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1 Observatório Nacional, Rio de Janeiro, Brazil

e-mails: vandscoelho@gmail.com, valcris@on.br

(September 23, 2016)

GEO-2015-XXXX

Running head: Equivalent layer technique

ABSTRACT

Equivalent layer technique is a powerful tool for processing gravity and magnetic data (e.g.,

interpolation, reduction to the pole, upward and downward continuations). Grounded on

well-established concepts of potential theory, this technique allows that a discrete set of

observations of a potential field produced by arbitrary sources can be exactly reproduced

by a fictitious 2D physical-property distribution which is defined on a surface located below

the observations. This technique takes advantage of the inherent ambiguity of determining

the true physical-property distribution producing a given potential field. Mathematically,

it consists in approximating a discrete set of potential-field observations by a linear com-

bination of harmonic functions. These harmonic functions, in turn, represent the potential

field produced by a fictitious physical-property distribution defined on a layer. This fic-

titious layer, called equivalent layer, is then posteriorly used to compute transformations

of the observed potential-field data. We present a in-depth review of the mathematical
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foundations and physical meaning of the equivalent layer technique, in both continuous and

discrete cases, by considering both planar and undulating equivalent layers. We show that

the magnetic-moment distribution within a planar equivalent layer of dipoles must have the

same constant magnetization direction of the magnetic sources for the purpose of correctly

reducing the total-field anomaly to the pole. We prove that, in this case, the magnetic-

moment distribution is all-positive even if the magnetization intensity varies within the

sources. Moreover, we review the computation aspects of the equivalent technique and

show how previous works have been dealt with its high computational cost. We present

several tests with synthetic data showing not only theoretical aspects, but also the powerful

flexibility of the equivalent layer in processing potential-field data.
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INTRODUCTION

Equivalent layer technique appeared in the geophysical literature over 50 years ago and have

been used as a versatile tool to process potential-field data. This technique can be used to

compute different data processing such as interpolation (e.g., Cordell, 1992; Mendonça and

Silva, 1994; Barnes, 2012), upward (or downward) continuation (e.g., Emilia, 1973; Hansen

and Miyazaki, 1984; Li and Oldenburg, 2010) reduction to the pole of magnetic data (e.g.,

Silva, 1986; Leão and Silva, 1989; Gusṕı and Novara, 2009; Oliveira Jr. et al., 2013),

gradient data processing (Barnes and Lumley, 2011), satellite-data processing (Mayhew,

1982), computing geoid undulations (Gusṕı et al., 2004), merging multiple datasets (Boggs

and Dransfield, 2004; Lane, 2004) and de-noising gradient data (Martinez and Li, 2016).

The seminal paper presented by Siméon Denis Poisson to the French Academy of Sci-

ences in 1824 contains the first ideas about the equivalent layer technique. In his work,

Poisson showed that the magnetic intensity produced outside a given magnetic body is

the same as would be produced by a combination of two fictitious magnetization distri-

butions, one defined over the surface and another defined throughout the volume of the

magnetic body. These fictitious magnetization distributions are generally known as Pois-

son’s equivalent surface- and volume-distributions of magnetism (Whittaker, 2012). Some

years later, the Poisson’s investigations were generalized and extended by George Green

in his ground-breaking paper An essay on the application of mathematical analysis to the

theories of electricity and magnetism, Nottingham, 1828. Green, who was the first to use

the term “potential”, followed a mathematical approach that had already been used by La-

grange, Laplace, and Poisson to present a formula generalizing the Poisson’s result on the

equivalent surface- and volume-distributions of magnetism. By using this formula, which is
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now commonly called Green’s Theorem, Green deduced many results of remarkable beauty

and interest in potential theory (Kellogg, 1929; Whittaker, 2012).

The equivalent layer technique is grounded on potential theory, which is the theory of the

Laplace’s differential equation. Mathematically, a solution of Laplace’s equation is called a

harmonic function. A function U(x, y, z) at a point (x, y, z) is harmonic if its second deriva-

tives exist, are continuous, and satisfy Laplace’s equation throughout some neighbourhood

of that point. A well-known tool for deriving and understanding properties of harmonic

functions is a set of Green’s identities (Kellogg, 1929). In accordance with potential theory,

a discrete set of observations of a potential field produced by arbitrary sources can be ex-

actly reproduced by a continuous and infinite 2D physical-property distribution on a surface

located below the observations. This fictitious distribution, named equivalent layer, yields

a field that satisfies Laplaces equation and reproduces the observed potential-field data.

The equivalent layer is a consequence of solving the Laplace’s equation in the source-

free region above the observation surface using the observed field as the Dirichlet boundary

condition. Despite the first ideas about the equivalent layer have been known since Poisson’s

and Green’s time, the technique was not used by the geophysicists until the 1960s. In

the 1960s, several authors in geophysical literature used the terms equivalent layer and

equivalent sources. Roy (1962) uses the term Green’s theorem of equivalent layer to draw

attention that the observed potential field data can be exactly reproduced by an infinite

number of surface physical-property distribution. Dampney (1969) introduced the term

equivalent source to define a fictitious stratum located below the observation surface and

with finite horizontal dimensions which is formed by a finite discrete set of equivalent

sources. In the timeline for magnetic methods of exploration presented by Nabighian et al.

(2005b), the “event” of the equivalent-source technique was assigned to Dampney (1969)
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even though, as in Dampney’s own words, the idea of an equivalent layer has been exploited

by other authors such as Daneš (1962), Zidarov (1965) and Bott (1967).

In the beginning, the equivalent layer technique was predominantly used in process-

ing potential-field data. Emilia (1973) showed a wide use of equivalent layer technique in

magnetic data processing such as the first and second vertical derivatives, the upward and

downward continuations and the reduction to the pole. To our knowledge, Emilia (1973) is

the pioneer on the use of the equivalent layer technique in the wavenumber domain by com-

puting the band-pass filtered data and the amplitude spectrum of the data. Emilia (1973)

also pointed out that the equivalent layer technique could be used to compute the horizontal

and vertical field components, higher-order vertical derivatives, horizontal derivatives, and

power and phase spectra.

After Emilia (1973), the equivalent layer technique was used to perform other transfor-

mations and to deal with potential-field data measured not only along a profile, but also on

a surface. Bott and Ingles (1972) used Poisson’s relation and the equivalent layer technique

to compute the pseudogravimetric and pseudomagnetic transformations and to estimate

the direction of magnetization and the ratio of magnetization to density. Silva (1986) used

the equivalent layer technique to perform a reduction to the pole of magnetic data at low

magnetic latitudes. By using the equivalent layer technique, Cordell (1992) and Mendonça

and Silva (1994) proposed two schemes to interpolate the potential-field data. Recently,

Barnes and Lumley (2011) and Barnes (2012, 2014) used the equivalent layer technique to

process airborne full-tensor gravity gradient data.

Silva and Hohmann (1984) were one of the first ones that analysed the particular con-

ditions in which the equivalent layer distribution has close association with true geological
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sources. They applied the equivalent layer technique to invert reduced-to-the-pole anomalies

in order to estimate the geometry and susceptibility variations of purely induced magnetic

sources having flat and horizontal top, vertical sides and bottom at infinity.

Since the late 1970s, the equivalent layer technique has been widely used in processing

satellite data. To our knowledge, Mayhew (1982) was the pioneer on the use of equivalent

layer in satellite-data processing. Instead of processing satellite data by spherical harmonics

or Fourier transform methods, Von Frese et al. (1981) used the equivalent layer technique to

estimate a spherical distribution of equivalent point sources for processing of both gravity

and magnetic anomalies in spherical coordinates system and applied it to obtain geoidal

anomalies, vector anomaly components, spatial derivatives, continuations and magnetic pole

reductions.

In the wavenumber domain, Emilia (1973) estimated an equivalent source distribution

of line of dipoles and, by using the analytical expression of the line of dipoles, the band-

pass filtered data and the amplitude spectrum of the data were analytically computed. To

calculate a potential field data on a horizontal plane in the wavenumber domain, Pilkington

and Urquhart (1990)’s method consists of two steps. In the first one, an equivalent source

distribution that fits the data is estimated on a mirror image of the observation surface. In

the second step, this irregular mirror image surface is replaced by a horizontal plane and the

potential-field data yielded by the equivalent source is computed on the horizontal plane.

Pawlowski (1994) proposed a filtering scheme for regional-residual separation method for

potential-field data which computes the power spectrum of the data by using two equivalent-

source layers to model the residual and regional fields. One equivalent layer models the

residual data presumably produced by shallower geological sources and another one models

the regional data presumably produced by deeper sources. However, the first complete
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work of equivalent layer method in wavenumber was presented by Xia et al. (1993) who also

proposed a fast interactive scheme of updating the equivalent source distribution.

By using the analytical relationship between the potential-field data and equivalent

physical-property distribution on an hypothetical observational surface, Bhattacharyya and

Chan (1977) proposed an iterative scheme for continuing the potential field data between

general surface (e.g., from the flight surface to the draped surface). Hansen and Miyazaki

(1984) also used the equivalent layer method to accomplish the continuation of the data

between arbitrary surfaces. Pedersen (1991) discussed the relationship between potential

fields (pseudogravity and magnetic fields) and some equivalent sources (thin sheets and

magnetized half-spaces). In the wavenumber domain, Li et al. (2014) proved, under partic-

ular conditions, the existence of an all-positive physical property distribution on a planar

equivalent layer which has the same purely-induced magnetization direction as the true

sources. These authors showed that the use of a positivity constraint on the estimates of

the physical-property distribution is sufficient to overcome the low-latitude instability (un-

desirable artifact of striations) of the reduction-to-the-pole operator defined by an equivalent

layer. MacLennan and Li (2013) developed a method for denoising electric field data from

frequency-domain controlled-source electromagnetic (CSEM) surveys using an equivalent

layer method.

In comparison with the processing potential-field data using the fast Fourier transform

(Gunn, 1975), the equivalent layer technique has several advantages. For example, the data

do not need to be 1) extrapolated beyond the range of observations (Cordell and Grauch,

1982), 2) equally spaced, or 3) measured on a plane at constant height. However, one

serious disadvantage to the application of the equivalent layer technique is the computational

cost. For processing large-potential-field data sets via the equivalent layer technique, the
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computation cost demanded for building the linear system and for solving the linear inverse

problem becomes increasingly important. Several cost-effective methods have developed for

processing. In Leão and Silva (1989), the equivalent layer technique is accomplished through

a moving-data window and a moving-equivalent-source window which sweep the whole data

set. In this fast data-window scheme, the desired transformed data is only computed at the

data window center. Xia and Sprowl (1991) and Xia et al. (1993) developed a fast iterative

scheme for updating the physical-property distribution within the equivalent layer in the

wavenumber and space domains, respectively. To compress the linear system of equations

associated with the equivalent layer technique, Li and Oldenburg (2010) used a wavelet

compression and Davis and Li (2011) combined an adaptive mesh and wavelet compression.

Following the tendency of dealing with large data sets, some methods reduced the number

of equivalent sources. Barnes and Lumley (2011) do not compute the full sensitivity matrix

of the linear system; rather, for each original ith row, a set of equivalent sources that lie

distant from the ith observation will be grouped together forming an average equivalent

source. Oliveira Jr. et al. (2013) assumed that the physical-property distribution within

the equivalent layer can be approximated by a piecewise-polynomial function defined on a

set of equivalent-source windows. This procedure leads to a drastic reduction of the linear

system of equations that needs to be solved for estimating the physical-property distribution

within an equivalent layer.

