecology standpoint, some of assumptions were very 
constraining, while others were unrealistic. For example, the assumption that multiple 
substrate relationships with a single consumer do not have interactions (pg 11) is not 
realistic for either microbial-substrate interactions or enzyme-substrate interactions (e.g., 
pg 15).  
Response: While we agree with the reviewer’s concern, we contend that the assumptions 
we made are even less restrictive than assumptions leading to the Dual Monod or multi-
Monod kinetics that have been widely used for decades. For example, in almost every 
existing modeling study of aerobic oxidation of a certain substrate, say CH2O, whether 
O2 is taken up before or after CH2O is assumed not to affect the oxidation of CH2O into 
CO2. It is possible that some enzymes need to first bind one substrate to be activated 
before binding a second substrate. Such is the case for photosynthesis, where the Rubisco 
enzyme needs to be activated by CO2 and magnesium before it is able to bind O2 and CO2 
to carry out photosynthesis. However, existing photosynthesis models are every 
successful without accounting for such details (Von Caemmerer, 2000). Therefore while 
it is possible that representing such details may be valuable in some contexts, we leave 
them for future work in our current attempt at developing concepts for representing soil 
biogeochemistry. Further, our analysis in this study indicates that, compared with Monod 
kinetics, the SU and SUPECA kinetics are built on less restrictive assumptions of the 
kinetic parameters (e.g., our discussion of the kinetic parameters in P14). Therefore, 
given these goals, we contend our assumptions here are programmatically reasonable. 
 
Comments: Alternatively, although true, it is not likely that earlier applications of the SU 
model have often been unreasonable because consumer abundances approached infinity. 
Some of these theoretical scenarios present real mathematical contradictions, but exist 
only when the basic equation is used in isolation from other system controls. In reality, 
consumers are unlikely to reach infinity for reasons apart from the SU equation, which 
other models variously attempt to capture. 
Response: We should have clarified that the test of consumers approaching infinity is in 
a relative sense (i.e., compared to other state variables in the model), which is a common 



practice to derive approximate solutions and evaluate edge cases (Feynman et al., 1963). 
For instance, when both mineral surfaces and microbes are modeled using the MM-type 
equations, the mineral surface, as compared to microbes and DOC, becomes very large, 
effectively approaching infinity in the context of a biogeochemical model. Our treatment 
will therefore theoretically better handle substrate-limited conditions. As show in Tang 
(2015), this testing will also avoid the difficulty associated with choosing among forward 
and reverse Michaelis-Menten kinetics. And in this study, we further (in section 4) 
showed that our SUPECA kinetics would avoid the dilemma whether the equilibrium 
Langmuir adsorption should be applied before or after applying the substrate kinetics, 
therefore achieving a better numerical accuracy in approximating the equilibrium 
chemistry approximation.  
 
Comments: By page 18, I became convinced that the matrix formulation would 
necessarily include many zeros for kinetic coefficients in a microbial-enzyme-substrate 
system, which also addresses a point made several times: whereas a superabundance of a 
substrate would eliminate a particular substrate-consumer interaction term, so would a 
K=0. 
Response: Effectively, when a substrate-consumer interaction term is to be eliminated, K 
should be a very large number compared to substrate concentrations, for pragmatic 
calculations. The matrix formulation is a way to visualize the relationships between 
substrates and consumers, and in application we can easily screen those inactive entries 
off. We also made this point clear by revising the captions of Figure 2. 
 
Comments: Other hierarchical interactions are ignored. Do the authors imagine other sets 
of functions and matrices of coefficients that could be used to capture controls exerted by 
other environmental conditions on these kinetic coefficients, such as pH, stoichiometry, 
CUE, etc.? This model rapidly becomes unwieldy. 
Response: We contend that the SUPECA kinetics proposed here is only one component 
necessary to build a comprehensive soil biogeochemical model to resolve the variability 
of CUE, stoichiometry, and other environmental variables. There are models, such as 
ECOSYS (Grant et al., 2015; 2016), that have made such an attempt, but our approach 
will enable an alternative that is theoretically more consistently formulated from substrate 
uptake to CUE control. In our published study (Tang and Riley, 2015) that considers the 
non-oxygen limited aerobic decomposition, we show that ECA kinetics allows the 
derivation of realistic mineral-organic matter interactions. Together with the simple 
examples shown here and in Tang and Riley (2013), we contend that our extension of the 
Monod kinetics has the potential to produce more robust and accurate results than 
existing models.   
 
Comments: The specific applications of this model demonstrated some utility. However, 
I am not convinced that the model is necessarily superior to other more common 
formulations that have been used in these ways despite SUPECA’s analytical elegance. I 
suggest more effort to demonstrate the utility of this model as something more than a 
really elegant mathematical exercise. For example, the statement on line 21 page 29 is 
that SUPECA can scale reaction networks without changing mathematical formulation. Is 
this a utilitarian or theoretical accomplishment? 



Response: We believe part of SUPECA’s analytical elegance is its ability to scale 
reaction networks with a consistent formulation, and that this capability will lead to more 
rigorously defensible biogeochemical models. In that regard, we do think our new 
approach is both utilitarian and a theoretical accomplishment, and that this combination is 
lacking in current model formulations. We agree that more demonstrations of the 
approach can be valuable, but the paper is already very long, and we have provided an 
example that indicates the power of the approach and will present more applications 
elsewhere.  
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Response to Reviewer # 2 
Overall response 

First, we thank Reviewer #2 for taking his/her time to read through our paper. 
However, we are disappointed that Reviewer #2 largely misunderstood our development 
and analyses, while Reviewer #1 has grasped the important concepts and agrees with 
their relevance and importance. Below we respond to Reviewer #2’s comments. 
However, given Reviewer #2’s (1) large number of misunderstandings of our work; (2) 
fundamentally incorrect criticisms, and (3) poorly constructed suggestions for improving 
the manuscript, we request an alternative reviewer to evaluate our paper and responses.  

Among other problems described below, Reviewer #2 misclassified our work into 
the category of ecological “aggregation” of “micro-dynamics” into “macro-dynamics”, a 
topic well trodden by previous researchers in ecology. We are very aware of the studies 
mentioned without citation by the reviewer. Briefly, the so-called “aggregation” 
approach, as studied in ecology (and also in theoretical economics), is a mathematical 
technique of dimensional reduction. This approach assumes that the micro-dynamics is 
available for “aggregation” so that the resultant macro-dynamics retains as much of the 
micro-dynamical functional responses as possible. Such work falls broadly in the 
category of “reduced order modeling”, a topic on which we have recently published a 
number of papers (e.g., Liu et al., 2016; Pau et al., 2014, 2016). In stark contrast, the 
study we present here describes an approach to formulate the micro-dynamics in a 
physically consistent manner. Therefore, the reviewer’s primary summary criticisms are 
irrelevant to our study. Further, the reviewer’s comments contain several blatant errors, 
which we detail below.  
 
Comment: In this paper, the authors go through many different formulations of enzyme 
kinetics in an attempt to ‘scale’ kinetics from a single enzyme system to a metabolic 
network consisting of 10’s to 100’s of reactions. The paper doesn’t have a good 
introduction and there is little motivation for why it’s so critical to be able to ‘scale’ 
enzyme reaction kinetics other than it’s computationally intensive to simulation a bunch 
of equations instead of one. Reducing dimensionality will always make life easier, but 
it’s not clear that anyone in a real world modeling situation would even be in a position to 
try to translate kinetics for 10’s to 100’s of reactions for soil organic matter 
decomposition to reduced set of reactions. In a real network, there will be feedbacks 
between reactions but all are considered independent in this manuscript. 
Response: Given reasonable space constraints for journal articles, we did not detail the 
huge literature on enzyme kinetics relevant to soil biogeochemistry. However, we 
included sufficient references (Allison, 2012; Bouskill et al., 2012, Grant et al., 2016; 
Riley et al., 2014; Sulman et al., 2014; Tang, 2015; Tang and Riley, 2013, 2015; Wieder, 
2013, 2014) on the topic to indicate that soil biogeochemical models are now in a 
position to include a wide range of biogeochemical reactions, which may very well 
exceed 100 reactions. For instance, the soil biogeochemistry module of the site- to 
regional-scale ecosystem model ecosys (e.g., Grant et al., 2015, 2016; Mekonnen et al. 
2016) represents a wide range of microbes, including heterotrophic aerobic bacteria and 
fungi, methanogens, methanotrophs, autotrophic ammonia oxidizers, autotrophic nitrate 
oxidizers, acetogen fermenters, and autotrophic and heterotrophic nitrogen fixers. The 
model also represents the aqueous chemistry of phosphorus dynamics that involves iron, 



calcium, carbonate, etc.  
We also never stated that our goal was to reduce the reaction network. Rather, we 

emphasized the need for formulation consistency between the many reactions in 
describing the substrate-consumer relationship, which is the first step in modeling soil 
biogeochemistry (as indicated in the title, abstract P1: L12-13, and throughout the main 
text). If formulation reductions were proposed, they should only be applied to 
substitutable substrates (as discussed in section 3 and also in Tang and Riley, 2013). For 
example, aerobic heterotrophic bacteria can feed on proteins, cellulose, carbohydrates, 
and starch; if the specific evolution of those chemical compounds is not of interest, we 
can regard them all as carbon substrates, which is the fundamental assumption that has 
been widely applied in the development of many soil BGC models (e.g., RothC model 
(Coleman and Jenkinson, 1996), CENTURY model (Parton et al., 1998)). A similar 
problem involving enzyme interactions with many substrates was also studied in Schnell 
and Mendoza (2000). Given soil microbes are competing and collaborating with each 
other to consume the many chemical substrates, our study is definitely relevant to 
modeling complex soil BGC networks. We also acknowledged that feedbacks between 
reactions are critical components of the soil BGC network (e.g., on P4: L13-17, we 
acknowledged that there are temporal and spatial scaling methods to cover those 
feedbacks). Overall, our formulation attempts to better resolve the interactions and 
feedbacks between reactions at the microbial uptake stage (i.e., the consumer-substrate 
interactions), which is a misunderstood or ignored topic in the literature (see the long 
review in Tang and Riley, 2013).  

Therefore, this reviewer’s comment both misses the point of our manuscript and 
mischaracterizes its relevance. To ensure readers who’re unfamiliar with soil 
biogeochemical modeling not to confuse our study with dimension reduction through so 
called “aggregation”, we added a new paragraph in page 4 in the revision to state 
specifically that we’re attempting to improve the microdynamics.   
  
Comment: The authors quickly jump into kinetic equation after equation with no clear 
goal and minimal to non-existant links between models/equations.  
Response: These comments are somewhat shocking given the manuscript’s theoretical 
development goals are given in the Title, Abstract (P1: L11-15), and Introduction (P4: 
L6-18, P10: L13-22, P11: L1-6). Clearly, we are proposing the SUPECA kinetics to (1) 
scale redox reactions in networks of mixed substrates and consumers; (2) consistently 
address the interactions between substrates and microbes at the substrate uptake stage in 
modeling soil biogeochemistry; and (3) demonstrate its applicability using a simple 
aerobic soil respiration problem.  
 
Comment: The authors never even clearly articulate why what they are presenting is 
better than anything else. The manuscript is incredibly hard to follow as well. It may be 
possible for the authors to distill some of this down into a coherent compelling message, 
but in its current form it’s not publishable. 
Response: This comment is again strange, given our substantial discussion in the 
Abstract (P1: L15-23, P2: L1-11), Introduction (P5-10), and sections 3, 4, and 5. 
Throughout our discussion, we also highlighted problems with the current formulations 
of soil BGC kinetics.  



For the editor and reviewer’s information, and to put the value of this work in 
context (i.e., “why it may be better than anything else”), the formulation we described in 
this paper follows the work described in Tang and Riley (2013), where we originally 
described the Equilibrium Chemistry Approximation. In this context, we note that Jinyun 
Tang received the Ecological Society of America’s Honorable Mention for the Gene E. 
Likens Award for this paper (indicating it, at least, may have value compared to other 
approaches). Further, the ECA concepts are actively being applied in site to global-scale 
modeling efforts (Zhu and Riley 2015; Zhu et al., 2016a,b; 2017), which we cite in the 
manuscript. We therefore believe these reviewer’s comments indicate a misunderstanding 
of our paper and the broader modern literature on numerical model representations of 
biogeochemical processes. 
 
Comments: Pg. 7, line 12: This doesn’t make sense. The whole idea is to consider a 
network of interactions, each with their own kinetics. Gardner, O’Neill, and Iwasa, 
among other did seminal work on aggregating model dynamics and establish good rules 
of thumb for when aggregation is reasonable. The problem the authors of this manuscript 
are trying to address is one of aggregation, not scaling. Furthermore, their expressions are 
incorrect. A sum can be expressed as the number of terms in the sum multiplied by the 
mean of the sum. In their case, each term is a product of a rate constant and a 
concentration, which means that impossible to make their substitution. At a given instant, 
it can work, but a soon as concentrations change their expression is invalid. 
Response: This comment is again a misreading of our work. First, we are addressing the 
substrate-consumer relationship, an important component in formulating the 
microdynamics; whereas the works by Gardner, O’Neill, Iwasa (see our listed reference 
on aggregation) and others are on aggregating the microdynamics when the latter is 
given. Second, we did not indicate that we are averaging nonlinear terms. Even when we 
sum (and average) the terms in equation (7), we state clearly that the kinetic parameters 
must be equal for such a summation (P9: L6). Throughout the paper, we used the 
summation and average rules according to standard practices widely used in mathematics 
and physics, and therefore this criticism appears baseless.  
 
