

Lawrence Berkeley National Laboratory

Earth & Environmental Sciences Area

May 18, 2017

Geoscientific Model Development

Dear Editors Jason Williams and Astrid Kerkweg,

We appreciate your editorial handling of our submitted paper "The SUPECA kinetics for scaling redox reactions in networks of mixed substrates and consumers and an example application to aerobic soil respiration". We gladly accept the constructive criticisms from the 1st anonymous reviewer, which have led to improvements in the manuscript.

However, we found the criticisms from the 2nd reviewer to consist largely of misunderstandings, fundamentally incorrect criticisms, and poorly constructed suggestions for improving the manuscript. We did, however, respond to each point in the attached document. Our experience indicates that it is unlikely that such a reviewer, who rejects a manuscript based on fundamental misunderstanding and mischaracterizations will be able to change his/her mind. We therefore request a third reviewer's opinion of our manuscript to ensure a fair peer review of our work.

We sincerely appreciate your understanding and patience in handling this situation. Please don't hesitate to contact us with questions or concerns about our request.

Best regards.

Sincerely

Jinyun Tang (jinyuntang@lbl.gov) and William J. Riley (wjriley@lbl.gov) Climate and Ecosystem Sciences Division Earth and Environmental Sciences Area Lawrence Berkeley National Laboratory

Response to reviewer 1

Comments: This is an elegant mathematical formulation of a generalized model that can be applied to a broad range of physico-chemical reactions. I enjoyed the thoroughness of the stepwise progress through the derivations needed to reject alternative approaches and develop the final SUPECA format. I also appreciate the applications, which demonstrate proof-of-concept. Nonetheless, I don't think many soil scientists will be convinced to use it or find it very useful, for several reasons (below).

Response: We sincerely thank the reviewer's appreciation of our work. We below address the reviewer's specific comments with the hope to alleviate some of his/her concerns regarding whether others will find it useful. In this regard, we note that the ideas based on the Equilibrium Chemistry Approximation are being currently applied (admittedly by us, so far) to evaluate site-level nutrient interactions (Zhu et al. 2016a,b; Zhu et al. 2017) and to develop the global land model (ALM) integrated in the Earth System Model ACME (Tang and Riley submitted).

Comments: From a soil ecology standpoint, some of assumptions were very constraining, while others were unrealistic. For example, the assumption that multiple substrate relationships with a single consumer do not have interactions (pg 11) is not realistic for either microbial-substrate interactions or enzyme-substrate interactions (e.g., pg 15).

Response: While we agree with the reviewer's concern, we contend that the assumptions we made are even less restrictive than assumptions leading to the Dual Monod or multi-Monod kinetics that have been widely used for decades. For example, in almost every existing modeling study of aerobic oxidation of a certain substrate, say CH₂O, whether O₂ is taken up before or after CH₂O is assumed not to affect the oxidation of CH₂O into CO_2 . It is possible that some enzymes need to first bind one substrate to be activated before binding a second substrate. Such is the case for photosynthesis, where the Rubisco enzyme needs to be activated by CO₂ and magnesium before it is able to bind O₂ and CO₂ to carry out photosynthesis. However, existing photosynthesis models are every successful without accounting for such details (Von Caemmerer, 2000). Therefore while it is possible that representing such details may be valuable in some contexts, we leave them for future work in our current attempt at developing concepts for representing soil biogeochemistry. Further, our analysis in this study indicates that, compared with Monod kinetics, the SU and SUPECA kinetics are built on less restrictive assumptions of the kinetic parameters (e.g., our discussion of the kinetic parameters in P14). Therefore, given these goals, we contend our assumptions here are programmatically reasonable.

Comments: Alternatively, although true, it is not likely that earlier applications of the SU model have often been unreasonable because consumer abundances approached infinity. Some of these theoretical scenarios present real mathematical contradictions, but exist only when the basic equation is used in isolation from other system controls. In reality, consumers are unlikely to reach infinity for reasons apart from the SU equation, which other models variously attempt to capture.

Response: We should have clarified that the test of consumers approaching infinity is in a relative sense (i.e., compared to other state variables in the model), which is a common

practice to derive approximate solutions and evaluate edge cases (Feynman et al., 1963). For instance, when both mineral surfaces and microbes are modeled using the MM-type equations, the mineral surface, as compared to microbes and DOC, becomes very large, effectively approaching infinity in the context of a biogeochemical model. Our treatment will therefore theoretically better handle substrate-limited conditions. As show in Tang (2015), this testing will also avoid the difficulty associated with choosing among forward and reverse Michaelis-Menten kinetics. And in this study, we further (in section 4) showed that our SUPECA kinetics would avoid the dilemma whether the equilibrium Langmuir adsorption should be applied before or after applying the substrate kinetics, therefore achieving a better numerical accuracy in approximating the equilibrium chemistry approximation.

Comments: By page 18, I became convinced that the matrix formulation would necessarily include many zeros for kinetic coefficients in a microbial-enzyme-substrate system, which also addresses a point made several times: whereas a superabundance of a substrate would eliminate a particular substrate-consumer interaction term, so would a K=0.

Response: Effectively, when a substrate-consumer interaction term is to be eliminated, K should be a very large number compared to substrate concentrations, for pragmatic calculations. The matrix formulation is a way to visualize the relationships between substrates and consumers, and in application we can easily screen those inactive entries off. We also made this point clear by revising the captions of Figure 2.

Comments: Other hierarchical interactions are ignored. Do the authors imagine other sets of functions and matrices of coefficients that could be used to capture controls exerted by other environmental conditions on these kinetic coefficients, such as pH, stoichiometry, CUE, etc.? This model rapidly becomes unwieldy.

Response: We contend that the SUPECA kinetics proposed here is only one component necessary to build a comprehensive soil biogeochemical model to resolve the variability of CUE, stoichiometry, and other environmental variables. There are models, such as ECOSYS (Grant et al., 2015; 2016), that have made such an attempt, but our approach will enable an alternative that is theoretically more consistently formulated from substrate uptake to CUE control. In our published study (Tang and Riley, 2015) that considers the non-oxygen limited aerobic decomposition, we show that ECA kinetics allows the derivation of realistic mineral-organic matter interactions. Together with the simple examples shown here and in Tang and Riley (2013), we contend that our extension of the Monod kinetics has the potential to produce more robust and accurate results than existing models.

Comments: The specific applications of this model demonstrated some utility. However, I am not convinced that the model is necessarily superior to other more common formulations that have been used in these ways despite SUPECA's analytical elegance. I suggest more effort to demonstrate the utility of this model as something more than a really elegant mathematical exercise. For example, the statement on line 21 page 29 is that SUPECA can scale reaction networks without changing mathematical formulation. Is this a utilitarian or theoretical accomplishment?

Response: We believe part of SUPECA's analytical elegance is its ability to scale reaction networks with a consistent formulation, and that this capability will lead to more rigorously defensible biogeochemical models. In that regard, we do think our new approach is both utilitarian and a theoretical accomplishment, and that this combination is lacking in current model formulations. We agree that more demonstrations of the approach can be valuable, but the paper is already very long, and we have provided an example that indicates the power of the approach and will present more applications elsewhere.

References

Von Caemmerer, S. (2000), Biochemical models of leaf photosynthesis, Techniques in Plant Science, No. 2. CSIRO Publishing, Collingwood.

Feyman, R.P., Leighton, R.B., and Sands, M. (1963), The Feynman lectures on physics: Vol. I., Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.

Grant, R. F., E. R. Humphreys, and P. M. Lafleur (2015), Ecosystem CO2 and CH4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1. Modeling versus measurements, *J Geophys Res-Biogeo*, *120*(7), 1366-1387, doi:10.1002/2014jg002888.

Grant, R. F., A. Neftel, and P. Calanca (2016), Ecological controls on N2O emission in surface litter and near-surface soil of a managed grassland: modelling and measurements, *Biogeosciences*, *13*(12), 3549-3571, doi:10.5194/bg-13-3549-2016.

Tang, J. Y., and W. J. Riley (2013), A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition, *Biogeosciences*, 10(12), 8329-8351, doi:10.5194/bg-10-8329-2013.

Tang, J. Y. (2015), On the relationships between the Michaelis-Menten kinetics, reverse Michaelis-Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics, *Geosci Model Dev*, 8(12), 3823-3835, doi:10.5194/gmd-8-3823-2015.

Tang, J. Y., and W. J. Riley (2015), Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions, *Nat Clim Change*, *5*(1), 56-60,

doi:10.1038/Nclimate2438. Zhu, Q., W. J. Riley, J. Tang, and C. D. Ke

Zhu, Q., W. J. Riley, J. Tang, and C. D. Koven (2016a), Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests, *Biogeosciences*, *13*(1), 341-363, doi:10.5194/bg-13-341-2016.

Zhu, Q., C. M. Iversen, W. J. Riley, I. J. Slette, and H. M. Vander Stel (2016b), Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for traitbased land models, *J Geophys Res-Biogeo*, *121*(12), 3101-3112, doi:10.1002/2016jg003554.

Zhu, Q., W. J. Riley, and J. Y. Tang (2017), A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions, *Ecol Appl*, *27*(3), 875-886, doi:10.1002/eap.1490.

Response to Reviewer # 2 Overall response

First, we thank Reviewer #2 for taking his/her time to read through our paper. However, we are disappointed that Reviewer #2 largely misunderstood our development and analyses, while Reviewer #1 has grasped the important concepts and agrees with their relevance and importance. Below we respond to Reviewer #2's comments. However, given Reviewer #2's (1) large number of misunderstandings of our work; (2) fundamentally incorrect criticisms, and (3) poorly constructed suggestions for improving the manuscript, we request an alternative reviewer to evaluate our paper and responses.

Among other problems described below, Reviewer #2 misclassified our work into the category of ecological "aggregation" of "micro-dynamics" into "macro-dynamics", a topic well trodden by previous researchers in ecology. We are very aware of the studies mentioned without citation by the reviewer. Briefly, the so-called "aggregation" approach, as studied in ecology (and also in theoretical economics), is a mathematical technique of dimensional reduction. This approach assumes that the micro-dynamics is available for "aggregation" so that the resultant macro-dynamics retains as much of the micro-dynamical functional responses as possible. Such work falls broadly in the category of "reduced order modeling", a topic on which we have recently published a number of papers (e.g., Liu et al., 2016; Pau et al., 2014, 2016). In stark contrast, the study we present here describes an approach to formulate the micro-dynamics in a physically consistent manner. Therefore, the reviewer's primary summary criticisms are irrelevant to our study. Further, the reviewer's contain several blatant errors, which we detail below.

Comment: In this paper, the authors go through many different formulations of enzyme kinetics in an attempt to 'scale' kinetics from a single enzyme system to a metabolic network consisting of 10's to 100's of reactions. The paper doesn't have a good introduction and there is little motivation for why it's so critical to be able to 'scale' enzyme reaction kinetics other than it's computationally intensive to simulation a bunch of equations instead of one. Reducing dimensionality will always make life easier, but it's not clear that anyone in a real world modeling situation would even be in a position to try to translate kinetics for 10's to 100's of reactions for soil organic matter decomposition to reduced set of reactions. In a real network, there will be feedbacks between reactions but all are considered independent in this manuscript. **Response**: Given reasonable space constraints for journal articles, we did not detail the huge literature on enzyme kinetics relevant to soil biogeochemistry. However, we included sufficient references (Allison, 2012; Bouskill et al., 2012, Grant et al., 2016; Riley et al., 2014; Sulman et al., 2014; Tang, 2015; Tang and Riley, 2013, 2015; Wieder, 2013, 2014) on the topic to indicate that soil biogeochemical models are now in a position to include a wide range of biogeochemical reactions, which may very well exceed 100 reactions. For instance, the soil biogeochemistry module of the site- to regional-scale ecosystem model ecosys (e.g., Grant et al., 2015, 2016; Mekonnen et al. 2016) represents a wide range of microbes, including heterotrophic aerobic bacteria and fungi, methanogens, methanotrophs, autotrophic ammonia oxidizers, autotrophic nitrate oxidizers, acetogen fermenters, and autotrophic and heterotrophic nitrogen fixers. The model also represents the aqueous chemistry of phosphorus dynamics that involves iron,

calcium, carbonate, etc.

We also never stated that our goal was to reduce the reaction network. Rather, we emphasized the need for formulation consistency between the many reactions in describing the substrate-consumer relationship, which is the first step in modeling soil biogeochemistry (as indicated in the title, abstract P1: L12-13, and throughout the main text). If formulation reductions were proposed, they should only be applied to substitutable substrates (as discussed in section 3 and also in Tang and Riley, 2013). For example, aerobic heterotrophic bacteria can feed on proteins, cellulose, carbohydrates, and starch; if the specific evolution of those chemical compounds is not of interest, we can regard them all as carbon substrates, which is the fundamental assumption that has been widely applied in the development of many soil BGC models (e.g., RothC model (Coleman and Jenkinson, 1996), CENTURY model (Parton et al., 1998)). A similar problem involving enzyme interactions with many substrates was also studied in Schnell and Mendoza (2000). Given soil microbes are competing and collaborating with each other to consume the many chemical substrates, our study is definitely relevant to modeling complex soil BGC networks. We also acknowledged that feedbacks between reactions are critical components of the soil BGC network (e.g., on P4: L13-17, we acknowledged that there are temporal and spatial scaling methods to cover those feedbacks). Overall, our formulation attempts to better resolve the interactions and feedbacks between reactions at the microbial uptake stage (i.e., the consumer-substrate interactions), which is a misunderstood or ignored topic in the literature (see the long review in Tang and Riley, 2013).

Therefore, this reviewer's comment both misses the point of our manuscript and mischaracterizes its relevance. To ensure readers who're unfamiliar with soil biogeochemical modeling not to confuse our study with dimension reduction through so called "aggregation", we added a new paragraph in page 4 in the revision to state specifically that we're attempting to improve the microdynamics.

Comment: The authors quickly jump into kinetic equation after equation with no clear goal and minimal to non-existant links between models/equations.

Response: These comments are somewhat shocking given the manuscript's theoretical development goals are given in the Title, Abstract (P1: L11-15), and Introduction (P4: L6-18, P10: L13-22, P11: L1-6). Clearly, we are proposing the SUPECA kinetics to (1) scale redox reactions in networks of mixed substrates and consumers; (2) consistently address the interactions between substrates and microbes at the substrate uptake stage in modeling soil biogeochemistry; and (3) demonstrate its applicability using a simple aerobic soil respiration problem.

Comment: The authors never even clearly articulate why what they are presenting is better than anything else. The manuscript is incredibly hard to follow as well. It may be possible for the authors to distill some of this down into a coherent compelling message, but in its current form it's not publishable.

Response: This comment is again strange, given our substantial discussion in the Abstract (P1: L15-23, P2: L1-11), Introduction (P5-10), and sections 3, 4, and 5. Throughout our discussion, we also highlighted problems with the current formulations of soil BGC kinetics.

For the editor and reviewer's information, and to put the value of this work in context (i.e., "why it may be better than anything else"), the formulation we described in this paper follows the work described in Tang and Riley (2013), where we originally described the Equilibrium Chemistry Approximation. In this context, we note that Jinyun Tang received the Ecological Society of America's Honorable Mention for the Gene E. Likens Award for this paper (indicating it, at least, may have value compared to other approaches). Further, the ECA concepts are actively being applied in site to global-scale modeling efforts (Zhu and Riley 2015; Zhu et al., 2016a,b; 2017), which we cite in the manuscript. We therefore believe these reviewer's comments indicate a misunderstanding of our paper and the broader modern literature on numerical model representations of biogeochemical processes.

Comments: Pg. 7. line 12: This doesn't make sense. The whole idea is to consider a network of interactions, each with their own kinetics. Gardner, O'Neill, and Iwasa, among other did seminal work on aggregating model dynamics and establish good rules of thumb for when aggregation is reasonable. The problem the authors of this manuscript are trying to address is one of aggregation, not scaling. Furthermore, their expressions are incorrect. A sum can be expressed as the number of terms in the sum multiplied by the mean of the sum. In their case, each term is a product of a rate constant and a concentration, which means that impossible to make their substitution. At a given instant, it can work, but a soon as concentrations change their expression is invalid. **Response**: This comment is again a misreading of our work. First, we are addressing the substrate-consumer relationship, an important component in formulating the microdynamics; whereas the works by Gardner, O'Neill, Iwasa (see our listed reference on aggregation) and others are on aggregating the microdynamics when the latter is given. Second, we did not indicate that we are averaging nonlinear terms. Even when we sum (and average) the terms in equation (7), we state clearly that the kinetic parameters must be equal for such a summation (P9: L6). Throughout the paper, we used the summation and average rules according to standard practices widely used in mathematics and physics, and therefore this criticism appears baseless.

Comments: Furthermore, there's no way to average the nonlinear interaction between enzyme and substrate for multiple reactions. I tried looking up the partition principle and didn't find anything, and the analogies with Dalton's and Newton's laws don't make any sense.

Response: First, we did not contend that we are averaging the nonlinear interactions between enzymes and substrates for multiple reactions. Second, we introduced and defined the "partition principle" on page 6, line 16. The concept is widely used in deriving macroscopic representations of complex phenomena in physics (e.g., Dalton's law of partial pressures; superposition principle of electrostatic forces, angular moment etc.; Feynman et al, 1963), and we argue in this manuscript that it should be applied in developing representations of soil BGC dynamics. Third, we only apply averaging when the relationship is linear and there is a good conceptual understanding to support it (e.g., equation (7)). For instance, as we explained above, some models of soil organic matter decomposition aggregate different organic matter constituents (e.g., protein, cellulose, carbohydrates) into a single carbon pool, and still provide important scientific insights to

the soil carbon cycle.

Comment: Pg. 3, line 23: Wieder, not wider **Response**: Thanks for pointing this out. We corrected it in the revision.

Comment: Pg. 6, line 2: dissociation **Response**: Thanks for pointing this out. We corrected it in the revision.

Comment: Pg. 6 line 7: r-K selection is only briefly mentioned in the Klausmeier and Litchman (2008) paper.

Response: Yes, we agree, so we added a citation to Tilman's work (Tilman, 1982) for readers interested in this topic.

Comment: Pg. 7, eq. 2: Both terms are negative but dissociation should be positive **Response**: We think there is a misreading of equation 2. Only the first term is negative, the second term is positive and describes dissociation.

Comment: Pg. 8, line 1: I have no idea what the nonsingularity principle is, and again, searching for it gave no results. The expression is really conservation of mass anyway. **Response**: We apologize that we did not originally provide a citation for this concept on page 8 (it is mentioned on Page 9, lines 1-3 and the singularity is defined in P2: L1-L3); we have now added references on the concept at the first appearance of the term in the revision (Schnell and Maini, 2000; Tang and Riley, 2013; Tang, 2015).

Comment: Pg. 8, line 12: I don't know what this means. Furthermore, the only difference between the two sides of the equation is that the r.h.s. just moves the half saturation constant around. They appear equal and there is no basis for why they wouldn't be. **Response**: No, in equation (6) the term after the first equal sign is not equal to the term after the second equal sign, as we show below:

Suppose there are two substrates, S1 and S2, with concentrations of 1 and 2 units, respectively; and half saturation constants of 1 and 2, respectively. Then, assuming all other parameters are of numerical value 1, the value after the first equal sign is 1/(1+1)+2/(2+2)=1. However, the value after the second equal sign is (1/1+2/2)/(1+(1/1+2/2))=2/3. Therefore, they are not equal (i.e., $1 \neq 2/3$). Such a case will occur, for instance, in situations when both NH₃ and NO₃⁻ are taken up by a microbe or plant to synthesize biomass. Only the term after the second equal sign will describe this uptake process consistently. A similar situation is discussed in detail in Schnell and Mendoza (2000).