This article reviews the theoretical bases of the equivalent layer technique and its use in

processing potential field data. We start describing the underlying assumptions for the use of

this technique in processing gravity and magnetic data. Next, we discuss the mathematical

foundations of the equivalent layer and use the Green’s identities to prove the well-known

upward continuation integral. Then, we present a generalized upward continuation integral
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where the layer is an undulating surface. In terms of practical applications of the equivalent

layer technique, we address the following issues: 1) the estimation of the physical-property

distribution within a discrete equivalent layer; 2) the definition of the harmonic functions

describing the potential-field produced by the equivalent sources; and 3) the computational

aspects. We also review the theoretical aspects concerning the relationship between the

harmonic functions and the physical-property distribution within the equivalent layer.

We deduce, in the space domain, a relationship between the magnetic-moment distri-

bution within an planar equivalent layer of dipoles and the gravity disturbance computed

on the equivalent layer. This relationship, which resembles the Poisson’s relation, gener-

alizes the previous ones deduced by Pedersen (1991) and Li et al. (2014) in three aspects.

First, it does not impose an induced magnetization on the equivalent sources within the

equivalent layer. Second, it holds true for all cases in which the magnetization of the dipole

layer has the same direction as the true magnetization of the sources, whenever it is purely

induced or not. Third, it does not require that the observed total-field anomaly data be

on a plane. Finally, we present tests with synthetic data to validate the theoretical as-

pects, as well as evaluate the performance of the equivalent layer technique in processing

potential-field data. For simplicity, we limit our examples to potential-field transformations

of total-field anomaly data, by considering cases in which the transformation depends and

does not depend on the knowledge of the magnetization direction of the true sources.
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POTENTIAL-FIELD DATA

Gravity data

The resultant of gravitational force and centrifugal force acting on a body at rest on

the Earth’s surface is called gravity vector and its intensity is commonly called gravity

(Hofmann-Wellenhof and Moritz, 2005). In the case of gravimetry on moving platforms

(e.g., airplanes, helicopters, marine vessels), there are additional non-gravitational acceler-

ations due to the vehicle motion, like Coriolis acceleration and high-frequency vibrations

(Glennie et al., 2000; Nabighian et al., 2005a; Baumann et al., 2012).

Geophysicists are usually interested in the gravitational component of the observed grav-

ity, which is harmonic and reflects predominantly density variations in the crust and upper

mantle (Blakely, 1996). One step of the procedure for isolating the gravitational compo-

nent of gravity consists in removing the non-gravitational effects due to the vehicle motion

and also the time variations of the gravity field (e.g., Earth tides, instrumental drift and

barometric pressure changes). If these effects are properly removed, the resultant gravity

data can be considered as the sum of a “normal” gravity field and a purely gravitational

(and small) “disturbing” field, which is produced by variations in the Earth’s internal den-

sity distribution. The isolation of this small disturbing field is the main goal in applied

geophysics (Blakely, 1996).

Traditionally, the Earth is approximated by a rigid ellipsoid of revolution which is called

normal Earth. The normal Earth has the minor axis coincident with the mean Earth’s ro-

tation axis, has the same total mass and angular velocity of the Earth and has an undefined

internal density distribution (Vańıček and Krakiwsky, 1987; Hofmann-Wellenhof and Moritz,

2005). Similarly to gravity, the resultant of the virtual gravitational and centrifugal forces
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exerted by the normal Earth on a body at rest on the Earth’s surface is called normal gravity

vector and its intensity is commonly called normal gravity. Notice that, according to this

traditional definition, the centrifugal component of the normal gravity field is equal to the

centrifugal component of the Earth’s gravity field if they are evaluated at the same point.

The difference between the observed gravity (corrected from non-gravitational effects due

to the vehicle motion) and the normal gravity, at the same point, is called gravity distur-

bance and is a very-well established quantity in geodesy (Hofmann-Wellenhof and Moritz,

2005). The gravity disturbance approximates the gravitational field produced by contrasts

between the actual internal density distribution of the Earth and the unknown internal

density distribution of the normal Earth. In applied geophysics, these density differences

are generally called “anomalous masses” (e.g., Hammer, 1945; LaFehr, 1965) or “gravity

sources” (e.g., Blakely, 1996). Here, we opted for using the second term.

In a local- or regional-gravity study, the observed gravity disturbance δgoi , at the point

(xi, yi, zz), i = 1, ..., N , can be considered as the z-component (or vertical component) of

the gravitational attraction exerted by gravity sources. In this case, the observed gravity

disturbance (in mGal) produced by a geological body with constant density contrast ρ can

be represented by the following harmonic function

δgoi = kg Gρ∂zφi , (1)

where G is the Newtonian constant of gravitation in m3/(kg s2), kg = 105 is a constant

factor transforming the gravity disturbance from m/s2 to milligal (mGal), and ∂zφi is

a harmonic function representing the first derivative, evaluated at the observation point

(xi, yi, zi), i = 1, ..., N , of the function

φ(x, y, z) =

∫ ∫
v

∫
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
dv (2)
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with respect to the variable z. In this case, the integral is conducted over the coordinates

x′, y′ and z′ within the volume v of the gravity source. From now on, we use a Cartesian

coordinate system with the x axis pointing to North, the y axis pointing to East and the z

axis pointing downward.

Magnetic data

In magnetic exploration methods, the geomagnetic field is commonly split into the “main

field”, “crustal field” and “external field”. The “external field” is predominantly produced

by electrical currents located in the ionosphere and magnetosphere and is considered “noise”.

The “main field” is the strongest component and, according to the most widely accepted

theory, is produced by a self-sustaining dynamo process that takes place within the outer

core. Finally, the “crustal field” is produced by the magnetized bodies located in the

uppermost (and coldest) layers of the Earth (Langel and Hinze, 1998; Hulot et al., 2015).

Generally, the “crustal field” needs to be separated from the remaining components of the

geomagnetic field to be interpreted later in applied geophysics. The magnetized bodies

located in the subsurface are usually called magnetic sources (Blakely, 1996; Nabighian

et al., 2005b).

In magnetic surveys, the commonly measured quantity is the resultant of the main,

crustal and external fields. By properly removing the external field and also the magnetic

field produced by the moving platforms (e.g., aircraft, ships or helicopters) and cultural

noise (e.g., pipelines, railroads, bridges and commercial buildings), the remaining field can

be considered as a sum of the main field and the crustal field, which is called “internal

field” (Hulot et al., 2015) or “total field” (Blakely, 1996). Here, we opted for using the
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second term. The difference between the magnitude of the total field and the magnitude

of a suitable model describing the main field (e.g., the IGRF), at the same point, is called

“total-field anomaly” (Blakely, 1996; Nabighian et al., 2005b).

Notice that, according to the formal definition of the total-field anomaly, it is not a

harmonic function. However, in practical applications, the total-field anomaly can be ap-

proximated by a harmonic function. This approximation is valid in local- or regional-scale

magnetic studies conducted in a short period of time because, in this case, the main field

can be considered as a vector F0 with constant direction throughout the study area. In this

case, F0 can be written as

F0 = ‖F0‖F̂ , (3)

where ‖ ‖ denotes the Euclidean norm and

F̂ =


cos(I0) cos(D0)

cos(I0) sin(D0)

sin(I0)

 (4)

is a unit vector with the constant inclination I0 and declination D0 of the local-geomagnetic

field. The Euclidean norm of F0 is generally many times greater than the Euclidean norm

of the crustal field at all observation points on the study area (Blakely, 1996). From these

assumptions, the observed total-field anomaly ∆T oi at any point (xi, yi, zi), i = 1, ..., N , can

be described by the following harmonic function:

∆T oi = F̂>Bi , (5)

where Bi represents the magnetic induction produced by the magnetic sources at the point

(xi, yi, zi), i = 1, ..., N and the > stands for transpose.

Let’s consider a uniformly magnetized source with volume v and constant magnetization
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vector m. Here, the magnetization intensity is given in ampere per meter (A/m) and the

coordinates in meter (m). The magnetic induction Bi (in nT) produced by this source at

the point (xi, yi, zi), i = 1, ..., N , can be represented as follows:

Bi = km
µ0
4π

Mi m , (6)

where µ0 = 4π 10−7 H/m is the magnetic constant, km = 109 is a constant factor trans-

forming the magnetic induction from tesla (T) to nanotesla (nT), and Mi is a matrix given

by

Mi =


∂xxφi ∂xyφi ∂xzφi

∂xyφi ∂yyφi ∂yzφi

∂xzφi ∂yzφi ∂zzφi

 , (7)

with ∂αβφi, α = x, y, z, β = x, y, z, being the second derivatives, evaluated at the coor-

dinates (xi, yi, zi), i = 1, ..., N , of the function φ(x, y, z) (equation 2) with respect to the

variables x, y and z. In this case, this integral in equation 2 is evaluated over the coordinates

x′, y′ and z′ within the volume v of the magnetic source. Finally, by using the magnetic

induction Bi (equation 6) with the magnetization vector m = m m̂, the observed total-field

anomaly ∆T oi (equation 5) can be rewritten as follows:

∆T oi = km
µ0
4π

m F̂>Mi m̂ , (8)

where m the magnetization intensity and m̂ is a unit vector.

Equation 8 describes the total-field anomaly produced by an uniformly magnetized

source. Notice that both the magnetization of the source and the local-geomagnetic field

have an arbitrary direction. In this general case, the total-field anomaly oscillates from

negative to positive values, so that its maxima are not placed above the magnetic source.

Because of this oscillating pattern, the total-field anomaly cannot be directly used by the
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interpreter to locate the source. To overcome this problem, Baranov (1957) proposed a

method called reduction to the pole. This method transforms a total-field anomaly ∆T oi

(equation 8) into a simpler one given by

∆TPi = km
µ0
4π

m ∂zzφi , (9)

which represents the total-field anomaly that would be produced by the magnetic source

if it were magnetized in the same direction as the local-geomagnetic field at the pole.

In this situation, both the local-geomagnetic field and the magnetization of the source

would be vertical and, consequently, the vectors F̂ and m̂ (equation 8) would be equal to

u = [ 0 0 1 ]>. Note that ∆TPi (equation 9) depends on the exact position and volume

of the source, which we never know in practice. Along the manuscript, we refer to ∆TPi as

“RTP anomaly”.

As pointed out by Baranov (1957), this equation represents the particular case of Pois-

son’s relation in which the magnetization of the source is vertical. In this case, ∆TPi (equa-

tion 9) is a predominantly positive anomaly which is proportional to the vertical gradient

of the gravitational attraction that would be produced by the magnetic source if it had a

positive and constant density contrast equal to ρ = 1/(kg G), where G is the gravitational

constant and kg is a positive constant (equation 1).

MATHEMATICAL FOUNDATIONS

Green’s third identity

Let v be a regular region of space with boundary defined by a closed regular surface S

(Figure 1). Let’s also consider a scalar function U(x, y, z) satisfying three conditions: 1)

it is continuous at all points of v, including its boundary S, 2) its second derivatives exist
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and are continuous at all point of v (not necessarily on S) and 3) it is regular at infinity.