Comments: Furthermore, there’s no way to average the nonlinear interaction between 
enzyme and substrate for multiple reactions. I tried looking up the partition principle and 
didn’t find anything, and the analogies with Dalton’s and Newton’s laws don’t make any 
sense. 
Response: First, we did not contend that we are averaging the nonlinear interactions 
between enzymes and substrates for multiple reactions. Second, we introduced and 
defined the “partition principle” on page 6, line 16. The concept is widely used in 
deriving macroscopic representations of complex phenomena in physics (e.g., Dalton’s 
law of partial pressures; superposition principle of electrostatic forces, angular moment 
etc.; Feynman et al, 1963), and we argue in this manuscript that it should be applied in 
developing representations of soil BGC dynamics. Third, we only apply averaging when 
the relationship is linear and there is a good conceptual understanding to support it (e.g., 
equation (7)). For instance, as we explained above, some models of soil organic matter 
decomposition aggregate different organic matter constituents (e.g., protein, cellulose, 
carbohydrates) into a single carbon pool, and still provide important scientific insights to 



the soil carbon cycle. 
 
Comment: Pg. 3, line 23: Wieder, not wider 
Response: Thanks for pointing this out. We corrected it in the revision. 
 
Comment: Pg. 6, line 2: dissociation 
Response:  Thanks for pointing this out. We corrected it in the revision. 
 
Comment: Pg. 6 line 7: r-K selection is only briefly mentioned in the Klausmeier and 
Litchman (2008) paper. 
Response: Yes, we agree, so we added a citation to Tilman’s work (Tilman, 1982) for 
readers interested in this topic. 
 
Comment: Pg. 7, eq. 2: Both terms are negative but dissociation should be positive 
Response: We think there is a misreading of equation 2. Only the first term is negative, 
the second term is positive and describes dissociation.  
 
Comment: Pg. 8, line 1: I have no idea what the nonsingularity principle is, and again, 
searching for it gave no results. The expression is really conservation of mass anyway. 
Response: We apologize that we did not originally provide a citation for this concept on 
page 8 (it is mentioned on Page 9, lines 1-3 and the singularity is defined in P2: L1-L3); 
we have now added references on the concept at the first appearance of the term in the 
revision (Schnell and Maini, 2000; Tang and Riley, 2013; Tang, 2015). 
 
Comment: Pg. 8, line 12: I don’t know what this means. Furthermore, the only difference 
between the two sides of the equation is that the r.h.s. just moves the half saturation 
constant around. They appear equal and there is no basis for why they wouldn’t be.  
Response: No, in equation (6) the term after the first equal sign is not equal to the term 
after the second equal sign, as we show below: 

Suppose there are two substrates, S1 and S2, with concentrations of 1 and 2 units, 
respectively; and half saturation constants of 1 and 2, respectively. Then, assuming all 
other parameters are of numerical value 1, the value after the first equal sign is 
1/(1+1)+2/(2+2)=1. However, the value after the second equal sign is 
(1/1+2/2)/(1+(1/1+2/2))=2/3. Therefore, they are not equal (i.e., 1 ≠ 2/3). Such a case will 
occur, for instance, in situations when both NH3 and 	NO3

−  are taken up by a microbe or 
plant to synthesize biomass. Only the term after the second equal sign will describe this 
uptake process consistently. A similar situation is discussed in detail in Schnell and 
Mendoza (2000).   

 
Comment: Litchman and Klausmeier (2008) don’t even mention Monod kinetics. It is 
unacceptable to incorrectly use references to justify assumptions or manipulations. 
Response: It seems the reviewer misunderstood the reference to Litchman and 
Klausmeier (2008). In their page 620, the second equation, which we copy below, is the 
Monod kinetics: 



		
uptake = v R( ) = vmaxRK +R

 

with 	R  is the substrate and 	K  is the half saturation constant.  
Even though Litchman and Klausmeier (2008) did not use the term “Monod 

kinetics”, they are clearly applying that approach. As the reviewer may be aware, Monod 
kinetics and Michaelis-Menten (MM) kinetics were proposed based on different 
empirical evidences. The Monod kinetics is purely empirical (Monod, 1949) and MM 
kinetics can be derived mechanistically (Briggs and Haldane, 1925). In soil 
biogeochemical modeling, the Monod and MM kinetics are used for modeling microbial 
substrate uptake, and under the assumption of no substrate-storage in microbial cells 
(which is valid under some restrictive conditions), the Monod kinetics and MM kinetics 
(or any substrate kinetics such as the SUPECA we present here) can reasonably represent 
microbial growth (Monod, 1949; Wieder et al., 2013, 2014; Tang and Riley, 2015). 
 
Comment: Pg. 9, line 3: When is it even reasonable to enzyme concentration approach 
infinity? 
Response: It is a common practice in deriving macroscopic representations of complex 
phenomena to ensure that the solutions are robust across a range of conditions. The term 
“approach infinity” is widely used in scientific literature to imply “as a state becomes 
large compared to another state” (e.g., see chapters on oscillators and electrostatics in 
Feynman et al., 1963). In biogeochemistry, for example, such a situation exists in vivo 
conditions inside an organisms’ cell (e.g., Schnell and Maini, 2000), or when mineral 
surface interactions are represented analogously to enzyme kinetics (e.g., adsorption is of 
Langmuir type). In such situations, the ratio of enzyme and substrate concentrations 
becomes very large (i.e., approaches infinity).  
 
Comment: Pg. 9, line 5: There is no paper that I can find that matches the Murdock 
reference, and one published in the same year is completely unrelated. This is a very 
disturbing pattern of misrepresentation of the literature. I basically can’t follow the rest of 
page 9 and I have no idea what parametric sensitivity is. 
Response: It appears the reviewer was searching for a citation by “Murdock”, when the 
paper we cited is by “Murdoch”. The reviewer’s assertion of a “disturbing pattern of 
misrepresentation of the literature” is ridiculous and unprofessional, considering that 
he/she could have simply gone to the reference list at the end of our manuscript and 
found the citation. 

In 1973, William W. Murdoch published two papers, one is “The functional 
response of predators”, and the other is “Predation by Coccinellid Beetles: Experiments 
on Switching” which he co-authored with J.R. Marks. The first paper is the one we cited 
(and is listed in the references).  

The term “parametric sensitivity” is a widely used term in numerical modeling, 
and we cited a recent paper on the topic in the original manuscript. However, there are 
many other recent publications applying this term; we have therefore added some of 
those citations (e.g., Qian et al., 2015; van Werkhoven et al., 2009).  
 
Comment: Starting in section two, the ‘derivations’ seem to be ok, but they are trivial 
algebra. It’s easy to start with any reaction diagram, assume quasi steady state and derive 



equations. However, they still seem to retaining more dynamics that is typical because 
the substrates/reactants A and B are changing over time. 
Response: Our careful derivation attempts to present nuances to readers, and indicate 
clearly where critical assumptions are being made. Since one of our clearly stated goals is 
to formulate a consistent set of reaction kinetics for soil BGC, we believe having a 
consistent derivation formulated in the peer-reviewed literature is important. Further, we 
used this derivation to describe possible problems with other approaches in characterizing 
biogeochemical kinetics, such as dual-Monod kinetics and synthesizing unit kinetics. 
Therefore, our derivation will help readers to understand the uncertainties behind using 
those kinetic formulations for their modeling analyses. In the same spirit, throughout the 
paper, we have clearly reported that our new approach is only a better approximation to 
the law of mass action (e.g., section 4 and also see Tang, 2015), and should not be 
regarded as accurate for all conditions (a situation that is discussed in detail by Pedersen 
et al., 2008, which we have cited in the revision).  
 
Comment: Pg. 17, lines 2-3: I have no idea what this sentence means. 
Response: The phrase “MM kinetics ignores the mass balance constraint of substrate” 
simply means: in the derivation of MM kinetics, no constraint is placed on the substrate 
mass balance. Tang (2015) described this condition and discussed its implications, as 
have others (Borghans et al., 1996; Tang and Riley, 2013; Maggi and Riley, 2015). We 
have added these other citations to the revised manuscript to buttress this point. However, 
as the subsequent sentences explain, our point is that a similar problem may be happening 
in Dual Monod and Synthesizing Unit kinetics formulations.  
 
Comment: Pg. 17, line 15 (and appendix): I have no idea what their ‘first order closure 
approach’ is. The appendix isn’t really a help here. 
Response: In the revision, we added some explanation to the “first order closure 
approach” and a citation to Tang and Riley (2013) where the approach was first applied 
to enzymatic chemical kinetics. We also note that the first order closure approach has 
been applied in many other fields, and have added citations (Shankar, 1994; Tang et al., 
2007) to the revised manuscript.  
 
Comment: Pg. 19: The problem with trying to average over a bunch of nonlinear 
interactions seems to render this derivation incorrect. 
Response: As we discussed above, we are not trying to “average over a bunch of 
nonlinear interactions”. Given that Reviewer #1 understood this important point, we are 
at something of a loss to address Reviewer #2’s misunderstanding. Nowhere in the 
manuscript did we state we are “trying to average over a bunch of nonlinear interactions”, 
so it is not clear where he/she developed that perception. 
 
Comment: Data examples and figures: By this point, I am totally lost and quite skeptical 
of whether their derivations are correct. The comparisons with data are poorly motivated 
and described so it’s not possible to even know what we should be taking away from the 
exercise and why. 
Response: Although we appreciate the reviewer’s taking his/her time to read through our 
manuscript, we believe that this reviewer is an inappropriate choice, given his/her (1) 



large number of misunderstandings, (2) fundamentally incorrect criticisms, and (3) poorly 
constructed suggestions for improving the manuscript. In other contexts we would be 
happy to discuss the details of the approach with the reviewer, but given that this is a 
manuscript review, we request the editor to find another reviewer who’s more familiar 
with biogeochemistry and approaches to develop conceptual and numerical models of 
complex reaction networks. 
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Abstract. Several land biogeochemical models used for studying carbon-climate 8 

feedbacks have begun explicitly representing microbial processes. However, to our 9 

knowledge, there has been no theoretical work on how to achieve a consistent scaling of 10 

the complex biogeochemical reactions from microbial individuals to populations, 11 

communities, and interactions with plants and mineral soils. We here study this scaling 12 

problem by focusing on the substrate-consumer relationships for consumer mediated 13 

redox reactions of the form A+B→
E

products , where products could be microbial 14 

biomass and different bio-products. Under the quasi-steady-state approximation, these 15 

substrate-consumer relationships can be formulated as the computationally difficult full 16 

Equilibrium Chemistry problem, which is then usually approximated analytically with the 17 

popular Dual Monod (DM) kinetics and Synthesizing Unit (SU) kinetics. However, we 18 

found that the DM kinetics is scaling inconsistent for reaction networks because it (1) 19 

does not incorporate substrate limitation in its derivation, (2) invokes contradictory 20 

assumptions regarding the substrate processing rate when transitioning from single 21 

substrate reactions to two-substrate redox reactions, and (3) cannot scale the product 22 

generation rate from one to multiple substrates. In contrast, the SU kinetics can 23 



 2 

consistently scale the product generation rate from one to multiple substrates, but suffers 1 

from the deficit that as the consumer abundance approaches infinity, it predicts singular 2 

infinite reaction rates even for limited substrates. We attribute this deficit to SU’s failure 3 

to incorporate the substrate limitation in its derivation and remedy SU with the proposed 4 

SUPECA (SU Plus Equilibrium Chemistry Approximation) kinetics, which consistently 5 

imposes the mass balance constraints from both substrates and consumers on consumer-6 

substrate interactions in calculating redox reaction rates. Moreover, we show the 7 

SUPECA kinetics satisfies the partition principle as in theories like Newton’s Law of 8 

motion and Dalton’s law of partial pressures, such that its mathematical manifestation is 9 

scaling invariant when transitioning from an individual reaction to a network of many 10 

reactions. We benchmarked the SUPECA kinetics with the equilibrium chemistry 11 

solution for some simple problem configurations and found SUPECA outperformed the 12 

SU kinetics. In applying the SUPECA kinetics to aerobic soil respiration, we found that 13 

SUPECA predicted consistent but variable moisture response functions that agreed well 14 

to those derived from incubation data. We finally discuss how the SUPECA kinetics 15 

could help Earth System Models consistently incorporate more biogeochemical reactions 16 

to improve their biogeochemical modules. 17 

 18 

Keywords: Dual-Monod kinetics, Synthesizing Unit, SUPECA kinetics, soil respiration, 19 

trait-based modeling 20 

 21 

 22 

 23 



 3 

1. Introduction 1 

Land holds more than twice the carbon that is in atmosphere; therefore a small 2 

change in land carbon dynamics can imply significant feedbacks to the ongoing climate 3 

warming (Ciais et al., 2013). This has motivated intense research towards better 4 

understanding of Earth’s land biogeochemical cycles, both for prediction and assessing 5 

the efficacy of climate mitigation and adaptation strategies. To date, however, soil 6 

biogeochemical models are suffering from high uncertainty (e.g., Arora et al., 2013; 7 

Bouskill et al. 2014; Friedlingstein et al., 2014; He et al. 2016). For instance, eight 8 

CMIP5 Earth System Models (ESMs) predicted that the net land carbon uptake varies 9 

from 22 to 456 PgC for the 2006-2100 period under the Representative Concentration 10 