Comment: Litchman and Klausmeier (2008) don't even mention Monod kinetics. It is unacceptable to incorrectly use references to justify assumptions or manipulations. **Response**: It seems the reviewer misunderstood the reference to Litchman and Klausmeier (2008). In their page 620, the second equation, which we copy below, is the Monod kinetics:

 $uptake = v(R) = \frac{v_{\max}R}{K+R}$

with R is the substrate and K is the half saturation constant.

Even though Litchman and Klausmeier (2008) did not use the term "Monod kinetics", they are clearly applying that approach. As the reviewer may be aware, Monod kinetics and Michaelis-Menten (MM) kinetics were proposed based on different empirical evidences. The Monod kinetics is purely empirical (Monod, 1949) and MM kinetics can be derived mechanistically (Briggs and Haldane, 1925). In soil biogeochemical modeling, the Monod and MM kinetics are used for modeling microbial substrate uptake, and under the assumption of no substrate-storage in microbial cells (which is valid under some restrictive conditions), the Monod kinetics and MM kinetics (or any substrate kinetics such as the SUPECA we present here) can reasonably represent microbial growth (Monod, 1949; Wieder et al., 2013, 2014; Tang and Riley, 2015).

Comment: Pg. 9, line 3: When is it even reasonable to enzyme concentration approach infinity?

Response: It is a common practice in deriving macroscopic representations of complex phenomena to ensure that the solutions are robust across a range of conditions. The term "approach infinity" is widely used in scientific literature to imply "as a state becomes large compared to another state" (e.g., see chapters on oscillators and electrostatics in Feynman et al., 1963). In biogeochemistry, for example, such a situation exists in vivo conditions inside an organisms' cell (e.g., Schnell and Maini, 2000), or when mineral surface interactions are represented analogously to enzyme kinetics (e.g., adsorption is of Langmuir type). In such situations, the ratio of enzyme and substrate concentrations becomes very large (i.e., approaches infinity).

Comment: Pg. 9, line 5: There is no paper that I can find that matches the Murdock reference, and one published in the same year is completely unrelated. This is a very disturbing pattern of misrepresentation of the literature. I basically can't follow the rest of page 9 and I have no idea what parametric sensitivity is.

Response: It appears the reviewer was searching for a citation by "Murdock", when the paper we cited is by "Murdoch". The reviewer's assertion of a "disturbing pattern of misrepresentation of the literature" is ridiculous and unprofessional, considering that he/she could have simply gone to the reference list at the end of our manuscript and found the citation.

In 1973, William W. Murdoch published two papers, one is "The functional response of predators", and the other is "Predation by Coccinellid Beetles: Experiments on Switching" which he co-authored with J.R. Marks. The first paper is the one we cited (and is listed in the references).

The term "parametric sensitivity" is a widely used term in numerical modeling, and we cited a recent paper on the topic in the original manuscript. However, there are many other recent publications applying this term; we have therefore added some of those citations (e.g., Qian et al., 2015; van Werkhoven et al., 2009).

Comment: Starting in section two, the 'derivations' seem to be ok, but they are trivial algebra. It's easy to start with any reaction diagram, assume quasi steady state and derive

equations. However, they still seem to retaining more dynamics that is typical because the substrates/reactants A and B are changing over time.

Response: Our careful derivation attempts to present nuances to readers, and indicate clearly where critical assumptions are being made. Since one of our clearly stated goals is to formulate a consistent set of reaction kinetics for soil BGC, we believe having a consistent derivation formulated in the peer-reviewed literature is important. Further, we used this derivation to describe possible problems with other approaches in characterizing biogeochemical kinetics, such as dual-Monod kinetics and synthesizing unit kinetics. Therefore, our derivation will help readers to understand the uncertainties behind using those kinetic formulations for their modeling analyses. In the same spirit, throughout the paper, we have clearly reported that our new approach is only a better approximation to the law of mass action (e.g., section 4 and also see Tang, 2015), and should not be regarded as accurate for all conditions (a situation that is discussed in detail by Pedersen et al., 2008, which we have cited in the revision).

Comment: Pg. 17, lines 2-3: I have no idea what this sentence means.

Response: The phrase "MM kinetics ignores the mass balance constraint of substrate" simply means: in the derivation of MM kinetics, no constraint is placed on the substrate mass balance. Tang (2015) described this condition and discussed its implications, as have others (Borghans et al., 1996; Tang and Riley, 2013; Maggi and Riley, 2015). We have added these other citations to the revised manuscript to buttress this point. However, as the subsequent sentences explain, our point is that a similar problem may be happening in Dual Monod and Synthesizing Unit kinetics formulations.

Comment: Pg. 17, line 15 (and appendix): I have no idea what their 'first order closure approach' is. The appendix isn't really a help here.

Response: In the revision, we added some explanation to the "first order closure approach" and a citation to Tang and Riley (2013) where the approach was first applied to enzymatic chemical kinetics. We also note that the first order closure approach has been applied in many other fields, and have added citations (Shankar, 1994; Tang et al., 2007) to the revised manuscript.

Comment: Pg. 19: The problem with trying to average over a bunch of nonlinear interactions seems to render this derivation incorrect.

Response: As we discussed above, we are not trying to "average over a bunch of nonlinear interactions". Given that Reviewer #1 understood this important point, we are at something of a loss to address Reviewer #2's misunderstanding. Nowhere in the manuscript did we state we are "trying to average over a bunch of nonlinear interactions", so it is not clear where he/she developed that perception.

Comment: Data examples and figures: By this point, I am totally lost and quite skeptical of whether their derivations are correct. The comparisons with data are poorly motivated and described so it's not possible to even know what we should be taking away from the exercise and why.

Response: Although we appreciate the reviewer's taking his/her time to read through our manuscript, we believe that this reviewer is an inappropriate choice, given his/her (1)

large number of misunderstandings, (2) fundamentally incorrect criticisms, and (3) poorly constructed suggestions for improving the manuscript. In other contexts we would be happy to discuss the details of the approach with the reviewer, but given that this is a manuscript review, we request the editor to find another reviewer who's more familiar with biogeochemistry and approaches to develop conceptual and numerical models of complex reaction networks.

References

Works on aggregation

Aoki, M. (1968), Control of Large-Scale Dynamic Systems by Aggregation, *Ieee T Automat Contr*, *Ac13*(3), 246-&, doi:Doi 10.1109/Tac.1968.1098900.

Gard, T. C. (1988), Aggregation in Stochastic Ecosystem Models, Ecol Model, 44(1-2), 153-164, doi:Doi 10.1016/0304-3800(88)90087-7.

Gardner, R. H., W. G. Cale, and R. V. Oneill (1982), Robust Analysis of Aggregation Error, Ecology, 63(6), 1771-1779, doi:Doi 10.2307/1940119.

Iwasa, Y., V. Andreasen, and S. Levin (1987), Aggregation in Model-Ecosystems .1. Perfect Aggregation, *Ecol Model*, *37*(3-4), 287-302, doi:Doi 10.1016/0304-3800(87)90030-5.

Iwasa, Y., S. A. Levin, and V. Andreasen (1989), Aggregation in Model-Ecosystems .2. Approximate Aggregation, *Ima J Math Appl Med*, *6*(1), 1-23.

Luckyanov, N. K. (1984), Linear Aggregation and Separability of Models in Ecology, *Ecol Model*, *21*(1-2), 1-12, doi:Doi 10.1016/0304-3800(84)90021-8.

Oneill, R. V., and B. Rust (1979), Aggregation Error in Ecological Models, *Ecol Model*, 7(2), 91-105, doi:Doi 10.1016/0304-3800(79)90001-2.

Works on reduced order model

Liu, Y. N., G. Bisht, Z. M. Subin, W. J. Riley, and G. S. H. Pau (2016), A Hybrid Reduced-Order Model of Fine-Resolution Hydrologic Simulations at a Polygonal Tundra Site, *Vadose Zone J*, *15*(2), doi:10.2136/vzj2015.05.0068.

Pau, G. S. H., G. Bisht, and W. J. Riley (2014), A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape, *Geosci Model Dev*, 7(5), 2091-2105, doi:10.5194/gmd-7-2091-2014.

Pau, G. S. H., C. P. Shen, W. J. Riley, and Y. N. Liu (2016), Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models, *Water Resour Res*, *52*(2), 791-812, doi:10.1002/2015wr017782.

Works on soil biogeochemical modeling cited in the first submission

Allison, S. D. (2012), A trait-based approach for modelling microbial litter decomposition, *Ecol Lett*, *15*(9), 1058-1070, doi:10.1111/j.1461-0248.2012.01807.x. Bouskill, N. J., J. Tang, W. J. Riley, and E. L. Brodie (2012), Trait-based representation of biological nitr fication: model development testing, and predicted community

composition, *Front Microbiol*, *3*, doi:ARTN 364.10.3389/fmicb.2012.00364. Grant, R. F., A. Neftel, and P. Calanca (2016), Ecological controls on N2O emission in surface litter and near-surface soil of a managed grassland: modelling and measurements, *Biogeosciences*, *13*(12), 3549-3571, doi:10.5194/bg-13-3549-2016.

Riley, W. J., F. Maggi, M. Kleber, M. S. Torn, J. Y. Tang, D. Dwivedi, and N. Guerry (2014), Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics, *Geosci Model Dev*, 7(4), 1335-1355, doi:10.5194/gmd-7-1335-2014.

Sulman, B. N., R. P. Phillips, A. C. Oishi, E. Shevliakova, and S. W. Pacala (2014), Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO₂, *Nat Clim Change*, 4(12), 1099-1102, doi:10.1038/Nclimate2436.

Tang, J. Y. (2015), On the relationships between the Michaelis-Menten kinetics, reverse Michaelis-Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics, *Geosci Model Dev*, 8(12), 3823-3835, doi:10.5194/gmd-8-3823-2015.

Tang, J. Y., and W. J. Riley (2013), A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition, *Biogeosciences*, *10*(12), 8329-8351, doi:10.5194/bg-10-8329-2013. Tang, J. Y., and W. J. Riley (2015), Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions, *Nat Clim Change*, *5*(1), 56-60, doi:10.1038/Nclimate2438.

Wieder, W. R., G. B. Bonan, and S. D. Allison (2013), Global soil carbon projections are improved by modelling microbial processes, *Nat Clim Change*, *3*(10), 909-912, doi:10.1038/Nclimate1951.

Wieder, W. R., A. S. Grandy, C. M. Kallenbach, and G. B. Bonan (2014), Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, *Biogeosciences*, *11*(14), 3899-3917, doi:10.5194/bg-11-3899-2014.

Other references

Borghans, J. A. M., R. J., DeBoer and L. A. Segel (1996), Extending the quasi-steady state approximation by changing variables, B Math Biol, 58, 43-63.

Briggs, G. E. and J.B.S. Haldane (1925), A note on the kinetics of enzyme action, Biochem J, 19, 338-339.

Coleman K., and D.S. Jenkinson (1996), RothC-26.3 - A Model for the turnover of carbon in soil. In: Powlson D.S., Smith P., Smith J.U. (eds) Evaluation of Soil Organic Matter Models. NATO ASI Series (Series I: Global Environmental Change), vol 38. Springer, Berlin, Heidelberg.

Feyman, R.P., Leighton, R.B., and Sands, M. (1963), The Feynman lectures on physics: Vol. I., Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.

Grant, R. F., E. R. Humphreys, and P. M. Lafleur (2015), Ecosystem CO2 and CH4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1. Modeling versus measurements, *J Geophys Res-Biogeo*, *120*(7), 1366-1387, doi:10.1002/2014jg002888.

Litchman, E., and C. A. Klausmeier (2008), Trait-Based Community Ecology of Phytoplankton, *Annu Rev Ecol Evol S*, *39*, 615-639,

doi:10.1146/annurev.ecolsys.39.110707.173549.

Maggi, F., and W. J. Riley (2015), The effect of temperature on the rate, affinity, and N-

15 fractionation of NO₃⁻ during biological denitrification in soils, *Biogeochemistry*,

124(1-3), 235-253, doi:10.1007/s10533-015-0095-2.

Mekonnen, Z. A., R. F. Grant, and C. Schwalm (2016), Sensitivity of modeled NEP to climate forcing and soil at site and regional scales: Implications for upscaling ecosystem models, *Ecol Model*, *320*, 241-257, doi:10.1016/j.ecolmodel.2015.10.004.

Monod, J. (1949), The growth of bacterial cultures, Annu Rev Microbiol, 3, 371-394.

Murdoch, W. W.: Functional response of predators, J Appl Ecol, 10, 335-342, 1973.

Murdoch, W. W., and J. R. Marks (1973), Predation by Coccinellid Beetles -

Experiments on Switching, *Ecology*, 54(1), 160-167, doi:Doi 10.2307/1934385.

Parton, W.J., J.W.B. Stewart, and C.V. Cole (1988), Dynamics of C, N, P and S in Grassland soils-a model, Biogeochemistry, 5, 109-131, 1988.

Pedersen, M. G., A. M. Bersani, and E. Bersani (2008), Quasi steady-state approximations in complex intracellular signal transduction networks - a word of caution, *J Math Chem*, *43*(4), 1318-1344, doi:10.1007/s10910-007-9248-4.

Qian, Y., et al. (2015), Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5, *J Adv Model Earth Sy*, 7(2), 382-411, doi:10.1002/2014ms000354.

Schnell, S., and P. K. Maini (2000), Enzyme kinetics at high enzyme concentration, *B Math Biol*, *62*(3), 483-499, doi:DOI 10.1006/bulm.1999.0163.

Schnell, S., and C. Mendoza (2000), Enzyme kinetics of multiple alternative substrates, *J Math Chem*, *27*(1-2), 155-170, doi:Doi 10.1023/A:1019139423811.

Shankar, R. (1994) Principles of quantum mechanics, second edition, Springer, ISBN 978-1-4757-0578-2.

Tang, J. Y., Tang, J., and Wang, Y. (2007), Analytical investigation on 3D non-Boussinesq mountain wave drag for wind profiles with vertical variations, Appl Math Mech-Engl, 28, 317-325.

van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang (2009), Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models, *Adv Water Resour*, *32*(8), 1154-1169, doi:10.1016/j.advwatres.2009.03.002. Zhu, Q., and W. J. Riley (2015), Improved modelling of soil nitrogen losses, *Nat Clim Change*, *5*(8), 705-706.

1	The SUPECA kinetics for scaling redox reactions in networks of mixed substrates
2	and consumers and an example application to aerobic soil respiration
3	Jinyun Tang and William J. Riley
4	Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory,
5	Berkeley, CA, USA, 94720
6 7	Correspondence to: J. Y. Tang (jinyuntang@lbl.gov)
8	Abstract. Several land biogeochemical models used for studying carbon-climate
9	feedbacks have begun explicitly representing microbial processes. However, to our
10	knowledge, there has been no theoretical work on how to achieve a consistent scaling of
11	the complex biogeochemical reactions from microbial individuals to populations,
12	communities, and interactions with plants and mineral soils. We here study this scaling
13	problem by focusing on the substrate-consumer relationships for consumer mediated
14	redox reactions of the form $A+B \rightarrow products$, where products could be microbial
15	biomass and different bio-products. Under the quasi-steady-state approximation, these
16	substrate-consumer relationships can be formulated as the computationally difficult full
17	Equilibrium Chemistry problem, which is then usually approximated analytically with the
18	popular Dual Monod (DM) kinetics and Synthesizing Unit (SU) kinetics. However, we
19	found that the DM kinetics is scaling inconsistent for reaction networks because it (1)
20	does not incorporate substrate limitation in its derivation, (2) invokes contradictory
21	assumptions regarding the substrate processing rate when transitioning from single
22	substrate reactions to two-substrate redox reactions, and (3) cannot scale the product
23	generation rate from one to multiple substrates. In contrast, the SU kinetics can

1 consistently scale the product generation rate from one to multiple substrates, but suffers 2 from the deficit that as the consumer abundance approaches infinity, it predicts singular 3 infinite reaction rates even for limited substrates. We attribute this deficit to SU's failure 4 to incorporate the substrate limitation in its derivation and remedy SU with the proposed 5 SUPECA (SU Plus Equilibrium Chemistry Approximation) kinetics, which consistently 6 imposes the mass balance constraints from both substrates and consumers on consumer-7 substrate interactions in calculating redox reaction rates. Moreover, we show the 8 SUPECA kinetics satisfies the partition principle as in theories like Newton's Law of 9 motion and Dalton's law of partial pressures, such that its mathematical manifestation is 10 scaling invariant when transitioning from an individual reaction to a network of many 11 reactions. We benchmarked the SUPECA kinetics with the equilibrium chemistry 12 solution for some simple problem configurations and found SUPECA outperformed the 13 SU kinetics. In applying the SUPECA kinetics to aerobic soil respiration, we found that 14 SUPECA predicted consistent but variable moisture response functions that agreed well 15 to those derived from incubation data. We finally discuss how the SUPECA kinetics 16 could help Earth System Models consistently incorporate more biogeochemical reactions 17 to improve their biogeochemical modules. 18 19 Keywords: Dual-Monod kinetics, Synthesizing Unit, SUPECA kinetics, soil respiration, 20 trait-based modeling

- 21
- 22
- 23

1 1. Introduction

2 Land holds more than twice the carbon that is in atmosphere; therefore a small 3 change in land carbon dynamics can imply significant feedbacks to the ongoing climate 4 warming (Ciais et al., 2013). This has motivated intense research towards better 5 understanding of Earth's land biogeochemical cycles, both for prediction and assessing 6 the efficacy of climate mitigation and adaptation strategies. To date, however, soil 7 biogeochemical models are suffering from high uncertainty (e.g., Arora et al., 2013; 8 Bouskill et al. 2014; Friedlingstein et al., 2014; He et al. 2016). For instance, eight 9 CMIP5 Earth System Models (ESMs) predicted that the net land carbon uptake varies 10 from 22 to 456 PgC for the 2006-2100 period under the Representative Concentration 11 Pathway 4.5 (RCP4.5; Shao et al., 2013). Similarly, the 16 CMIP5 ESM simulations 12 analyzed in Todd-Brown et al. (2013) estimated the contemporary global soil carbon 13 stocks ranging from 510 to 3040 PgC to 1 m depth, while the most recent empirical 14 estimation is 1408±154 PgC to 1 m depth and 2060±217 Pg C to 2 m depth (Baties, 15 2016). Therefore, it is urgent to improve our models' predictive power. 16 The predictive power of existing land biogeochemical models is plagued by 17 uncertainties from structural design, numerical implementation, model parameterization, 18 initial conditions, and forcing data (Tang and Zhuang, 2008; Tang et al., 2010; Luo et al., 19 2015; Wieder et al., 2015a; Blanke et al., 2016; Tang and Riley, 2016). Among them, 20 developing better model structure and formulation has been identified as a priority. One 21 proposed structural improvement is to include explicit microbial processes (Wieder et al., 22 2015b), which has recently been shown to enable better predictions of global soil carbon stocks (Wieder et al., 2013), priming effects (Sulman et al., 2014), vertical soil carbon 23