We refer the reader to Kellogg (1929) for a proper definition of regular regions, regular

surfaces and functions that are regular at infinity. In this case, according to the Green’s

third identity (Kellogg, 1929),

U(xi, yi, zi) = − 1

4π

∫∫∫
v

1

r
∇2U(x, y, z) dv − 1

4π

∫∫
S

U(x, y, z) ∂n
1

r
− 1

r
∂nU(x, y, z) dS

(10)

where the variables xi, yi and zi are the Cartesian coordinates of an arbitrarily fixed point

within v (Figure 1). In equation 10, the integrals are conducted over the variables x, y and

z, which represent either a volume element of v or a surface element of S. The terms on

the right side of equation 10 are

1

r
≡ 1√

(x− xi)2 + (y − yi)2 + (z − zi)2
, (11)

which is the inverse distance from the fixed point (xi, yi, zi) (black dot in Figure 1) to the

integration point (x, y, z), the Laplacian of the function U(x, y, z), which is given by

∇2U(x, y, z) = ∂2xxU(x, y, z) + ∂2yyU(x, y, z) + ∂2zzU(x, y, z) , (12)

where ∂2αβU(x, y, z) ≡ ∂2U(x,y,z)
∂α∂β , α = x, y, z, β = x, y, z, and the normal derivatives

∂n
1

r
≡ ∇1

r
· n̂ (13)

and

∂nU(x, y, z) ≡ ∇U(x, y, z) · n̂ . (14)

In equations 13 and 14, the symbol (·) denotes the dot product of vectors, n̂ is the outward-

pointing normal to the surface S at a point (x, y, z) and, finally, ∇1
r and ∇U(x, y, z) rep-

resent, respectively, the gradient of the functions 1
r (equation 11) and U(x, y, z), both with

respect to the variables x, y and z.
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Classical upward continuation integral

Let’s U(x, y, z) be a harmonic function at all points (x, y, z) within v (Figure 1). In this

case, the first term in equation 10 drops and the Green’s third identity can be rewritten as

U(xi, yi, zi) = − 1

4π

∫∫
S

U(x, y, z) ∂n
1

r
− 1

r
∂nU(x, y, z) dS . (15)

Notice that, in equation 15, the variables x, y and z represent the Cartesian coordinates of

an arbitrary point belonging to the surface S (Figure 1).

Let’s split the surface S into two surfaces S1 and S2, where S1 is a hemisphere with

radius R and S2 is a horizontal plane with constant vertical coordinate z = zc (Figure

2). We stress that these two surfaces do not have any relationship with the equipotential

surfaces of the harmonic function U(x, y, z). In this case, the surface integral can also be

split as follows

U(xi, yi, zi) = I1 + I2 , (16)

where

I1 = − 1

4π

∫∫
S1

U(x, y, z) ∂n
1

r
− 1

r
∂nU(x, y, z) dS1 (17)

and

I2 = − 1

4π

∫∫
S2

U(x, y, zc) ∂z
1

r
− 1

r
∂zU(x, y, zc) dS2 . (18)

Notice that, in equation 17, the outward normal n̂ = n̂1 (Figure 2) has a constant radial

direction whereas, in equation 18, the outward normal n̂ = n̂2 (Figure 2) has the same

direction as the vertical axis z, so that ∂n = ∂z. By making R → ∞, the integral on the

surface S1 (equation 17) vanishes and, consequently, equation 16 reduces to

U(xi, yi, zi) = − 1

4π

+∞∫
−∞

+∞∫
−∞

U(x, y, zc) ∂z
1

r
− 1

r
∂zU(x, y, zc) dxdy , (19)
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where zi = zc −∆z, with ∆z > 0 (Figure 2). Equation 19 shows that, given the values of a

harmonic function and its vertical derivative on a horizontal plane at z = zc, it is possible

to calculate the value of this harmonic function at any point located above this horizontal

plane. For practical purposes, it is convenient to manipulate equation 19 in order to remove

the vertical derivative ∂zU(x, y, zc). To do this, let’s first define the function

1

`
≡ 1√

(x− xi)2 + (y − yi)2 + (z − zs)2
(20)

representing the inverse distance between the point (xi, yi, zs) and an arbitrary point on

the plane S2 (Figure 2). Notice that the point (xi, yi, zs) (open circle in Figure 2) can

be considered a mirror of the point (xi, yi, zi) (black dot in Figure 2) with respect to the

horizontal plane S2 because zs = zc + ∆z and zi = zc − ∆z. Besides, 1
` (equation 20) is

harmonic at all points (x, y, z) in v. Then, by applying the Green’s second identity (Kellogg,

1929), we obtain∫∫∫
v

U(x, y, z)∇2 1

`
− 1

`
∇2U(x, y, z)dv =

∫∫
S

U(x, y, z)∂n
1

`
− 1

`
∂nU(x, y, z)dS . (21)

By multiplying both sides in equation 21 by 1/4π and recalling that U(x, y, z) and 1
` are

harmonic at all points within v, we have

0 =
1

4π

∫∫
S

U(x, y, z) ∂n
1

`
− 1

`
∂nU(x, y, z) dS (22)

and, subsequently, by adding equation 22 to equation 15 we get

U(xi, yi, zi) = − 1

4π

∫∫
S

U(x, y, z)

(
∂n

1

r
− ∂n

1

`

)
−
(

1

r
− 1

`

)
∂nU(x, y, z) dS . (23)

Now, similarly to what was previously done, let’s split the surface S into two surfaces S1

and S2, according to the Figure 2, and let’s also tend R to infinite. Consequently, the

integral over the surface S1 vanishes and equation 23 becomes

U(xi, yi, zi) = − 1

4π

+∞∫
−∞

+∞∫
−∞

U(x, y, zc)

(
∂z

1

r
− ∂z

1

`

)
−
(

1

r
− 1

`

)
∂zU(x, y, zc) dx dy . (24)
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The two terms between parenthesis in the surface integral shown in equation 24 deserve

special attention because they assume specific values on this plane. Notice that the deriva-

tive of the functions 1
r (equation 11) and 1

` (equation 20) with respect to the variable z

are:

∂z
1

r
≡ − (z − zi)

[(x− xi)2 + (y − yi)2 + (z − zi)2]
3
2

(25)

and

∂z
1

`
≡ − (z − zs)

[(x− xi)2 + (y − yi)2 + (z − zs)2]
3
2

. (26)

Then, by evaluating equations 11, 20, 25 and 26 at a point (x, y, z), with z = zc, and

recalling that zi = zc − ∆z and zs = zc + ∆z (Figure 2), we can easily verify that 1
r = 1

`

and ∂z(1/r) = −∂z(1/`). Consequently, equation 24 can be rewritten as

U(xi, yi, zi) =
zc − zi

2π

+∞∫
−∞

+∞∫
−∞

U(x, y, zc)

[(xi − x)2 + (yi − y)2 + (zi − zc)2]
3
2

dx dy , zc > zi . (27)

In the geophysical literature, several authors have presented different versions of equation

27 (Skeels, 1947; Henderson and Zietz, 1949; Henderson, 1960; Roy, 1962; Bhattacharyya,

1967; Henderson, 1970; Twomey, 1977; Blakely, 1996). Here, by following Henderson (1960,

1970), we call equation 27 as the upward continuation integral.

According to the classical upward continuation integral (equation 27), the values of the

harmonic function U(xi, yi, zi) at any point (xi, yi, zi), zi < zc, can be exactly reproduced by

the convolution between its values U(x, y, zc) and the vertical derivative of the function 1/r

(equation 11), both evaluated on the horizontal plane z = zc (Figure 2). From the physical

point of view, the harmonic function U(xi, yi, zi) represents the scalar potential produced by

a planar and continuous dipole layer having vertical magnetization and a unique magnetic

moment distribution equal to −U(x, y, zc)/2π.

Notice that, according to the classical upward continuation integral (equation 27), any
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spatial derivative of the harmonic function U(xi, yi, zi) can be obtained by properly differ-

entiating the integrand. Then, by assuming the knowledge of U(x, y, zc) on the horizontal

plane z = zc (Figure 2), it is possible to compute not only U(xi, yi, zi), but also any of its

spatial derivatives at any point (xi, yi, zi), zi < zc.

GENERALIZED UPWARD CONTINUATION INTEGRAL

Mathematical development

This section attempts to generalize the classical upward continuation integral (equation

27) to the case in which the harmonic function U(xi, yi, zi) is represented by an integral

conducted over an undulating surface. To do this, let’s first define a regular surface (see

Kellogg, 1929) on which any point has Cartesian coordinates (x′, y′, z′) and

z′ = f(x′, y′) , zi < z′ ≤ zc , (28)

where f(x′, y′) is a function with continuous and bounded partial derivatives of first and

second orders. Let’s also consider that the harmonic function U(x, y, zc), evaluated on the

horizontal plane z = zc (Figure 2), can be represented by a surface integral

U(x, y, zc) =

+∞∫
−∞

+∞∫
−∞

p̃(x′, y′, z′) g(x− x′, y − y′, zc − z′) dS′ , (29)

where z′ is defined by equation 28, the surface element dS′ is given by (Kellogg, 1929;

Bhattacharyya and Chan, 1977; Jeffreys and Jeffreys, 2000)

dS′ =
[
1 + (∂x′f)2 + (∂y′f)2

] 1
2 dx′dy′ , (30)

g(x−x′, y−y′, zc−z′) is a harmonic function that tends to zero as the distance between the

points (x, y, zc) and (x′, y′, z′) tends to infinite and p̃(x′, y′, z′) is a generic bounded function
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that satisfies the necessary conditions for the existence of the surface integral. In equation

30, ∂α′f ≡ ∂f
∂α′ (x′, y′), α′ = x′, y′. By substituting the surface element dS′ (equation 30)

into equation 29, we obtain

U(x, y, zc) =

+∞∫
−∞

+∞∫
−∞

p(x′, y′, z′) g(x− x′, y − y′, zc − z′) dx′dy′ , (31)

where

p(x′, y′, z′) =
[
1 + (∂x′f)2 + (∂y′f)2

] 1
2 p̃(x′, y′, z′) . (32)

By substituting equation 31 into the classical upward continuation integral (equation

27) and conveniently changing the integration order, we obtain

U(xi, yi, zi) =

+∞∫
−∞

+∞∫
−∞

p(x′, y′, z′)

 1

2π

+∞∫
−∞

+∞∫
−∞

(zc − zi) g(x− x′, y − y′, zc − z′)
[(xi − x)2 + (yi − y)2 + (zi − zc)2]

3
2

dxdy

 dx′dy′.

(33)

For convenience, we define new variables ε = x−x′, η = y−y′ and ζ = zc−z′ and substitute

them into the term in brackets in equation 33. By noting that ζ > (zi − z′) and comparing

the result with the classical upward continuation integral (equation 27), we conclude that

g(xi−x′, yi−y′, zi−z′) =
1

2π

+∞∫
−∞

+∞∫
−∞

[ζ − (zi − z′)] g(ε, η, ζ)

{[(xi − x′)− ε]2 + [(yi − y′)− η]2 + [(zi − z′)− ζ]2}
3
2

dεdη.

(34)

By substituting the term in brackets in equation 33 by equation 34, we obtain a generalized

upward continuation integral given by

U(xi, yi, zi) =

+∞∫
−∞

+∞∫
−∞

p(x′, y′, z′) g(xi − x′, yi − y′, zi − z′) dx′dy′ . (35)

This approach is based on Mendonça (1992), who deduced a discrete version of the gener-

alized upward continuation integral (equation 35).
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Relationship between the harmonic function and the physical property

distribution

In equation 35, the function p(x′, y′, z′) represents the physical property distribution on the

continuous and undulating surface z′ = f(x′, y′). The observed potential field U(xi, yi, zi)

and the choice of the harmonic function g(xi − x′, yi − y′, zi − z′) determine the physical

meaning of the generalized upward continuation integral. This choice, in turn, can be

conveniently made according to the specificities of the problem to be solved. Generally, the

harmonic function g(xi − x′, yi − y′, zi − z′) (equation 35) is written in terms of the inverse

distance function

θ(x− x′, y − y′, z − z′) =
1

r′
, (36)

its first derivatives

∂αθ(x− x′, y − y′, z − z′) =
α′ − α
(r′)3

, (37)

second derivatives

∂αβθ(x− x′, y − y′, z − z′) =


3 (α− α′)2

(r′)5
− 1

(r′)3
, α = β

3 (α− α′) (β − β′)
(r′)5

, α 6= β

, (38)

and third derivatives

∂αβγθ(x−x′, y−y′, z−z′) =



9 (α− α′)
(r′)5

− 15 (α− α′)3

(r′)7
, α = β = γ

3 (γ − γ′)
(r′)5

− 15 (α− α′)2 (γi − γ′)
(r′)7

, α = β 6= γ

15 (α− α′) (β − β′) (γ − γ′)
(r′)7

, α 6= β, α 6= γ, β 6= γ

, (39)

where α = x, y, z, β = x, y, z, γ = x, y, z, α′ = x′, y′, z′, β′ = x′, y′, z′ and γ′ = x′, y′, z′. In

equations 36–39,

r′ =
[
(x− x′)2 + (y − y′)2 + (z − z′)2

] 1
2 (40)
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represents the Euclidean distance between a point (x, y, z) and an observation point (x′, y′, z′)

on the undulating surface z′ (equation 28). In the two subsections that follow we present

examples of the relationship between the harmonic function and the physical property dis-

tribution, as well as some theoretical implications.