Pathway 4.5 (RCP4.5; Shao et al., 2013). Similarly, the 16 CMIP5 ESM simulations 11 

analyzed in Todd-Brown et al. (2013) estimated the contemporary global soil carbon 12 

stocks ranging from 510 to 3040 PgC to 1 m depth, while the most recent empirical 13 

estimation is 1408±154 PgC to 1 m depth and 2060±217 Pg C to 2 m depth (Batjes, 14 

2016). Therefore, it is urgent to improve our models’ predictive power. 15 

  The predictive power of existing land biogeochemical models is plagued by 16 

uncertainties from structural design, numerical implementation, model parameterization, 17 

initial conditions, and forcing data (Tang and Zhuang, 2008; Tang et al., 2010; Luo et al., 18 

2015; Wieder et al., 2015a; Blanke et al., 2016; Tang and Riley, 2016). Among them, 19 

developing better model structure and formulation has been identified as a priority. One 20 

proposed structural improvement is to include explicit microbial processes (Wieder et al., 21 

2015b), which has recently been shown to enable better predictions of global soil carbon 22 

stocks (Wieder et al., 2013), priming effects (Sulman et al., 2014), vertical soil carbon 23 
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 4 

profiles (Riley et al., 2014), and respiratory temperature sensitivity (Tang and Riley, 1 

2015). A second major proposal is to explicitly resolve the ecosystem nutrient cycle, 2 

which aligns with the hypothesis that the potential for increasing land ecosystem carbon 3 

uptake resulting from the effect of atmospheric CO2 fertilization could be limited by 4 

nutrient availability (Vitousek, 1982; Shi et al., 2015; Wieder et al., 2015c).  5 

 A common process that underlies both of these two proposed structural 6 

improvements is the substrate-consumer interaction, which is fundamental for modeling 7 

microbial decomposition of substrates (Tang and Riley, 2013a; Riley et al., 2014; Le 8 

Roux et al., 2016), mineral soil interaction with adsorptive substrates (Tang and Riley, 9 

2015), and plant-microbe competition for nutrients (Zhu et al., 2016a, 2016b, 2017). In 10 

soil, because there are many consumers competing for many substrates in different places 11 

at different times, the biogeochemical models being developed must be able to scale the 12 

many biogeochemical processes consistently across space, time, and processes. Of the 13 

three dimensions that call for scaling (Figure 1), scaling across the spatial and temporal 14 

dimensions is achieved through spatial and temporal discretization and integration, which 15 

has been intensively studied elsewhere (e.g., Kolditz et al., 1998; Mao et al., 2006), so 16 

here we study the scaling along the less studied third dimension—process—with a focus 17 

on substrate-consumer interactions.  18 

The substrate-consumer relationship is the first step in formulating 19 

biogeochemical models, and is formulated with the so-called substrate kinetics that is a 20 

function of consumer and substrate abundance under the influence of various 21 

environmental factors, such as soil mineralogy, temperature and moisture (see Tang and 22 

Riley (2013a) for a review). Since substrate-consumer kinetics only accounts for how 23 
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 5 

substrates are taken up by organisms, we contend that readers should not misunderstand 1 

our discussion of scaling below as an attempt to do ecological aggregation (e.g., Iwasa et 2 

al., 1987; 1989). Rather we are presenting a methodology to improve the consistency in 3 

formulating the microdynamics for ecological aggregation.  4 

 Within a certain homogeneous space-time-process unit in soil (Figure 1), there are 5 

generally three types of substrate-consumer relationships: (1) single-substrate Monod 6 

type reactions in the form of 	A→
E

products ; (2) the two-substrate redox reactions in the 7 

form of 	A+B→
E

products , where substrate 	A  and 	B  are called complementary because 8 

they both are required to proceed the redox reaction; and (3) the multi-substrate (>2) 9 

reactions 
	

Ai
i
∑ →

E

products . The scaling of the single-substrate Monod type reaction has 10 

been extensively discussed in Tang and Riley (2013a), and is resolved with the 11 

Equilibrium Chemistry Approximation (ECA) kinetics (and more discussion on the ECA 12 

kinetics for process scaling will be provided in later sections when discussing the 13 

SUPECA kinetics). Further, because many multi-substrate reactions can be separated into 14 

a combination of single-substrate reactions and redox-reactions, our discussion below 15 

focuses on achieving a consistent kinetic scaling from a single redox reaction to many 16 

reactions in a network. 17 

 Mathematically, the problem should be addressed with explicit formulation of all 18 

kinetic processes using ordinary differential equations accounting for all substrates and 19 

consumers (Chellaboina et al., 2009). However, such a formulation would require too 20 

many parameters to drive the model and is numerically very difficult to solve because of 21 

its multi-temporal scale nature. By making the quasi-steady-state-approximation (QSSA), 22 
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 6 

i.e., assuming that the product generation from consumer-substrate complex is much 1 

slower than the equilibration between consumers, substrates, and consumer-substrate 2 

complexes (Briggs and Haldane, 1925), the full kinetic problem is reduced to the simpler 3 

Equilibrium Chemistry (EC) form (e.g., Chellaboina et al., 2009). However, the EC form 4 

is also usually very difficult to solve numerically. Therefore, analytical approximations to 5 

the EC formulation are generally made.  6 

Two classic analytical approximations for modeling redox-reactions are the Dual 7 

Monod (DM) kinetics (e.g., Yeh et al., 2001) and Synthesizing Unit (SU) approach 8 

(Kooijman, 1998; Brandt et al., 2003). Although both of them are a special case of the EC 9 

formulation (Kooijman, 2010; Tang and Riley, 2013a), they make different assumptions 10 

of the relative magnitudes of the involved kinetic parameters. For this, Kooijman (2010) 11 

has shown that the DM kinetics inevitably requires the dissociation rate to be much larger 12 

than the product-generation rate from the consumer-substrate complexes. In contrast, to 13 

apply the single-substrate Monod kinetics (Monod, 1949) or Michaelis-Menten (MM) 14 

kinetics (Michaelis and Menten, 1913; which is mathematically identical to the empirical 15 

Monod kinetics and they two will be used interchangeably hereafter) does not impose this 16 

requirement on its parameters. Moreover, in applications to r-K scaling (e.g., Tilman, 17 

1982; Litchman and Klausmeier, 2008), the single-substrate Monod kinetics even 18 

requires the product-generation rate to be faster than the dissociation rate of the 19 

consumer-substrate complexes. This contrasting requirement on parameters, as we will 20 

show later, fails the DM kinetics to achieve a consistent scaling of substrate-consumer 21 

interactions for generic biogeochemical modeling.  22 
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 7 

 We define a kinetic formulation to have consistent scaling when the formulated 1 

substrate-consumer relationship: (1) can seamlessly transition from a single substrate-2 

consumer pair to a network of many substrate-consumer pairs without changing its 3 

mathematical forms (aka the partition principle) and (2) does not predict any singularity 4 

over the whole range of substrate and consumer concentrations (aka the non-singular 5 

principle which says that the predicted reaction rate won’t increase to infinity as the 6 

consumer concentration approaches infinity (e.g., Schnell and Maini, 2000; Tang, 2015)). 7 

The full kinetics formulation and its EC formulation both satisfy these two criteria, which 8 

can be explained using the following example network of consumer-substrate 9 

relationships:  10 

		
Si +E j↔k1,ij−

k1,ij
+

E jSi→
k2,ij
+

Pij +E j  (1) 

where substrate 	Si  complexes with consumer 	
E j  to form complex 	

E jSi , which is then 11 

degraded into product 	
Pij  and the free consumer. In equation (1) (and throughout this 12 

study), the forward kinetic parameters are indicated with superscript “+”, while the 13 

backward kinetic parameters are with superscript “−”. Here and below we assume that the 14 

units of all variables are consistently defined, and they are only put forward explicitly 15 

when it is necessary to resolve an ambiguity. 16 

The full kinetic formulation for the network of equation (1) is: 17 

		

d Si⎡⎣ ⎤⎦
dt

= − Si⎡⎣ ⎤⎦ k1,ij
+ E j
⎡⎣ ⎤⎦( )

j
∑ + k1,ij

− E jSi⎡⎣ ⎤⎦( )
j
∑  (2) 
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 8 

		
d E jSi⎡⎣ ⎤⎦
dt

= k1,ij
+ Si⎡⎣ ⎤⎦ E j

⎡⎣ ⎤⎦− k1,ij
− +k2,ij

+( ) E jSi⎡⎣ ⎤⎦  (3) 

		
d E j
⎡⎣ ⎤⎦
dt

= − E j
⎡⎣ ⎤⎦ k1,ij

+ Si⎡⎣ ⎤⎦( )
i
∑ + k1,ij

− +k2,ij
+( ) E jSi⎡⎣ ⎤⎦( )

i
∑  (4) 

where, and also throughout this study, we use 	
x⎡⎣ ⎤⎦  to indicate the concentration of 	x .  1 

That the full kinetic formulation is consistent with the partition principle is 2 

manifested in the first summation in equations (2) and (4). Particularly for equation (4), 3 

by defining an appropriate mean specific substrate affinity 		k1, j
+ , the summation 4 

		
k1,ij
+ Si⎡⎣ ⎤⎦( )

i
∑  can be recast into the form 

		
k1,ij
+ Si⎡⎣ ⎤⎦

i
∑ = k1, j

+ S⎡⎣ ⎤⎦ , in which 
	
S⎡⎣ ⎤⎦ = Si⎡⎣ ⎤⎦

i
∑  5 

resembles Dalton’s law of partial pressures (and many other similar relationships in 6 

physics, e.g., Newton’s second law of motion (Feynman et al., 1963)) and is clearly 7 

partition consistent.  8 

Meanwhile, that the full kinetic formulation satisfies the nonsingular principle can 9 

be verified by noting that, at any time: 10 

	
Si⎡⎣ ⎤⎦+ E jSi⎡⎣ ⎤⎦

j
∑ = Si⎡⎣ ⎤⎦T  (5) 

and that the consumption of 	Si  is through the generation of product from 
	
E jSi⎡⎣ ⎤⎦ . 11 

Therefore, by combining equations (2), (3), and (5), the overall consumption rate of 	Si  12 

(i.e., 
		
k2,ij
+ E jSi⎡⎣ ⎤⎦

j
∑ ) is always smaller than 

		
Si⎡⎣ ⎤⎦T k2,ij

+

j
∑ .  13 

Since the EC formulation is obtained by applying QSSA to the full kinetic 14 

formulation (i.e., 		d E jSi⎡⎣ ⎤⎦ dt ≈0  for equation (3)), it automatically satisfies the two 15 
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 9 

criteria for consistent process scaling.  However, the Monod kinetics is scaling 1 

inconsistent when it is applied, for example, to the single-substrate competition by 2 

multiple populations, or to the multi-substrate consumption by a single population. (e.g., 3 

Williams, 1973; Schnell and Mendoza, 2000; Tang et al., 2010; Riley et al., 2011, 2014; 4 

Allison, 2012;  Bouskill et al., 2012; Wieder et al., 2013, 2014). Specifically, the Monod 5 

kinetics violates the partition principle, which can be shown from the following 6 

inequality:  7 

		
Fj = E j

⎡⎣ ⎤⎦
k2,ij
+ Si⎡⎣ ⎤⎦

Kij + Si⎡⎣ ⎤⎦i
∑ ≠ E j

⎡⎣ ⎤⎦

k2,ij
+ Si⎡⎣ ⎤⎦ Kij

i
∑
1+ Si⎡⎣ ⎤⎦ Kij

i
∑

 (6) 

Here 	
Fj describes the uptake of all substrates 	Si  by population 	

E j . The left hand side of 8 

the inequality is the uptake computed by directly applying the Monod kinetics, while the 9 

right hand side of the inequality is by applying the competitive Monod kinetics (e.g., 10 

Litchman and Klausmeier, 2008). The inequality (6) is even true when	
Kij  is independent 11 

of 	i . Besides being inconsistent with the partitioning principle, the Monod kinetics also 12 

violates the non-singular principle, which can be demonstrated by observing that, as 13 

	
E j
⎡⎣ ⎤⎦  approaches infinity, so does 	

Fj . 14 

 For the competitive Monod kinetics on the right hand side of the inequality in 15 

equation (6) (e.g., Murdoch, 1973), if all substrates have the same affinity parameter (i.e., 16 

	
K j = Kij ), we have the following 17 
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 10 

		

Fj = E j
⎡⎣ ⎤⎦

k2, j
+ Si⎡⎣ ⎤⎦

i
∑⎛⎝⎜

⎞
⎠⎟
K j

1+ Si⎡⎣ ⎤⎦
i
∑⎛⎝⎜

⎞
⎠⎟
K j

= E j
⎡⎣ ⎤⎦

k2, j
+ S⎡⎣ ⎤⎦ K j

1+ S⎡⎣ ⎤⎦ K j

 (7) 

where 
	
S⎡⎣ ⎤⎦ = Si⎡⎣ ⎤⎦

i
∑  designates the total free concentrations of all substrates. Equation 1 

(7) therefore suggests that the competitive Monod kinetics satisfies the partition principle 2 

for consistent scaling of substrate-consumer relationships. Nevertheless, because the 3 

competitive Monod kinetics is linear in 
	
E j
⎡⎣ ⎤⎦ , like the classic Monod kinetics, it still 4 

violates the non-singular principle for consistent scaling. 5 

 In Tang (2015) (and also in Borghans et al. (1996), Tang and Riley (2013a)), it 6 

was shown that the linear dependence of 	
Fj  on 

	
E j
⎡⎣ ⎤⎦  as predicted by the Monod kinetics 7 

and similarly by the competitive Monod kinetics is due to their failure to impose the 8 

substrate mass (or surface area) balance in deriving their mathematical formulations. This 9 

problem has been rectified in the Equilibrium Chemistry Approximation kinetics (Tang 10 

and Riley, 2013a), which was shown to predict much more accurate parametric 11 

sensitivity than the Monod kinetics in comparing with analytical solutions (Tang, 2015). 12 