Jinyun Tang 5/16/2017 9:43 PM Deleted: the

1	profiles (Riley et al., 2014), and respiratory temperature sensitivity (Tang and Riley,	
2	2015). A second major proposal is to explicitly resolve the ecosystem nutrient cycle,	
3	which aligns with the hypothesis that the potential for increasing land ecosystem carbon	
4	uptake resulting from the effect of atmospheric CO ₂ fertilization could be limited by	
5	nutrient availability (Vitousek, 1982; Shi et al., 2015; Wieder et al., 2015c).	
6	A common process that underlies both of these two proposed structural	
7	improvements is the substrate-consumer interaction, which is fundamental for modeling	
8	microbial decomposition of substrates (Tang and Riley, 2013a; Riley et al., 2014; Le	
9	Roux et al., 2016), mineral soil interaction with adsorptive substrates (Tang and Riley,	
10	2015), and plant-microbe competition for nutrients (Zhu et al., 2016a, 2016b, 2017). In	
11	soil, because there are many consumers competing for many substrates in different places	Jinyun Tang 5/18/2017 2:35 PM Deleted: 2016c
12	at different times, the biogeochemical models being developed must be able to scale the	
13	many biogeochemical processes consistently across space, time, and processes. Of the	
14	three dimensions that call for scaling (Figure 1), scaling across the spatial and temporal	
15	dimensions is achieved through spatial and temporal discretization and integration which	Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 1
16	has been intensively studied elsewhere (e.g. Kolditz et al. 1998: Mao et al. 2006) so	
17	here we study the scaling along the less studied third dimension_process_with a focus	
19	on substrate consumer interactions	
10	The substrate consumer relationship is the first step in formulating	
19		Jinyun Tang 5/17/2017 10:11 AM Formatted: Indent: First line: 0.5"
20	biogeochemical models, and is formulated with the so-called substrate kinetics that is a	
21	tunction of consumer and substrate abundance under the influence of various	
22	environmental factors, such as soil mineralogy, temperature and moisture (see Tang and	
23	Riley (2013a) for a review). Since substrate-consumer kinetics only accounts for how	

1	substrates are taken up by organisms, we contend that readers should not misunderstand	
2	our discussion of scaling below as an attempt to do ecological aggregation (e.g., Iwasa et	
3	al., 1987; 1989). Rather we are presenting a methodology to improve the consistency in	
4	formulating the microdynamics for ecological aggregation.	
5	Within a certain homogeneous space-time-process unit in soil (Figure 1), there are	linvur
6	generally three types of substrate-consumer relationships: (1) single-substrate Monod	Delet
7	type reactions in the form of $A \xrightarrow{E} products$; (2) the two-substrate redox reactions in the	
8	form of $A+B \rightarrow products$, where substrate A and B are called complementary because	
9	they both are required to proceed the redox reaction; and (3) the multi-substrate (>2)	
10	reactions $\sum_{i} A_{i} \xrightarrow{E} products$. The scaling of the single-substrate Monod type reaction has	
11	been extensively discussed in Tang and Riley (2013a), and is resolved with the	
12	Equilibrium Chemistry Approximation (ECA) kinetics (and more discussion on the ECA	
13	kinetics for process scaling will be provided in later sections when discussing the	
14	SUPECA kinetics). Further, because many multi-substrate reactions can be separated into	
15	a combination of single-substrate reactions and redox-reactions, <u>our discussion below</u>	Jinyur
16	focuses on achieving a consistent kinetic scaling from a single redox reaction to many	Delet
17	reactions in a network.	Delet
18	Mathematically, the problem should be addressed with explicit formulation of all	Delet
19	kinetic processes using ordinary differential equations accounting for all substrates and	
20	consumers (Chellaboina et al., 2009). However, such a formulation would require too	
21	many parameters to drive the model and is numerically very difficult to solve because of	
22	its multi-temporal scale nature. By making the quasi-steady-state-approximation (QSSA),	

Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 1

Jinyun Tang 5/16/2017 9:57 PM Deleted: it is important Jinyun Tang 5/16/2017 9:57 PM Deleted: to Jinyun Tang 5/16/2017 9:57 PM Deleted: achieve

1 i.e., assuming that the product generation from consumer-substrate complex is much 2 slower than the equilibration between consumers, substrates, and consumer-substrate 3 complexes (Briggs and Haldane, 1925), the full kinetic problem is reduced to the simpler Equilibrium Chemistry (EC) form (e.g., Chellaboina et al., 2009). However, the EC form 4 5 is also usually very difficult to solve numerically. Therefore, analytical approximations to 6 the EC formulation are generally made. 7 Two classic analytical approximations for modeling redox-reactions are the Dual 8 Monod (DM) kinetics (e.g., Yeh et al., 2001) and Synthesizing Unit (SU) approach 9 (Kooijman, 1998; Brandt et al., 2003). Although both of them are a special case of the EC 10 formulation (Kooijman, 2010; Tang and Riley, 2013a), they make different assumptions 11 of the relative magnitudes of the involved kinetic parameters. For this, Kooijman (2010) 12 has shown that the DM kinetics inevitably requires the dissociation rate to be much larger 13 than the product-generation rate from the consumer-substrate complexes. In contrast, to 14 apply the single-substrate Monod kinetics (Monod, 1949) or Michaelis-Menten (MM) 15 kinetics (Michaelis and Menten, 1913; which is mathematically identical to the empirical 16 Monod kinetics and they two will be used interchangeably hereafter) does not impose this 17 requirement on its parameters. Moreover, in applications to r-K scaling (e.g., Tilman, 18 1982; Litchman and Klausmeier, 2008), the single-substrate Monod kinetics even 19 requires the product-generation rate to be faster than the dissociation rate of the 20 consumer-substrate complexes. This contrasting requirement on parameters, as we will 21 show later, fails the DM kinetics to achieve a consistent scaling of substrate-consumer 22 interactions for generic biogeochemical modeling.

Jinyun Tang 5/17/2017 10:20 AM **Deleted:** dissociate

1	We define a kinetic formulation to have consistent scaling when the formulated	
2	substrate-consumer relationship: (1) can seamlessly transition from a single substrate-	
3	consumer pair to a network of many substrate-consumer pairs without changing its	
4	mathematical forms (aka the partition principle) and (2) does not predict any singularity	
5	over the whole range of substrate and consumer concentrations (aka the non-singular	
6	principle which says that the predicted reaction rate won't increase to infinity as the	
7	consumer concentration approaches infinity (e.g., Schnell and Maini, 2000; Tang, 2015)).	
8	The full kinetics formulation and its EC formulation both satisfy these two criteria, which	
9	can be explained using the following example network of consumer-substrate	
10	relationships:	
	$S_{i} + E_{j} \underset{\underset{k_{1,jj}}{\leftarrow}}{\overset{k_{1,jj}^{*}}{\leftarrow}} E_{j} S_{i} \overset{k_{2,jj}^{*}}{\rightarrow} P_{ij} + E_{j} $ (1)	
11	where substrate S_i complexes with consumer E_j to form complex $E_j S_i$, which is then	
12	degraded into product P_{ij} and the free consumer. In equation (1) (and throughout this	Jinyun Tang 5/18/2017 2:44 PM
13	study), the forward kinetic parameters are indicated with superscript "+", while the	
14	backward kinetic parameters are with superscript "-". Here and below we assume that the	
15	units of all variables are consistently defined, and they are only put forward explicitly	
16	when it is necessary to resolve an ambiguity.	
17	The full kinetic formulation for the network of equation (1) is:	linvun Tang 5/18/2017 2:44 PM
I	$\frac{d\left[S_{i}\right]}{dt} = -\left[S_{i}\right]\sum_{j}\left(k_{1,ij}^{*}\left[E_{j}\right]\right) + \sum_{j}\left(k_{1,ij}^{-}\left[E_{j}S_{i}\right]\right) $ (2)	Deleted: (1)

$$\frac{d\left[E_{j}S_{i}\right]}{dt} = k_{1,ij}^{+} \left[S_{i}\right] \left[E_{j}\right] - \left(k_{1,ij}^{-} + k_{2,ij}^{+}\right) \left[E_{j}S_{i}\right]$$

$$\tag{3}$$

$$\frac{d\left[E_{j}\right]}{dt} = -\left[E_{j}\right]\sum_{i}\left(k_{1,ij}^{+}\left[S_{i}\right]\right) + \sum_{i}\left(\left(k_{1,ij}^{-} + k_{2,ij}^{+}\right)\left[E_{j}S_{i}\right]\right)$$
(4)

1 where, and also throughout this study, we use $\begin{bmatrix} x \end{bmatrix}$ to indicate the concentration of x.

That the full kinetic formulation is consistent with the partition principle is

3 manifested in the first summation in equations (2), and (4), Particularly for equation (4),

4 by defining an appropriate mean specific substrate affinity $k_{1,i}^+$, the summation

5
$$\sum_{i} \left(k_{1,ij}^{+} \left[S_{i} \right] \right)$$
 can be recast into the form $\sum_{i} k_{1,ij}^{+} \left[S_{i} \right] = k_{1,ij}^{+} \left[S \right]$, in which $\left[S \right] = \sum_{i} \left[S_{i} \right]$

6 resembles Dalton's law of partial pressures (and many other similar relationships in

7 physics, e.g., Newton's second law of motion (Feynman et al., 1963)) and is clearly

8 partition consistent.

2

9 Meanwhile, that the full kinetic formulation satisfies the nonsingular principle can
10 be verified by noting that, at any time:

$$\left[S_{i}\right] + \sum_{i} \left[E_{j}S_{i}\right] = \left[S_{i}\right]_{T}$$

$$\tag{5}$$

11 and that the consumption of S_i is through the generation of product from $[E_j S_i]$.

- 12 Therefore, by combining equations (2), (3), and (5), the overall consumption rate of S_i
- 13 (i.e., $\sum_{j} k_{2,jj}^{+} \left[E_{j} S_{i} \right]$) is always smaller than $\left[S_{i} \right]_{T} \sum_{j} k_{2,jj}^{+}$.

14 Since the EC formulation is obtained by applying QSSA to the full kinetic

15 formulation (i.e., $d\left[E_{j}S_{i}\right]/dt \approx 0$ for equation (3)), it automatically satisfies the two

Jinyun Tang 5/18/2017 2:44 PM Deleted: (2) Jinyun Tang 5/18/2017 2:44 PM Deleted: (4) Jinyun Tang 5/18/2017 2:44 PM Deleted: (4)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (2) Jinyun Tang 5/18/2017 2:44 PM Deleted: (3) Jinyun Tang 5/18/2017 2:44 PM Deleted: (5)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (3)

1 criteria for consistent process scaling. However, the Monod kinetics is scaling 2 inconsistent when it is applied, for example, to the single-substrate competition by 3 multiple populations, or to the multi-substrate consumption by a single population. (e.g., 4 Williams, 1973; Schnell and Mendoza, 2000; Tang et al., 2010; Riley et al., 2011, 2014; 5 Allison, 2012; Bouskill et al., 2012; Wieder et al., 2013, 2014). Specifically, the Monod 6 kinetics violates the partition principle, which can be shown from the following 7 inequality: $F_{j} = \left[E_{j}\right] \sum_{i} \frac{k_{2,ij}^{+} \left[S_{i}\right]}{K_{ij} + \left[S_{i}\right]} \neq \left[E_{j}\right] \frac{\sum_{i} k_{2,ij}^{+} \left[S_{i}\right] / K_{ij}}{1 + \sum_{i} \left[S_{i}\right] / K_{ij}}$ (6) Here F_i describes the uptake of all substrates S_i by population E_i . The left hand side of 8 9 the inequality is the uptake computed by directly applying the Monod kinetics, while the 10 right hand side of the inequality is by applying the competitive Monod kinetics (e.g., 11 Litchman and Klausmeier, 2008). The inequality (6) is even true when K_{ij} is independent Jinyun Tang 5/18/2017 2:44 PM Deleted: (6) 12 of *i*. Besides being inconsistent with the partitioning principle, the Monod kinetics also 13 violates the non-singular principle, which can be demonstrated by observing that, as Г

14
$$\begin{bmatrix} E_j \end{bmatrix}$$
 approaches infinity, so does F_j .

15 For the competitive Monod kinetics on the right hand side of the inequality in

16 equation (6), (e.g., Murdoch, 1973), if all substrates have the same affinity parameter (i.e.,

17 $K_i = K_{ii}$), we have the following

Jinyun Tang 5/17/2017 10:38 AM Deleted: Allison, 2012;

Jinyun Tang 5/18/2017 2:44 PM Deleted: (6)

$$F_{j} = \left[E_{j}\right] \frac{k_{2,j}^{+}\left(\sum_{i}\left[S_{i}\right]\right)/K_{j}}{1 + \left(\sum_{i}\left[S_{i}\right]\right)/K_{j}} = \left[E_{j}\right] \frac{k_{2,j}^{+}\left[S\right]/K_{j}}{1 + \left[S\right]/K_{j}}$$
(7)

where $[S] = \sum_{i} [S_i]$ designates the total free concentrations of all substrates. Equation 1 2 (7), therefore suggests that the competitive Monod kinetics satisfies the partition principle 3 for consistent scaling of substrate-consumer relationships. Nevertheless, because the competitive Monod kinetics is linear in $\begin{bmatrix} E_j \end{bmatrix}$, like the classic Monod kinetics, it still 4 5 violates the non-singular principle for consistent scaling. In Tang (2015) (and also in Borghans et al. (1996), Tang and Riley (2013a)), it 6 was shown that the linear dependence of F_j on $\begin{bmatrix} E_j \end{bmatrix}$ as predicted by the Monod kinetics 7 and similarly by the competitive Monod kinetics is due to their failure to impose the 8 9 substrate mass (or surface area) balance in deriving their mathematical formulations. This 10 problem has been rectified in the Equilibrium Chemistry Approximation kinetics (Tang 11 and Riley, 2013a), which was shown to predict much more accurate parametric 12 sensitivity than the Monod kinetics in comparing with analytical solutions (Tang, 2015). 13 Since the success of all model calibrations rely on the sensitivity of model predicted 14 responses with respect to model parameters (e.g., Wang et al., 2001; Williams et al, 2005; 15 Tang and Zhuang, 2009; van Werkhoven et al., 2009; Qian et al., 2015), ensuring that the 16 substrate kinetics predicts accurate parametric sensitivity is essential for developing 17 robust biogeochemical models.

Jinyun Tang 5/18/2017 2:44 PM Deleted: (7)

1	We therefore ask the question: how should we achieve a consistent scaling from	
2	the simplest redox reaction $A+B \rightarrow products$ (i.e., AB-E type) to a network that mixes	
3	many redox reactions and even single substrate Monod-type reactions (a situation found	
4	commonly in nature)? Aside from the two criteria (i.e., the partition principle and non-	
5	singularity) discussed above, we suggest a third criterion that a consistent scaling of	
6	substrate-consumer relationships should be able to seamlessly transition from a single	
7	substrate Monod-type reaction to the AB-E type redox reaction without making	
8	contradictory assumptions in its theoretical derivation.	
9	In the following, we address the above question by first presenting the step-by-	
10	step derivation of the DM kinetics and the SU kinetics from the EC formulation of the	
11	redox reaction $A+B \rightarrow products$. Conceptually, DM kinetics can be viewed as a direct	
12	application of chemical kinetics that the reaction rate of substrates A and B over	
13	consumer E is determined by the product of A and B 's binding probability to E (which in	
14	Monod form is $[A]/(K_A + [A])$ for substrate A, and $[B]/(K_B + [B])$ for substrate B).	
15	Kooijman (1998) was the first to derive the SU kinetics using the queue theory (e.g.,	
16	Gross et al., 2011) and Brandt et al. (2003) discussed its use for AB-E type redox	
17	reactions. The following derivation will stress on exposing the scaling-inconsistencies	
18	implied in the DM kinetics and SU kinetics, and, in particular, we will show that DM	
19	kinetics cannot be extended for consistent process scaling of the substrate-consumer	
20	relationship. We then present the SUPECA kinetics that remedies the inconsistencies of	
21	the SU kinetics. We demonstrate the benefits of SUPECA in terms of its numerical	
22	accuracy and present an example application of modeling the moisture control of aerobic	

Jinyun Tang 5/17/2017 10:53 AM Deleted: straight

- 1 soil respiration. Finally, we discuss how one can apply the SUPECA kinetics to trait-
- 2 based modeling approaches in various biogeochemical systems.

3 2. Derivation of ECA kinetics for AB-E type redox reaction $A+B \rightarrow products$

4 2.1 Governing equations

5 We schematically represent the enzymatic redox reaction network as

$$E + A \stackrel{k_A^*}{\longleftrightarrow} EA$$

$$+ + B$$

$$B B$$

$$k_B^- \updownarrow k_B^+ \qquad k_B^- \updownarrow k_B^+$$

$$EB + A \stackrel{k_A^*}{\longleftrightarrow} EAB \stackrel{k_2^+}{\to} E + P$$

(8)

where it is assumed that the order of substrates *A* and *B*'s binding to consumer *E* does not
affect the kinetic coefficients as is done in most modeling studies (e.g., Yeh et al., 2001).
By law of mass action and the total QSSA (tQSSA; e.g., see Borghans et al.,
1996; Tang and Riley, 2013a), we have the governing equations (see appendix A for

10 derivations) as follows:

$$\frac{d\left[A\right]_{T}}{dt} = -k_{2}^{+}\left[EAB\right]$$
⁽⁹⁾

$$\frac{d\left[B\right]_{T}}{dt} = -k_{2}^{+}\left[EAB\right]$$
⁽¹⁰⁾

$$k_{A}^{+}\left[E\right]\left[A\right] + k_{B}^{-}\left[EAB\right] = \left(k_{A}^{-} + k_{B}^{+}\left[B\right]\right)\left[EA\right]$$

$$\tag{11}$$

$$k_{B}^{+}\left[E\right]\left[B\right] + k_{A}^{-}\left[EAB\right] = \left(k_{B}^{-} + k_{A}^{+}\left[A\right]\right)\left[EB\right]$$

$$(12)$$

$$k_{A}^{+} \begin{bmatrix} EB \end{bmatrix} \begin{bmatrix} A \end{bmatrix} + k_{B}^{+} \begin{bmatrix} EA \end{bmatrix} \begin{bmatrix} B \end{bmatrix} = \left(k_{A}^{-} + k_{B}^{-} + k_{2}^{+}\right) \begin{bmatrix} EAB \end{bmatrix}$$
(13)

1 where

$$\begin{bmatrix} A \end{bmatrix}_T = \begin{bmatrix} A \end{bmatrix} + \begin{bmatrix} EA \end{bmatrix} + \begin{bmatrix} EAB \end{bmatrix}$$
(14)

$$\begin{bmatrix} B \end{bmatrix}_{T} = \begin{bmatrix} B \end{bmatrix} + \begin{bmatrix} EB \end{bmatrix} + \begin{bmatrix} EAB \end{bmatrix}$$
(15)

$$\begin{bmatrix} E \end{bmatrix}_{T} = \begin{bmatrix} E \end{bmatrix} + \begin{bmatrix} EA \end{bmatrix} + \begin{bmatrix} EB \end{bmatrix} + \begin{bmatrix} EAB \end{bmatrix}$$
(16)

2 The derivation of substrate kinetics is therefore equivalent to solving for $\begin{bmatrix} EAB \end{bmatrix}$ from the

3 EC problem defined by equations (11)-(16). However, because this set of equations is

4 non-linear, and no analytical solutions are available (to our knowledge), some

5 linearization is warranted to obtain analytical approximations. And as we describe below,

6 linearization with different assumptions lead respectively to the DM, SU, and SUPECA

7 kinetics.

8 To avoid confusions for readers that are not familiar with substrate-kinetics, we

9 also note that because obtaining the substrate kinetics is just to solve equations (11)-(16),

10 various production and destruction terms can be added to equations (9) and (10) without

11 affecting our derivation below.

12 2.2 Dual Monod kinetics and synthesizing unit kinetics

13 One method to linearize equations $(11)_{r}(16)_{r}$ is to assume that the concentration of

14 consumer-substrate complexes are so small that the free substrate concentrations are

- 15 equal to the bulk concentrations (e.g., for substrate A, it holds $\begin{bmatrix} A \end{bmatrix}_T = \begin{bmatrix} A \end{bmatrix}$). This
- 16 approach when combined with different assumptions on the relative magnitudes of the

17 kinetic parameters then leads to the popular DM kinetics and the two-substrate SU

18 kinetics.