Relationship between the generalized and the classical upward continua-

tion integrals

Consider the particular case in which the harmonic function g(xi − x′, yi − y′, zi − z′) in

equation 35 is given by equation 37, with α = z. Additionally, suppose that z′ (equation

28) tends to the constant zc (Figura 2) at all points (x′, y′). In this case, the horizontal

derivatives ∂x′f and ∂y′f (equations 30 and 32) tend to zero and the generalized upward

continuation integral (equation 35) is given by

U(xi, yi, zi) =

+∞∫
−∞

+∞∫
−∞

p(x′, y′, zc) ∂zθ(xi − x′, yi − y′, zi − zc) dx′dy′ , (41)

where p(x′, y′, zc) = p̃(x′, y′, zc) (equation 32). Finally, by comparing equation 41 with

the classical upward continuation integral (equation 27), it is apparent that the physical

property distribution p(x′, y′, zc) (equation 32) assumes the particular form given by

p(x′, y′, zc) =
U(x′, y′, zc)

2π
. (42)

Theoretical magnetic moment distribution in a continuous double layer

In this section, we will analyse the particular case in which the generalized upward con-

tinuation integral (equation 35) is used to describe the observed total-field anomaly ∆T oi

(equation 8) by a continuous double layer having a magnetic moment distribution with con-

stant direction and variable intensity. Let’s also consider that the equivalent is defined by
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a horizontal plane located at a constant depth z′ = zc. In this case, the harmonic function

g(xi − x′, yi − y′, zi − z′) is given by

g(xi − x′, yi − y′, zi − zc) = km
µ0
4π

F̂>Hi ĥ , (43)

where F̂ is the unit vector (equation 4) having the same direction as the local-geomagnetic

field F0 (equation 3), ĥ is a constant unit vector given by

ĥ =


cos(I) cos(D)

cos(I) sin(D)

sin(I)

 , (44)

which represents the arbitrary magnetization direction with constant inclination I and

constant declination D within the continuous double layer and the matrix Hi is given by

Hi =


∂xxθi ∂xyθi ∂xzθi

∂xyθi ∂yyθi ∂yzθi

∂xzθi ∂yzθi ∂zzθi

 , (45)

where the partial derivatives of second order ∂αβθi ≡ ∂αβθ(xi−x′, yi−y′, zi−zc), α = x, y, z,

β = x, y, z, are defined according to equation 38. Mathematically, the harmonic function

g(xi−x′, yi− y′, zi− zc) (equation 43) represents the product of (km µ0/4π) and the second

directional derivative of the function θ(xi − x′, yi − y′, zi − zc) (equation 36) taken along

the directions defined by the unit vectors F̂ and ĥ. From the physical point of view, this

harmonic function represents the total-field anomaly produced, at the observation point

(xi, yi, zi), i = 1, ..., N , by a dipole that has unit magnetic moment and is located at a

point (x′, y′, zc), where zc > zi. By using such harmonic functions, the function p(x′, y′, zc)

(equation 32) can be considered the magnetic moment intensity (in Am2) per unit area

within the continuous double layer. For convenience, the unit vector ĥ (equations 43 and
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44) can also be written as

ĥ = Rm̂ , (46)

where m̂ (equation 8) is a unit vector with the same direction as the true magnetization of

the source and R is a 3× 3 matrix obtained from Euler’s rotation theorem. This theorem

states that any rotation can be parametrized by using three parameters called Euler angles

(Goldstein et al., 1980).

Notice that, if the double layer have the same magnetization direction as the true mag-

netic source, the rotation matrix R (equation 46) is equal to the identity matrix.

By combining equations 35, 43 and 46, the observed total-field anomaly ∆T oi (equation

8) can be rewritten as

∆T oi =

+∞∫
−∞

+∞∫
−∞

p(x′, y′, zc)
[
km

µ0
4π

F̂>Hi m̂
]
dx′dy′ , (47)

which represents the total-field anomaly produced by a continuous double layer with the

same magnetization direction as the true magnetic source. In this case, according to equa-

tion 47, the total-field anomaly ∆TPi (equation 9) can be rewritten as follows:

∆TPi =

+∞∫
−∞

+∞∫
−∞

p(x′, y′, zc)
[
km

µ0
4π

∂zzθ(xi − x′, yi − y′, zi − zc)
]
dx′dy′ , (48)

where ∂zzθ(xi− x′, yi− y′, zi− zc) is defined in equation 38. By comparing equations 9 and

48, we obtain

m ∂zzφi =

+∞∫
−∞

+∞∫
−∞

p(x′, y′, zc) ∂zzθ(xi − x′, yi − y′, zi − zc) dx′dy′ , (49)

where ∂zzφi is the second derivative, evaluated at the observation point (xi, yi, zi), i =

1, ..., N , of the harmonic function φ(x, y, z) (equation 2) with respect to the variable z. In

this case, the integral in equation 2 is conducted over the volume of the magnetic source.
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Notice that equation 49 can be obtained by differentiating the following equation

m ∂zφi =

+∞∫
−∞

+∞∫
−∞

p(x′, y′, zc) ∂zθ(xi − x′, yi − y′, zi − zc) dx′dy′ (50)

with respect to the variable z, where ∂zφi represents the first derivative of the function

φ(x, y, z) (equation 2) with respect to the variable z and evaluated at the observation point

(xi, yi, zi). Then, according to equations 27 and 41, we conclude that equation 50 represents

the upward continuation of the harmonic function (m ∂zφi) and, consequently,

p(x′, y′, zc) =
m

2π
∂zφ(x′, y′, zc) , (51)

where ∂zφ(x′, y′, zc) is the first derivative, evaluated on the double layer, of the function

φ(x, y, z) (equation 2) with respect to the variable z.

It is also worth noting that the function ∂zφ(x′, y′, zc) is positive at all points (x′, y′, zc)

on the planar equivalent layer. By using equation 1, p(x′, y′, zc) (equation 51) can be

rewritten as follows

p(x′, y′, zc) =
m

2π kg ρG
δg(x′, y′, zc) , (52)

where δg(x′, y′, zc) is the gravity disturbance that would be produced by the magnetic

source, at the point (x′, y′, zc) on the equivalent layer, if it had a constant density contrast

ρ.

We call attention that equation 52 represents the magnetic moment distribution (per

unit area) distribution of the continuous double layer which has the same magnetization

direction as the true magnetic source and reproduces the observed total-field anomaly ∆T oi

(equation 47). The remarkable aspect in equation 52 is that p(x′, y′, zc) is all positive

because the constant m/(2π kg G) is positive, as well as the ratio δg(x′, y′, zc)/ρ is positive

at all points (x′, y′, zc) on the horizontal plane defining the continuous double layer. Notice
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that equation 52 was deduced by considering that the magnetization intensity m and density

ρ are constant throughout all the magnetic sources.

This relationship is similar to that one presented by Pedersen (1991) and Li et al. (2014).

By following different approaches in the wavenumber domain, they proved the existence

of an all-positive magnetic moment distribution within a continuous double layer. Their

approach, however, is valid only for the case in which the observed total-field anomaly is

produced by magnetic sources having a purely and vertical induced magnetization. They

also considered a planar double layer which is parallel to a horizontal plane containing

the observed total-field anomaly. Under these assumptions, Pedersen (1991) and Li et al.

(2014) concluded that the magnetic moment distribution within the continuous double layer

is all-positive and proportional to the pseudogravity anomaly produced by the source on the

plane of the double layer. Equation 52 generalizes this positivity condition because it (1)

does not impose an induced magnetization on the equivalent sources within the equivalent

layer, (2) holds true for all cases in which the magnetization of the dipole layer has the

same direction as the true magnetization of the sources, whenever it is purely induced or

not, and (3) does not require that the observed total-field anomaly data be on a plane.

By substituting this theoretical magnetic-moment distribution p(x′, y′, zc) (equation 52)

into the total-field anomaly (equation 47), we obtain

∆T oi =
1

2π

kmm (µ0/4π)

kg ρG

+∞∫
−∞

+∞∫
−∞

δg(x′, y′, zc) F̂>Hi m̂ dx′dy′ . (53)

Equation 53 is substantially different from the Poisson’s relation (Garland, 1951; Baranov,

1957; Cordell and Taylor, 1971; Chandler et al., 1981; Blakely, 1996; Mendonça, 2004),

because it relates the total-field anomaly ∆T oi at an observation point (xi, yi, zi) and the

gravity disturbance δg(x′, y′, zc) that would be produced by the magnetic sources, at the
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planar surface defining the equivalent layer, if they had a constant density contrast ρ.

Equation 53 can be generalized to the case in which the magnetization intensity m and

density ρ vary within the sources. This can be done by first dividing the magnetic sources

into Q small volume elements dvk, k = 1, . . . , Q, inside which the magnetization intensity

mk and density ρk are constant. Then, we use equation 53 to represent the total-field

anomaly ∆T ki produced by each volume element dvk at the observation point (xi, yi, zi).

By summing the total-field anomalies ∆T ki , we obtain

∆T oi =
1

2π

km (µ0/4π)

kg G

Q∑
k=1

 +∞∫
−∞

+∞∫
−∞

mk δgk(x′, y′, zc)

ρk
F̂>Hi m̂ dx′dy′

 , (54)

or, alternatively,

∆T oi =
1

2π

km (µ0/4π)

kg G

+∞∫
−∞

+∞∫
−∞

[
Q∑
k=1

mk δgk(x′, y′, zc)

ρk

]
F̂>Hi m̂ dx′dy′ , (55)

where δgk(x′, y′, zc) represents the gravity disturbance that would be produced by the kth

volume element dvk, at the point (x′, y′, zc) on the equivalent layer, if it had a constant

density contrast ρk.

By comparing equation 55 with equation 53, we can see that the theoretical magnetic-

moment distribution (equation 52) can be generalized as follows

p(x′, y′, zc) =
1

2π kg G

Q∑
k=1

[
mk δgk(x′, y′, zc)

ρk

]
. (56)

Notice that the ratio δgk(x′, y′, zc)/ρ
k is positive at all points on the planar equivalent

layer, for any k, where k = 1, . . . , Q. Consequently, the generalized magnetic-moment

distribution (equation 56) is all-positive as well. Equations 54, 55, and 56 show that the

magnetic-moment distribution within a planar equivalent layer of dipoles with the same

magnetization direction as the true magnetic sources is all-positive even in the case that

the magnetization intensity varies within the magnetic sources.
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EQUIVALENT LAYER TECHNIQUE

Discrete equivalent layer and practical considerations

In geophysics, the classical (equation 27) or generalized (equation 35) upward continuation

integrals are commonly used to calculate, for example, the upward continuation or interpo-

lation of different potential-field data U(xi, yi, zi), e.g., gravity disturbance δgoi (equation

1) or total-field anomaly ∆T oi (equation 8). The potential-field data may be measured on

an irregular grid of observation points (xi, yi, zi), i = 1, ..., N , that may be located on an

uneven surface such as the Earth’s surface, for a ground survey, or a draped surface, for an

airborne survey. We emphasize that the use of these integrals implicitly assumes that the

potential-field data are harmonic. Therefore, the data must be previously processed with

the purpose of supporting this assumption.