Since the success of all model calibrations rely on the sensitivity of model predicted 13 

responses with respect to model parameters (e.g., Wang et al., 2001; Williams et al, 2005; 14 

Tang and Zhuang, 2009; van Werkhoven et al., 2009; Qian et al., 2015), ensuring that the 15 

substrate kinetics predicts accurate parametric sensitivity is essential for developing 16 

robust biogeochemical models. 17 
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 We therefore ask the question: how should we achieve a consistent scaling from 1 

the simplest redox reaction 	A+B→
E

products  (i.e., AB-E type) to a network that mixes 2 

many redox reactions and even single substrate Monod-type reactions (a situation found 3 

commonly in nature)? Aside from the two criteria (i.e., the partition principle and non-4 

singularity) discussed above, we suggest a third criterion that a consistent scaling of 5 

substrate-consumer relationships should be able to seamlessly transition from a single 6 

substrate Monod-type reaction to the AB-E type redox reaction without making 7 

contradictory assumptions in its theoretical derivation.  8 

In the following, we address the above question by first presenting the step-by-9 

step derivation of the DM kinetics and the SU kinetics from the EC formulation of the 10 

redox reaction 	A+B→
E

products . Conceptually, DM kinetics can be viewed as a direct 11 

application of chemical kinetics that the reaction rate of substrates 	A  and 	B  over 12 

consumer 	E  is determined by the product of A and B’s binding probability to E (which in 13 

Monod form is 
	
A⎡⎣ ⎤⎦ KA + A⎡⎣ ⎤⎦( )  for substrate 	A , and 

	
B⎡⎣ ⎤⎦ KB + B⎡⎣ ⎤⎦( )  for substrate 	B ). 14 

Kooijman (1998) was the first to derive the SU kinetics using the queue theory (e.g., 15 

Gross et al., 2011) and Brandt et al. (2003) discussed its use for AB-E type redox 16 

reactions. The following derivation will stress on exposing the scaling-inconsistencies 17 

implied in the DM kinetics and SU kinetics, and, in particular, we will show that DM 18 

kinetics cannot be extended for consistent process scaling of the substrate-consumer 19 

relationship. We then present the SUPECA kinetics that remedies the inconsistencies of 20 

the SU kinetics. We demonstrate the benefits of SUPECA in terms of its numerical 21 

accuracy and present an example application of modeling the moisture control of aerobic 22 
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soil respiration. Finally, we discuss how one can apply the SUPECA kinetics to trait-1 

based modeling approaches in various biogeochemical systems.  2 

2. Derivation of ECA kinetics for AB-E type redox reaction 	A+B→
E

products  3 

2.1 Governing equations 4 

We schematically represent the enzymatic redox reaction network as  5 

		 

E + A ↔
kA
−

kA
+

EA

+ +
B B

kB
− !kB

+ kB
− !kB

+

EB + A ↔
kA
−

kA
+

EAB →
k2
+

E + P

 (8) 

where it is assumed that the order of substrates A and B’s binding to consumer E does not 6 

affect the kinetic coefficients as is done in most modeling studies (e.g., Yeh et al., 2001).  7 

By law of mass action and the total QSSA (tQSSA; e.g., see Borghans et al., 8 

1996; Tang and Riley, 2013a), we have the governing equations (see appendix A for 9 

derivations) as follows: 10 

		
d A⎡⎣ ⎤⎦T
dt

= −k2
+ EAB⎡⎣ ⎤⎦  (9) 

		
d B⎡⎣ ⎤⎦T
dt

= −k2
+ EAB⎡⎣ ⎤⎦  (10) 

	
kA
+ E⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦+kB

− EAB⎡⎣ ⎤⎦ = kA
− +kB

+ B⎡⎣ ⎤⎦( ) EA⎡⎣ ⎤⎦  
(11) 

	
kB
+ E⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦+kA

− EAB⎡⎣ ⎤⎦ = kB
− +kA

+ A⎡⎣ ⎤⎦( ) EB⎡⎣ ⎤⎦  
(12) 

		kA
+ EB⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦+kB

+ EA⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ = kA
− +kB

− +k2
+( ) EAB⎡⎣ ⎤⎦  

(13) 
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where 1 

	
A⎡⎣ ⎤⎦T = A⎡⎣ ⎤⎦+ EA⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦  

(14) 

	
B⎡⎣ ⎤⎦T = B⎡⎣ ⎤⎦+ EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦  (15) 

	
E⎡⎣ ⎤⎦T = E⎡⎣ ⎤⎦+ EA⎡⎣ ⎤⎦+ EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦  (16) 

The derivation of substrate kinetics is therefore equivalent to solving for 	
EAB⎡⎣ ⎤⎦  from the 2 

EC problem defined by equations (11)-(16). However, because this set of equations is 3 

non-linear, and no analytical solutions are available (to our knowledge), some 4 

linearization is warranted to obtain analytical approximations. And as we describe below, 5 

linearization with different assumptions lead respectively to the DM, SU, and SUPECA 6 

kinetics.  7 

 To avoid confusions for readers that are not familiar with substrate-kinetics, we 8 

also note that because obtaining the substrate kinetics is just to solve equations (11)-(16), 9 

various production and destruction terms can be added to equations (9) and (10) without 10 

affecting our derivation below.  11 

2.2 Dual Monod kinetics and synthesizing unit kinetics 12 

One method to linearize equations (11)-(16) is to assume that the concentration of 13 

consumer-substrate complexes are so small that the free substrate concentrations are 14 

equal to the bulk concentrations (e.g., for substrate A, it holds 
	
A⎡⎣ ⎤⎦T = A⎡⎣ ⎤⎦ ). This 15 

approach when combined with different assumptions on the relative magnitudes of the 16 

kinetic parameters then leads to the popular DM kinetics and the two-substrate SU 17 

kinetics. 18 

2.2.1 Dual Monod kinetics 19 
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We now derive the DM kinetics. Adopting the equilibrium approximation that the 1 

forward binding between consumer and substrate is in rapid equilibrium with the 2 

backward dissociation of the consumer-substrate complex (e.g., Michaelis and Menten, 3 

1913; Pyun, 1971), we have the following 4 

	
EA⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ =

kB
−

kB
+ EAB⎡⎣ ⎤⎦ = KB EAB⎡⎣ ⎤⎦  (17) 

	
EB⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦ =

kA
−

kA
+ EAB⎡⎣ ⎤⎦ = KA EAB⎡⎣ ⎤⎦  

(18) 

which then transforms equations (11) and (12) into 5 

	
E⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦ =

kA
−

kA
+ EA⎡⎣ ⎤⎦ = KA EA⎡⎣ ⎤⎦  (19) 

	
E⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ =

kB
−

kB
+ EB⎡⎣ ⎤⎦ = KB EB⎡⎣ ⎤⎦  

(20) 

By solving 	
EAB⎡⎣ ⎤⎦  from equations (14)-(16) using equations (17)-(20), we obtain 6 

the consumer-substrate complex for the DM kinetics (see Appendix B)  7 

		

d A⎡⎣ ⎤⎦T
dt

= −k2
+ E⎡⎣ ⎤⎦T

A⎡⎣ ⎤⎦
KA + A⎡⎣ ⎤⎦

B⎡⎣ ⎤⎦
KB + B⎡⎣ ⎤⎦

 (21) 

Although as one substrate, e.g., 	
A⎡⎣ ⎤⎦ , approaches infinity, equations (21) can be 8 

reduced to the classical MM kinetics 9 

		

d A⎡⎣ ⎤⎦T
dt

= −k2
+
E⎡⎣ ⎤⎦T B⎡⎣ ⎤⎦
KB + B⎡⎣ ⎤⎦

 (22) 
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we note that the half saturation coefficient 	KB = kB
− kB

+  in equation (22) is different from 1 

its usual definition, which should be 		KB = k2
+ +kB

−( ) kB+ , if one derives the MM kinetics 2 

rigorously starting from a single substrate and single consumer system (e.g., Tang, 2015). 3 

For this reason, we assert that the DM kinetics cannot achieve a self-consistent scaling 4 

from one-substrate reaction to multiple-substrate reactions. More specifically, by 5 

substituting equations (17) and (18) into equation (13), one obtains 		k2
+ =0 , or at least 6 

		 k2
+ ≪max kA− ,kB−( ) , which states that the consumer is very inefficient in processing the 7 

substrate. However, MM kinetics does not require the dissociation rate to be much higher 8 

than the product generation rate from the consumer-substrate complex, i.e.  9 

		 k2
+ ≪max kA− ,kB−( )  (e.g., Briggs and Haldane, 1925). Nor do the high dissociation rates of 10 

	
EA⎡⎣ ⎤⎦ , 	

EB⎡⎣ ⎤⎦ , and 	
EAB⎡⎣ ⎤⎦  

favor the consumer’s assimilation of substrates under usual 11 

substrate concentrations (e.g., Van Slyke and Cullen, 1914), even though a high 12 

dissociation rate may possess some theoretical advantage under high substrate 13 

concentrations when the consumer is a single enzyme (Reuveni et al., 2014). To the 14 

contrary, most existing applications tend to assume 		 k2
+ ≫ kA

−  and 		 k2
+ ≫ kB

−

 (e.g., Holling, 15 

1959, 1966; Aksnes and Egge, 1991; Armstrong, 2008; Bonachela et al., 2011), such that 16 

		KB ≈ k2
+ kB

+  for MM kinetics and the r-K selection can be explained (by linking 		k2
+  with 17 

growth rate, and 	kA
+  and 	kB

+

 with substrate competitive ability; e.g., Litchman and 18 

Klausmeier, 2008). Therefore, for biogeochemical modeling, DM and MM (or Monod) 19 
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kinetics are based on different assumptions of the kinetic parameters, and the smooth 1 

transition from DM to single substrate Monod kinetics is only ostensible.  2 

2.2.2 Synthesizing unit kinetics 3 

In deriving the SU kinetics for the redox reaction network represented in equation 4 

(8), consumer 	E  is viewed as a generalized enzyme that generates bio-products by 5 

processing substrates A and B. SU computes the specific reaction rate per unit 6 

concentration of 	E  as the product generation rate 		k2
+  times the probability that 	E  binds 7 

together with both substrates A and B (which is 
	
EAB⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦T ). Mathematically, SU 8 

kinetics requires the sufficient flux condition 	 
kA
+ A⎡⎣ ⎤⎦≫ kB

−  and 	 
kB
+ B⎡⎣ ⎤⎦≫ kA

−

 
(Kooijman, 9 

2010). Define 		 
!k2
+ = kA

− +kB
− +k2

+ , equations (11)-(13) become 10 

	
kA
+ E⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦ = kB

+ B⎡⎣ ⎤⎦ EA⎡⎣ ⎤⎦  (23) 

	
kB
+ E⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ = kA

+ A⎡⎣ ⎤⎦ EB⎡⎣ ⎤⎦  (24) 

		 kA
+ EB⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦+kB

+ EA⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ =
!k2
+ EAB⎡⎣ ⎤⎦  (25) 

From equations (23)-(25), we obtain (see Appendix C) 11 

		 

d A⎡⎣ ⎤⎦T
dt

= −
k2
+ E⎡⎣ ⎤⎦T

!k2
+

1
!k2
+ +

1
kA
+ A⎡⎣ ⎤⎦

+ 1
kA
+ B⎡⎣ ⎤⎦

− 1
kA
+ A⎡⎣ ⎤⎦+kA

+ B⎡⎣ ⎤⎦

 
(26) 

The two-substrate SU kinetics as indicated by equation (26) can be viewed 12 

alternatively as a special case of the general SU kinetics for any number of 13 

complementary substrates, which was derived by Kooijman (1998) based on the queue 14 

theory (e.g., Gross et al., 2011). Kooijman (1998) assumed that the consumers act like 15 
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synthesizing units, which process the substrates in two steps: binding and production. He 1 

then assumed that all flux rates (including production rates 		k2
+  and substrate binding 2 

rates 	
kA
+ A⎡⎣ ⎤⎦  and 	

kB
+ B⎡⎣ ⎤⎦ ) are of Poisson distributions, and calculated the overall specific 3 

substrate consumption rate as the reciprocal of the expected total processing time (i.e., the 4 

denominator of equation (26)). The last term in the denominator of equation (26) comes 5 

from the assumption of parallel binding of substrates 	A  and 	B  to 	E , and it disappears if 6 

sequential binding is assumed.  7 

 As one substrate, e.g., 	A , approaches infinity, the single-substrate Monod kinetics 8 

is recovered from equation (26): 9 

		 

d A⎡⎣ ⎤⎦T
dt

= −
k2
+ E⎡⎣ ⎤⎦T

1+
!k2
+

kB
+ B⎡⎣ ⎤⎦

= −
k2
+ E⎡⎣ ⎤⎦T B⎡⎣ ⎤⎦
!k2
+

kB
+ + B⎡⎣ ⎤⎦

 
(27) 

which has a half saturation coefficient similar to what would be derived for a single 10 

substrate, single consumer reaction (e.g., Tang, 2015). By assuming Poisson distribution 11 

of the kinetic parameters, it can also be shown for a single enzyme molecule that MM 12 

kinetics represents the statistical mean of the fluctuating activity of the enzyme (English 13 

et al., 2006; Reuveni et al., 2014). That the kinetics of both single-substrate reaction and 14 

two-substrate redox reaction can be similarly derived using statistical theory and that 15 

equations (26) and (27) could be obtained from EC formulation using consistent 16 

assumptions of the kinetic parameters indicate, in contrast to DM kinetics, that SU 17 

kinetics is able to scale consistently between one-substrate and two-substrate redox 18 

reactions.  19 
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2.3. SUPECA kinetics 1 