19 2.2.1 Dual Monod kinetics

13

Jinyun Tang 5/18/2017 2:44 PM Deleted: (11) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (11) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16)

- 1 We now derive the DM kinetics. Adopting the equilibrium approximation that the
- 2 forward binding between consumer and substrate is in rapid equilibrium with the
- 3 backward dissociation of the consumer-substrate complex (e.g., Michaelis and Menten,
- 4 1913; Pyun, 1971), we have the following

$$\begin{bmatrix} EA \end{bmatrix} \begin{bmatrix} B \end{bmatrix} = \frac{k_B^-}{k_B^+} \begin{bmatrix} EAB \end{bmatrix} = K_B \begin{bmatrix} EAB \end{bmatrix}$$
(17)

$$\begin{bmatrix} EB \end{bmatrix} \begin{bmatrix} A \end{bmatrix} = \frac{k_A^-}{k_A^+} \begin{bmatrix} EAB \end{bmatrix} = K_A \begin{bmatrix} EAB \end{bmatrix}$$
(18)

5 which then transforms equations (11), and (12), into

$$\begin{bmatrix} E \end{bmatrix} \begin{bmatrix} A \end{bmatrix} = \frac{k_A^-}{k_A^+} \begin{bmatrix} EA \end{bmatrix} = K_A \begin{bmatrix} EA \end{bmatrix}$$
(19)

Jinyun Tang 5/18/2017 2:44 PM

Deleted: (11)

Deleted: (12)

Deleted: (14)

Deleted: (16)

Deleted: (17)

Deleted: (20)

Deleted: (21)

$$\begin{bmatrix} E \end{bmatrix} \begin{bmatrix} B \end{bmatrix} = \frac{k_B^-}{k_B^+} \begin{bmatrix} EB \end{bmatrix} = K_B \begin{bmatrix} EB \end{bmatrix}$$
(20)

By solving [EAB] from equations (14)-(16) using equations (17)-(20), we obtain
 the consumer-substrate complex for the DM kinetics (see Appendix B)

$$\frac{d\left[A\right]_{T}}{dt} = -k_{2}^{+}\left[E\right]_{T}\frac{\left[A\right]}{K_{A}+\left[A\right]}\frac{\left[B\right]}{K_{B}+\left[B\right]}$$
(21)

8 Although as one substrate, e.g., [A], approaches infinity, equations (21) can be

9 reduced to the classical MM kinetics

$$\frac{d\left[A\right]_{T}}{dt} = -k_{2}^{+} \frac{\left[E\right]_{T} \left[B\right]}{K_{B} + \left[B\right]}$$

$$\tag{22}$$

1	we note that the half saturation coefficient $K_{B} = k_{B}^{-}/k_{B}^{+}$ in equation (22) is different from
2	its usual definition, which should be $K_B = (k_2^+ + k_B^-)/k_B^+$, if one derives the MM kinetics
3	rigorously starting from a single substrate and single consumer system (e.g., Tang, 2015).
4	For this reason, we assert that the DM kinetics cannot achieve a self-consistent scaling
5	from one-substrate reaction to multiple-substrate reactions. More specifically, by
6	substituting equations (17) and (18) into equation (13), one obtains $k_2^+=0$, or at least
7	$k_2^+ \ll \max(k_A^-, k_B^-)$, which states that the consumer is very inefficient in processing the
8	substrate. However, MM kinetics does not require the dissociation rate to be much higher
9	than the product generation rate from the consumer-substrate complex, i.e.
10	$k_2^+ \ll \max(k_A^-, k_B^-)$ (e.g., Briggs and Haldane, 1925). Nor do the high dissociation rates of
11	[EA], [EB], and [EAB] favor the consumer's assimilation of substrates under usual
12	substrate concentrations (e.g., Van Slyke and Cullen, 1914), even though a high
13	dissociation rate may possess some theoretical advantage under high substrate
14	concentrations when the consumer is a single enzyme (Reuveni et al., 2014). To the
15	contrary, most existing applications tend to assume $k_2^+ \gg k_A^-$ and $k_2^+ \gg k_B^-$ (e.g., Holling,
16	1959, 1966; Aksnes and Egge, 1991; Armstrong, 2008; Bonachela et al., 2011), such that
17	$K_{B} \approx k_{2}^{+}/k_{B}^{+}$ for MM kinetics and the r-K selection can be explained (by linking k_{2}^{+} with
18	growth rate, and k_A^+ and k_B^+ with substrate competitive ability; e.g., Litchman and
19	Klausmeier, 2008). Therefore, for biogeochemical modeling, DM and MM (or Monod)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (22)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (17) Jinyun Tang 5/18/2017 2:44 PM Deleted: (18) Jinyun Tang 5/18/2017 2:44 PM Deleted: (13)

	1	kinetics are base	ed on different	assumptions o	f the kinetic paramete	rs, and the smooth
--	---	-------------------	-----------------	---------------	------------------------	--------------------

2 transition from DM to single substrate Monod kinetics is only ostensible.

3	2.2.2 Synthesizing unit kinetics	
4	In deriving the SU kinetics for the redox reaction network represented in equation	
5	(8), consumer E is viewed as a generalized enzyme that generates bio-products by	linvun Tang 5/18/2017 2:44 PM
6	processing substrates A and B . SU computes the specific reaction rate per unit	Deleted: (8)
7	concentration of E as the product generation rate k_2^+ times the probability that E binds	
8	together with both substrates <i>A</i> and <i>B</i> (which is $[EAB]/[E]_T$). Mathematically, SU	
9	kinetics requires the sufficient flux condition $k_A^+ [A] \gg k_B^-$ and $k_B^+ [B] \gg k_A^-$ (Kooijman,	
10	2010). Define $\tilde{k}_{2}^{+} = k_{A}^{-} + k_{B}^{-} + k_{2}^{+}$, equations (11)-(13) become	Jinyun Tang 5/18/2017 2:44 PM
	$k_{A}^{+}\left[E\right]\left[A\right] = k_{B}^{+}\left[B\right]\left[EA\right] $ ⁽²³⁾	Deleted: (11) Jinyun Tang 5/18/2017 2:44 PM Deleted: (13)
	$k_{B}^{+}\left[E\right]\left[B\right] = k_{A}^{+}\left[A\right]\left[EB\right] $ ⁽²⁴⁾	
	$k_{A}^{+} \begin{bmatrix} EB \end{bmatrix} \begin{bmatrix} A \end{bmatrix} + k_{B}^{+} \begin{bmatrix} EA \end{bmatrix} \begin{bmatrix} B \end{bmatrix} = \tilde{k}_{2}^{+} \begin{bmatrix} EAB \end{bmatrix} $ (25)	
11	From equations (23)-(25), we obtain (see Appendix C)	
	$\frac{d[A]_{T}}{dt} = -\frac{k_{2}^{+}[E]_{T}/\tilde{k}_{2}^{+}}{\frac{1}{\tilde{k}_{2}^{+}} + \frac{1}{k_{A}^{+}[A]} + \frac{1}{k_{A}^{+}[B]} - \frac{1}{k_{A}^{+}[A] + k_{A}^{+}[B]}}$ (26)	Jinyun Tang 5/18/2017 2:44 PM Deleted: (23) Jinyun Tang 5/18/2017 2:44 PM Deleted: (25)
12	The two-substrate SU kinetics as indicated by equation $(26)_{r}$ can be viewed	Jinyun Tang 5/18/2017 2:44 PM
13	alternatively as a special case of the general SU kinetics for any number of	
14	complementary substrates, which was derived by Kooijman (1998) based on the queue	
15	theory (e.g., Gross et al., 2011). Kooijman (1998) assumed that the consumers act like	

synthesizing units, which process the substrates in two steps: binding and production. He 1 then assumed that all flux rates (including production rates k_2^+ and substrate binding 2 rates $k_A^+[A]$ and $k_B^+[B]$) are of Poisson distributions, and calculated the overall specific 3 substrate consumption rate as the reciprocal of the expected total processing time (i.e., the 4 5 denominator of equation (26)). The last term in the denominator of equation (26), comes from the assumption of parallel binding of substrates A and B to E, and it disappears if 6 7 sequential binding is assumed.

8

As one substrate, e.g., A, approaches infinity, the single-substrate Monod kinetics 9 is recovered from equation (26);

$$\frac{d\left[A\right]_{T}}{dt} = -\frac{k_{2}^{+}\left[E\right]_{T}}{1 + \frac{\tilde{k}_{2}^{+}}{k_{B}^{+}\left[B\right]}} = -\frac{k_{2}^{+}\left[E\right]_{T}\left[B\right]}{\frac{\tilde{k}_{2}^{+}}{k_{B}^{+}} + \left[B\right]}$$
(27)

10 which has a half saturation coefficient similar to what would be derived for a single 11 substrate, single consumer reaction (e.g., Tang, 2015). By assuming Poisson distribution 12 of the kinetic parameters, it can also be shown for a single enzyme molecule that MM 13 kinetics represents the statistical mean of the fluctuating activity of the enzyme (English 14 et al., 2006; Reuveni et al., 2014). That the kinetics of both single-substrate reaction and 15 two-substrate redox reaction can be similarly derived using statistical theory and that 16 equations (26), and (27), could be obtained from EC formulation using consistent 17 assumptions of the kinetic parameters indicate, in contrast to DM kinetics, that SU 18 kinetics is able to scale consistently between one-substrate and two-substrate redox 19 reactions.

Jinyun Tang 5/18/2017 2:44 PM Deleted: (26) Jinyun Tang 5/18/2017 2:44 PM Deleted: (27)

Jinyun Tang 5/18/2017 2:44 PN

Jinyun Tang 5/18/2017 2:44 PM

Jinyun Tang 5/18/2017 2:44 PM

Deleted: (26)

Deleted: (26)

Deleted: (26)

1 2.3. SUPECA kinetics

2	In Tang (2015), it was shown that the derivation of MM kinetics ignores the mass	
3	balance constraint of substrate, resulting in the MM kinetics to predict inaccurate	
4	parametric sensitivity over the wide range of substrate to consumer ratios (e.g., Figure 1	
5	in Tang (2015)). In the above, we also noticed that the substrates mass balance	
6	constraints as indicated by equations (14) , and (15) , are not used in deriving the DM and	Jinvun
7	SU kinetics, suggesting that both the DM and SU kinetics may suffer from the same	Delet Jinyun
8	deficit as the MM kinetics. Further, since the DM kinetics fails to consistently scale from	Delet
9	a single substrate to two complementary substrates, we below only remedy the SU	
10	kinetics into the SUPECA kinetics to achieve a scalable and non-singular formulation of	
11	the redox reactions.	
12	As implied in equations $(9)_{\overline{(16)}}$, the derivation of substrate kinetics requires	Jinyun
13	solving for $[EAB]$ from nonlinear equations (11)-(16), whose analytical solutions are not	Delete Jinyun Delete
14	available. To obtain improved solutions as compared to SU kinetics, we applied a first	Jinyun Delete
15	order closure approach (appendix D; which is the perturbation method truncated to the	Jinyun Delete
16	first order accuracy that describes the first order term using appropriate mean states (e.g.,	
17	Shankar, 1994; Tang et al., 2007)) to the system formed by equations (11), (16), leading	.linvun
18	to the SUPECA kinetics:	Delet

Jinyun Tang 5/18/2017 2:44 PM Deleted: (14) Jinyun Tang 5/18/2017 2:44 PM Deleted: (15)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (9) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16) Jinyun Tang 5/18/2017 2:44 PM Deleted: (11) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (11) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16)

$$\frac{d[A]_{T}}{dt} = -\frac{[E]_{T}}{\frac{1}{k_{2}^{+}} \frac{\overline{f}_{A} \overline{f}_{B} f_{AB}}{f_{A} f_{B} \overline{f}_{AB}} + \frac{1}{f_{A}} + \frac{1}{f_{B}} - \frac{f_{A} \overline{f}_{B} + \overline{f}_{A} f_{B} - \overline{f}_{A} \overline{f}_{B}}{f_{A} f_{B} \overline{f}_{AB}}} \\
= -\frac{k_{2}^{+} [E]_{T} (f_{A} / k_{2}^{+}) (f_{B} / k_{2}^{+})}{\frac{\overline{f}_{A} \overline{f}_{B} f_{AB}}{k_{2}^{+}} + \frac{f_{AB}}{k_{2}^{+}} - \frac{f_{A} \overline{f}_{B} + \overline{f}_{A} f_{B} - \overline{f}_{A} \overline{f}_{B}}{k_{2}^{+} \overline{f}_{AB}}}$$

1 where $f_A = k_A^+ \begin{bmatrix} A \end{bmatrix}_T$, $f_B = k_B^+ \begin{bmatrix} B \end{bmatrix}_T$, $\overline{f}_A = f_A + k_A^+ \begin{bmatrix} E \end{bmatrix}_T$, $\overline{f}_B = f_B + k_B^+ \begin{bmatrix} E \end{bmatrix}_T$, $f_{AB} = f_A + f_B$, 2 and $\overline{f}_{AB} = \overline{f}_A + \overline{f}_B$. In equation (28), we assumed $k_2^+ \gg k_A^-$ and $k_2^+ \gg k_B^-$, so that $k_2^+ \approx \tilde{k}_2^+$ 3 (we note that this relationship will be used throughout the remainder of this paper). It can

4 then be verified that if $[E]_T \ll [A]_T$ and $[E]_T \ll [B]_T$, the SUPECA kinetics as

5 represented in equation (28), becomes the SU kinetics in equation (26), Further, if one of

6 the two substrates, say $[B]_T$, approaches infinity, equation (28) is reduced to

$$\frac{d\lfloor A \rfloor_{T}}{dt} = -\frac{\lfloor E \rfloor_{T}}{\frac{1}{k_{2}^{+}}\frac{\overline{f}_{A}}{f_{A}} + \frac{1}{f_{A}}} = -\frac{f_{A}\lfloor E \rfloor_{T}}{1 + \frac{\overline{f}_{A}}{k_{2}^{+}}}$$
(29)

7 which by using the definition of f_A and \overline{f}_A can be reduced to the single substrate ECA

8 kinetics equation (Tang, 2015).

9 **3. SUPECA kinetics for a network of reactions**

10 In actual biogeochemical systems, it is more common for many substrates to be

- 11 processed by many consumers concurrently (and such an assumption is implicitly
- 12 assumed in the space-time-process unit of any biogeochemical model). To consistently

19

Jinyun Tang 5/18/2017 2:44 PM Deleted: (28)

(28)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (28) Jinyun Tang 5/18/2017 2:44 PM Deleted: (26) Jinyun Tang 5/18/2017 2:44 PM Deleted: (28)

1 2 3	handle such situations, Tang and Riley (2013a) derived the ECA kinetics (see Figure 2, for a graphic demonstration) for calculating the consumption of a substrate S_i by a consumer E_j in a network of single substrate reactions $A \xrightarrow{E} products$ as	Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 2
	$\frac{d\left[S_{i}\right]_{T,j}}{dt} = -\frac{k_{2,ij}^{+}\left[E_{j}\right]_{T}\left(\left[S_{i}\right]_{T}/K_{ij}\right)}{1 + \sum_{l=1}^{l=l}\left(\left[S_{l}\right]_{T}/K_{ij}\right) + \sum_{l=1}^{l=l}\left(\left[E_{l}\right]_{T}/K_{il}\right)} $ (30)	
4	By defining the normalized substrate flux (with subscript "c" designating that the	
5	summation is over a column of the graph in Figure 2)	
ļ	$F_{c,j} = \sum_{l=1}^{l=l} \left(\left[S_l \right]_T / K_{lj} \right) = \sum_{l=1}^{l=l} F_{c,j}^{\{l\}} $ (31)	Deleted: Figure 2
6	and its conjugate (with subscript "r" designating that the summation is over a row of the	
7	graph in Figure 2) $F_{r,i} = \sum_{l=1}^{l=l} \left(\left[E_l \right]_T / K_{il} \right) = \sum_{l=1}^{l=l} F_{r,i}^{\{l\}} $ (32)	Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 2
8	equation $(30)_{e}$ can then be rewritten as	Jinyun Tang 5/18/2017 2:44 PM
ļ	$\frac{d\left[S_{i}\right]_{T,j}}{dt} = -k_{2,ij}^{+}\left[E_{j}\right]_{T}\left(\frac{F_{c,j}^{\{i\}}}{1+F_{r,i}+F_{c,j}}\right) = -k_{2,ij}^{+}\left[S_{i}\right]_{T}\left(\frac{F_{r,i}^{\{j\}}}{1+F_{r,i}+F_{c,j}}\right) $ (33)	Deleted: (30)
9	The normalized substrate flux as defined in equation $(31)_{r}$ and its conjugate in equation	Jinyun Tang 5/18/2017 2:44 PM
0	(32) implies that the consumption of substrate S _i by consumer E _i as described by the	Deleted: (31) Jinyun Tang 5/18/2017 2:44 PM
1	ECA kinetics in equation (33) may be interpreted as either (i) the potential substrate	Deleted: (32) Jinyun Tang 5/18/2017 2:44 PM Deleted: (33)

processing rate of E_j (aka $k_{2,ij}^+ \left[E_j \right]$) weighted by the relevant importance of the reaction 1 pathway $S_i \xrightarrow{E_j} products$ (aka $F_{c,j}^{\{i\}}$) under the influence of all competing substrate fluxes 2 $F_{c,j}^{[l]}$ (towards consumer E_j) and all competing agents' efforts $F_{r,i}^{[l]}$ (towards substrate S_i) 3 or (ii) the linear decay potential of S_i (aka $k_{2,ij}^+ [S_i]_T$) weighted by relevant importance of 4 $F_{r_i}^{[j]}$ under the influence of all competing substrate fluxes and competing agents' efforts. 5 We further note that equations (31), and (32), define some very interesting scaling 6 7 relationships. For instance, from equation (31), we can define the effective substrate affinity for the bulk substrates ($\left[\overline{S}\right]_{T}$ defined as the total of all substrates) that are 8 accessible for consumer E_j as 9

$$K_{E,j} = \left(\sum_{l=1}^{l=l} \left[S_l\right]_T\right) / F_{c,j} = \left[\overline{S}\right]_T / F_{c,j}$$
(34)

10 Similarly, we can define the effective affinity for substrate
$$S_i$$
 resulting from all
11 competing agents as

$$K_{S,i} = \left(\sum_{l=1}^{l=1} \left[E_l\right]_T\right) / F_{r,i} = \left[\overline{E}\right]_T / F_{r,i}$$

12

Then by substituting equations (34), and (35), into equation (33), we obtain

_	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (34)
	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (35)
	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (33)

(35)

1	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (31)
۲	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (32)
۲	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (31)

$$\frac{d[S_{i}]_{T,j}}{dt} = -\frac{k_{2,ij}^{+}[E_{j}]_{T}([\overline{S}]_{T}/K_{E,j})}{1+[\overline{S}]_{T}/K_{E,j}+[\overline{E}]_{T}/K_{S,i}} \frac{F_{c,j}^{\{i\}}}{F_{c,j}} = -\frac{k_{2,ij}^{+}[S_{i}]_{T}([\overline{E}]_{T}/K_{S,i})}{1+[\overline{S}]_{T}/K_{E,j}+[\overline{E}]_{T}/K_{S,i}} \frac{F_{r,i}^{\{j\}}}{F_{r,j}}$$
(36)

1 which again shows the linear partition in terms of $F_{c,j}^{\{i\}}/F_{c,j}$ and $F_{r,j}^{\{j\}}/F_{r,j}$.