According to the classical (equation 27) or the generalized (equation 35) upward continu-

ation integrals, any observed potential-field data doi ≡ U(xi, yi, zi) can be exactly reproduced

by a theoretical and fictitious continuous layer having a physical property distribution de-

fined by p(x′, y′, z′) (equation 32). In other words, it is possible to establish a fictitious

layer which has a theoretical physical-property distribution and exactly reproduces the ob-

served potential-field data that is produced by the actual and unknown geological sources

located in the subsurface. In geophysics, this fictitious layer is commonly called “equivalent

layer”. These integrals (equations 27 or 35), however, cannot be used in practical applica-

tions because we are not able to determine the physical property distribution p(x′, y′, z′) in

a continuous equivalent layer reproducing a discrete set of potential-field observations doi ,

i = 1, ..., N .

In practical applications, the continuous equivalent layer is approximated by a discrete

29



set of sources (usually punctual sources) located at points (xj , yj , zj), j = 1, ...,M . The

physical property distribution within the discrete equivalent layer is represented by the

parameter vector p, whose jth element is a constant coefficient pj describing the physical

property of the jth equivalent source and approximates the function p(xj , yj , zj) (equations

32 and 35) evaluated at the point (xj , yj , zj). This approximation results in a discrete

version of the classical or generalized upward continuation integrals (equations 27 and 35)

given by

dpi (p) =
M∑
j=1

pj gij , (57)

where gij ≡ g(xi−xj , yi−yj , zi−zj) (equation 35) is the harmonic function representing the

potential field produced, at the observation point (xi, yi, zi), i = 1, ..., N , by an equivalent

source that is located at the point (xj , yj , zj), j = 1, ...,M , and has a unit (scalar) physical

property.

The harmonic functions gij (equation 57) can describe the potential field produced by

different kinds of equivalent sources. As pointed out before (Cordell, 1992; Gusṕı and

Novara, 2009; Li et al., 2014), these harmonic functions are independent of the nature of

the observed potential-field data and can be chosen according to the characteristics of the

problem. The necessary condition is that these functions must be harmonic and vanish

as the distance to the source increases. Table 1 shows the kind of equivalent-sources, the

mathematical/physical meaning of the harmonic functions as well as the kind of observed

potential-field data used by several authors. As shown in this table, Dampney (1969)

preserves the physical relationship between the observed potential-field data and their actual

sources by approximating an observed Bouguer anomaly by the vertical component of the

gravitational attraction exerted by point masses. On the other hand, Cordell (1992) and

Gusṕı and Novara (2009) release the physical relationship between the observed potential
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field data and their actual sources. Specifically, Cordell (1992) approximates an observed

Bouguer anomaly by the gravitational potential produced by point masses whereas Gusṕı

and Novara (2009) approximate a total-field anomaly by the second directional derivative

of a generic harmonic function representing a higher-order potential produced by point

sources.

We call to attention that, depending on the definition of the harmonic functions gij

(equation 57) and the geometry of the equivalent layer, the coefficients pj may approximate

a particular analytical form of the continuous physical property distribution p(x′, y′, z′)

(equation 32). Consider, for example, the particular case in which an observed total-field

anomaly ∆T oi (equation 8) is approximated by the potential-field dpi (p), i = 1, ..., N , pro-

duced by a planar equivalent layer of dipoles located at a constant depth zc and the harmonic

functions are defined according to gij ≡ g(xi − xj , yi − yj , zi − zc) (equation 43). Addition-

ally, consider that the dipoles are conveniently arranged in a uniform grid of points spaced

at ∆x and ∆y along, respectively, the x and y directions. In this case, we have

dpi (p) =
M∑
j=1

pj

(
km

µ0
4π

F̂>Hijĥ
)
, (58)

where Hij is a matrix that is similar to Hi (equation 45), with elements ∂αβθij ≡ ∂αβθ(xi−

xj , yi−yj , zi−zj), α = x, y, z, β = x, y, z (equation 38), the unit vectors F̂ and ĥ are defined

in equations 43–46 and the coefficients pj represent a magnetic moment distribution (in

Am2) in the equivalent layer. In equation 58, the use of an arbitrary unit vector ĥ, which

corresponds to use equivalent sources with arbitrary magnetization direction, results in a

parameter vector p whose elements pj have no evident physical meaning. On the other

hand, by setting the unit vector ĥ = m̂ (equation 8), which corresponds to use equivalent

sources with the same magnetization direction as the true sources, the elements pj of the
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parameter vector p assume, according to equations 47–52, a particular analytical form given

by

pj =
∆s m

2π kg ρG
δgj , (59)

where ∆s = ∆x∆y and δgj ≡ δg(xj , yj , zc) (equation 1) is the gravity disturbance produced

by the actual and unknown geological sources at the points (xj , yj , zc). Notice that pj

(equation 59) represents a discrete form of the continuous physical property distribution

p(x′, y′, z′) defined by equation 52.

The analytical representation of the physical property distribution in the equivalent layer

(equation 52) is not only a mathematical concept without practical application; rather, it

can be used in practice. For example, Li et al. (2014) cleverly took advantage of the theoret-

ical relationship between the gravity disturbance (equation 1) and the all-positive magnetic

moment distribution (equation 52) at the equivalent layer. By exploring a particular form of

this theoretical relationship, they imposed a positivity constraint to estimate the magnetic

moment distribution within the equivalent layer. However, in most practical applications,

the numerical values of the coefficients are estimated, whatsoever the possible analytical

form that they approximate.

In the geophysical literature, the technique of estimating a particular parameter vector p

yielding a predicted potential field dpi (p) (equation 57) that is close to the observed potential

field doi at the points (xi, yi, zi), i = 1, ..., N , is named either “equivalent source technique”

or “equivalent layer technique”. Here, we opted for using the second term.
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Classical equivalent layer

The classical equivalent layer approach consists in solving a linear inverse problem to es-

timate the parameter vector p containing the coefficients pj , j = 1, ...,M , describing the

physical property of the equivalent sources. Let do be the observed data vector, whose

ith element doi , i = 1, ..., N , represents a potential-field observation at the point (xi, yi, zi).

Let us also define the predicted data vector dp(p), whose ith element is the predicted

potential-field data dpi (p) (equation 57) at the point (xi, yi, zi). According to equation 57,

the predicted data at each observation point is a linear combination of harmonic functions

gij in which pj , j = 1, ...,M , are the coefficients. Consequently, the predicted data vector

dp(p) can be written in matrix notation as follows

dp(p) = Gp , (60)

where G is an N ×M dense matrix whose ijth element is the harmonic (Green’s) function

gij (equation 57).

The classical approach consists in estimating the parameter vector p by solving the

linear inverse problem of minimizing the difference between the observed data do and the

predicted data dp(p) (equation 60). To obtain a stable estimate p∗, this linear inverse

problem is generally constrained by using a regularization function (Tikhonov and Arsenin,

1977; Aster et al., 2005). For example, a stable estimate p∗ can be obtained by minimizing

the goal function

Γ(p) = Ψ(p) + µΩ(p) , (61)

where the first term Ψ(p) is the data misfit function given by

Ψ(p) = ‖do − dp(p)‖22 , (62)
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which is the squared Euclidean norm of the difference between the observed data do and the

predicted data dp(p) (equation 60), and µ is a positive real number controlling the trade-off

between the data misfit function and the zeroth-order Tikhonov regularization (Tikhonov

and Arsenin, 1977; Aster et al., 2005) given by

Ω(p) = ‖p‖22, (63)

which is the squared Euclidean norm of the parameter vector p. Other example of regular-

ization function commonly used in the equivalent layer technique is the first-order Tikhonov

regularization, which imposes smoothness on the estimated physical property distribution.

After obtaining an estimate p∗, a desired linear transformation, such as interpolation,

reduction to the pole and upward (or downward) continuation, is performed by

d′(p∗) = T p∗ , (64)

where d′(p∗) is an L× 1 vector whose kth element d′k(p
∗) is the transformed-potential field

at position (xk, yk, zk), k = 1, ..., L. We stress that the transformed potential-field data are

calculated at L points (xk, yk, zk), k = 1, ..., L, which are not necessarily coincident with

the N observation points (xi, yi, zi), i = 1, ..., N . Finally, T is an L ×M matrix whose

kjth element tkj is an harmonic (Green’s) function representing the desired transformed-

potential field produced by the jth equivalent source with unitary physical property at the

kth point (xk, yk, zk).

For example, let us return to the case in which an observed total-field anomaly ∆T oi

(equation 8) is approximated by the predicted potential-field dpi (p) given by equation 58.

In this case, the element tkj of the matrix T (equation 64) used for computing the vertical

derivative of the observed total-field anomaly at the observation points can be defined as
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follows

tij = km
µ0
4π

F̂>∂zHij ĥ , (65)

where

∂zHij =


∂xxzθij ∂xyzθij ∂xzzθij

∂xyzθij ∂yyzθij ∂yzzθij

∂xzzθij ∂yzzθij ∂zzzθij

 (66)

is a 3 × 3 matrix whose elements ∂αβzθij ≡ ∂αβzθ(xi − xj , yi − yj , zi − zc), α = x, y, z,

β = x, y, z, are defined in equation 39. Additionally, the element tij of the matrix T

(equation 64) used for computing the reduced-to-the-pole anomaly (or RTP anomaly) at

the observation points is given by

tij = km
µ0
4π

∂zzθij , (67)

where ∂zzθij ≡ ∂zzθ(xi−xj , yi− yj , zi− zc) are defined according to equation 38. We stress

that this transformation requires that the equivalent sources have the same magnetization

direction as the true magnetic sources, which mean that the unit vector ĥ in equation 58

must be equal to the unit vector m̂ in equation 8. Finally, the element tkj of the matrix T

(equation 64) used for computing an upward-continued or interpolated total-field anomaly

is given by

tkj = km
µ0
4π

F̂>Hkj ĥ , (68)

where Hkj is the same matrix defined in equation 45, but with the elements ∂αβθkj ≡

∂αβθ(xk − xj , yk − yj , zk − zc) (equation 38), α = x, y, z, β = x, y, z, evaluated at the

continuation or interpolation points (xk, yk, zk), k = 1, ..., L.
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Computational aspects

Generally, the linear inverse problem of estimating a stable parameter vector p∗ minimiz-

ing the goal function (equation 61) deals with a large and dense matrix G (equation 60).

Consequently, this problem deals with large-scaled matrix computations, making the equiv-

alent layer technique computationally inefficient. As properly pointed out by Barnes and

Lumley (2011), the key to a successful application of the equivalent layer rests with care-

fully designed algorithm that can handle large-scaled problems efficiently and reliably. Any

algorithm designed to solve problems involving large-scaled matrix computations needs to

take advantage of the particular structure of these matrices instead of using strategies that

were developed for general matrices. The performance of an algorithm can be increased,

for example, by exploiting the fact that a symmetric matrix can be stored in half the space

of a general matrix or by designing matrix-vector products that consider only the nonzero

entries (Press et al., 1992; Golub and Loan, 2013). The computational efficiency of an algo-

rithm depends, amongst other factors, on the amount of required arithmetic and storage. A

way of determining the amount of required arithmetic is by counting the number of floating-

point operations (flops), which is the number of additions, subtractions, multiplications or

divisions of floating-point numbers (Boyd and Vandenberghe, 2004; Golub and Loan, 2013).