In Tang (2015), it was shown that the derivation of MM kinetics ignores the mass 2 

balance constraint of substrate, resulting in the MM kinetics to predict inaccurate 3 

parametric sensitivity over the wide range of substrate to consumer ratios (e.g., Figure 1 4 

in Tang (2015)). In the above, we also noticed that the substrates mass balance 5 

constraints as indicated by equations (14) and (15) are not used in deriving the DM and 6 

SU kinetics, suggesting that both the DM and SU kinetics may suffer from the same 7 

deficit as the MM kinetics. Further, since the DM kinetics fails to consistently scale from 8 

a single substrate to two complementary substrates, we below only remedy the SU 9 

kinetics into the SUPECA kinetics to achieve a scalable and non-singular formulation of 10 

the redox reactions. 11 

As implied in equations (9)-(16), the derivation of substrate kinetics requires 12 

solving for 	
EAB⎡⎣ ⎤⎦  from nonlinear equations (11)-(16), whose analytical solutions are not 13 

available. To obtain improved solutions as compared to SU kinetics, we applied a first 14 

order closure approach (appendix D; which is the perturbation method truncated to the 15 

first order accuracy that describes the first order term using appropriate mean states (e.g., 16 

Shankar, 1994; Tang et al., 2007)) to the system formed by equations (11)-(16), leading 17 

to the SUPECA kinetics: 18 
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d A⎡⎣ ⎤⎦T
dt

= −
E⎡⎣ ⎤⎦T

1
k2
+

fA fB fAB
fA fB fAB

+ 1
fA
+ 1
fB

−
fA fB + fA fB − fA fB

fA fB fAB

													 = −
k2
+ E⎡⎣ ⎤⎦T fA k2

+( ) fB k2
+( )

fA fB
k2
+ fAB

fAB
k2
+ +

fAB
k2
+ −

fA fB + fA fB − fA fB
k2
+ fAB

 (28) 

where 
	
fA = kA

+ A⎡⎣ ⎤⎦T , 
	
fB = kB

+ B⎡⎣ ⎤⎦T ,  
	
fA = fA +kA

+ E⎡⎣ ⎤⎦T , 
	
fB = fB +kB

+ E⎡⎣ ⎤⎦T , 	fAB = fA + fB , 1 

and 	fAB = fA + fB . In equation (28), we assumed 		 k2
+ ≫ kA

−  and 		 k2
+ ≫ kB

− , so that 		 k2
+ ≈ !k2

+  2 

(we note that this relationship will be used throughout the remainder of this paper). It can 3 

then be verified that if 
	 
E⎡⎣ ⎤⎦T ≪ A⎡⎣ ⎤⎦T  and 

	 
E⎡⎣ ⎤⎦T ≪ B⎡⎣ ⎤⎦T , the SUPECA kinetics as 4 

represented in equation (28) becomes the SU kinetics in equation (26). Further, if one of 5 

the two substrates, say 
	
B⎡⎣ ⎤⎦T , approaches infinity, equation (28) is reduced to 6 

		

d A⎡⎣ ⎤⎦T
dt

= −
E⎡⎣ ⎤⎦T

1
k2
+

fA
fA
+ 1
fA

= −
fA E⎡⎣ ⎤⎦T

1+ fA
k2
+

 
(29) 

which by using the definition of 	fA  and  	fA  can be reduced to the single substrate ECA 7 

kinetics equation (Tang, 2015). 8 

 3. SUPECA kinetics for a network of reactions 9 

In actual biogeochemical systems, it is more common for many substrates to be 10 

processed by many consumers concurrently (and such an assumption is implicitly 11 

assumed in the space-time-process unit of any biogeochemical model). To consistently 12 
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handle such situations, Tang and Riley (2013a) derived the ECA kinetics (see Figure 2 1 

for a graphic demonstration) for calculating the consumption of a substrate 	Si  by a 2 

consumer 	
E j  in a network of single substrate reactions 	A→

E

products  as 3 

		

d Si⎡⎣ ⎤⎦T , j
dt

= −
k2,ij
+ E j
⎡⎣ ⎤⎦T Si⎡⎣ ⎤⎦T Kij( )

1+ Sl⎡⎣ ⎤⎦T Klj( )
l=1

l=I

∑ + El⎡⎣ ⎤⎦T Kil( )
l=1

l= J

∑
 (30) 

By defining the normalized substrate flux (with subscript “c” designating that the 4 

summation is over a column of the graph in Figure 2) 5 

		
Fc , j = Sl⎡⎣ ⎤⎦T Klj( )

l=1

l=I

∑ = Fc , j
l{ }

l=1

l=I

∑  (31) 

and its conjugate (with subscript “r” designating that the summation is over a row of the 6 

graph in Figure 2) 7 

		
Fr ,i = El⎡⎣ ⎤⎦T Kil( )

l=1

l= J

∑ = Fr ,i
l{ }

l=1

l= J

∑  (32) 

equation (30) can then be rewritten as 8 

		

d Si⎡⎣ ⎤⎦T , j
dt

= −k2,ij
+ E j
⎡⎣ ⎤⎦T

Fc , j
i{ }

1+Fr ,i +Fc , j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −k2,ij

+ Si⎡⎣ ⎤⎦T
Fr ,i

j{ }

1+Fr ,i +Fc , j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (33) 

The normalized substrate flux as defined in equation (31) and its conjugate in equation 9 

(32) implies that the consumption of substrate 	Si  by consumer 	
E j  as described by the 10 

ECA kinetics in equation (33) may be interpreted as either (i) the potential substrate 11 
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processing rate of 	
E j  (aka 		k2,ij

+ E j
⎡⎣ ⎤⎦ ) weighted by the relevant importance of the reaction 1 

pathway 	Si→
E j

products  (aka 		Fc , j
i{ } ) under the influence of all competing substrate fluxes 2 

		Fc , j
l{ } (towards consumer 	

E j ) and all competing agents’ efforts 		Fr ,i
l{ }  (towards substrate 	Si ) 3 

or (ii) the linear decay potential of 	Si (aka 		k2,ij
+ Si⎡⎣ ⎤⎦T ) weighted by relevant importance of 4 

		Fr ,i
j{ }  under the influence of all competing substrate fluxes and competing agents’ efforts.  5 

We further note that equations (31) and (32) define some very interesting scaling 6 

relationships. For instance, from equation (31), we can define the effective substrate 7 

affinity for the bulk substrates (
	
S⎡⎣ ⎤⎦T  defined as the total of all substrates) that are 8 

accessible for consumer 	
E j  as 9 

		
KE , j = Sl⎡⎣ ⎤⎦T

l=1

l=I

∑⎛
⎝⎜

⎞
⎠⎟
Fc , j = S⎡⎣ ⎤⎦T Fc , j  (34) 

Similarly, we can define the effective affinity for substrate 	Si  resulting from all 10 

competing agents as 11 

		
KS ,i = El⎡⎣ ⎤⎦T

l=1

l= J

∑⎛
⎝⎜

⎞
⎠⎟
Fr ,i = E⎡⎣ ⎤⎦T Fr ,i  (35) 

Then by substituting equations (34) and (35) into equation (33), we obtain 12 
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d Si⎡⎣ ⎤⎦T , j
dt

= −
k2,ij
+ E j
⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T KE , j( )

1+ S⎡⎣ ⎤⎦T KE , j + E⎡⎣ ⎤⎦T KS ,i

Fc , j
i{ }

Fc , j

																					=−
k2,ij
+ Si⎡⎣ ⎤⎦T E⎡⎣ ⎤⎦T KS ,i( )

1+ S⎡⎣ ⎤⎦T KE , j + E⎡⎣ ⎤⎦T KS ,i

Fr ,i
j{ }

Fr ,i

 (36) 

which again shows the linear partition in terms of 		Fc , j
i{ } Fc , j  and 		Fr ,i

j{ } Fr ,i .  1 

By applying the above two scaling relationships and the three consistent scaling 2 

criteria (as we proposed in the introduction section) to the SUPECA kinetics in equation 3 

(28), we obtain (in appendix E) the network form of the SUPECA kinetics below, 4 

		

d Ai⎡⎣ ⎤⎦T , jk
dt

= −
k2,ijk
+ Ek⎡⎣ ⎤⎦T Fc ,A ,k

i{ } Fc ,B ,k
j{ }

GA ,ikGB , jk
GAB ,ijk

Fc ,AB ,k +Fc ,AB ,k −
Fc ,A ,kGB , jk +GA ,ikFc ,B ,k −GA ,ikGB , jk

GAB ,ijk

 
(37) 

where 5 

		
Fc ,A ,k = Fc ,A ,k

l{ }
l
∑ = Al⎡⎣ ⎤⎦T K A ,lk

l
∑  (38) 

		
Fc ,B ,k = Fc ,B ,k

l{ }
l
∑ = Bl⎡⎣ ⎤⎦T KB ,lk

l
∑  (39) 

		Fc ,AB ,k = Fc ,A ,k +Fc ,B ,k  (40) 

		
Fr ,A ,i = El⎡⎣ ⎤⎦T K A ,il

l
∑  (41) 

		
Fr ,B , j = El⎡⎣ ⎤⎦T KB , jl

l
∑

 
(42) 
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		GA ,ik = Fc ,A ,k +Fr ,A ,i  (43) 

		GB , jk = Fc ,B ,k +Fr ,B , j  (44) 

		GAB ,ijk =GA ,ik +GB , jk  (45) 

For equation (37), it is straightforward to verify that if 		Fc ,B ,k (or		Fc ,A ,k ) goes to infinity, 1 

then SUPECA kinetics is reduced to the ECA kinetics in equation (33). Therefore, the 2 

SUPECA kinetics as formulated in equation (37) is an extension of both the SU and ECA 3 

kinetics, and SUPECA is applicable for consistent scaling of substrate-consumer 4 

networks involving both single-substrate reactions and redox-reactions (a visually more 5 

appealing demonstration of the SUPECA kinetics is in Figure 3). 6 

4. Accuracy of the SUPECA kinetics 7 

 Following Tang and Riley (2013a), we below evaluate the numerical accuracy of 8 

the SUPECA kinetics by comparing its solution against that obtained from solving the 9 

equilibrium chemistry problem. However, because of numerical complexity, we restricted 10 

the comparison to the AB-E problem as formulated by equations (11)-(16) with the 11 

assumption of 		kA
− = kB

− =0  and include a substrate sorbent to mimic a class of 12 

biogeochemistry problems in soil, such as aerobic soil ammonium nitrification and 13 

aerobic soil organic carbon decomposition (formulated in appendix F).  14 

We evaluated the accuracy of SUPECA (equation (37)) and SU (equation (26)) 15 

over a wide range of parameter values. Specifically, we fixed both substrates at a nominal 16 
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value of 40 mol m-3, and the maximum substrate processing rate at 48 s-1. Then we 1 

sampled the affinity parameters exponentially over the range of 	 0,1000⎡⎣ ⎤⎦  mol m-3 and 2 

the microbe and sorbent concentrations uniformly over the range of 	 0,1000⎡⎣ ⎤⎦  mol m-3. 3 

With a total of 1000 sets of randomly paired parameters, we compared how close the 4 

SUPECA and SU approximations are to the EC solution in terms of root mean square 5 

error (RMSE) and goodness of linear fit. Because the SU kinetics does not allow a direct 6 

integration of the Langmuir adsorption into the calculation of microbe-substrate 7 

complexes, we followed Resat et al. (2011) and first solved the Langmuir isotherm to 8 

obtain the free substrate concentrations and then entered these free substrate 9 

concentrations into SU to obtain the microbe-substrate complex. Apparently, such an 10 

artificial ordering in calculation (as needed by the SU approach) suggests that the 11 

implementation of SU is numerically cumbersome (and similar numerical difficulties are 12 

also associated with the popular MM kinetics (Resat et al., 2011; Tang and Riley, 13 

2013a)). 14 

Our comparison (Figure 4) clearly indicates that the SUPECA kinetics is superior 15 

to the SU kinetics in computing the microbe-substrate complex in presence of the 16 

substrate binding competition between microbes and sorbent. The SUPECA kinetics is 17 

more accurate in terms of both goodness of linear fitting and RMSE. In magnitude, the 18 

RMSE of SUPECA predictions is less than 10% of that of SU calculations. The slope of 19 

linear fitting from SUPECA calculations is also much closer to the ideal value 1.0, 20 

whereas that from SU calculations is far greater than 1.0, suggesting that SU kinetics 21 

significantly overestimates microbe-substrate complexes under a wide range of 22 
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conditions. This very large slope from SU calculations is also consistent with the 1 

singularity at infinite microbial abundances as implied by the linear dependence on 2 

microbial abundances in deriving the SU kinetics (equation (26)). Therefore, combined 3 

with the better numerical performance of ECA (Tang and Riley, 2013a; Tang, 2015) than 4 

MM kinetics, we contend that SUPECA kinetics is both numerically more convenient 5 

and more accurate than SU kinetics (which becomes the MM kinetics for one-substrate 6 

reactions; see equation (27)) in calculating the microbe-substrate complexes for situations 7 

involving microbes, enzymes, substrates and soil minerals (e.g., Tang and Riley, 2015). 8 