2 By applying the above two scaling relationships and the three consistent scaling

3 criteria (as we proposed in the introduction section) to the SUPECA kinetics in equation

4 (28), we obtain (in appendix E) the network form of the SUPECA kinetics below,

$$\frac{d\left[A_{i}\right]_{T,jk}}{dt} = -\frac{k_{2,jk}^{+}\left[E_{k}\right]_{T}F_{c,A,k}^{\{i\}}F_{c,B,k}^{\{j\}}}{\frac{G_{A,jk}G_{B,jk}}{G_{AB,jjk}}F_{c,AB,k} + F_{c,AB,k} - \frac{F_{c,A,k}G_{B,jk} + G_{A,jk}F_{c,B,k} - G_{A,jk}G_{B,jk}}{G_{AB,jjk}}$$
(37)

5 where

$$F_{c,A,k} = \sum_{l} F_{c,A,k}^{[l]} = \sum_{l} \left[A_{l} \right]_{T} / K_{A,lk}$$
(38)

$$F_{c,B,k} = \sum_{l} F_{c,B,k}^{\{l\}} = \sum_{l} \left[B_{l} \right]_{T} / K_{B,k}$$
(39)

$$F_{c,AB,k} = F_{c,A,k} + F_{c,B,k} \tag{40}$$

$$F_{r,A,i} = \sum_{l} \left[E_{l} \right]_{T} / K_{A,il}$$
(41)

$$F_{r,B,j} = \sum_{l} \left[E_{l} \right]_{T} / K_{B,jl}$$

$$\tag{42}$$

22

Jinyun Tang 5/18/2017 2:44 PM

Deleted: (28)

$$G_{A,ik} = F_{c,A,k} + F_{r,A,i} \tag{43}$$

$$G_{B,jk} = F_{c,B,k} + F_{r,B,j}$$
(44)

$$G_{AB,jjk} = G_{A,ik} + G_{B,jk} \tag{45}$$

i		
1	For equation (37), it is straightforward to verify that if $F_{c,B,k}$ (or $F_{c,A,k}$) goes to infinity,	Jinyun Tang 5/18/2017 2:44 PM Deleted: (37)
2	then SUPECA kinetics is reduced to the ECA kinetics in equation (33), Therefore, the	Linvun Tang 5/18/2017 2:44 PM
3	SUPECA kinetics as formulated in equation (37) is an extension of both the SU and ECA	Deleted: (33)
4	kinetics, and SUPECA is applicable for consistent scaling of substrate-consumer	Deleted:
5	networks involving both single-substrate reactions and redox-reactions (a visually more	Deleted: (37)
6	appealing demonstration of the SUPECA kinetics is in Figure 3).	linvun Tana 5/18/2017 2-44 PM
7	4. Accuracy of the SUPECA kinetics	Deleted: Figure 3
8	Following Tang and Riley (2013a), we below evaluate the numerical accuracy of	
9	the SUPECA kinetics by comparing its solution against that obtained from solving the	
10	equilibrium chemistry problem. However, because of numerical complexity, we restricted	
11	the comparison to the AB-E problem as formulated by equations $(11)_{-(16)_{-}}$ with the	Linvun Tang 5/18/2017 2:44 PM
12	assumption of $k_A^- = k_B^- = 0$ and include a substrate sorbent to mimic a class of	Deleted: (11) Jinyun Tang 5/18/2017 2:44 PM
13	biogeochemistry problems in soil, such as aerobic soil ammonium nitrification and	Deleted: (16)
14	aerobic soil organic carbon decomposition (formulated in appendix F).	
15	We evaluated the accuracy of SUPECA (equation (37)) and SU (equation (26))	Jinyun Tang 5/18/2017 2:44 PM
16	over a wide range of parameter values. Specifically, we fixed both substrates at a nominal	Jinyun Tang 5/18/2017 2:44 PM Deleted: (26)
1	value of 40 mol m ⁻ , and the maximum substrate processing rate at 48 s ⁻ . Then we	
----	---	
2	sampled the affinity parameters exponentially over the range of $[0,1000]$ mol m ⁻³ and	
3	the microbe and sorbent concentrations uniformly over the range of $[0,1000]$ mol m ⁻³ .	
4	With a total of 1000 sets of randomly paired parameters, we compared how close the	
5	SUPECA and SU approximations are to the EC solution in terms of root mean square	
6	error (RMSE) and goodness of linear fit. Because the SU kinetics does not allow a direct	
7	integration of the Langmuir adsorption into the calculation of microbe-substrate	
8	complexes, we followed Resat et al. (2011) and first solved the Langmuir isotherm to	
9	obtain the free substrate concentrations and then entered these free substrate	
10	concentrations into SU to obtain the microbe-substrate complex. Apparently, such an	
11	artificial ordering in calculation (as needed by the SU approach) suggests that the	
12	implementation of SU is numerically cumbersome (and similar numerical difficulties are	
13	also associated with the popular MM kinetics (Resat et al., 2011; Tang and Riley,	
14	2013a)).	
15	Our comparison (Figure 4) clearly indicates that the SUPECA kinetics is superior	
16	to the SU kinetics in computing the microbe-substrate complex in presence of the	

Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 4

to the SU kinetics in computing the microbe-substrate complex in presence of the
substrate binding competition between microbes and sorbent. The SUPECA kinetics is
more accurate in terms of both goodness of linear fitting and RMSE. In magnitude, the
RMSE of SUPECA predictions is less than 10% of that of SU calculations. The slope of
linear fitting from SUPECA calculations is also much closer to the ideal value 1.0,
whereas that from SU calculations is far greater than 1.0, suggesting that SU kinetics
significantly overestimates microbe-substrate complexes under a wide range of

1 conditions. This very large slope from SU calculations is also consistent with the 2 singularity at infinite microbial abundances as implied by the linear dependence on 3 microbial abundances in deriving the SU kinetics (equation (26)). Therefore, combined with the better numerical performance of ECA (Tang and Riley, 2013a; Tang, 2015) than 4 MM kinetics, we contend that SUPECA kinetics is both numerically more convenient 5 6 and more accurate than SU kinetics (which becomes the MM kinetics for one-substrate 7 reactions; see equation (27)) in calculating the microbe-substrate complexes for situations 8 involving microbes, enzymes, substrates and soil minerals (e.g., Tang and Riley, 2015).

9 5. Example application to modeling aerobic heterotrophic respiration

10 As an example application, we applied the SUPECA kinetics to model the 11 moisture stress on aerobic soil respiration. In our formulation of the problem (Appendix G), we consider a homogenous 10 cm thick soil with 2.0 mol C m⁻³ microbes and 3.0 mol 12 13 C m⁻³ dissolvable organic carbon (different DOC values affected our results negligibly as long as they are larger than 0.5 mol C m⁻³) uniformly distributed across the soil pores. We 14 15 conceptualize the transport of substrates (i.e., oxygen and DOC) in soil as a two-stage 16 diffusion process (e.g., Grant, 1991) with the first stage from the bulk soil matrix to the 17 water film covering the microbial microsites and the second stage from the water film to 18 the microbial transporters where the substrates are processed. The diffusion processes in 19 soil are calculated based on soil moisture status and the hydraulic properties of a 20 hypothesized soil with a texture of 40% clay and 30% sand. The pedotransfer functions 21 used for calculating soil hydraulic properties are from CLM4.5 (Oleson et al., 2013).

Jinyun Tang 5/18/2017 2:44 PM Deleted: (26)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (27)

1	Our conceptual model assumes that the inter microsites (or aggregates) transport
2	dominates the intra-aggregate transport, which is consistent with pore scale simulations
3	(Yang et al., 2014). The model is solved to steady state by assuming that the microbes,
4	atmospheric oxygen, and DOC are in balance under the influence of Langmuir type DOC
5	sorption by soil minerals. Calculations are conducted for three levels of soil minerals
6	(with adsorption capacities at 0, 90, and 180 mol C m^{-3}) and two levels of microbial
7	oxygen affinity (with default $K_{02,w} = 3 \times 10^{-5}$ mol m ⁻³ and elevated $K_{02,w} = 3 \times 10^{-2}$ mol
8	m ⁻³ ; <u>Figure 5</u> , Figure 6 and Figure 7). The calculation with elevated $K_{02,w}$ (when
9	compared to the default $K_{_{O2,w}}$) indicates the effect of soil aggregates on determining
10	microbes' moisture response (see explanations below and in Appendix G). We evaluated
11	(1) how close our predicted moisture response function is to the incubation data from
12	Franzluebbers (1999) and (2) how soil mineral adsorption of DOC would affect the shape
13	of the soil moisture response function.
14	When the respiration curves are normalized to the range of $[0,1]$, we found that
15	all curves have the pattern that soil respiration first increases from dry soil with
16	increasing moisture and then levels off after reaching a peak value (where the respiration
17	is co-limited by oxygen and DOC bioavailability). The curve with the highest mineral
18	soil carbon adsorption capacity (180 mol C m ⁻³) and elevated $K_{_{O2,w}}$ value best
19	approximates the incubation data from Franzluebbers (1999) and as the sorption capacity
20	becomes smaller, the sharper the moisture response function becomes.

Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 5 Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 6 Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 7

1	When the affinity parameter of oxygen is reduced to its default value (while
2	keeping the adsorption capacity to 180 mol C m ⁻³ ; see explanation in Appendix G), the
3	soil moisture response function becomes the sharpest with the highest threshold moisture
4	where the respiration peaks (see green line in Figure 5). Unlike Kausch and Pallud (2013)
5	and Yang et al. (2014), we here have not explicitly prognosed the oxygen distribution
6	inside the aggregates. Since the apparent oxygen affinity parameter (which we use here)
7	generally increases with aggregate size (Griffin, 1968), the poorer agreement of the data
8	with respect to the prediction using the default oxygen affinity parameter indicates that
9	soil aggregates may play an important role in controlling microbes' response to soil
10	moisture stress. Indeed, Franzluebbers (1999) indicated in his Figure 1 that there are
11	significant amount of aggregates in his incubated soil. Moreover, the higher moisture
12	threshold (where respiration peaks) with the default apparent oxygen affinity parameter is
13	also consistent with measurements that aggregates may facilitate anaerobic processes
14	under well-ventilated conditions (by increasing the range of soil moisture conditions
15	where oxygen limits aerobic processes; Renault and Stengel, 1994).
16	When the effect of different mineral soil carbon adsorption capacity is evaluated
17	against the normalized respiration (Figure 6), we found, being consistent with results
18	described in Tang and Riley (2015), that higher adsorption capacity results in
19	significantly lower soil respiration. Therefore, when the results from Figure 5, and Figure
20	6 are taken together, we contend that, like the soil temperature effect discussed in Tang
21	and Riley (2015), the soil moisture response function is an emergent response resulting
22	from the interactions between biotic and abiotic factors that co-regulate soil organic
23	carbon decomposition (Manzoni et al., 2016). Such a result strongly contrasts with the

Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 6

Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 5 Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 6

1	popular approach in existing soil BGC models (e.g., Koven et al., 2013; Tang et al.,	
2	2013), which apply a soil moisture response function as a multiplier on an unstressed	
3	rate. We therefore suspect that treating moisture stress as a multiplier in modeling soil C	
4	decomposition could also significantly bias existing soil biogeochemical model	
5	predictions. We will explore such biases in other studies.	
6	When the default oxygen affinity parameter was used in analyzing the effects of	
7	different mineral soil carbon adsorption capacities, all the respiration moisture response	
8	functions are essentially the same (Figure 7). Since the oxygen affinity parameter reflects	
9	the impacts of aggregates at the cm ³ scale, Figures 6 and 7 demonstrate that soil	
10	aggregates may have profound influence on soil carbon decomposition rates.	
11	6. Potential applications of the SUPECA kinetics for trait-based biogeochemical	
12	modeling	
13	Besides the example application above, we expect that the SUPECA kinetics will	
14		
14	be a unique and powerful tool for trait-based modeling in various biogeochemical	
15	be a unique and powerful tool for trait-based modeling in various biogeochemical systems. As we show above and below, the SUPECA kinetics will enable more robust	
15 16	be a unique and powerful tool for trait-based modeling in various biogeochemical systems. As we show above and below, the SUPECA kinetics will enable more robust predictions with better numerical consistency and smaller parametric sensitivities than the	
15 16 17	be a unique and powerful tool for trait-based modeling in various biogeochemical systems. As we show above and below, the SUPECA kinetics will enable more robust predictions with better numerical consistency and smaller parametric sensitivities than the popular family of Monod kinetics, and SUPECA will be applicable for any	
14 15 16 17 18	be a unique and powerful tool for trait-based modeling in various biogeochemical systems. As we show above and below, the SUPECA kinetics will enable more robust predictions with better numerical consistency and smaller parametric sensitivities than the popular family of Monod kinetics, and SUPECA will be applicable for any biogeochemical system that involves substrate-consumer binding and binding	
15 16 17 18 19	be a unique and powerful tool for trait-based modeling in various biogeochemical systems. As we show above and below, the SUPECA kinetics will enable more robust predictions with better numerical consistency and smaller parametric sensitivities than the popular family of Monod kinetics, and SUPECA will be applicable for any biogeochemical system that involves substrate-consumer binding and binding competition.	
14 15 16 17 18 19 20	be a unique and powerful tool for trait-based modeling in various biogeochemical systems. As we show above and below, the SUPECA kinetics will enable more robust predictions with better numerical consistency and smaller parametric sensitivities than the popular family of Monod kinetics, and SUPECA will be applicable for any biogeochemical system that involves substrate-consumer binding and binding competition. The assertion of smaller parametric sensitivity as predicted by SUPECA (than by	
14 15 16 17 18 19 20 21	be a unique and powerful tool for trait-based modeling in various biogeochemical systems. As we show above and below, the SUPECA kinetics will enable more robust predictions with better numerical consistency and smaller parametric sensitivities than the popular family of Monod kinetics, and SUPECA will be applicable for any biogeochemical system that involves substrate-consumer binding and binding competition. The assertion of smaller parametric sensitivity as predicted by SUPECA (than by Monod kinetics) can be verified using the single-substrate reaction network as an	

Jinyun Tang 5/18/2017 2:44 PM Deleted: Figure 7

- 1 the reaction network, ECA kinetics predicts the sensitivity of its consumption by
- 2 consumer $\begin{bmatrix} E_{j} \end{bmatrix}$ with respect to the maximum processing rate $k_{2,ij}^{+}$ as

$$\left| \frac{\partial}{\partial k_{2,ij}^{+}} \left(\frac{d \left[S_{i} \right]_{T,j}}{dt} \right) \right| = \frac{\left[E_{j} \right]_{T} F_{c,j}^{\{i\}}}{1 + F_{r,i} + F_{c,j}} < \frac{\left[E_{j} \right]_{T} F_{c,j}^{\{i\}}}{1 + F_{c,j}} < \frac{\left[E_{j} \right]_{T} F_{c,j}^{\{i\}}}{1 + F_{c,j}^{\{i\}}}$$
(46)

where the term after the first "<" is prediction by the competitive Monod kinetics and that
after the second "<" is by the Monod kinetics, suggesting that models using Monod
kinetics for substrate competition is most sensitive to parameters and least robust to
calibrate (e.g., Tang and Riley, 2013a).

7 To quantitatively evaluate our assertion that SUPECA kinetics predicts lower 8 parametric sensitivity, we, for instance, apply equation (46), to 100 competing substrate fluxes of equal magnitude. We then have $F_{c,j} = 100F_{c,j}^{\{i\}}$. Meanwhile, if $F_{c,j}^{\{i\}} > 1$, then the 9 10 sensitivity predicted by competitive Monod kinetics is less than 1% of that by Monod 11 kinetics. Further, if the competing efforts from all agents is comparable to the overall 12 substrate fluxes, i.e., $F_{r,i} \approx F_{c,i}$, then the parametric sensitivity predicted by ECA is about 13 50% of that by competitive Monod kinetics. Therefore, the ECA (and by extension, SUPECA) prediction is much less sensitive with respect to $k_{2,ii}^+$ than that predicted by 14 competitive Monod kinetics and Monod kinetics. Moreover, with equations (30), and (37), 15 16 one can verify that the more substrates and consumers are represented in the system, the 17 smaller the parametric sensitivity will be predicted by the ECA (and SUPECA) kinetics. 18 One can also verify that such robustness is true for other parameters in the SUPECA 19 kinetics, including the substrates and consumer abundances. That including more

29

Jinyun Tang 5/18/2017 2:44 PM

Deleted: (46)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (30) Jinyun Tang 5/18/2017 2:44 PM Deleted: (37) substrates and consumers will leads to more robust model predictions is the fundamental
 premise that underlines the proposal of trait-based modeling (e.g., Bouskill et al., 2012),
 and SUPECA is the only kinetics that explicitly contains this presumption in its
 formulation.

5 The assertion of wide applicability with SUPECA kinetics has been demonstrated 6 by a number of successful applications that we have published with the ECA kinetics. In 7 a series of studies (Zhu and Riley, 2015; Zhu et al., 2016a, 2016b, 2017), we show that 8 ECA kinetics was able to significantly improve the modeling of nutrient competition 9 between plants, microbes, and mineral soils. In Tang and Riley (2013a), where the ECA 10 kinetics was first proposed, the lignin decomposition dynamics was correctly captured 11 without a priori imposing a target lignocellulose index. In Tang and Riley (2013a, 2015) 12 and this study, the ECA kinetics was able to seamlessly incorporate the Langmuir type 13 substrate adsorption into its numerical implementation without invoking the ad hoc 14 numerical order that is prerequisite to MM (or Monod) kinetics for modeling mineral, 15 microbe, and substrate interactions.

Finally, we expect the SUPECA kinetics will provide a robust approach to resolve
the redox ladder in soil biogeochemistry. Existing approaches have imposed the redox
ladder rigorously following some specific order, e.g.

 $19 \qquad O_{_2}\left(H_{_2}O\right), NO_{_3}^{\cdot}\left(N_{_2}\right), MnO_{_2}\left(Mn^{^{2+}}\right), Fe\left(OH\right)_{_3}\left(Fe^{^{2+}}\right), SO_{_4}^{2-}\left(H_{_2}S\right), CO_{_2}\left(CH_{_4}\right), and$

- 20 $H_2O(H_2)$ (e.g., Grant, 2001). In contrast, the SUPECA kinetics will allow all these
- 21 redox-couples to operate concurrently (in any space-time-process unit), a situation that is
- 22 more consistent with natural soils. Such a feature will also allow the microbial

30

Jinyun Tang 5/18/2017 2:35 PM Deleted: c biogeochemistry models (most of which are considered to be valid at pore scale) to be
 valid at the scale of well-mixed bulk soils (~cm³). We are now building such a model and
 will describe it elsewhere.