A stable estimate p∗ minimizing the goal function (equation 61) can be obtained, for

example, by using an overdetermined formulation (Menke, 1989)

p∗ =
(
G>G + µ I

)−1
G>do (69)

or an underdetermined formulation

p∗ = G>
(
GG> + µ I

)−1
do , (70)
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depending on the relative number M of parameters with respect to the number N of data.

Notice that, in equation 69, I is the M ×M identity matrix, whereas in equation 70, I is

the N × N identity matrix. While the linear system to be solved in equation 69 contains

an M ×M matrix
(
G>G + µ I

)
, the one to be solved in equation 70 contains an N × N

matrix
(
GG> + µ I

)
. The number of flops needed to construct the linear systems shown

in equations 69 and 70 are, respectively,

foc = M2N +M + 2MN (71)

and

fuc = M N2 +N + 2MN . (72)

Here, by regarding the symmetry of the matrices involved, we consider that the solution of

the linear systems are obtained from the Cholesky factorization. In this case, the number

of flops needed to solve the linear systems shown in equations 69 and 70 are, respectively,

fos =
1

3
M3 + 2M2 (73)

and

fus =
1

3
N3 + 2N2 . (74)

Generally, the number of equivalent sources M are greater than the number of potential-field

data N and, therefore, the overdetermined solution (equation 69) is more computationally

expensive than the underdetermined solution (equation 70).

Several authors have developed different algorithms to improve the computational ef-

ficiency of the equivalent layer technique. Leão and Silva (1989) developed a fast method

for processing a regular grid of potential-field data. The method consists in estimating

an equivalent layer which exactly reproduces the potential-field data within a small data
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window. The data window is shifted over the whole gridded data set in a procedure similar

to a discrete convolution. The equivalent layer extends beyond the moving-data window

and is located at a depth between two and six times the grid spacing of the observations.

For each data window, the equivalent layer is estimated by solving an underdetermined

linear system similar to that one presented in equation 70. After estimating an equivalent

layer, the transformed-potential field is computed only at the center of the moving-data

window. The use of a small moving-data window greatly reduces the total number of flops

and memory storage. The computational efficiency of this method relies on the strategy

of constructing the equivalent layer by successively solving small linear systems instead of

solving just one large linear system for the entire equivalent layer. Based on the authors’

literature reviews, one of the fastest methods known today is that one proposed by Leão and

Silva (1989). Mendonça and Silva (1994) also followed the strategy of solving successive

small linear systems for constructing an equivalent layer. Their method is based on the

equivalent-data concept, which consists in determining a subset of all potential-field data

(named equivalent-data set), such that the interpolating surface that fits the chosen subset

also automatically fits all remaining data. The equivalent data set is obtained by iteratively

introducing the potential-field observation with the greatest residual in the preceding itera-

tion. By applying to the interpolation problem, the method is optimized by approximating

dot products by the discrete form of an analytic integration that can be evaluated with less

computational effort. According to the authors, the equivalent-data set is usually smaller

than the total number of potential-field observations, leading to computational savings.

The authors also pointed out that the computational efficiency of the method depends on

the number of equivalent data. If the potential-field anomaly is nonsmooth, the number of

equivalent data can be large and the method will be less efficient than the classical approach.
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By following a different strategy, Li and Oldenburg (2010) developed a rapid method

that transforms the dense matrix G (equation 60) into a sparse one by using a wavelet

technique. After obtaining a sparse representation of the matrix G, these authors estimate

the physical-property distribution within the equivalent layer by using an overdetermined

formulation similar to that one shown in equation 69. These authors pointed out that,

given the sparse representation, their method reduces the computational time required for

solving the linear system by as many as two orders of magnitude if compared with the same

formulation using a dense matrix. Barnes and Lumley (2011) followed a similar strategy

and transformed the dense matrix G (equation 60) into a sparse one. However, differently

from Li and Oldenburg (2010), their method operates in the space domain by grouping

equivalent sources far from an observation point into blocks with average physical property.

This procedure aims at reducing the memory storage and achieving computational efficiency

by solving the transformed linear system with a weighted-least-squares conjugate-gradient

algorithm. Notice that, instead of constructing the equivalent layer by solving successive

small linear systems, these last two methods first transform the large linear system into a

sparse one and then take advantage of this sparseness.

Oliveira Jr. et al. (2013) developed a fast method based on the reparameterization of

the physical-property distribution within the equivalent layer. These authors divided the

equivalent layer into a regular grid of equivalent-source windows inside which the physical-

property distribution is described by bivariate polynomial functions. By using this polyno-

mial representation, the inverse problem of constructing the equivalent layer is posed in the

space of the total number of polynomial coefficients within all equivalent-source windows

instead of in the space of the total number of equivalent sources. According to Oliveira Jr.

et al. (2013), the computational efficiency of their method relies on the fact that the to-
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tal number of polynomial coefficients needed to describe the physical property distribution

within the equivalent layer is generally much smaller than the number of equivalent sources,

leading to a very smaller linear system to be solved. These authors could verify that the to-

tal number of flops needed for building and solving the linear inverse problem of estimating

the total number of polynomial coefficients can be reduced by as many as three and four

orders of magnitude, respectively, if compared with the same inverse problem of estimating

the physical property of each equivalent source forming the equivalent layer.

The method presented by Cordell (1992) and after generalized by Gusṕı and Novara

(2009) does not estimate the physical property distribution within the equivalent layer by

solving a linear system. The physical property of the sources, which are located below each

potential-field data, are iteratively updated by a procedure that removes the maximum

residual between the observed and predicted data. The total number of flops required

by these iterative methods for estimating the physical-property distribution within the

equivalent layer depends on the total number of iterations, however this number is generally

much smaller than the total number of flops required to solve a large-scaled linear system.

Generally, the most computational expensive step in each iteration of these methods is the

forward problem of calculating the potential-field data produced by the equivalent layer.

APPLICATIONS

We present numerical tests to validate the theoretical magnetic-moment distribution within

a planar equivalent layer (equations 52 and 59) and also demonstrate the power of the

equivalent layer technique in processing potential-field data. In all tests, we place an equiv-

alent source beneath each data point. The synthetic data used in all tests are produced

by two rectangular prisms with density 1000 kg/m3 and total magnetization with intensity
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10 A/m, inclination 30◦ and declination −10◦ (Figure 3). The smaller prism has the top

at 0.05 km and side lengths equal to 2 km, 2 km and 1.95 km along, respectively, the x-,

y- and z-axis. The greater prism has the top at 0.1 km and side lengths equal to 2 km, 6

km and 2 km along the x-, y- and z-axis, respectively. In almost all tests, the synthetic

data produced by the simulated prisms and the equivalent layers are calculated on the un-

dulating surface shown in Figure 4; The exceptions will be specified in the text. Finally,

the simulated local-geomagnetic field in all tests has a constant direction with inclination

6◦ and declination −40.5◦.

Validation of the theoretical magnetic-moment distribution

We compare the total-field anomaly ∆T oi (equation 8) and RTP anomaly ∆TPi (equation

9) produced by the simulated prisms (Figures 5a and 5b) with the total-field anomaly and

RTP anomaly produced by a planar equivalent layer (Figures 5b and 5e) of dipoles located

at a constant depth zc = −200 m. These anomalies are calculated on a regular grid of

90× 90 points (xi, yi, zi), i = 1, ..., N = 8100, which are regularly spaced at ≈ 337 m along

the horizontal directions x and y.

The total-field anomaly produced by the equivalent layer (Figure 5c) is calculated by

using equation 58, where the coefficients pj , j = 1, . . . , N = 8100, describing the physical

property of each dipole are calculated by using the discrete form of the theoretical magnetic-

moment distribution (equation 59). Notice that, in this case, the coefficients pj are not

estimated by solving any linear inverse problem. Rather, they are directly calculated by

equation 59. The RTP anomaly produced by the planar equivalent layer (Figures 5d) is

calculated by using equation 64, where the elements tij of the matrix T are defined by
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equation 67.

The differences between the total-field and RTP anomalies produced by the simulated

prisms (Figures 5a and 5b) and the equivalent layer (Figures 5c and 5d), calculated at the

same points, are shown in Figures 5e and 5f. Notice that the differences are very close

to zero over the entire area, except at the borders, where they reach the maxima absolute

values. The maxima absolute differences between the total-field and RTP anomalies are, re-

spectively, ≈ 5 nT and ≈ 5.6 nT. These small differences, therefore, validate the theoretical

magnetic-moment distribution defined by equation 59.

Figure 6a shows the physical property distribution within the equivalent layer, which

is calculated by using the discrete form of the theoretical magnetic-moment distribution

(equation 59). Figure 6b shows the synthetic gravity disturbance (equation 1) used in

equation 59 for calculating the magnetic-moment distribution shown in Figure 6a. Notice

that the physical property distribution within the equivalent layer (Figure 6a) is all positive,

which is in accordance with our mathematical analysis.

These results validate the theoretical premise that a planar equivalent layer of dipoles

having a magnetic-moment distribution defined by equation 59 is able to reproduce a dis-

crete set of total-field anomaly data as well as retrieve the true RTP anomaly. Consequently,

despite the numerical approximations, these results also validate the continuous theoretical

magnetic-moment distribution given by equation 52.

Estimation of the magnetic moment distribution

We present two numerical tests very similar to that presented in the previous subsection.

The only difference is that the magnetic-moment distribution within the equivalent layer is
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estimated by solving a linear inverse problem.

In the first test, the unit vector ĥ (equation 58) defining the magnetization direction of

the equivalent sources is equal to the unit vector m̂ (equation 8) defining the magnetization

direction of the simulated prisms (Figure 3). Figure 7a shows the estimated magnetic-

moment distribution within the planar equivalent layer as defined in the previous test.

Figure 7b shows the difference between the estimated magnetic-moment (Figure 7a) and

the theoretical magnetic-moment distribution (Figure 6a). We observe null differences over

almost the entire layer. The maxima absolute differences are ≈ 0.06× 109 Am2 and occur

at the borders.

The total-field and RTP anomalies predicted by the planar equivalent layer are shown

in Figures 8a and 8b, respectively. These anomalies are calculated by using equations 58,

64 and 67 with the estimated magnetic-moment distribution shown in Figure 7a. The

differences between the total-field and RTP anomalies produced by the simulated prisms

(Figures 5a and 5b) and by the equivalent layer (Figures 8a and 8b), calculated at the same

points, are shown in Figures 8c and 8d, respectively. As we can see, they are very close to

zero over the entire area. The maxima absolute differences between the total-field and RTP

anomalies are, respectively, ≈ 0.02 nT and ≈ 226.84 nT. They occur along well-defined

striations that are closely aligned with the declination of the simulated local-geomagnetic

field (−40.5◦). The presence of these artefacts has been already pointed out by Li et al.

(2014). They observed these striations by applying the equivalent-layer to perform the

RTP in the space domain. According to their analysis, they suggest that these striations

are caused by the inherent instabilities of the RTP transformation at low latitudes. They

showed, for purely induced magnetic sources, that these striations can occur even in cases

where the estimated physical property distribution within the equivalent layer is regularized.
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In spite of these striations, Figures 8c and 8d show that the equivalent layer is able to closely

retrieve the total-field and RTP anomalies produced by the simulated prisms.

In the second test, we use a unit vector ĥ (equation 58) having the same direction as

the local-geomagnetic field (inclination 6◦ and declination −40.5◦). Notice that, in this

case, the equivalent sources have a magnetization direction which is different from that of

the true sources (inclination 30◦ and declination −10◦). Figure 9a shows the estimated

magnetic-moment distribution within the planar equivalent layer defined previously. It is

apparent that this estimated magnetic-moment distribution is very different from either the

theoretical (Figure 6a) or estimated (Figure 7a) magnetic-moment distributions obtained

in the previous tests.