5. Example application to modeling aerobic heterotrophic respiration 9 

 As an example application, we applied the SUPECA kinetics to model the 10 

moisture stress on aerobic soil respiration. In our formulation of the problem (Appendix 11 

G), we consider a homogenous 10 cm thick soil with 2.0 mol C m-3 microbes and 3.0 mol 12 

C m-3 dissolvable organic carbon (different DOC values affected our results negligibly as 13 

long as they are larger than 0.5 mol C m-3) uniformly distributed across the soil pores. We 14 

conceptualize the transport of substrates (i.e., oxygen and DOC) in soil as a two-stage 15 

diffusion process  (e.g., Grant, 1991) with the first stage from the bulk soil matrix to the 16 

water film covering the microbial microsites and the second stage from the water film to 17 

the microbial transporters where the substrates are processed. The diffusion processes in 18 

soil are calculated based on soil moisture status and the hydraulic properties of a 19 

hypothesized soil with a texture of 40% clay and 30% sand. The pedotransfer functions 20 

used for calculating soil hydraulic properties are from CLM4.5 (Oleson et al., 2013).  21 
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Our conceptual model assumes that the inter microsites (or aggregates) transport 1 

dominates the intra-aggregate transport, which is consistent with pore scale simulations 2 

(Yang et al., 2014). The model is solved to steady state by assuming that the microbes, 3 

atmospheric oxygen, and DOC are in balance under the influence of Langmuir type DOC 4 

sorption by soil minerals. Calculations are conducted for three levels of soil minerals 5 

(with adsorption capacities at 0, 90, and 180 mol C m-3) and two levels of microbial 6 

oxygen affinity (with default 		KO2,w =3×10−5  mol m-3 and elevated 		KO2,w =3×10−2  mol 7 

m-3; Figure 5, Figure 6 and Figure 7). The calculation with elevated 		KO2,w  (when 8 

compared to the default 		KO2,w ) indicates the effect of soil aggregates on determining 9 

microbes’ moisture response (see explanations below and in Appendix G). We evaluated 10 

(1) how close our predicted moisture response function is to the incubation data from 11 

Franzluebbers (1999) and (2) how soil mineral adsorption of DOC would affect the shape 12 

of the soil moisture response function.  13 

 When the respiration curves are normalized to the range of 	 0,1⎡⎣ ⎤⎦ , we found that 14 

all curves have the pattern that soil respiration first increases from dry soil with 15 

increasing moisture and then levels off after reaching a peak value (where the respiration 16 

is co-limited by oxygen and DOC bioavailability). The curve with the highest mineral 17 

soil carbon adsorption capacity (180 mol C m-3) and elevated 		KO2,w  value best 18 

approximates the incubation data from Franzluebbers (1999) and as the sorption capacity 19 

becomes smaller, the sharper the moisture response function becomes.  20 
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When the affinity parameter of oxygen is reduced to its default value (while 1 

keeping the adsorption capacity to 180 mol C m-3; see explanation in Appendix G), the 2 

soil moisture response function becomes the sharpest with the highest threshold moisture 3 

where the respiration peaks (see green line in Figure 5). Unlike Kausch and Pallud (2013) 4 

and Yang et al. (2014), we here have not explicitly prognosed the oxygen distribution 5 

inside the aggregates. Since the apparent oxygen affinity parameter (which we use here) 6 

generally increases with aggregate size (Griffin, 1968), the poorer agreement of the data 7 

with respect to the prediction using the default oxygen affinity parameter indicates that 8 

soil aggregates may play an important role in controlling microbes’ response to soil 9 

moisture stress. Indeed, Franzluebbers (1999) indicated in his Figure 1 that there are 10 

significant amount of aggregates in his incubated soil. Moreover, the higher moisture 11 

threshold (where respiration peaks) with the default apparent oxygen affinity parameter is 12 

also consistent with measurements that aggregates may facilitate anaerobic processes 13 

under well-ventilated conditions (by increasing the range of soil moisture conditions 14 

where oxygen limits aerobic processes; Renault and Stengel, 1994).  15 

 When the effect of different mineral soil carbon adsorption capacity is evaluated 16 

against the normalized respiration (Figure 6), we found, being consistent with results 17 

described in Tang and Riley (2015), that higher adsorption capacity results in 18 

significantly lower soil respiration. Therefore, when the results from Figure 5 and Figure 19 

6 are taken together, we contend that, like the soil temperature effect discussed in Tang 20 

and Riley (2015), the soil moisture response function is an emergent response resulting 21 

from the interactions between biotic and abiotic factors that co-regulate soil organic 22 

carbon decomposition (Manzoni et al., 2016). Such a result strongly contrasts with the 23 
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popular approach in existing soil BGC models (e.g., Koven et al., 2013; Tang et al., 1 

2013), which apply a soil moisture response function as a multiplier on an unstressed 2 

rate. We therefore suspect that treating moisture stress as a multiplier in modeling soil C 3 

decomposition could also significantly bias existing soil biogeochemical model 4 

predictions. We will explore such biases in other studies.  5 

 When the default oxygen affinity parameter was used in analyzing the effects of 6 

different mineral soil carbon adsorption capacities, all the respiration moisture response 7 

functions are essentially the same (Figure 7). Since the oxygen affinity parameter reflects 8 

the impacts of aggregates at the cm3 scale, Figures 6 and 7 demonstrate that soil 9 

aggregates may have profound influence on soil carbon decomposition rates.  10 

6. Potential applications of the SUPECA kinetics for trait-based biogeochemical 11 

modeling 12 

 Besides the example application above, we expect that the SUPECA kinetics will 13 

be a unique and powerful tool for trait-based modeling in various biogeochemical 14 

systems. As we show above and below, the SUPECA kinetics will enable more robust 15 

predictions with better numerical consistency and smaller parametric sensitivities than the 16 

popular family of Monod kinetics, and SUPECA will be applicable for any 17 

biogeochemical system that involves substrate-consumer binding and binding 18 

competition.  19 

 The assertion of smaller parametric sensitivity as predicted by SUPECA (than by 20 

Monod kinetics) can be verified using the single-substrate reaction network as an 21 

example. In this case, SUPECA is reduced to ECA kinetics, and for some substrate 	Si  in 22 
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the reaction network, ECA kinetics predicts the sensitivity of its consumption by 1 

consumer 
	
E j
⎡⎣ ⎤⎦  with respect to the maximum processing rate 		k2,ij

+ as 2 

		

∂
∂k2,ij

+

d Si⎡⎣ ⎤⎦T , j
dt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

E j
⎡⎣ ⎤⎦T Fc , j

i{ }

1+Fr ,i +Fc , j
<
E j
⎡⎣ ⎤⎦T Fc , j

i{ }

1+Fc , j
<
E j
⎡⎣ ⎤⎦T Fc , j

i{ }

1+Fc , j
i{ }  (46) 

where the term after the first “<” is prediction by the competitive Monod kinetics and that 3 

after the second “<” is by the Monod kinetics, suggesting that models using Monod 4 

kinetics for substrate competition is most sensitive to parameters and least robust to 5 

calibrate (e.g., Tang and Riley, 2013a).  6 

 To quantitatively evaluate our assertion that SUPECA kinetics predicts lower 7 

parametric sensitivity, we, for instance, apply equation (46) to 100 competing substrate 8 

fluxes of equal magnitude. We then have 		Fc , j =100Fc , j
i{ } . Meanwhile, if 		Fc , j

i{ } >1 , then the 9 

sensitivity predicted by competitive Monod kinetics is less than 1% of that by Monod 10 

kinetics. Further, if the competing efforts from all agents is comparable to the overall 11 

substrate fluxes, i.e., 		Fr ,i ≈ Fc , j , then the parametric sensitivity predicted by ECA is about 12 

50% of that by competitive Monod kinetics. Therefore, the ECA (and by extension, 13 

SUPECA) prediction is much less sensitive with respect to 		k2,ij
+  than that predicted by 14 

competitive Monod kinetics and Monod kinetics. Moreover, with equations (30) and (37), 15 

one can verify that the more substrates and consumers are represented in the system, the 16 

smaller the parametric sensitivity will be predicted by the ECA (and SUPECA) kinetics. 17 

One can also verify that such robustness is true for other parameters in the SUPECA 18 

kinetics, including the substrates and consumer abundances. That including more 19 
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substrates and consumers will leads to more robust model predictions is the fundamental 1 

premise that underlines the proposal of trait-based modeling (e.g., Bouskill et al., 2012), 2 

and SUPECA is the only kinetics that explicitly contains this presumption in its 3 

formulation.  4 

 The assertion of wide applicability with SUPECA kinetics has been demonstrated 5 

by a number of successful applications that we have published with the ECA kinetics. In 6 

a series of studies (Zhu and Riley, 2015; Zhu et al., 2016a, 2016b, 2017), we show that 7 

ECA kinetics was able to significantly improve the modeling of nutrient competition 8 

between plants, microbes, and mineral soils. In Tang and Riley (2013a), where the ECA 9 

kinetics was first proposed, the lignin decomposition dynamics was correctly captured 10 

without a priori imposing a target lignocellulose index. In Tang and Riley (2013a, 2015) 11 

and this study, the ECA kinetics was able to seamlessly incorporate the Langmuir type 12 

substrate adsorption into its numerical implementation without invoking the ad hoc 13 

numerical order that is prerequisite to MM (or Monod) kinetics for modeling mineral, 14 

microbe, and substrate interactions. 15 

 Finally, we expect the SUPECA kinetics will provide a robust approach to resolve 16 

the redox ladder in soil biogeochemistry. Existing approaches have imposed the redox 17 

ladder rigorously following some specific order, e.g. 18 

	O2 	 H2O( ) ,	NO3- 	 N2( ) ,	MnO2 Mn2+( ) ,	Fe OH( )3 Fe2+( ) ,	SO42- H2S( ) ,	CO2 CH4( ) , and  19 

	H2O	 H2( )  (e.g., Grant, 2001). In contrast, the SUPECA kinetics will allow all these 20 

redox-couples to operate concurrently (in any space-time-process unit), a situation that is 21 

more consistent with natural soils. Such a feature will also allow the microbial 22 
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biogeochemistry models (most of which are considered to be valid at pore scale) to be 1 

valid at the scale of well-mixed bulk soils (~cm3). We are now building such a model and 2 

will describe it elsewhere.  3 

7. Conclusion 4 

 In this study, we showed that the popular Monod family kinetics and synthesizing 5 

unit (SU) kinetics are not scaling consistent for a reaction network involving mixed 6 

	A→
E

products  type and 	A+B→
E

products  type reactions. The SUPECA kinetics, by 7 

properly accounting for mass balance constraints of both substrates and consumers, is 8 

able to scale such reaction networks without changing its mathematical formulation. Our 9 

numerical tests indicate that SUPECA kinetics is superior to SU kinetics both in 10 

numerical accuracy and numerical robustness and SUPECA kinetics is able to 11 

satisfyingly predict the moisture response function of aerobic soil respiration. Moreover, 12 

because SUPECA kinetics intrinsically represents specific microbial traits that can be 13 

measured, we expect many more novel modeling applications will be plausible to 14 

improve predictions of a wide range of biogeochemical systems. 15 

8. Code and data availability 16 

The source code and data used in this manuscript are available upon request to the 17 

corresponding author. 18 

 19 

Appendix A: Deriving the governing equations 20 

The law of mass action formulation of the redox reaction (8) is 21 Jinyun Tang� 5/18/2017 2:44 PM
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d EA⎡⎣ ⎤⎦
dt

= kA
+ E⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦+kB

− EAB⎡⎣ ⎤⎦− kA
− +kB

+ B⎡⎣ ⎤⎦( ) EA⎡⎣ ⎤⎦  (A1) 

	

d EB⎡⎣ ⎤⎦
dt

= kB
+ E⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦+kA

− EAB⎡⎣ ⎤⎦− kB
− +kA

+ A⎡⎣ ⎤⎦( ) EB⎡⎣ ⎤⎦  (A2) 

		
d EAB⎡⎣ ⎤⎦
dt

= kA
+ EB⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦+kB

+ EA⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦− kA
− +kB

− +k2
+( ) EAB⎡⎣ ⎤⎦  (A3) 

		
d P⎡⎣ ⎤⎦
dt

= k2
+ EAB⎡⎣ ⎤⎦  (A4) 

	

d A⎡⎣ ⎤⎦
dt

= −kA
+ E⎡⎣ ⎤⎦+ EB⎡⎣ ⎤⎦( ) A⎡⎣ ⎤⎦+kA

− EA⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )  (A5) 

	

d B⎡⎣ ⎤⎦
dt

= −kB
+ E⎡⎣ ⎤⎦+ EA⎡⎣ ⎤⎦( ) B⎡⎣ ⎤⎦+kB

− EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )  (A6) 

We now apply the total quasi-steady-state approximation (e.g., Borghans et al., 1996) to 1 

obtain the Equilibrium Chemistry formulation of the system. Specifically, we obtain 2 

equations (11)-(13) by respectively setting the time derivatives of equations (A1)-(A3) to 3 

zero. Equation (9) is obtained by adding together equations (A1), (A3) and (A5), and 4 

using the definition of 
	
A⎡⎣ ⎤⎦T by equation (14). Equation (10) is obtained by adding 5 

together equations (A2), (A3) and (A6) with the definition of 
	
B⎡⎣ ⎤⎦T by equation (15).  6 

Appendix B: Deriving the dual Monod kinetics in equation (21). 7 

 Replacing 	
EA⎡⎣ ⎤⎦  in equation (17) with that obtained from equation (19), we obtain 8 