4 7. Conclusion

5	In this study, we showed that the popular Monod family kinetics and synthesizing	
6	unit (SU) kinetics are not scaling consistent for a reaction network involving mixed	
7	$A \rightarrow products$ type and $A + B \rightarrow products$ type reactions. The SUPECA kinetics, by	
8	properly accounting for mass balance constraints of both substrates and consumers, is	
9	able to scale such reaction networks without changing its mathematical formulation. Our	
10	numerical tests indicate that SUPECA kinetics is superior to SU kinetics both in	
11	numerical accuracy and numerical robustness and SUPECA kinetics is able to	
12	satisfyingly predict the moisture response function of aerobic soil respiration. Moreover,	
13	because SUPECA kinetics intrinsically represents specific microbial traits that can be	
14	measured, we expect many more novel modeling applications will be plausible to	
15	improve predictions of a wide range of biogeochemical systems.	
16	8. Code and data availability	
17	The source code and data used in this manuscript are available upon request to the	
18	corresponding author.	
19		
20	Appendix A: Deriving the governing equations	

21 The law of mass action formulation of the redox reaction (8) is

Jinyun Tang 5/18/2017 2:44 PM Deleted: (8)

$$\frac{d[EA]}{dt} = k_A^+ [E][A] + k_B^- [EAB] - (k_A^- + k_B^+ [B])[EA]$$
(A1)

$$\frac{d[EB]}{dt} = k_B^+[E][B] + k_A^-[EAB] - (k_B^- + k_A^+[A])[EB]$$
(A2)

$$\frac{d[EAB]}{dt} = k_A^+ [EB][A] + k_B^+ [EA][B] - (k_A^- + k_B^- + k_2^+)[EAB]$$
(A3)

$$\frac{d[P]}{dt} = k_2^+ [EAB] \tag{A4}$$

$$\frac{d[A]}{dt} = -k_A^+ \left(\begin{bmatrix} E \end{bmatrix} + \begin{bmatrix} EB \end{bmatrix} \right) \left[A \end{bmatrix} + k_A^- \left(\begin{bmatrix} EA \end{bmatrix} + \begin{bmatrix} EAB \end{bmatrix} \right)$$
(A5)

$$\frac{d[B]}{dt} = -k_B^+ \left(\left[E \right] + \left[EA \right] \right) \left[B \right] + k_B^- \left(\left[EB \right] + \left[EAB \right] \right)$$
(A6)

1 We now apply the total quasi-steady-state approximation (e.g., Borghans et al., 1996) to

2 obtain the Equilibrium Chemistry formulation of the system. Specifically, we obtain 3 equations (11)-(13), by respectively setting the time derivatives of equations (A1)-(A3), to 4 zero. Equation (9), is obtained by adding together equations (A1), (A3), and (A5), and using the definition of $[A]_T$ by equation (14). Equation (10) is obtained by adding 5 together equations (A2), (A3) and (A6) with the definition of $\begin{bmatrix} B \end{bmatrix}_T$ by equation (15). 6 7 Appendix B: Deriving the dual Monod kinetics in equation (21), Replacing [EA] in equation (17) with that obtained from equation (19), we obtain 8 $\begin{bmatrix} EAB \end{bmatrix} = \frac{\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} B \end{bmatrix}}{K_A} \begin{bmatrix} E \end{bmatrix}$ (B-1)

1By solving
$$[EA]$$
 from equation $(19)_{x}$ $[EB]$ from equation $(20)_{x}$ and combining2these with equation $(16, 1)_{x}$ into equation $(16)_{x}$ we find2 $[E]_{x} = \left(1 + \left[\frac{A}{K_{x}}\right] \left(1 + \left[\frac{B}{K_{y}}\right]\right] E^{2}\right]$ 3 $[E]_{x} = \left(1 + \left[\frac{A}{K_{x}}\right] \left(1 + \left[\frac{B}{K_{y}}\right]\right] E^{2}\right]$ 4 $[EAB] = \left(\frac{E}{K_{x} + [A]} \left(\frac{B}{K_{x} + [A]}\right) \left(\frac{E}{K_{x} + [A]}\right) \left(E\right)_{x}$ 4We thence obtain the dual Monod kinetics by entering equation $(B-1)_{x}$ we then get5equation $(9)_{x}$ 4We thence obtain the dual Monod kinetics in equation $(26)_{x}$ 7Since SU kinetics assumes that substrates are not limiting the biogeochemical8reaction, we then, from equations $(23)_{x}$ and $(24)_{x}$ obtain $[EAB] = \frac{K_{x}^{2} \left[\frac{A}{R_{x}}\right] E^{2}$ (EA) = \frac{K_{x}^{2} \left[\frac{A}{R_{x}}\right] E^{2}(C-1) $[EA] = \frac{K_{x}^{2} \left[\frac{A}{R_{x}}\right] E^{2}$ (C-1) $[EA] = \frac{K_{x}^{2} \left[\frac{A}{R_{x}}\right] E^{2}$ 6Poletect: (23)7Since SU kinetics assumes that substrates are not limiting the biogeochemical8reaction, we then, from equations $(23)_{x}$ and $(24)_{x}$ obtain(EA) = \frac{K_{x}^{2} \left[\frac{A}{R_{x}}\right] E^{2}(C-1) $EB = \frac{K_{x}^{2} \left[\frac{A}{R_{x}}\right] E^{2}$ 10we find $[EAB] = \frac{E}{K_{x}^{2} + K_{x}^{2} + K_{x}^{2} (K_{x}^{2} (A) + k_{y}^{2} (B))$ 11Now if we combine equations $(C-1)_{x}(C-3)_{x}$ with equation $(16)_{x}$ we get11Now if we combine equations $(C-1)_{x}(C-3)_{x}$ with equation $(16)_{x}$ we get

$$\begin{bmatrix} E \end{bmatrix} = \frac{\begin{bmatrix} E \end{bmatrix}_{T}}{1 + \frac{k_{A}^{+} \begin{bmatrix} A \end{bmatrix}}{k_{B}^{+} \begin{bmatrix} B \end{bmatrix}} + \frac{k_{B}^{+} \begin{bmatrix} B \end{bmatrix}}{k_{A}^{+} \begin{bmatrix} A \end{bmatrix}} + \frac{k_{A}^{+} \begin{bmatrix} A \end{bmatrix} + k_{B}^{+} \begin{bmatrix} B \end{bmatrix}}{\tilde{k}_{2}^{+}}}$$
$$= \frac{\begin{bmatrix} E \end{bmatrix}_{T}}{\frac{\left(k_{A}^{+} \begin{bmatrix} A \end{bmatrix} + k_{B}^{+} \begin{bmatrix} B \end{bmatrix}\right)^{2}}{\left(k_{A}^{+} \begin{bmatrix} A \end{bmatrix}\right)\left(k_{B}^{+} \begin{bmatrix} B \end{bmatrix}\right)^{2}} + \frac{k_{A}^{+} \begin{bmatrix} A \end{bmatrix} + k_{B}^{+} \begin{bmatrix} B \end{bmatrix}}{\tilde{k}_{2}^{+}} - 1}$$

which, when combined with equation $(C-3)_{p}$ leads to

$$\begin{bmatrix} EAB \end{bmatrix} = \frac{k_A^+ \begin{bmatrix} A \end{bmatrix} + k_B^+ \begin{bmatrix} B \end{bmatrix}}{\tilde{k}_2^+} \frac{\begin{bmatrix} E \end{bmatrix}_T}{(k_A^+ \begin{bmatrix} A \end{bmatrix} + k_B^+ \begin{bmatrix} B \end{bmatrix})^2} + \frac{k_A^+ \begin{bmatrix} A \end{bmatrix} + k_B^+ \begin{bmatrix} B \end{bmatrix}}{\tilde{k}_2^+} - 1$$

$$= \frac{\begin{bmatrix} E \end{bmatrix}_T / \tilde{k}_2^+}{\frac{1}{\tilde{k}_2^+} + \frac{k_A^+ \begin{bmatrix} A \end{bmatrix} + k_B^+ \begin{bmatrix} B \end{bmatrix}}{(k_A^+ \begin{bmatrix} A \end{bmatrix}) (k_B^+ \begin{bmatrix} B \end{bmatrix})} - \frac{1}{k_A^+ \begin{bmatrix} A \end{bmatrix} + k_B^+ \begin{bmatrix} B \end{bmatrix}}$$

$$= \frac{\begin{bmatrix} E \end{bmatrix}_T / \tilde{k}_2^+}{\frac{1}{\tilde{k}_2^+} + \frac{1}{k_A^+ \begin{bmatrix} A \end{bmatrix}} + \frac{1}{k_B^+ \begin{bmatrix} B \end{bmatrix}} - \frac{1}{k_A^+ \begin{bmatrix} A \end{bmatrix} + k_B^+ \begin{bmatrix} B \end{bmatrix}}{k_A^+ \begin{bmatrix} A \end{bmatrix} + k_B^+ \begin{bmatrix} B \end{bmatrix}}$$
(C-5)

When [EAB] from equation of (C-5) is entered into equation (9), we then obtain 2

3 equation (26), Appendix D: Deriving the SUPECA kinetics equation (28), 4

5

We first derive the set of linear equations using the first order closure approach

(i.e., the perturbation method truncated to first order accuracy; Shankar, 1994; Tang et 6

<u>al., 2007</u>). By entering equations $(14)_{-}(16)_{-}$ into equation $(23)_{-}$ we have 7

Jinyun Tang 5/18/2017 2:44 PM Deleted: (C-5) Jinyun Tang 5/18/2017 2:44 PM Deleted: (9) Jinyun Tang 5/18/2017 2:44 PM **Deleted:** (26) Jinyun Tang 5/18/2017 2:44 PM Deleted: (28)

Jinyun Tang 5/18/2017 2:44 PM **Deleted:** (14) Jinyun Tang 5/18/2017 2:44 PM **Deleted:** (16) Jinyun Tang 5/18/2017 2:44 PM Deleted: (23)

34

(C-4)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (C-3)

$$k_{B}^{+}\left[EA\right]\left(\left[B\right]_{T}-\left[EB\right]-\left[EAB\right]\right)=k_{A}^{+}\left(\left[A\right]_{T}-\left[EA\right]-\left[EAB\right]\right)$$
$$\times\left(\left[E\right]_{T}-\left[EA\right]-\left[EB\right]-\left[EAB\right]\right)$$
(D-1)

1 Now if we expand equation (D-1), and keep only the zero and the first order term of

2
$$[EA], [EB] \text{ and } [EAB], \text{ then we obtain}$$

$$k_{B}^{+}\left[B\right]_{T}\left[EA\right] = k_{A}^{+}\left[E\right]_{T}\left(\left[A\right]_{T} - \left[EA\right] - \left[EAB\right]\right)$$

$$-k_{A}^{+}\left[A\right]_{T}\left(\left[EA\right] + \left[EB\right] + \left[EAB\right]\right)$$
 (D-2)

3 which after some rearrangement becomes

$$\begin{pmatrix} k_A^+ \begin{bmatrix} A \end{bmatrix}_T + k_A^+ \begin{bmatrix} E \end{bmatrix}_T + k_B^+ \begin{bmatrix} B \end{bmatrix}_T \end{pmatrix} \begin{bmatrix} EA \end{bmatrix} + k_A^+ \begin{bmatrix} A \end{bmatrix}_T \begin{bmatrix} EB \end{bmatrix}$$

+ $k_A^+ \begin{pmatrix} \begin{bmatrix} A \end{bmatrix}_T + \begin{bmatrix} E \end{bmatrix}_T \end{pmatrix} \begin{bmatrix} EAB \end{bmatrix} = k_A^+ \begin{bmatrix} A \end{bmatrix}_T \begin{bmatrix} E \end{bmatrix}_T$ (D-3)

4 Using the definitions of
$$f_A = k_A^+ [A]_T$$
, $f_B = k_B^+ [B]_T$ and $\overline{f}_A = f_A + k_A^+ [E]_T$, we may

5 rewrite equation (D-3), as

$$\left(\overline{f}_{A} + f_{B}\right)\left[EA\right] + f_{A}\left[EB\right] + \overline{f}_{A}\left[EAB\right] = f_{A}\left[E\right]_{T}$$
(D-4)

6 Because substrates A and B are symmetric in forming the consumer substrate 7 complexes, a similar linear equation can be derived by switching A and B in equation 8 $(D-4)_{*}$ (or by repeating procedures to the derivation of equation $(D-4)_{*}$ but using equations 9 $(14)_{*}(16)_{*}$ and $(24)_{*}$ $f_{B}[EA] + (f_{A} + \overline{f}_{B})[EB] + \overline{f}_{B}[EAB] = f_{B}[E]_{T}$ (D-5)

10 Now substitute equations (14)-(16), (23), and (24), into equation (25), and assume 11 $\tilde{k}_2^+ \approx k_2^+$ (i.e., unbinding is much smaller compared to the product genesis rate), we have Jinyun Tang 5/18/2017 2:44 PM Deleted: (D-1)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (D-3)

1	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (D-4)
' /	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (D-4)
/	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (14)
/	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (16)
_	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (24)
	100 mm Tone 5/40/0047 0.44 DM
/	Jinyun Tang 5/18/2017 2:44 Pivi
/	Deleted: (14)
/	Deleted: (14) Jinyun Tang 5/18/2017 2:44 PM
/	Jinyun Tang 5/18/2017 2:44 PM Deleted: (14) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16)
/ 	Jinyun Tang 5/18/2017 2:44 PM Deleted: (14) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16) Jinyun Tang 5/18/2017 2:44 PM
/ \ \	Deleted: (14) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16) Jinyun Tang 5/18/2017 2:44 PM Deleted: (23)
	Jinyun Tang 5/18/2017 2:44 PM Deleted: (14) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16) Jinyun Tang 5/18/2017 2:44 PM Deleted: (23) Jinyun Tang 5/18/2017 2:44 PM
	Jinyun Tang 5/18/2017 2:44 PM Deleted: (14) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16) Jinyun Tang 5/18/2017 2:44 PM Deleted: (23) Jinyun Tang 5/18/2017 2:44 PM Deleted: (24)
	Jinyun Tang 5/18/2017 2:44 PM Deleted: (14) Jinyun Tang 5/18/2017 2:44 PM Deleted: (16) Jinyun Tang 5/18/2017 2:44 PM Deleted: (23) Jinyun Tang 5/18/2017 2:44 PM Deleted: (24) Jinyun Tang 5/18/2017 2:44 PM

$$\begin{cases} k_s^* \left[\left(A \right]_r - \left[EAA \right] - \left[EAB \right] \right) + k_s^* \left(\left[B \right]_r - \left[EAB \right] \right) \right] \\ \times \left(\left[E \right]_r - \left[EAA \right] - \left[EAB \right] \right) = k_s^* \left[EAB \right] \end{cases}$$
(D-6)

$$\times \left(\left[E \right]_r - \left[EA \right] - \left[EAB \right] \right) = k_s^* \left[EAB \right]$$
(D-6)
1 Once again, by dropping the second and higher order terms of the consumer-
2 substrate complexes, equation (D-6) can be reduced to

$$\begin{pmatrix} k_s^* \left[A \right]_r + k_s^* \left[B \right]_r \right) \left[E \right]_r = \left(k_s^* \left[A \right]_r + k_s^* \left[B \right]_r \right) \\ \times \left(\left[EA \right]_r + \left[EB \right]_r + \left[EAB \right] \right) + k_s^* \left[E \right]_r \right) \left(EA \right]_r + k_s^* \left[E \right]_r \right) (D-7) \\ + k_s^* \left[E \right]_r \left(\left[EB \right]_r + \left[EAB \right] \right) + k_s^* \left[E \right]_r \right) \left(EAB \right] \\ 3 \text{ which by aid of } f_A = k_A^* \left[A \right]_r , f_g = k_g^* \left[B \right]_r , \ \overline{f}_A = f_A + k_A^* \left[E \right]_r , \ \overline{f}_B = f_B + k_B^* \left[E \right]_r \right) (D-8) \\ 5 \text{ Now we solve for } \left[EAB \right] \text{ from the set of linear equations } (D-4), \ (D-5), \text{ and } (D-8) \\ \frac{109 \text{ using Cramer's rule (e.g., Habgood and Arel, 2012), and find the denominator as \\ det \left(M_g \right) = \left[\frac{\overline{f}_A + f_B }{\overline{f}_B} , \frac{f_A + \overline{f}_B }{\overline{f}_A + \overline{f}_B} , \frac{\overline{f}_B}{\overline{f}_B} \right]_r \\ \frac{109 \text{ (D-8)}}{\overline{f}_A + f_B , f_A + \overline{f}_B , \frac{F_A}{\overline{f}_B} , \frac{F_A}{\overline{f}_B} \right] (D-9) \\ \end{cases}$$

7 and the numerator as

$$\det(M_n) = \begin{bmatrix} E \end{bmatrix}_T \begin{vmatrix} \overline{f}_A + f_B & f_A & f_A \\ f_B & f_A + \overline{f}_B & f_B \\ \overline{f}_A + f_B & f_A + \overline{f}_B & f_{AB} \end{vmatrix}$$
(D-10)

8 Equations (D-9), and (D-10), together lead to

Jinyun Tang 5/18/2017 2:44 PM Deleted: (D-9) Jinyun Tang 5/18/2017 2:44 PM Deleted: (D-10)

$$\begin{bmatrix} EAB \end{bmatrix} = \frac{\det(M_n)}{\det(M_d)} = \frac{f_A f_B \overline{f}_{AB} [E]_T}{k_2^+ (f_A \overline{f}_A + f_B \overline{f}_B + \overline{f}_A \overline{f}_B) + \overline{f}_A \overline{f}_B f_{AB}}$$

$$= \frac{f_A f_B \overline{f}_{AB} [E]_T}{k_2^+ (f_{AB} \overline{f}_{AB} - f_A \overline{f}_B - \overline{f}_A f_B + \overline{f}_A \overline{f}_B) + \overline{f}_A \overline{f}_B f_{AB}}$$

$$= \frac{[E]_T}{k_2^+ (\frac{f_{AB}}{f_A f_B} - \frac{f_A \overline{f}_B + \overline{f}_A f_B - \overline{f}_A \overline{f}_B}{f_A f_B \overline{f}_{AB}}) + \frac{\overline{f}_A \overline{f}_B f_{AB}}{f_A f_B \overline{f}_{AB}}}$$

$$= \frac{[E]_T}{k_2^+ (\frac{f_A f_B}{f_A f_B} - \frac{f_A \overline{f}_B + \overline{f}_A f_B - \overline{f}_A \overline{f}_B}{f_A f_B \overline{f}_{AB}}) + \frac{\overline{f}_A \overline{f}_B f_{AB}}{f_A f_B \overline{f}_{AB}}}$$

$$= \frac{[E]_T / k_2^+}{\frac{1}{k_2^+} \frac{\overline{f}_A \overline{f}_B f_{AB}}{f_A f_B \overline{f}_{AB}} + (\frac{1}{f_A} + \frac{1}{f_B} - \frac{f_A \overline{f}_B + \overline{f}_A f_B - \overline{f}_A \overline{f}_B}{f_A f_B \overline{f}_{AB}})$$
(D-11)

which, when entered into equation (9), leads to equation (28), 2 Appendix E: Deriving SUPECA for a network of substrates and consumers 3 In the second equation of equation (33), we show that the consumption of a 4 certain substrate as represented in ECA kinetics is determined by the consumer reaction potential $k_{2,ij}^+ \left[E_j \right]_T$ multiplied with the relative contribution of the specific consumption 5 pathway with respect to all competing pathways $(F_{c,j}^{\{r\}} / (1 + F_{r,j} + F_{c,j}))$. Since SUPECA 6 7 kinetics is a compatible extension of the ECA kinetics, SUPECA kinetics should have its 8 numerator indicating the potential reaction rate of the specific pathway, and its 9 denominator indicating the efforts of all interacting pathways. Bearing this partition equivalence in mind, therefore, we assert that \overline{f}_A/k_2^+ in equation (29) should be 10 equivalent to $F_{r,i} + F_{c,j}$ in equation (33). This assertion then leads to equations (38), (41) 11 12 and (43) for A substrates. Similarly, equations (39), (42) and (44) are for B substrates. With the definitions of f_A/k_2^+ , f_B/k_2^+ , \overline{f}_A/k_2^+ and \overline{f}_B/k_2^+ , using the partition 13

	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (9)
	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (28)
	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (33)