The total-field and RTP anomalies produced by this planar equivalent layer are shown

in Figures 9b and 9c, respectively. As in the previous tests, these anomalies are calculated

by using equations 58, 64 and 67. Notice that this equivalent layer with magnetization

direction different from that of the true sources is able to retrieve the total-field anomaly

produced by the simulated prisms (Figure 5a). The maxima absolute differences are ≈

18 nT. On the other hand, this equivalent layer is not able to retrieve the correct RTP

anomaly (Figure 5b). This result confirms the well-known fact that, for calculating the

RTP anomaly, it is necessary to know the magnetization direction of the true sources.

Although this equivalent layer cannot be used to calculate the RTP anomaly, it can be

used to perform other transformations like upward continuation, for example, which does

not require the use of the magnetization direction of the true sources. Figure 9d shows the

true noise-free total-field anomaly produced by the simulated prisms (Figure 3) at the same

horizontal coordinates of the original data (Figure 5a) on a horizontal plane at z = −1400 m.

Figure 9e shows the upward-continued total-field anomaly computed on the horizontal plane
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at z = −1400 m by using the planar equivalent layer with the estimated magnetic-moment

distribution shown in Figure 9a. Figure 9f shows the difference between the total-field

anomalies shown in Figures 9d and 9e. As we can see, even with a magnetization direction

which is different from that of the true magnetic sources, the equivalent layer reproduces the

total-field anomaly produced by the true sources at the continuation plane. The maxima

absolute differences are 74 nT, but they are located at a corner of the area.

These tests show that, by using equivalent sources with the same magnetization di-

rection as the true magnetic sources, we obtain a magnetic-moment distribution (Figure

7a) very close to the theoretical magnetic-moment distribution which is shown in Figure

6a and calculated with equation 59. On the other hand, if the magnetization direction of

the equivalent sources is different from that of the true magnetic sources, the estimated

magnetic-moment distribution within the equivalent (Figure 9a) layer is different from the

theoretical magnetic-moment distribution. Moreover, this estimated magnetic-moment dis-

tribution (Figure 9a) does not recover the correct RTP anomaly. These results confirm

that the theoretical magnetic-moment distribution can only be estimated if the equivalent

sources have the same magnetization direction of the true magnetic sources.

The use of alternative equivalent sources and harmonic functions

In the previous tests, we have used a planar equivalent layer of dipoles for approximating the

total-field anomaly produced by the simulated prisms (Figure 3). In those tests, we use har-

monic functions gij (equation 57) representing the total-field anomaly produced by dipoles

(equation 43) and the predicted data is calculated by equation 58. Consequently, the coef-

ficients pj (equation 57) represent the magnetic-moment distribution within the equivalent
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layer. Here, we also estimate the physical property distribution within an equivalent layer

to fit the total-field anomaly produced by the simulated prisms (Figure 3). However, the

tests presented in this section differ from the previous ones in several aspects. Figures 10a

and 11a show, respectively, the coordinates (black points) (xi, yi, zi), i = 1, . . . , N = 3600,

and the noise-corrupted total-field anomaly produced by the simulated prisms at these co-

ordinates. The total-field anomaly is contaminated with a Gaussian noise having null mean

and standard deviation of 5 nT. The coordinates (black points in Figure 10a) are located

on a regular grid of 120×30 points separated by ≈ 252.1 m and ≈ 1034.5 m intervals along,

respectively, the x and y directions.

Differently from the previous tests, the equivalent sources are located in an undulating

surface (Figure 10b). The biggest difference, however, is that we use the harmonic functions

gij (equation 57) defined by equation 37, with α = z. Notice that, in this case, the harmonic

functions describe the vertical component of the gravitational attraction produced by point

masses and the coefficients pj (equation 57), j = 1, . . . , N = 3600, do not represent the

magnetic-moment distribution within the equivalent layer. In fact, they have no evident

physical meaning.

After solving a linear inverse problem to estimate the coefficients pj (not shown) defined

within the undulating equivalent layer, we calculated the predicted total-field anomaly

(Figure 11b) at the coordinates shown in Figure 10a. As we can see in the histogram of the

residuals (Figure 11c) defined as the difference between the total-field anomalies shown in

Figures 11a and 11b, the estimated mean µ is very close to zero and the standard deviation

approximates that one of the Gaussian noise (5 nT), showing that the equivalent layer yields

a very good data fit.
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Although this equivalent layer cannot be used for calculating the RTP anomaly, it can

be used for calculating other transformations. In this test, we calculate the total-gradient

amplitude of the total-field anomaly by using equation 64. This quantity is commonly used

in applied geophysics to determine the horizontal limits of the magnetic sources. It is defined

as the squared root of the sum of the squared first spatial derivatives of the potential-field

data. Because in this test we used the harmonic functions gij (equation 57) defined by

equation 37 with α = z, we calculate the first spatial derivatives of the total-field anomaly

by using equation 38 with a fixed β = z. To calculate the spatial derivatives of the total-field

anomaly data along the x, y, and z axes, we used α = x, y, and z, respectively. Figures 11d

and 11e show, respectively, the total-gradient amplitude produced by the simulated prisms

and the undulating equivalent layer. These data were calculated at the coordinates (black

points) shown in Figure 10a and their differences are shown in Figure 11f. As we can see,

the differences are very close to zero throughout the area.

Notice that, in this test, the harmonic functions gij (equation 57) describe the verti-

cal component of the gravitational attraction produced by points masses. Such harmonic

functions are commonly used in applications of the equivalent layer technique to process

gravity data. In this test, however, we use such harmonic functions for processing total-field

anomaly data. As we have already pointed out, this approach is perfectly possible from

the mathematical point of view because the total-field anomaly data are approximated by

a linear combination of harmonic functions. The results presented in this test show the

versatility of the equivalent layer technique in processing total-field anomaly data.
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COMPUTATIONAL REPRODUCIBILITY

All numerical tests presented here are implemented in the freely usable and distributable

Python programming language. Our implementation relies on the open-source libraries

numpy and scipy (Jones et al., 2001; Walt et al., 2011, http://scipy.org) for array-based

computations, matplotlib (Hunter, 2007, http://matplotlib.org) for plots and maps, and

Fatiando a Terra (Uieda et al., 2013, http://www.fatiando.org) for geophysical mod-

elling and inversion. The computational experiments were performed in Jupyter (formerly

IPython) notebooks (Pérez and Granger, 2007, http://jupyter.org). The notebook files

combine the source code, the results and figures generated by the code and rich text to

explain the analysis. All source code, Jupyter notebooks, synthetic data, and results can be

found at the online repository https://github.com/pinga-lab/Review-eqlayer. (Note

to reviewers: the online repository will be made public upon publication).

SUMMARY

The mathematical base of equivalent layer technique dates back to around the 19th century.

However, it was not used in geophysics until the second half of the 20th century to process

and to interpret potential-field data. Due to its high computational demand, the equivalent

layer technique has only raised moderate interest of geophysicists. In the beginning, the

technique was greatly explored for processing potential-field data with a limited number

of observations. Next, by following different approaches, the computational aspects of the

equivalent layer technique were improved to make feasible its application for processing

large data sets. Surprisingly, since the first applications of the equivalent layer technique,

its theoretical aspects have received little attention. Theoretical aspects of the estimated
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physical property distribution within the equivalent layer, for example, has only been ad-

dressed recently. Specifically, some studies have determined the relationship between an

all-positive magnetic-moment distribution within a continuous and planar equivalent layer

and the pseudogravity anomaly produced by the true sources on the plane defining the

equivalent layer. This relationship, however, was determined by considering that the mag-

netic sources are magnetized by induction and the observation are located on a horizontal

plane.

We present, in the space domain, a sound generalization of this theoretical relationship

between the magnetic-moment distribution within a planar equivalent layer and the gravity

data. This generalization allows us to prove that the all-positive magnetic-moment distri-

bution exists even if the magnetization direction of the true sources is different from that

of the local-geomagnetic field. Moreover, our approach neither requires magnetic sources

with constant magnetization intensity nor observations located on a horizontal plane. We

have shown that the all-positive magnetic-moment distribution within a planar equivalent

layer can be estimated if the equivalent sources have the same magnetization direction of

the true magnetic sources whether it is aligned with the local-geomagnetic field or not.

Currently, the equivalent layer technique is mostly used to process potential-field data.

However, we call attention that it has also been employed indirectly in interpretation. This

occurs, for example, if the desired transformation of the potential-field data requires the

knowledge of the magnetization direction of the true sources, as in the reduction to the

pole. If the interpreter does not know the magnetization direction of the true sources,

the reduction to the pole fails. In this case, different hypotheses about the magnetization

direction of the sources can be tried to estimate a sound reduced-to-the-pole data. Once

calculated a sound reduction to the pole, not only the transformed potential-field, but
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also the magnetic-moment distribution within the planar equivalent layer are concentrated

directly over the true sources. Consequently, not only the reduced-to-the-pole data, but

also the magnetic-moment distribution within the planar equivalent layer can be used to

determine the horizontal location of the true sources.

It is expected that, in the future, the equivalent layer technique will be widely used not

only for processing but also for interpreting potential-field data. Independently of the appli-

cations of the equivalent layer technique, the challenge now is to improve its computational

efficiency, making it feasible to deals with large potential-field data sets.
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Vańıček, P., and E. J. Krakiwsky, 1987, Geodesy: The concepts, second edition: Elsevier

Science.

Von Frese, R. R. B., W. J. Hinze, and L. W. Braile, 1981, Spherical earth gravity and

magnetic anomaly analysis by equivalent point source inversion: Earth and Planetary

Science Letters, 53, 69 – 83.

56



Walt, S., S. C. Colbert, and G. Varoquaux, 2011, The numpy array: A structure for efficient

numerical computation: Computing in Science & Engineering, 13, 22–30.

Whittaker, E. T., 2012, A history of the theories of aether and electricity: From the age of

descartes to the close of the nineteenth century (classic reprint): Forgotten Books.

Xia, J., and D. R. Sprowl, 1991, Correction of topographic distortion in gravity data:

GEOPHYSICS, 56, 537–541.

Xia, J., D. R. Sprowl, and D. Adkins-Heljeson, 1993, Correction of topographic distortions

in potential-field data; a fast and accurate approach: GEOPHYSICS, 58, 515–523.

Zidarov, D., 1965, Solution of some inverse problems of applied geophysics: Geophysical

Prospecting, 13, 240–246.

57



LIST OF FIGURES

1 2D representation of a 3D regular region with volume v and boundary defined by
a regular surface S, whose outward normal is represented by n̂. xi, yi and zi are the coor-
dinates of a point located within v. These coordinates are referred to a Cartesian system
with the x axis pointing into the page, the y axis pointing to right and the z axis pointing
downward.

2 2D representation of a 3D regular region with volume v and boundary defined by
the union of a hemisphere S1 with radius R and a horizontal plane S2 at the vertical coor-
dinate z = zc. n̂1 and n̂2 represent, respectively, the normal to the surfaces S1 and S2. The
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are located at the same distance from the horizontal plane S2, so that zi = zc − ∆z and
zs = zc + ∆z. The coordinates are referred to a Cartesian system with the x axis pointing
into the page, the y axis pointing to right and the z axis pointing downward.

3 Synthetic bodies with constant density ρ = 1000 kg/m3 and constant magnetization
vector with intensity m = 10 A/m, inclination 30◦ and declination −10◦. The geomagnetic
field has inclination 6◦ and declination −40.5◦.

4 Undulating observation surface (grayscale) where we calculate the synthetic data
produced by the simulated prisms (Figure 3). The white rectangles represent the horizontal
projection of the simulated prisms.