	
EAB⎡⎣ ⎤⎦ =

A⎡⎣ ⎤⎦
KA

B⎡⎣ ⎤⎦
KB

E⎡⎣ ⎤⎦  (B-1) 
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By solving 	
EA⎡⎣ ⎤⎦  from equation (19), 	

EB⎡⎣ ⎤⎦  from equation (20) and combining 1 

these with equation (B-1) into equation (16), we find 2 

		
E⎡⎣ ⎤⎦T = 1+

A⎡⎣ ⎤⎦
KA

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
1+

B⎡⎣ ⎤⎦
KB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
E⎡⎣ ⎤⎦  (B-2) 

 Now solve 	
E⎡⎣ ⎤⎦  from (B-2) and enter the result into equation (B-1), we then get  3 

	
EAB⎡⎣ ⎤⎦ =

A⎡⎣ ⎤⎦
KA + A⎡⎣ ⎤⎦

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B⎡⎣ ⎤⎦
KA + B⎡⎣ ⎤⎦

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
E⎡⎣ ⎤⎦T  (B-3) 

 We thence obtain the dual Monod kinetics by entering equation (B-3) into 4 

equation (9). 5 

Appendix C: Deriving the synthesizing unit kinetics in equation (26) 6 

 Since SU kinetics assumes that substrates are not limiting the biogeochemical 7 

reaction, we then, from equations (23) and (24), obtain 8 

	
EA⎡⎣ ⎤⎦ =

kA
+ A⎡⎣ ⎤⎦
kB
+ B⎡⎣ ⎤⎦

E⎡⎣ ⎤⎦  (C-1) 

	
EB⎡⎣ ⎤⎦ =

kB
+ B⎡⎣ ⎤⎦
kA
+ A⎡⎣ ⎤⎦

E⎡⎣ ⎤⎦  (C-2) 

By entering equations (C-1) and (C-2) into equation (13), and solving for 	
EAB⎡⎣ ⎤⎦ , 9 

we find 10 

		 
EAB⎡⎣ ⎤⎦ =

E⎡⎣ ⎤⎦
k2
+ +kA

− +kB
− kA

+ A⎡⎣ ⎤⎦+kB
+ B⎡⎣ ⎤⎦( ) = E⎡⎣ ⎤⎦

!k2
+ kA

+ A⎡⎣ ⎤⎦+kB
+ B⎡⎣ ⎤⎦( )  (C-3) 

 Now if we combine equations (C-1)-(C-3) with equation (16), we get 11 
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E⎡⎣ ⎤⎦ =
E⎡⎣ ⎤⎦T

1+ kA
+ A⎡⎣ ⎤⎦
kB
+ B⎡⎣ ⎤⎦

+
kB
+ B⎡⎣ ⎤⎦
kA
+ A⎡⎣ ⎤⎦

+
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦
!k2
+

						 =
E⎡⎣ ⎤⎦T

kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦( )2
kA
+ A⎡⎣ ⎤⎦( ) kB+ B⎡⎣ ⎤⎦( ) +

kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦
!k2
+ −1

 (C-4) 

which, when combined with equation (C-3), leads to 1 

		 

EAB⎡⎣ ⎤⎦ =
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦
!k2
+

E⎡⎣ ⎤⎦T
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦( )2
kA
+ A⎡⎣ ⎤⎦( ) kB+ B⎡⎣ ⎤⎦( ) +

kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦
!k2
+ −1

												 =
E⎡⎣ ⎤⎦T

!k2
+

1
!k2
+ +

kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦
kA
+ A⎡⎣ ⎤⎦( ) kB+ B⎡⎣ ⎤⎦( ) −

1
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦

											 =
E⎡⎣ ⎤⎦T

!k2
+

1
!k2
+ +

1
kA
+ A⎡⎣ ⎤⎦

+ 1
kB
+ B⎡⎣ ⎤⎦

− 1
kA
+ A⎡⎣ ⎤⎦+kB

+ B⎡⎣ ⎤⎦

 (C-5) 

When 	
EAB⎡⎣ ⎤⎦  from equation of (C-5) is entered into equation (9), we then obtain 2 

equation (26). 3 

Appendix D: Deriving the SUPECA kinetics equation (28) 4 

We first derive the set of linear equations using the first order closure approach 5 

(i.e., the perturbation method truncated to first order accuracy; Shankar, 1994; Tang et 6 

al., 2007). By entering equations (14)-(16) into equation (23), we have 7 
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kB
+ EA⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦T − EB⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( ) = kA+ A⎡⎣ ⎤⎦T − EA⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( )

× E⎡⎣ ⎤⎦T − EA⎡⎣ ⎤⎦− EB⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( )  (D-1) 

Now if we expand equation (D-1), and keep only the zero and the first order term of 1 

	
EA⎡⎣ ⎤⎦ , 	

EB⎡⎣ ⎤⎦  and 	
EAB⎡⎣ ⎤⎦ , then we obtain 2 

	

kB
+ B⎡⎣ ⎤⎦T EA⎡⎣ ⎤⎦ = kA

+ E⎡⎣ ⎤⎦T A⎡⎣ ⎤⎦T − EA⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( )
−kA

+ A⎡⎣ ⎤⎦T EA⎡⎣ ⎤⎦+ EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )
 (D-2) 

which after some rearrangement becomes 3 

	

kA
+ A⎡⎣ ⎤⎦T +kA

+ E⎡⎣ ⎤⎦T +kB
+ B⎡⎣ ⎤⎦T( ) EA⎡⎣ ⎤⎦+kA

+ A⎡⎣ ⎤⎦T EB⎡⎣ ⎤⎦

+kA
+ A⎡⎣ ⎤⎦T + E⎡⎣ ⎤⎦T( ) EAB⎡⎣ ⎤⎦ = kA

+ A⎡⎣ ⎤⎦T E⎡⎣ ⎤⎦T
 (D-3) 

Using the definitions of 
	
fA = kA

+ A⎡⎣ ⎤⎦T , 
	
fB = kB

+ B⎡⎣ ⎤⎦T and 
	
fA = fA +kA

+ E⎡⎣ ⎤⎦T , we may 4 

rewrite equation (D-3) as 5 

	
fA + fB( ) EA⎡⎣ ⎤⎦+ fA EB⎡⎣ ⎤⎦+ fA EAB⎡⎣ ⎤⎦ = fA E⎡⎣ ⎤⎦T  (D-4) 

Because substrates 	A  and 	B  are symmetric in forming the consumer substrate 6 

complexes, a similar linear equation can be derived by switching 	A  and 	B  in equation 7 

(D-4) (or by repeating procedures to the derivation of equation (D-4) but using equations 8 

(14)-(16) and (24)) 9 

	
fB EA⎡⎣ ⎤⎦+ fA + fB( ) EB⎡⎣ ⎤⎦+ fB EAB⎡⎣ ⎤⎦ = fB E⎡⎣ ⎤⎦T  (D-5) 

Now substitute equations (14)-(16), (23) and (24) into equation (25) and assume 10 

		 
!k2
+ ≈ k2

+

 (i.e., unbinding is much smaller compared to the product genesis rate), we have 11 
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kA
+ A⎡⎣ ⎤⎦T − EA⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( )+kB+ B⎡⎣ ⎤⎦T − EB⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( ){ }

× E⎡⎣ ⎤⎦T − EA⎡⎣ ⎤⎦− EB⎡⎣ ⎤⎦− EAB⎡⎣ ⎤⎦( ) = k2+ EAB⎡⎣ ⎤⎦
 (D-6) 

Once again, by dropping the second and higher order terms of the consumer-1 

substrate complexes, equation (D-6) can be reduced to 2 

		

kA
+ A⎡⎣ ⎤⎦T +kB

+ B⎡⎣ ⎤⎦T( ) E⎡⎣ ⎤⎦T = kA
+ A⎡⎣ ⎤⎦T +kB

+ B⎡⎣ ⎤⎦T( )
× EA⎡⎣ ⎤⎦+ EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )+kA+ E⎡⎣ ⎤⎦T EA⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )
+kB

+ E⎡⎣ ⎤⎦T EB⎡⎣ ⎤⎦+ EAB⎡⎣ ⎤⎦( )+k2+ EAB⎡⎣ ⎤⎦

 (D-7) 

which by aid of  
	
fA = kA

+ A⎡⎣ ⎤⎦T , 
	
fB = kB

+ B⎡⎣ ⎤⎦T ,  
	
fA = fA +kA

+ E⎡⎣ ⎤⎦T , 
	
fB = fB +kB

+ E⎡⎣ ⎤⎦T , 3 

	fAB = fA + fB , and 	fAB = fA + fB  becomes 4 

		 fA + fB( ) EA⎡⎣ ⎤⎦+ fA + fB( ) EB⎡⎣ ⎤⎦+ k2
+ + fAB( ) EAB⎡⎣ ⎤⎦ = fAB E⎡⎣ ⎤⎦T  (D-8) 

Now we solve for 	
EAB⎡⎣ ⎤⎦  

from the set of linear equations
 
(D-4),

 
(D-5) and (D-8)

 
5 

using Cramer’s rule (e.g., Habgood and Arel, 2012), and find the denominator as  6 

		

det Md( ) =
fA + fB fA fA
fB fA + fB fB

fA + fB fA + fB k2
+ + fAB

 (D-9) 

and the numerator as 7 

		

det Mn( ) = E⎡⎣ ⎤⎦T

fA + fB fA fA
fB fA + fB fB

fA + fB fA + fB fAB

 (D-10) 

Equations (D-9) and (D-10) together lead to 8 
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EAB⎡⎣ ⎤⎦ =
det Mn( )
det Md( ) =

fA fB fAB E⎡⎣ ⎤⎦T
k2
+ fA fA + fB fB + fA fB( )+ fA fB fAB

=
fA fB fAB E⎡⎣ ⎤⎦T

k2
+ fAB fAB − fA fB − fA fB + fA fB( )+ fA fB fAB

=
E⎡⎣ ⎤⎦T

k2
+ fAB
fA fB

−
fA fB + fA fB − fA fB

fA fB fAB

⎛

⎝⎜
⎞

⎠⎟
+
fA fB fAB
fA fB fAB

=
E⎡⎣ ⎤⎦T k2

+

1
k2
+

fA fB fAB
fA fB fAB

+ 1
fA
+ 1
fB

−
fA fB + fA fB − fA fB

fA fB fAB

⎛

⎝⎜
⎞

⎠⎟  

 

(D-11) 

which, when entered into equation (9), leads to equation (28).  1 

Appendix E: Deriving SUPECA for a network of substrates and consumers 2 

In the second equation of equation (33), we show that the consumption of a 3 

certain substrate as represented in ECA kinetics is determined by the consumer reaction 4 

potential 		k2,ij
+ E j
⎡⎣ ⎤⎦T multiplied with the relative contribution of the specific consumption 5 

pathway with respect to all competing pathways (		Fc , j
r{ } 1+Fr , j +Fc , j( )). Since SUPECA 6 

kinetics is a compatible extension of the ECA kinetics, SUPECA kinetics should have its 7 

numerator indicating the potential reaction rate of the specific pathway, and its 8 

denominator indicating the efforts of all interacting pathways. Bearing this partition 9 

equivalence in mind, therefore, we assert that 		fA k2
+  in equation (29) should be 10 

equivalent to 		Fr ,i +Fc , j  in equation (33). This assertion then leads to equations (38), (41) 11 

and (43) for 	A  substrates. Similarly, equations (39), (42) and (44) are for 	B  substrates. 12 

With the definitions of 		fA k2
+ , 		fB k2

+ , 		fA k2
+  and 		fB k2

+ , using the partition 13 

Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (9)14 
Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (28)15 
Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (33)16 

Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (29)17 
Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (33)18 
Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (38)19 
Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (41)20 
Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (43)21 
Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (39)22 
Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (42)23 
Jinyun Tang� 5/18/2017 2:44 PM
Deleted: (44)24 



 38 

equivalence, we can easily define the network form of 	fAB  in equation (40), and the 1 

network form of 	fAB  in equation (45). Further, we observe that the denominator of the 2 

last equation in equation (28) could be rewritten as 3 

		

fA k2
+( ) fB k2

+( ) fAB k2
+( )

fAB k2
+( ) + fAB k2

+( )− fA k2
+( ) fB k2

+( )+ fA k2
+( ) fB k2

+( )− fA k2
+( ) fB k2

+( )
fAB k2

+( )  

4 

which, after replacing 		fA k2
+ , 		fB k2

+ , 		fA k2
+ , 		fB k2

+ , 		fAB k2
+   and 		fAB k2

+  with their 5 

corresponding network forms (i.e. equations (38)-(45)), leads to SUPECA kinetics 6 

equation (37). 7 

Appendix F: Formulation of the kinetics-benchmarking problem 8 

Following equations (23)-(25), the Equilibrium Chemistry (EC) problem used to 9 

benchmark synthesizing unit (SU) and SUPECA predictions is defined as 10 

		kBS1 B⎡⎣ ⎤⎦ S1⎡⎣ ⎤⎦ = kBS2 S2⎡⎣ ⎤⎦ BS1⎡⎣ ⎤⎦  (F-1) 

		kBS2 B⎡⎣ ⎤⎦ S2⎡⎣ ⎤⎦ = kBS1 S1⎡⎣ ⎤⎦ BS2⎡⎣ ⎤⎦  (F-2) 

		kBS1 BS2⎡⎣ ⎤⎦ S1⎡⎣ ⎤⎦+kBS2 BS1⎡⎣ ⎤⎦ S2⎡⎣ ⎤⎦ = k2
+ BS1S2⎡⎣ ⎤⎦  

(F-3) 