Jinyun Tang 5/18/2017 2:44 PM
Deleted: (29)
Jinyun Tang 5/18/2017 2:44 PM
Deleted: (33)
Jinyun Tang 5/18/2017 2:44 PM
Deleted: (38)
Jinyun Tang 5/18/2017 2:44 PM
Deleted: (41)
Jinyun Tang 5/18/2017 2:44 PM
Deleted: (43)
Jinyun Tang 5/18/2017 2:44 PM
Deleted: (39)
Jinyun Tang 5/18/2017 2:44 PM
Deleted: (42)
Jinyun Tang 5/18/2017 2:44 PM
Deleted: (44)

equivalence, we can easily define the network form of f_{AB} in equation (40), and the 1 Jinyun Tang 5/18/2017 2:44 PM Deleted: (40) network form of \overline{f}_{AB} in equation (45). Further, we observe that the denominator of the 2 Jinyun Tang 5/18/2017 2:44 PM Deleted: (45) 3 last equation in equation (28), could be rewritten as Jinyun Tang 5/18/2017 2:44 PM $\frac{\left(\overline{f}_{_{A}}/k_{_{2}}^{*}\right)\left(\overline{f}_{_{B}}/k_{_{2}}^{*}\right)\left(f_{_{AB}}/k_{_{2}}^{*}\right)}{\left(\overline{f}_{_{AB}}/k_{_{2}}^{*}\right)} + \left(f_{_{AB}}/k_{_{2}}^{*}\right) - \frac{\left(f_{_{A}}/k_{_{2}}^{*}\right)\left(\overline{f}_{_{B}}/k_{_{2}}^{*}\right) + \left(\overline{f}_{_{A}}/k_{_{2}}^{*}\right)\left(f_{_{B}}/k_{_{2}}^{*}\right) - \left(\overline{f}_{_{A}}/k_{_{2}}^{*}\right)\left(\overline{f}_{_{B}}/k_{_{2}}^{*}\right)}{\left(\overline{f}_{_{AB}}/k_{_{2}}^{*}\right)}$ Deleted: (28) 4 which, after replacing f_A/k_2^+ , f_B/k_2^+ , \overline{f}_A/k_2^+ , \overline{f}_B/k_2^+ , f_{AB}/k_2^+ and \overline{f}_{AB}/k_2^+ with their 5 corresponding network forms (i.e. equations (38)-(45)), leads to SUPECA kinetics 6 Jinyun Tang 5/18/2017 2:44 PM Deleted: (38) 7 equation (37), Jinyun Tang 5/18/2017 2:44 PM Deleted: (45) 8 Appendix F: Formulation of the kinetics-benchmarking problem Jinyun Tang 5/18/2017 2:44 PM **Deleted:** (37) 9 Following equations (23)-(25), the Equilibrium Chemistry (EC) problem used to Jinyun Tang 5/18/2017 2:44 PM Deleted: (23) 10 benchmark synthesizing unit (SU) and SUPECA predictions is defined as Jinyun Tang 5/18/2017 2:44 PM Deleted: (25) $k_{BS1} \left[B \right] \left[S_1 \right] = k_{BS2} \left[S_2 \right] \left[BS_1 \right]$ (F-1) $k_{RS2} \left[B \right] \left[S_2 \right] = k_{BS1} \left[S_1 \right] \left[BS_2 \right]$ (F-2) $k_{BS_1} \left[BS_2 \right] \left[S_1 \right] + k_{BS_2} \left[BS_1 \right] \left[S_2 \right] = k_2^+ \left[BS_1 S_2 \right]$ (F-3) $K_{MS_1} \left[MS_1 \right] = \left[M \right] \left[S_1 \right]$ (F-4) 11 which are subject to the constraints $\begin{bmatrix} S_1 \end{bmatrix}_T = \begin{bmatrix} S_1 \end{bmatrix} + \begin{bmatrix} MS_1 \end{bmatrix} + \begin{bmatrix} BS_1 \end{bmatrix} + \begin{bmatrix} BS_1S_2 \end{bmatrix}$ (F-5) $\begin{bmatrix} S_2 \end{bmatrix}_{T} = \begin{bmatrix} S_2 \end{bmatrix} + \begin{bmatrix} BS_2 \end{bmatrix} + \begin{bmatrix} BS_1S_2 \end{bmatrix}$ (F-6) $\begin{bmatrix} B \end{bmatrix}_{r} = \begin{bmatrix} B \end{bmatrix} + \begin{bmatrix} BS_1 \end{bmatrix} + \begin{bmatrix} BS_2 \end{bmatrix} + \begin{bmatrix} BS_1S_2 \end{bmatrix}$ (F-7)

$$\begin{bmatrix} M \end{bmatrix}_T = \begin{bmatrix} M \end{bmatrix} + \begin{bmatrix} MS_1 \end{bmatrix}$$

To relate these equations to a dynamic system, S_1 and S_2 are substrates, B is microbial population, and M is some sorbent that can reversibly adsorb substrate S_1 .

1

2

3

For benchmarking, $[BS_1S_2]$ is solved from equations (F-1)-(F-8) using a fixed-

4 point iteration algorithm (see supplemental materials) for each set of parameters. Unlike

5 the Newton-Raphson iteration, the fixed-point iteration ensures positive mass of all

6 variables, and mass balance relationships from $(F-5)_{\overline{r}}(F-8)_{\overline{r}}$ are automatically satisfied by

7 the numerical solution.

8 Appendix G: Derivation of relevant kinetic parameters for the steady state aerobic

- 9 respiration problem
- 10

The aerobic respiration problem is formulated as

$$\frac{d\left[\mathsf{O}_{2}\right]_{g,s}}{dt} = \frac{\left(\left[\mathsf{O}_{2}\right]_{a} - \left[\mathsf{O}_{2}\right]_{g,s}\right)}{\left(R_{a} + R_{s}\right)Z} - F\left(B,\left[\mathsf{O}_{2}\right]_{g,s},S,M\right)$$
(G-1)

11 where $[O_2]_{g,s}$ is gaseous oxygen concentration in bulk soil. $[O_2]_a$ is atmospheric oxygen 12 concentration (set to 8.45 mol m⁻³). *S* is dissolvable organic carbon concentration (set to 13 3 mol m⁻³), and *M* is soil mineral sorbent concentration (with variable values). All 14 concentrations are defined with unit mol m⁻³. R_a is aerodynamic resistance, which is set 15 to 50 s m⁻¹. R_s is soil resistance (s m⁻¹) calculated using the approach in Tang and Riley 16 (2013b). *Z* is soil depth (set to 10 cm). $F(B, [O_2]_{g,s}, S, M)$ is the oxygen consumption 17 rate calculated using the SUPECA kinetics, whose kinetic parameters are derived as

39

1	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (F-1)
١	Jinyun Tang 5/18/2017 2:44 PM
	Deleted: (F-8)

Jinyun Tang 5/18/2017 2:44 PM Deleted: (F-5) Jinyun Tang 5/18/2017 2:44 PM Deleted: (F-8)

following. The steady-state problem is solved by setting the temporal derivative of 1 equation (G-1) to zero, and solved for $[O_2]_{g,s}$ through iterations. The shape of the flux 2 Jinyun Tang 5/18/2017 2:44 PM Deleted: (G-1) $F(B, [O_2]_{as}, S, M)$ is then compared to that derived from incubation studies in 3 4 Franzluebbers (1999). 5 In this aerobic respiration problem, microbes are assumed to form microsites 6 sitting uniformly inside pores of the bulk soil. O₂ approaches the microsites through both 7 aqueous and gaseous diffusion, and only aqueous phase is used for microbial respiration. 8 This leads to the relationship between near cell aqueous O₂ concentration and the

9 diffusive flux as

15

$$v_{m} \frac{d[0_{2}]_{w,0}}{dt} = -k_{02,w,1} [X] [0_{2}]_{w,0} + \kappa_{02} ([0_{2}]_{w} - [0_{2}]_{0})$$
(G-2)

10 where the conductance κ_{02} is

$$\left(\frac{\kappa_{02}}{4\pi}\right)^{-1} = \frac{\delta}{D_{w,02}r_m(r_m+\delta)} + \frac{1}{D_{02}(r_m+\delta)}$$
(G-3)

11 where r_m is the radius of the microsite (or aggregate), δ is thickness of the water film

12 that covers the microsite (Grant and Rochette, 1994), v_m is the microsite volume (m³ site

- 13 ¹), and $\begin{bmatrix} 0_2 \end{bmatrix}$ is the aqueous oxygen concentration in the bulk soil matrix. $\begin{bmatrix} X \end{bmatrix}$ is the cell
- 14 density (mol cell site⁻¹). The unit of $k_{02,1}$ is then m³ (mol cell)⁻¹ s⁻¹.

The bulk aqueous diffusivity in equation (G-3), is

 $D_{02} = \theta D_{02,w} + \frac{\varepsilon}{\alpha_{02}} D_{02,g} \tag{G-4}$

Jinyun Tang 5/18/2017 2:44 PM

Deleted: (G-3)

Now if we assume steady state (aka $d[O_2]_0/dt \approx 0$) of equation (G-2), we then

2 obtain

$$\begin{bmatrix} 0_2 \end{bmatrix}_{w,0} = \frac{\begin{bmatrix} 0_2 \end{bmatrix}_w}{1 + \frac{k_{02,w,1} \begin{bmatrix} X \end{bmatrix}}{\kappa_{02}}}$$
(G-5)

3 which leads to the revised the affinity parameter as

$$\tilde{K}_{02} = \frac{k_2}{k_{02,w,1}} \left(1 + \frac{k_{02,w,1} \left[X \right]_T}{\kappa_{02}} \right)$$
(G-6)

4 where the zero order approximation is made by taking $\begin{bmatrix} X \end{bmatrix} \approx \begin{bmatrix} X \end{bmatrix}_T$.

5 Now assume that the ball-like microbe is covered with *N* disc-like porters, whose

- 6 mean radius is r_p . Assuming that the binding is limited by diffusion, then using the
- 7 chemoreception theory by Berg and Purcell (1977), we have

$$k_{02,w,1} = 4\pi D_{02,w,0} r_c \frac{Nr_p}{Nr_p + \pi r_c} \text{cell}^{-1}$$
(G-7)

8 where the term $Nr_p / (Nr_p + \pi r_c)$ accounts for the interference between different porters of

9 a cell. Thus assuming $\begin{bmatrix} X \end{bmatrix}_T = m$ cell site⁻¹, we get

$$\tilde{K}_{02} = \frac{k_2}{k_{02,w,1}} \left(1 + \frac{k_{02,1} \left[X \right]_T}{\kappa_{02}} \right) = K_{02,w} \left(1 + \frac{Nr_p}{Nr_p + \pi r_c} \frac{mr_c}{r_m + \delta} \left(\frac{\delta}{r_m} + \frac{D_{02,w,0}}{D_{02}} \right) \right)$$
(G-8)

10 With similar procedure, for DOC we have the following

$$\tilde{K}_{\text{DOC}} = \frac{k_2}{k_{\text{DOC},w,1}} \left(1 + \frac{k_{\text{DOC},w,1} \left[X \right]_T}{\kappa_{\text{DOC}}} \right) = K_{\text{DOC}} \left(1 + \frac{Nr_p}{Nr_p + \pi r_c} \frac{mr_c}{r_m + \delta} \left(\frac{\delta}{r_m} + \frac{D_{\text{DOC},w,0}}{D_{\text{DOC}}} \right) \right)$$
(G-9)

41

Jinyun Tang 5/18/2017 2:44 PM Deleted: (G-2)

1 and

$$k_{\text{DOC},w,1} = 4\pi D_{\text{DOC},w,0} r_c N_A \frac{N r_p}{N r_p + \pi r_c} (\text{mol} \cdot \text{cell})^{-1}$$
(G-10)

2 where $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$.

3 Below we provide some estimates for the parameters to support the above model 4 of moisture dependence of microbial decomposition. The microbial cell radius r_c is on the order of 10⁻⁶ m, and r_p/r_c is about 10⁻³. At 25 °C, the aqueous diffusivity of O₂ is 5 about 2.9×10^{-9} m² s⁻¹, therefore, assuming N = 3000 porters per cell (which covers only 6 0.3% of the cell's surface area), we have $k_{02w1} = 1.0 \times 10^{10} \text{ m}^3 (\text{mol cell})^{-1} \text{s}^{-1}$. 7 Similarly, since the aqueous diffusivity of DOC is about 10^{-9} m² s⁻¹, assuming N = 30008 porters per cell, we have $k_{\text{DOC},w,1} = 3.7 \times 10^9 \text{ m}^3 \text{ (mol cell)}^{-1} \text{ s}^{-1}$. Suppose the respiration is 9 10 bottlenecked by a single respiratory enzyme, and since the enzyme activity varies on the order of 10~1000 s⁻¹ (English et al., 2006), then by taking $k_2 = 100N \text{ s}^{-1} = 3 \times 10^5 \text{ s}^{-1}$ per 11 cell, we have $K_{02,w} = 3 \times 10^{-5}$ mol m⁻³, which agrees well with parameters reported for 12 13 microbes in aqueous solutions in Button (1985). However, Grant (1991) estimated $K_{02,w} = 3.0 \times 10^{-3} \text{ mol m}^{-3}$; Borden and Bedient (1986) estimated 14 $K_{02w} = 3.1 \times 10^{-3}$ mol m⁻³ for application in soil. We therefore elevated the numerical 15 value to $K_{02,w} = 3.0 \times 10^{-3} \text{ mol m}^{-3}$. According to equations (G-7) and (G-8), such 16 elevation could occur either by increasing the maximum substrate processing rate k_2 or 17

Jinyun Tang 5/18/2017 2:44 PM Deleted: (G-7) Jinyun Tang 5/18/2017 2:44 PM Deleted: (G-8)

decreasing the diffusion $k_{_{02,w,1}}$ controlled parameter (through the formation of micro-1 2 pores in aggregates; e.g., Kausch and Pallud, 2013; Yang et al., 2014). Based on similar magnitude analysis, we obtain $K_{\text{DOC,w}} = 8.1 \times 10^{-5} \text{ mol m}^{-3}$, which falls to the lower end of 3 the values reported for many hydrocarbon compounds as reported in Button (1985). We 4 did not elevate the value of $K_{\rm DOC,w}$ because it could vary over four orders of magnitudes 5 (Button, 1985), and our number leads to a good fit between model predictions and data. 6 Taking all these numbers together, we have

7

$$\tilde{K}_{02,w} = K_{02,w} \left(1 + 0.48 \times \frac{mr_c}{r_m + \delta} \left(\frac{\delta}{r_m} + \frac{D_{02,w,0}}{D_{02}} \right) \right)$$

$$= 3 \times 10^{-3} \left(1 + 0.48 \times \frac{mr_c}{r_m + \delta} \left(\frac{\delta}{r_m} + \frac{D_{02,w,0}}{D_{02}} \right) \right)$$
(G-11)

$$\tilde{K}_{\text{DOC}} = K_{\text{DOC}} \left(1 + 0.48 \times \frac{mr_c}{r_m + \delta} \left(\frac{\delta}{r_m} + \frac{D_{\text{DOC},w,0}}{D_{\text{DOC}}} \right) \right)$$

$$= 8.1 \times 10^{-5} \left(1 + 0.48 \times \frac{mr_c}{r_m + \delta} \left(\frac{\delta}{r_m} + \frac{D_{\text{DOC},w,0}}{D_{\text{DOC}}} \right) \right)$$
(G-12)

8

Since at 25 °C, the Bunsen solubility coefficient of oxygen is 0.032, we have

$$\tilde{K}_{02,g} = \frac{\tilde{K}_{02,w}}{0.032} = 9.4 \times 10^{-2} \left(1 + 0.48 \times \frac{mr_c}{r_m + \delta} \left(\frac{\delta}{r_m} + \frac{D_{02,w,0}}{D_{02}} \right) \right)$$
(G-13)

9 The water film thickness is a function of soil water potential (Tokunaga, 2009)

10 and we calculate it using the approach in ECOSYS (Grant, 2001), which is

$$\delta = \max(10^{-6}, \exp(-13.65 - 0.857\log(-\psi)))$$
(G-14)

11 where the soil matric potential is of unit m, and water film thickness is restricted to at

12 least 1 µm.

1	For model applications, the microbes are often in the unit of mol C m ⁻³ . Bratbak
2	and Dundas (1984) reported that the wet biomass density of bacteria is over the range
3	$1.1 \sim 1.2$ g cm ⁻³ , of which about 40% is dry biomass, and about 50% of dry biomass is
4	carbon. Therefore, with the medium cell density 1.15 g cm ⁻³ , 1 mol C m ⁻³ microbial
5	biomass is about 52.17 cm ³ , by further taking $r_c = 10^{-6} \text{ m} = 10^{-4} \text{ cm}$, the cell number
6	density is 2.1×10 ⁻¹¹ mol cell m ⁻³ . Therefore, for $k_2 = 100 \text{ s}^{-1}$ per porter, given each cell
7	has 3000 porters, the maximum respiration rate is 6.3×10^{-6} s ⁻¹ for 1 mol C m ⁻³ dry
8	microbial biomass, which was then elevated to $3.8 \times 10^{-4} s^{-1}$ to obtain a better fitting
9	between data and model prediction. This required elevation in maximum respiration rate
10	indicates that the data as obtained (after 24 days of incubation) in Franzluebbers (1999)
11	are representative of fast growing microbes.
12	
13	
14	
15	
16	Author Contributions
17	J.Y. Tang designed the theory and conducted the analysis. J.Y. Tang and W.J. Riley
18	discussed the results and wrote the paper.
19	Acknowledgements
20	This research was supported by the Director, Office of Science, Office of Biological and
21	Environmental Research of the US Department of Energy under contract No. DE-AC02-
22	05CH11231 as part of the Accelerated Climate Model for Energy in the Earth system
23	Modeling program and the Next Generation Ecosystem Experiment-Arctic project.

- 1 Financial support does not constitute an endorsement by the Department of Energy of the
- 2 views expressed in this study.
- 3 References
- 4 Aksnes, D. L. and Egge, J. K.: A theoretical-model for nutrient-uptake in phytoplankton,
- 5 Mar Ecol Prog Ser, 70, 65-72, 1991.
- 6 Allison, S. D.: A trait-based approach for modelling microbial litter decomposition, Ecol
- 7 Lett, 15, 1058-1070, 2012.
- 8 Armstrong, R. A.: Nutrient uptake rate as a function of cell size and surface transporter
- 9 density: A Michaelis-like approximation to the model of Pasciak and Gavis, Deep-Sea
- 10 Res Pt I, 55, 1311-1317, 2008.
- 11 Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R.,
- 12 Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K.,
- 13 Tjiputra, J. F., and Wu, T.: Carbon-Concentration and Carbon-Climate Feedbacks in
- 14 CMIP5 Earth System Models, J Climate, 26, 5289-5314, 2013.
- 15 Batjes, N. H.: Harmonized soil property values for broad-scale modelling (WISE30sec)
- 16 with estimates of global soil carbon stocks, Geoderma, 269, 61-68, 2016.
- Berg, H. C. and Purcell, E. M.: Physics of Chemoreception, Biophys J, 20, 193-219,1977.
- 19 Blanke, J. H., Lindeskog, M., Lindstrom, J., and Lehsten, V.: Effect of climate data on
- 20 simulated carbon and nitrogen balances for Europe, J Geophys Res-Biogeo, 121, 1352-
- 21 1371, 2016.
- 22 Bonachela, J. A., Raghib, M., and Levin, S. A.: Dynamic model of flexible
- 23 phytoplankton nutrient uptake, P Natl Acad Sci USA, 108, 20633-20638, 2011.
- 24 Borden, R. C. and Bedient, P. B.: Transport of dissolved hydrocarbons influenced by
- 25 oxygen-limited biodegradation .1. Theoretical development, Water Resour Res, 22, 1973-
- 26 1982, 1986.
- 27 Borghans, J. A. M., DeBoer, R. J., and Segel, L. A.: Extending the quasi-steady state
- approximation by changing variables, B Math Biol, 58, 43-63, 1996.
- 29 Bouskill, N. J., Tang, J.Y., Riley, W. J., and Brodie, E. L.: Trait-based representation of
- 30 biological nitr fication: model development testing, and predicted community

- 1 composition, Front Microbiol, 3, 2012.
- 2 Bouskill, N. J., Riley, W. J., and Tang, J. Y.: Meta-analysis of high-latitude nitrogen-
- 3 addition and warming studies implies ecological mechanisms overlooked by land models,
- 4 Biogeosciences, 11, 6969-6983, 2014.
- 5 Brandt, B. W., van Leeuwen, I. M. M., and Kooijman, S. A. L. M.: A general model for
- 6 multiple substrate biodegradation. Application to co-metabolism of structurally non-
- 7 analogous compounds, Water Res, 37, 4843-4854, 2003.
- 8 Bratbak, G. and Dundas, I.: Bacterial dry-matter content and biomass estimations, Appl
- 9 Environ Microb, 48, 755-757, 1984.
- Briggs, G. E. and Haldane, J. B. S.: A note on the kinetics of enzyme action, Biochem J,
 11 19, 338-339, 1925.
- 12 Button, D. K.: Kinetics of nutrient-limited transport and microbial-growth, Microbiol
- 13 Rev, 49, 270-297, 1985.
- 14 Chellaboina, V., Bhat, S. P., Haddad, W. M., and Bernstein, D. S.: Modeling and analysis
- 15 of mass-action kinetics, nonnegativity, realizability, reducibility, and semistability, IEEE
- 16 Contr Syst Mag, 29, 60-78, 2009.
- 17 Ciais, P., Gasser, T., Paris, J. D., Caldeira, K., Raupach, M. R., Canadell, J. G.,
- 18 Patwardhan, A., Friedlingstein, P., Piao, S. L., and Gitz, V.: Attributing the increase in
- 19 atmospheric CO₂ to emitters and absorbers, Nat Clim Change, 3, 926-930, 2013.
- 20 English, B. P., Min, W., van Oijen, A. M., Lee, K. T., Luo, G. B., Sun, H. Y., Cherayil,
- 21 B. J., Kou, S. C., and Xie, S. N.: Ever-fluctuating single enzyme molecules: Michaelis-
- 22 Menten equation revisited (vol 2, pg 87, 2006), Nat Chem Biol, 2, 168-168, 2006.
- 23 Franzluebbers, A. J.: Microbial activity in response to water-filled pore space of variably
- eroded southern Piedmont soils, Appl Soil Ecol, 11, 91-101, 1999.
- 25 Feyman, R.P., Leighton, R.B., and Sands, M.: The Feynman lectures on physics: Vol. I.,
- 26 Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1963
- 27 Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S.
- 28 K., and Knutti, R.: Uncertainties in CMIP5 Climate Projections due to carbon cycle
- 29 feedbacks, J Climate, 27, 511-526, 2014.
- 30 Grant, R. F.: A Technique for estimating denitrification rates at different soil
- 31 temperatures, water Contents, and nitrate concentrations, Soil Sci, 152, 41-52, 1991.