5 (a) Noise-free total-field (equation 8) and (b) RTP (equation 9) anomalies pro-
duced by the synthetic prisms (Figure 3) on the undulating surface shown in Figure 4. (c)
Total-field and (d) RTP anomalies produced by the planar equivalent layer which is defined
in Figure 6. The magnetic moment distribution of this equivalent layer was directly cal-
culated by equation 59 and is shown in Figure 6a. (e) Difference between the total-field
anomalies shown in c and a. (f) Difference between the RTP anomalies shown in d and b.
These anomalies are calculated at a regular grid of 90×90 points located on the observation
surface (Figure 4). The black rectangles represent the horizontal projection of the simulated
prisms (Figure 3). The field values are in nT.

6 (a) Theoretical magnetic-moment distribution (equation 59) calculated within a
planar equivalent layer. The layer is formed by a regular grid of 90× 90 dipoles located at
coordinates (xj , yj , zc), j = 1, . . . , N = 8100, where zc = −200 m. This magnetic-moment
distribution is calculated by using (b) the noise-free gravity disturbance (equation 1), which
is produced by the synthetic prisms (Figure 3) at the coordinates of the dipoles. The black
rectangles represent the horizontal projection of the simulated prisms (Figure 3).

7 (a) Estimated magnetic-moment distribution within the planar equivalent layer.
The estimate was obtained by solving a linear inverse problem subject to fitting the noise-
free total-field anomaly shown in Figure 5a. The equivalent sources have the same magne-
tization direction as the simulated prisms (Figure 3). (b) Difference between the estimated
magnetic-moment distribution shown in a and the theoretical magnetic-moment distribu-
tion (Figure 6a). The black rectangles represent the horizontal projection of the simulated
prisms (Figure 3).

8 (a) Total-field and (b) RTP anomalies produced by the planar equivalent layer
whose estimated magnetic moment distribution is shown in Figure 7a. (c) Difference be-
tween the total-field anomalies shown in a and Figure 5a. (d) Difference between the RTP
anomalies shown in b and Figure 5b. These anomalies were calculated at a regular grid of
90× 90 points located on the undulating surface (Figure 4). The black rectangles represent
the horizontal projection of the simulated prisms (Figure 3). The field values are in nT.
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9 (a) Estimated magnetic-moment distribution (in 109 Am2) within the planar equiv-
alent layer. The estimate was obtained by solving a linear inverse problem subject to fitting
the noise-free total-field anomaly shown in Figure 5a. The equivalent sources have the
same magnetization direction as the local-geomagnetic field (inclination 6◦ and declination
−40.5◦), which is different from the magnetization direction of the simulated prisms (Figure
3). (b) Total-field and (c) RTP anomalies (in nT) produced by the planar equivalent layer
whose estimated magnetic moment distribution is shown in a. (d) True and (e) upward-
continued noise-free total-field anomaly computed on a horizontal plane at z = −1400 m.
The true anomaly shown in d was produced by the simulated prisms (Figure 3). The
upward-continued anomaly shown in e was predicted by the planar equivalent layer having
the estimated magnetic-moment distribution shown in a. (f) Difference between the total-
field anomalies shown in e and d. All data are calculated at a regular grid of 90×90 points.
The black rectangles represent the horizontal projection of the simulated prisms (Figure 3).

10 (a) Undulating observation surface where we calculate the total-field anomaly (Fig-
ure 11a) and the total-gradient amplitude (Figure 11d) produced by the simulated prisms
(Figure 3). These magnetic data are calculated at a regular grid of 120× 30 points (black
dots) in the x and y directions. (b) Undulating surface (grayscale) defining an uneven
equivalent layer. The white rectangles represent the horizontal projection of the simulated
prisms (Figure 3).

11 (a) Total-field anomaly produced by the simulated prisms (Figure 3) and contam-
inated with a Gaussian noise having null mean and standard deviation equal to 5 nT. (b)
Total-field anomaly produced by the equivalent layer defined on the undulating surface
shown in Figure 10b. Both data are given in nT. (c) Histogram of the residuals defined as
the difference between the total-field anomalies shown in b and a. The black-dashed line
represent a best fit Gaussian curve. The estimated mean and standard deviation are repre-
sented by µ and σ, respectively. (d) True total-gradient amplitude (noise-free) produced by
the simulated prisms (Figure 3). (e) Total-gradient amplitude produced by the equivalent
layer defined on the uneven surface shown in Figure 10b. Both data are given in nT/m. (f)
Difference between the total-gradient amplitudes shown in e and d. All data are calculated
at a regular grid of 120 × 30 points represented as black dots in Figure 10a. The black
rectangles represent the horizontal projection of the simulated prisms (Figure 3).
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Figure 1: 2D representation of a 3D regular region with volume v and boundary defined
by a regular surface S, whose outward normal is represented by n̂. xi, yi and zi are the
coordinates of a point located within v. These coordinates are referred to a Cartesian
system with the x axis pointing into the page, the y axis pointing to right and the z axis
pointing downward.

60



Figure 2: 2D representation of a 3D regular region with volume v and boundary defined
by the union of a hemisphere S1 with radius R and a horizontal plane S2 at the vertical
coordinate z = zc. n̂1 and n̂2 represent, respectively, the normal to the surfaces S1 and S2.
The points (xi, yi, zi) and (xi, yi, zs) are located, respectively, inside and outside v. These
points are located at the same distance from the horizontal plane S2, so that zi = zc −∆z
and zs = zc + ∆z. The coordinates are referred to a Cartesian system with the x axis
pointing into the page, the y axis pointing to right and the z axis pointing downward.
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Figure 3: Synthetic bodies with constant density ρ = 1000 kg/m3 and constant magne-
tization vector with intensity m = 10 A/m, inclination 30◦ and declination −10◦. The
geomagnetic field has inclination 6◦ and declination −40.5◦.
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Figure 4: Undulating observation surface (grayscale) where we calculate the synthetic data
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Figure 5: (a) Noise-free total-field (equation 8) and (b) RTP (equation 9) anomalies pro-
duced by the synthetic prisms (Figure 3) on the undulating surface shown in Figure 4. (c)
Total-field and (d) RTP anomalies produced by the planar equivalent layer which is defined
in Figure 6. The magnetic moment distribution of this equivalent layer was directly cal-
culated by equation 59 and is shown in Figure 6a. (e) Difference between the total-field
anomalies shown in c and a. (f) Difference between the RTP anomalies shown in d and b.
These anomalies are calculated at a regular grid of 90×90 points located on the observation
surface (Figure 4). The black rectangles represent the horizontal projection of the simulated
prisms (Figure 3). The field values are in nT.
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Figure 6: (a) Theoretical magnetic-moment distribution (equation 59) calculated within a
planar equivalent layer. The layer is formed by a regular grid of 90× 90 dipoles located at
coordinates (xj , yj , zc), j = 1, . . . , N = 8100, where zc = −200 m. This magnetic-moment
distribution is calculated by using (b) the noise-free gravity disturbance (equation 1), which
is produced by the synthetic prisms (Figure 3) at the coordinates of the dipoles. The black
rectangles represent the horizontal projection of the simulated prisms (Figure 3).
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Figure 7: (a) Estimated magnetic-moment distribution within the planar equivalent layer.
The estimate was obtained by solving a linear inverse problem subject to fitting the noise-
free total-field anomaly shown in Figure 5a. The equivalent sources have the same magne-
tization direction as the simulated prisms (Figure 3). (b) Difference between the estimated
magnetic-moment distribution shown in a and the theoretical magnetic-moment distribu-
tion (Figure 6a). The black rectangles represent the horizontal projection of the simulated
prisms (Figure 3).
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Figure 8: (a) Total-field and (b) RTP anomalies produced by the planar equivalent layer
whose estimated magnetic moment distribution is shown in Figure 7a. (c) Difference be-
tween the total-field anomalies shown in a and Figure 5a. (d) Difference between the RTP
anomalies shown in b and Figure 5b. These anomalies were calculated at a regular grid of
90× 90 points located on the undulating surface (Figure 4). The black rectangles represent
the horizontal projection of the simulated prisms (Figure 3). The field values are in nT.
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Figure 9: (a) Estimated magnetic-moment distribution (in 109 Am2) within the planar
equivalent layer. The estimate was obtained by solving a linear inverse problem subject
to fitting the noise-free total-field anomaly shown in Figure 5a. The equivalent sources
have the same magnetization direction as the local-geomagnetic field (inclination 6◦ and
declination −40.5◦), which is different from the magnetization direction of the simulated
prisms (Figure 3). (b) Total-field and (c) RTP anomalies (in nT) produced by the planar
equivalent layer whose estimated magnetic moment distribution is shown in a. (d) True
and (e) upward-continued noise-free total-field anomaly computed on a horizontal plane at
z = −1400 m. The true anomaly shown in d was produced by the simulated prisms (Figure
3). The upward-continued anomaly shown in e was predicted by the planar equivalent layer
having the estimated magnetic-moment distribution shown in a. (f) Difference between the
total-field anomalies shown in e and d. All data are calculated at a regular grid of 90× 90
points. The black rectangles represent the horizontal projection of the simulated prisms
(Figure 3).
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Figure 10: (a) Undulating observation surface where we calculate the total-field anomaly
(Figure 11a) and the total-gradient amplitude (Figure 11d) produced by the simulated
prisms (Figure 3). These magnetic data are calculated at a regular grid of 120× 30 points
(black dots) in the x and y directions. (b) Undulating surface (grayscale) defining an uneven
equivalent layer. The white rectangles represent the horizontal projection of the simulated
prisms (Figure 3).
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Figure 11: (a) Total-field anomaly produced by the simulated prisms (Figure 3) and con-
taminated with a Gaussian noise having null mean and standard deviation equal to 5 nT.
(b) Total-field anomaly produced by the equivalent layer defined on the undulating surface
shown in Figure 10b. Both data are given in nT. (c) Histogram of the residuals defined as
the difference between the total-field anomalies shown in b and a. The black-dashed line
represent a best fit Gaussian curve. The estimated mean and standard deviation are repre-
sented by µ and σ, respectively. (d) True total-gradient amplitude (noise-free) produced by
the simulated prisms (Figure 3). (e) Total-gradient amplitude produced by the equivalent
layer defined on the uneven surface shown in Figure 10b. Both data are given in nT/m. (f)
Difference between the total-gradient amplitudes shown in e and d. All data are calculated
at a regular grid of 120 × 30 points represented as black dots in Figure 10a. The black
rectangles represent the horizontal projection of the simulated prisms (Figure 3).
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1 Observed potential-field data and the mathematical/physical meaning of the har-
monic functions gij (equation 57) describing the potential field produced by the equivalent
sources used by several authors.
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Author(s)
Equivalent

sources
Harmonic

function gij
Observed data

Dampney (1969) point masses

vertical
component of

the gravitational
attraction

Bouguer
anomaly

Emilia (1973) lines of dipoles
total-field
anomaly

total-field
anomaly

Hansen and
Miyazaki (1984)

uniformly-
magnetized
plane faces

magnetic scalar
potential

total-field
anomaly

Silva (1986) doublets
total-field
anomaly

total-field
anomaly

Cordell (1992) point masses
gravitational

potential
Bouguer
anomaly

Gusṕı and
Novara (2009)

generic point
sources

producing a
higher-order

potential

second-
directional

derivative of the
higher-order

potential

total-field
anomaly

Barnes and
Lumley (2011)

rectangular
prisms

second
derivatives of

the gravitational
potential

gravity gradient

Oliveira Jr.
et al. (2013)

dipoles
total-field
anomaly

total-field
anomaly

Li et al. (2014)
rectangular

prisms
total-field
anomaly

total-field
anomaly

Table 1: Observed potential-field data and the mathematical/physical meaning of the har-
monic functions gij (equation 57) describing the potential field produced by the equivalent
sources used by several authors.
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