		KMS1 MS1⎡⎣ ⎤⎦ = M⎡⎣ ⎤⎦ S1⎡⎣ ⎤⎦  
(F-4) 

which are subject to the constraints 11 

		 S1⎡⎣ ⎤⎦T = S1⎡⎣ ⎤⎦+ MS1⎡⎣ ⎤⎦+ BS1⎡⎣ ⎤⎦+ BS1S2⎡⎣ ⎤⎦  (F-5) 

		 S2⎡⎣ ⎤⎦T = S2⎡⎣ ⎤⎦+ BS2⎡⎣ ⎤⎦+ BS1S2⎡⎣ ⎤⎦  (F-6) 

		 B⎡⎣ ⎤⎦T = B⎡⎣ ⎤⎦+ BS1⎡⎣ ⎤⎦+ BS2⎡⎣ ⎤⎦+ BS1S2⎡⎣ ⎤⎦  (F-7) 
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		 M⎡⎣ ⎤⎦T = M⎡⎣ ⎤⎦+ MS1⎡⎣ ⎤⎦  (F-8) 

To relate these equations to a dynamic system, 		S1  and 		S2  are substrates, 	B  is 1 

microbial population, and 	M  is some sorbent that can reversibly adsorb substrate 		S1 .  2 

For benchmarking, 		 BS1S2⎡⎣ ⎤⎦  is solved from equations (F-1)-(F-8) using a fixed-3 

point iteration algorithm (see supplemental materials) for each set of parameters. Unlike 4 

the Newton-Raphson iteration, the fixed-point iteration ensures positive mass of all 5 

variables, and mass balance relationships from (F-5)-(F-8) are automatically satisfied by 6 

the numerical solution. 7 

Appendix G: Derivation of relevant kinetic parameters for the steady state aerobic 8 

respiration problem 9 

The aerobic respiration problem is formulated as 10 

		

d O2⎡⎣ ⎤⎦g ,s
dt

=
O2⎡⎣ ⎤⎦a − O2⎡⎣ ⎤⎦g ,s( )
Ra +Rs( )Z −F B , O2⎡⎣ ⎤⎦g ,s ,S ,M( )  (G-1) 

where 		 O2
⎡⎣ ⎤⎦g ,s  is gaseous oxygen concentration in bulk soil. 		 O2⎡⎣ ⎤⎦a is atmospheric oxygen 11 

concentration (set to 8.45 mol m-3). 	S  is dissolvable organic carbon concentration (set to 12 

3 mol m-3), and 	M  is soil mineral sorbent concentration (with variable values). All 13 

concentrations are defined with unit mol m-3. 	Ra  is aerodynamic resistance, which is set 14 

to 50 s m-1. 	Rs is soil resistance (s m-1) calculated using the approach in Tang and Riley 15 

(2013b). 	Z  is soil depth (set to 10 cm). 
		
F B , O2⎡⎣ ⎤⎦g ,s ,S ,M( )  is the oxygen consumption 16 

rate calculated using the SUPECA kinetics, whose kinetic parameters are derived as 17 
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following. The steady-state problem is solved by setting the temporal derivative of 1 

equation (G-1) to zero, and solved for 		 O2
⎡⎣ ⎤⎦g ,s  through iterations. The shape of the flux 2 

		
F B , O2⎡⎣ ⎤⎦g ,s ,S ,M( )  is then compared to that derived from incubation studies in 3 

Franzluebbers (1999). 4 

In this aerobic respiration problem, microbes are assumed to form microsites 5 

sitting uniformly inside pores of the bulk soil. O2 approaches the microsites through both 6 

aqueous and gaseous diffusion, and only aqueous phase is used for microbial respiration. 7 

This leads to the relationship between near cell aqueous O2 concentration and the 8 

diffusive flux as 9 

		
vm
d O2⎡⎣ ⎤⎦w ,0
dt

= −kO2,w ,1 X⎡⎣ ⎤⎦ O2⎡⎣ ⎤⎦w ,0 +κO2 O2⎡⎣ ⎤⎦w − O2⎡⎣ ⎤⎦0( )  (G-2) 

where the conductance 		κO2  is 10 

		

κO2
4π

⎛

⎝⎜
⎞

⎠⎟

−1

= δ
Dw ,O2rm rm +δ( ) +

1
DO2 rm +δ( )  (G-3) 

where  	rm  is the radius of the microsite (or aggregate), δ  is thickness of the water film 11 

that covers the microsite (Grant and Rochette, 1994), 	νm  is the microsite volume (m3 site-12 

1), and 	 O2⎡⎣ ⎤⎦  is the aqueous oxygen concentration in the bulk soil matrix. 	
X⎡⎣ ⎤⎦  is the cell 13 

density (mol cell site-1). The unit of 		kO2,1 is then m3 (mol cell)-1 s-1.   14 

The bulk aqueous diffusivity in equation (G-3) is  15 

		
DO2 =θDO2,w +

ε
αO2

DO2,g  (G-4) 
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Now if we assume steady state (aka 		d O2⎡⎣ ⎤⎦0 dt ≈0 ) of equation (G-2), we then 1 

obtain 2 

		

O2⎡⎣ ⎤⎦w ,0 =
O2⎡⎣ ⎤⎦w

1+ kO2,w ,1 X⎡⎣ ⎤⎦
κO2

 
(G-5) 

which leads to the revised the affinity parameter as 3 

		 
!KO2 =

k2
kO2,w ,1

1+
kO2,w ,1 X⎡⎣ ⎤⎦T

κO2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (G-6) 

where the zero order approximation is made by taking 
	
X⎡⎣ ⎤⎦ ≈ X⎡⎣ ⎤⎦T . 4 

Now assume that the ball-like microbe is covered with 	N  disc-like porters, whose 5 

mean radius is 	
rp . Assuming that the binding is limited by diffusion, then using the 6 

chemoreception theory by Berg and Purcell (1977), we have 7 

		
kO2,w ,1 = 4πDO2,w ,0rc

Nrp
Nrp +πrc

cell−1  (G-7) 

where the term 
	
Nrp Nrp +πrc( )  accounts for the interference between different porters of 8 

a cell. Thus assuming 
	
X⎡⎣ ⎤⎦T =m  cell site-1, we get 9 

		 
!KO2 =

k2
kO2,w ,1

1+
kO2,1 X⎡⎣ ⎤⎦T

κO2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= KO2,w 1+

Nrp
Nrp +πrc

mrc
rm +δ

δ
rm

+
DO2,w ,0
DO2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  (G-8) 

With similar procedure, for DOC we have the following 10 

		 
!KDOC =

k2
kDOC,w ,1

1+
kDOC,w ,1 X⎡⎣ ⎤⎦T

κ DOC

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= KDOC 1+

Nrp
Nrp +πrc

mrc
rm +δ

δ
rm

+
DDOC ,w ,0
DDOC

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  (G-9) 
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and 1 

		
kDOC,w ,1 = 4πDDOC,w ,0rcNA

Nrp
Nrp +πrc

mol ⋅cell( )−1  (G-10) 

where 		NA =6.02×1023mol−1 . 2 

Below we provide some estimates for the parameters to support the above model 3 

of moisture dependence of microbial decomposition. The microbial cell radius 	rc  is on 4 

the order of 10-6 m, and 	
rp rc  is about 10-3. At 25 °C, the aqueous diffusivity of O2 is 5 

about 2.9×10-9 m2 s-1, therefore, assuming 		N =3000  porters per cell (which covers only 6 

0.3% of the cell’s surface area), we have 		kO2,w ,1 =1.0×10
10 	m3	 mol	cell( )−1 s−1 .

  
7 

Similarly, since the aqueous diffusivity of DOC is about 10-9 m2 s-1, assuming 		N =3000  8 

porters per cell, we have 		kDOC,w ,1 =3.7×10
9 	m3	 mol	cell( )−1 s−1 . Suppose the respiration is 9 

bottlenecked by a single respiratory enzyme, and since the enzyme activity varies on the 10 

order of 10~1000 s-1 (English et al., 2006), then by taking 		k2 =100N 	s
−1 =3×105s−1  per 11 

cell, we have 		KO2,w =3×10−5 	mol	m-3 , which agrees well with parameters reported for 12 

microbes in aqueous solutions in Button (1985). However, Grant (1991) estimated 13 

		KO2,w =3.0×10−3 	mol	m-3 ; Borden and Bedient (1986) estimated 14 

		KO2,w =3.1×10−3 	mol	m-3
 
for application in soil. We therefore elevated the numerical 15 

value to 		KO2,w =3.0×10−3 	mol	m-3 .
 
According to equations (G-7) and (G-8), such 16 

elevation could occur either by increasing the maximum substrate processing rate 		k2 or 17 
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decreasing the diffusion 		kO2,w ,1  controlled parameter (through the formation of micro-1 

pores in aggregates; e.g., Kausch and Pallud, 2013; Yang et al., 2014). Based on similar 2 

magnitude analysis, we obtain 		KDOC,w =8.1×10−5mol	m−3 , which falls to the lower end of 3 

the values reported for many hydrocarbon compounds as reported in Button (1985). We 4 

did not elevate the value of 		KDOC,w  
because it could

 
vary over four orders of magnitudes 5 

(Button, 1985), and our number leads to a good fit between model predictions and data. 6 

Taking all these numbers together, we have 7 

		 

!KO2,w = KO2,w 1+0.48× mrc
rm +δ

δ
rm

+
DO2,w,0
DO2

⎛

⎝
⎜
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⎝
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										 =3×10−3 1+0.48× mrc
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Since at 25 °C, the Bunsen solubility coefficient of oxygen is 0.032, we have 8 

		 
!KO2,g =

!KO2,w

0.032 = 9.4×10
−2 1+0.48× mrc

rm +δ
δ
rm

+
DO2,w,0
DO2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  (G-13) 

The water film thickness is a function of soil water potential (Tokunaga, 2009) 9 

and we calculate it using the approach in ECOSYS (Grant, 2001), which is 10 

	δ =max 10−6 ,exp −13.65−0.857log −ψ( )( )( )  (G-14) 

where the soil matric potential is of unit m, and water film thickness is restricted to at 11 

least 1 µm. 12 
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 For model applications, the microbes are often in the unit of mol C m-3. Bratbak 1 

and Dundas (1984) reported that the wet biomass density of bacteria is over the range 2 

1.1~1.2 g cm-3, of which about 40% is dry biomass, and about 50% of dry biomass is 3 

carbon. Therefore, with the medium cell density 1.15 g cm-3, 1 mol C m-3 microbial 4 

biomass is about 52.17 cm3, by further taking 		rc =10
−6 	m=10-4 	cm , the cell number 5 

density is 2.1×10-11 mol cell m-3. Therefore, for 		k2 =100	s
−1  per porter, given each cell 6 

has 3000 porters, the maximum respiration rate is 6.3×10-6 s-1 for 1 mol C m-3 dry 7 

microbial biomass, which was then elevated to 3.8×10-4 s-1 to obtain a better fitting 8 

between data and model prediction. This required elevation in maximum respiration rate 9 

indicates that the data as obtained (after 24 days of incubation) in Franzluebbers (1999) 10 

are representative of fast growing microbes.  11 

 12 

 13 

 14 
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Figure 1. Relationships of the three dimensions involved in the scaling exercise for 2 
numerical modeling of biogeochemical systems. In general, as one scales the Space-3 
Time-Process unit from small scales into large scales, the resultant macroscale equations 4 
may appear simpler than the microscale equations.   5 
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 1 

Figure 2. Graph representation of the ECA kinetics as derived in Tang and Riley (2013a). 2 
The equation in blue shows the uptake of substrate 	Si  by consumer 	

E j  as a function the 3 

normalized substrate flux 		Fc , j  and its conjugate flux 		Fr ,i . Here subscript “c” designates 4 

column, and “r” designates row. When 	
Kij  is infinity or a very large number compared to 5 

other entries in the matrix, the interaction between substrate 	Si  and consumer 	
E j  can be 6 

ignored. 7 
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Figure 3. Graph representation for the relationships between substrates, consumers, and 2 
normalized fluxes and their conjugates for a block unit of a large substrate-consumer 3 
network.  4 
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 1 
Figure 4. Benchmark of the SU (left column) and SUPECA (right column) predictions 2 
against those by the full EC formulation. We note that the y-axes of the left panels are of 3 
much larger scale than those on the right. The problem is formulated in Appendix F. 4 
Panels (a) and (b) are for the case when 		M =0 ; panels (c) and (d) are for uniformly 5 
distributed 		M >0 . The related distributions of parameters are in Figure S1 of the 6 
supplemental material.  7 
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 2 
Figure 5. Comparison of predicted normalized soil moisture response functions to that 3 
derived from incubation data from Franzluebbers (1999).  All response functions are 4 
normalized with their respective peak respiration. 5 
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 2 
Figure 6. Simulated moisture response functions using elevated affinity parameter for O2. 3 
The respiration data are normalized with the peak value from the case with zero soil 4 
minerals (i.e., black line in Figure). 5 
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 1 
Figure 7. Simulated moisture response functions using default affinity parameter for O2. 2 
The respiration data are normalized with the peak value from the case with zero soil 3 
minerals (i.e., black line in Figure). Note here all three lines overlap each other almost 4 
perfectly. 5 
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