- 1 Grant, R. F. and Rochette, P.: Soil microbial respiration at different water potentials and
- 2 temperatures theory and mathematical-modeling, Soil Sci Soc Am J, 58, 1681-1690,

3 1994.

- 4 Grant, R.F.: A review of the canadian ecosystem Model-Ecosys, in Modeling carbon and
- 5 nitrogen dynamics for soil management, 173-264, 2001.
- 6 Griffin, D. M.: A Theoretical study relating concentration and diffusion of oxygen to
- 7 biology of organisms in soil, New Phytol, 67, 561-577, 1968.
- 8 Gross, D., Shortle, J.F., Thompson, J.M. and Harris, C.M.: Fundamentals of queueing
- 9 theory, ISBN: 978-1-118-21164-9, Wiley series in probability and statistics, 2011.
- 10 He, Y. J., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S., Allison, S. D.,
- 11 and Randerson, J. T.: Radiocarbon constraints imply reduced carbon uptake by soils
- 12 during the 21st century, Science, 353, 1419-1424, 2016.
- 13 Holling, C. S.: Some characteristics of simple types of predation and parasitism, Can.
- 14 Entomol., 91, 385–398, doi:10.4039/Ent91385-7, 1959.
- 15 Holling, C.S.: The functional response of invertebrate predators to prey density, Mem.
- 16 Entomol. Soc. Can., 48, 1-86, 1966.
- 17 Iwasa, Y., Andreasen, V., and Levin, S.: Aggregation in Model-Ecosystems .1. Perfect
- 18 Aggregation, Ecol Model, 37, 287-302, 1987.
- 19 Iwasa, Y., Levin, S. A., and Andreasen, V.: Aggregation in Model-Ecosystems .2.
- 20 Approximate Aggregation, Ima J Math Appl Med, 6, 1-23, 1989.
- 21 Kausch, M. F. and Pallud, C. E.: Modeling the impact of soil aggregate size on selenium
- 22 immobilization, Biogeosciences, 10, 1323-1336, 2013.
- 23 Kolditz, O., Ratke, R., Diersch, H. J. G., and Zielke, W.: Coupled groundwater flow and
- 24 transport .1. Verification of variable density flow and transport models, Adv Water
- 25 Resour, 21, 27-46, 1998.
- 26 Kooijman, S. A. L. M.: The Synthesizing Unit as model for the stoichiometric fusion and
- 27 branching of metabolic fluxes, Biophys Chem, 73, 179-188, 1998.
- 28 Kooijman, S.: Dynamic energy budget theory for metabolic organisation. Cambridge
- 29 University Press, Cambridge, 2010.
- 30 Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S., Collins, W. D., Bonan,
- 31 G. B., Lawrence, D. M., and Swenson, S. C.: The effect of vertically resolved soil

Formatted: Line spacing: 1.5 lines

Jinyun Tang 5/16/2017 4:28 PM

Jinyun Tang 5/17/2017 12:14 PM

Formatted: Line spacing: 1.5 lines, No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

- 1 biogeochemistry and alternate soil C and N models on C dynamics of CLM4,
- 2 Biogeosciences, 10, 7109-7131, 2013.
- 3 Le Roux, X., Bouskill, N. J., Niboyet, A., Barthes, L., Dijkstra, P., Field, C. B., Hungate,
- 4 B. A., Lerondelle, C., Pommier, T., Tang, J. Y., Terada, A., Tourna, M., and Poly, F.:
- 5 Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: A trait-
- 6 based approach, Front Microbiol, 7, 2016.
- 7 Litchman, E. and Klausmeier, C. A.: Trait-based community ecology of phytoplankton,
- 8 Annu Rev Ecol Evol S, 39, 615-639, 2008.
- 9 Luo, Z., Wang, E., Zheng, H., Baldock, J. A., Sun, O. J., and Shao, Q.: Convergent
- 10 modelling of past soil organic carbon stocks but divergent projections, Biogeosciences,
- 11 12, 4373-4383, 2015.
- 12 Manzoni, S., Moyano, F., Katterer, T., and Schimel, J.: Modeling coupled enzymatic and
- 13 solute transport controls on decomposition in drying soils, Soil Biol Biochem, 95, 275-
- 14 287, 2016.
- 15 Mao, X., Prommer, H., Barry, D. A., Langevin, C. D., Panteleit, B., and Li, L.: Three-
- 16 dimensional model for multi-component reactive transport with variable density
- 17 groundwater flow, Environ Modell Softw, 21, 615-628, 2006.
- 18 Michaelis, L. and Menten, M. L.: The kenetics of the inversion effect,
- 19 Biochem. Z., 49, 333–369, 1913.
- 20 Monod, J.: The growth of bacterial cultures, Annu Rev Microbiol, 3, 371-394, 1949.
- 21 Murdoch, W. W.: Functional response of predators, J Appl Ecol, 10, 335-342, 1973.
- 22 Oleson, K.W. et al.: Technical description of version 4.5 of the Community Land Model
- 23 (CLM). Ncar TechRep., Note NCAR/TN-503+ STR. National Center for Atmospheric
- 24 Research, Boulder, CO, 422 pp. doi: 10.5065/D6RR1W7M, 2013
- Pyun, C. W.: Steady-state and equilibrium approximations in chemical kinetics, J Chem
 Educ, 48, 194-&, 1971.
- 27 Qian, Y., Yan, H. P., Hou, Z. S., Johannesson, G., Klein, S., Lucas, D., Neale, R., Rasch,
- 28 P., Swiler, L., Tannahill, J., Wang, H. L., Wang, M. H., and Zhao, C.: Parametric
- 29 sensitivity analysis of precipitation at global and local scales in the Community
- 30 Atmosphere Model CAM5, J Adv Model Earth Sy, 7, 382-411, 2015.
- 31 Renault, P. and Stengel, P.: Modeling oxygen diffusion in aggregated Soils .1.

- 1 Anaerobiosis inside the aggregates, Soil Sci Soc Am J, 58, 1017-1023, 1994.
- 2 Resat, H., Bailey, V., McCue, L.A., and Konopka, A.: Modeling microbial dynamics in
- 3 heterogeneous environments: growth on soil carbon sources, Microb. Ecol.,
- 4 doi:10.1007/s00248-011-9965-x, 2011.
- 5 Reuveni, S., Urbakh, M., and Klafter, J.: Role of substrate unbinding in Michaelis-
- 6 Menten enzymatic reactions, P Natl Acad Sci USA, 111, 4391-4396, 2014.
- 7 Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L.,
- 8 Mahowald, N. M., and Hess, P.: Barriers to predicting changes in global terrestrial
- 9 methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated
- 10 in CESM, Biogeosciences, 8, 1925-1953, 2011.
- 11 Riley, W. J., Maggi, F., Kleber, M., Torn, M. S., Tang, J. Y., Dwivedi, D., and Guerry,
- 12 N.: Long residence times of rapidly decomposable soil organic matter: application of a
- 13 multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon
- 14 dynamics, Geosci Model Dev, 7, 1335-1355, 2014.
- 15 Schnell, S. and Maini, P. K.: Enzyme kinetics at high enzyme concentration, B Math
- 16 Biol, 62, 483-499, 2000.
- Schnell, S. and Mendoza, C.: Enzyme kinetics of multiple alternative substrates, J Math
 Chem, 27, 155-170, 2000.
- 19 Shankar, R.: Principles of quantum mechanics, second edition, Springer, ISBN 978-1-
- <u>4757-0578-2, 1994.</u>
- 21 Shao, P., Zeng, X. B., Sakaguchi, K., Monson, R. K., and Zeng, X. D.: Terrestrial carbon
- 22 cycle: climate relations in eight CMIP5 earth system models, J Climate, 26, 8744-8764,
- 23 2013.
- 24 Shi, M., Fisher, J. B., Brzostek, E. R., and Phillips, R. P.: Carbon cost of plant nitrogen
- 25 acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the
- 26 Community Land Model, Global Change Biol, 22, 1299-1314, 2016.
- 27 Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., and Pacala, S. W.: Microbe-
- 28 driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2, Nat
- 29 Clim Change, 4, 1099-1102, 2014.
- 30 Tang, J. Y., Tang, J., and Wang, Y.: Analytical investigation on 3D non-Boussinesq
- 31 mountain wave drag for wind profiles with vertical variations, Appl Math Mech-Engl, 28,

Jinyun Tang 5/17/2017 12:15 PM Formatted: Line spacing: 1.5 lines

1 <u>317-325, 2007.</u>

- 2 Tang, J. Y. and Zhuang, Q. L.: Equifinality in parameterization of process-based
- 3 biogeochemistry models: A significant uncertainty source to the estimation of regional
- 4 carbon dynamics, J Geophys Res-Biogeo, 113, 2008.
- 5 Tang, J. Y. and Zhuang, Q. L.: A global sensitivity analysis and Bayesian inference
- 6 framework for improving the parameter estimation and prediction of a process-based
- 7 Terrestrial Ecosystem Model, J Geophys Res-Atmos, 114, 2009.
- 8 Tang, J.Y., Zhuang, Q., Shannon, R. D., and White, J. R.: Quantifying wetland methane
- 9 emissions with process-based models of different complexities, Biogeosciences, 7, 3817-
- 10 3837, 2010.
- 11 Tang, J. Y. and Riley, W. J.: A total quasi-steady-state formulation of substrate uptake
- 12 kinetics in complex networks and an example application to microbial litter
- 13 decomposition, Biogeosciences, 10, 8329-8351, 2013a.
- 14 Tang, J. Y. and Riley, W. J.: A new top boundary condition for modeling surface
- 15 diffusive exchange of a generic volatile tracer: theoretical analysis and application to soil
- 16 evaporation, Hydrol Earth Syst Sc, 17, 873-893, 2013b.
- 17 Tang, J. Y., Riley, W. J., Koven, C. D., and Subin, Z. M.: CLM4-BeTR, a generic
- 18 biogeochemical transport and reaction module for CLM4: model development,
- 19 evaluation, and application, Geosci Model Dev, 6, 127-140, 2013.
- 20 Tang, J. Y. and Riley, W. J.: Weaker soil carbon-climate feedbacks resulting from
- 21 microbial and abiotic interactions, Nat Clim Change, 5, 56-60, 2015.
- 22 Tang, J. Y.: On the relationships between the Michaelis-Menten kinetics, reverse
- 23 Michaelis-Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic
- 24 kinetics, Geosci Model Dev, 8, 3823-3835, 2015.
- 25 Tang, J. Y. and Riley, W. J.: Technical Note: A generic law-of-the-minimum flux limiter
- for simulating substrate limitation in biogeochemical models, Biogeosciences, 13, 723735, 2016.
- 28 <u>Tilman, D.: Resource competition and community structure, Princeton University Press</u>,
 29 Princeton, New Jersey, 1982.
- 30 Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C.,
- 31 Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from

- 1 CMIP5 Earth system models and comparison with observations, Biogeosciences, 10,
- 2 1717-1736, 2013.
- 3 Tokunaga, T. K.: Hydraulic properties of adsorbed water films in unsaturated porous
- 4 media, Water Resour Res, 45, 2009.
- 5 Van Slyke, D. D. and Cullen, G. E.: The mode of action of urease and of enzymes in
- 6 general, J Biol Chem, 19, 141-180, 1914.
- 7 van Werkhoven, K., Wagener, T., Reed, P., and Tang, Y.: Sensitivity-guided reduction of
- 8 parametric dimensionality for multi-objective calibration of watershed models, Adv
- 9 <u>Water Resour, 32, 1154-1169, 2009.</u>
- 10 Vitousek, P.: Nutrient cycling and nutrient use efficiency, Am Nat, 119, 553-572, 1982.
- 11 Wang, Y. P., Leuning, R., Cleugh, H. A., and Coppin, P. A.: Parameter estimation in
- 12 surface exchange models using nonlinear inversion: how many parameters can we
- 13 estimate and which measurements are most useful?, Global Change Biol, 7, 495-510,
- 14 2001.
- 15 Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon projections are
- 16 improved by modelling microbial processes, Nat Clim Change, 3, 909-912, 2013.
- 17 Wieder, W. R., Grandy, A. S., Kallenbach, C. M., and Bonan, G. B.: Integrating
- 18 microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral
- 19 Carbon Stabilization (MIMICS) model, Biogeosciences, 11, 3899-3917, 2014.
- 20 Wieder, W. R., Cleveland, C. C., Lawrence, D. M., and Bonan, G. B.: Effects of model
- 21 structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case
- 22 study, Environ Res Lett, 10, 2015a.
- 23 Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O., He, Y. J.,
- 24 Hopkins, F., Luo, Y. Q., Smith, M. J., Sulman, B., Todd-Brown, K., Wang, Y. P., Xia, J.
- 25 Y., and Xu, X. F.: Explicitly representing soil microbial processes in Earth system
- 26 models, Global Biogeochem Cy, 29, 1782-1800, 2015b.
- 27 Wieder, W. R., Cleveland, C. C., Smith, W. K., and Todd-Brown, K.: Future productivity
- and carbon storage limited by terrestrial nutrient availability, Nat Geosci, 8, 441-444,
- 29 2015c.
- 30 Williams, P. J.: Validity of application of simple kinetic analysis to heterogeneous
- 31 microbial populations, Limnol Oceanogr, 18, 159-164, 1973.
 - 51

1	Williams, M., Schwarz, P. A., Law, B. E., Irvine, J., and Kurpius, M. R.: An improved
2	analysis of forest carbon dynamics using data assimilation, Global Change Biol, 11, 89-
3	105, 2005.
4	Yang, X. F., Richmond, M. C., Scheibe, T. D., Perkins, W. A., and Resat, H.: Flow
5	partitioning in fully saturated soil aggregates, Transport Porous Med, 103, 295-314, 2014.
6	Yeh, G. T., Burgos, W. D., and Zachara, J. M.: Modeling and measuring biogeochemical
7	reactions: system consistency, data needs, and rate formulations, Adv Environ Res, 5,
8	219-237, 2001.
9	Zhu, Q. and Riley, W. J.: Improved modelling of soil nitrogen losses, Nat Clim Change,
10	5, 705-706, 2015.
11	Zhu, Q., Riley, W. J., Tang, J.Y., and Koven, C. D.: Multiple soil nutrient competition
12	between plants, microbes, and mineral surfaces: model development, parameterization,
13	and example applications in several tropical forests, Biogeosciences, 13, 341-363, 2016a.
14	Zhu, Q., Iversen, C. M., Riley, W. J., Slette, I. J., and Vander Stel, H. M.: Root traits
15	explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based
16	land models, J. Geophys. Res. Biogeosci., 121, 3101-3112, doi:10.1002/2016JG003554,
17	<u>2016</u>
18	Zhu, Q., Riley, W. J., and Tang, J. Y.: A new theory of plant-microbe nutrient
19	competition resolves inconsistencies between observations and model predictions, Ecol
20	<u>Appl, 27, 875-886, 2017.</u>
21	*
22	
23	
24	
24	
25	

Jinyun Tang 5/18/2017 2:34 PM

Moved (insertion) [1]

Jinyun Tang 5/18/2017 2:34 PM Formatted: Line spacing: 1.5 lines

Jinyun Tang 5/18/2017 2:34 PM

Deleted: c

Jinyun Tang 5/18/2017 2:34 PM

Deleted:

Jinyun Tang 5/18/2017 2:35 PM Formatted: Line spacing: 1.5 lines, No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

Jinyun Tang 5/18/2017 2:34 PM

Deleted: Zhu, Q., Riley, W. J. and Tang, J.Y.: A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions. Ecol Appl. Accepted Author Manuscript. doi:10.1002/eap.1490, 2016b .

Jinyun Tang 5/18/2017 2:34 PM

Moved up [1]: Zhu, Q., Iversen, C. M., Riley, W. J., Slette, I. J., and Vander Stel, H. M.: Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models, J. Geophys. Res. Biogeosci., 121, 3101–3112, doi:10.1002/2016JG003554, 2016c.

The scaling dimensions for numerical modeling of physical systems

1

2 Figure 1. Relationships of the three dimensions involved in the scaling exercise for

3 numerical modeling of biogeochemical systems. In general, as one scales the Space-

4 Time-Process unit from small scales into large scales, the resultant macroscale equations

5 may appear simpler than the microscale equations.

2 Figure 2. Graph representation of the ECA kinetics as derived in Tang and Riley (2013a). 3 The equation in blue shows the uptake of substrate S_{i} by consumer E_{j} as a function the normalized substrate flux $F_{c,j}$ and its conjugate flux $F_{r,j}$. Here subscript "c" designates 4 column, and "r" designates row. When K_{ij} is infinity or a very large number compared to 5 other entries in the matrix, the interaction between substrate S_i and consumer E_j can be 6 7 ignored. 8 9 10 11

Jinyun Tang 5/17/2017 12:18 PM

Deleted: S_i

Unknown Field Code Changed

Jinyun Tang 5/17/2017 12:18 PM

Deleted: E_j

Field Code Changed

Jinyun Tang 5/17/2017 12:19 PM

Deleted: $F_{c,j}$

Jinyun Tang 5/17/2017 12:19 PM

Deleted: $F_{r,i}$

Unknown Field Code Changed

Unknown

Field Code Changed

Unknown

Field Code Changed

Unknown Field Code Changed

Unknown

Field Code Changed

An example unit block for applying the network-oriented SUPECA kinetics

Figure 3. Graph representation for the relationships between substrates, consumers, and
normalized fluxes and their conjugates for a block unit of a large substrate-consumer

4 network.

Figure 4. Benchmark of the SU (left column) and SUPECA (right column) predictions against those by the full EC formulation. We note that the y-axes of the left panels are of much larger scale than those on the right. The problem is formulated in Appendix F. Panels (a) and (b) are for the case when M=0; panels (c) and (d) are for uniformly distributed M > 0. The related distributions of parameters are in Figure S1 of the supplemental material.

- The respiration data are normalized with the peak value from the case with zero soil
- minerals (i.e., black line in Figure).

- 9

The respiration data are normalized with the peak value from the case with zero soil
minerals (i.e., black line in Figure). Note here all three lines overlap each other almost

5 perfectly.