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Abstract. While a wide range of earth system processes occur at daily and even sub-daily timescales, many global vegetation

and other terrestrial dynamics models historically used monthly meteorological forcing, both to reduce computational demand

and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and

subdaily processes, and global datasets containg daily or sub-daily meteorology have become available. These meteorological

datasets, however, cover only the instrumental era of the last ca. 120 years at best, are subject to considerable uncertainty,5

and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods

before the recent past or into the future, global meteorological forcing can be provided by climate model output, but the quality

of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here we present

GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily

meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five10

common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight,

modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of

applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not perform

spatially autocorrelated multi-point downscaling of daily weather, this additional functionality should be implemented in future

versions.15

1 Introduction

The development of the first global vegetation models in the 1970’s (e.g., Lieth, 1975) brought about the demand for me-

teorological forcing datasets with global extent and relatively high spatial resolution, e.g., 1◦x1◦. While a global weather

station-based monthly climate dataset was available at this time (Walter and Lieth, 1967), limitations in computers and storage

allowed only the simplest treatment of these data. The first global simulations of the net primary productivity of the terrestrial20

biosphere (Lieth, 1975), thus used rasterized polygons of annual meteorological variables that had been crudely interpolated

from the station-based climatology. A decade later saw the development of better computers and more sophisticated global

vegetation models (Prentice et al., 1992; Prentice, 1989) that recognized the need for forcing at a sub-annual timestep and

development of these models was done in parallel with the first global, gridded high resolution (0.5◦) monthly climatology

(Leemans and Cramer, 1991). At the time, monthly meteorological data was the only feasible global data that could be pro-25
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duced, in terms of the raw station data available to feed the interpolation process, the processing time required to produce

gridded maps, and the data storage and transfer capabilities of contemporary computer systems and networks. Global gridded

monthly climate data thus became the standard for not only large-extent vegetation modeling (Haxeltine and Prentice, 1996;

Haxeltine et al., 1996; Kaplan et al., 2003; Kucharik et al., 2000; Woodward et al., 1995), but also for a wide range of studies

on biodiversity and species distribution (e.g., Elith et al., 2006), vegetation trace gas emissions (e.g., Guenther et al., 1995),5

and even the geographic distribution of human diseases (e.g., Bhatt et al., 2013)

Over subsequent years, the global gridded monthly climate datasets were improved (New et al., 1999, 2002), developed

with very high spatial resolution (Hijmans et al., 2005), and expanded beyond climatological mean climate to cover continuous

timeseries over decades (Harris et al., 2014; Mitchell and Jones, 2005; New et al., 2000). The latter was an essential requirement

for forcing dynamic global vegetation models (DGVMs) (e.g., Sitch et al., 2003). However, despite increasing quality, spatial10

resolution, and temporal extent in these datasets, the basic time step remained monthly, partly for legacy reasons — models

had been developed in an earlier era subject to computational limitations and therefore used a monthly timestep for efficiency

even if this was no longer strictly a constraint — and partly because of the challenge in developing a global, high-resolution

climate dataset with a daily or shorter timestep still presented a major data management challenge.

On the other hand, there was increasing awareness that accurate simulation of many earth surface processes required repre-15

sentation of processes at a shorter-than-monthly timestep. Global simulation of surface hydrology (Gerten et al., 2004), crop

growth (Bondeau et al., 2007), or biogeophysical processes (Krinner et al., 2005) needed sub-monthly forcing to produce re-

liable results. To address this need for better forcing data, two main approaches were taken: either monthly climate data were

downscaled online using a stochastic weather generator (e.g., Pfeiffer et al., 2013), or a sub-daily, high-resolution, gridded

climate timeseries was generated directly by merging high-temporal-resolution reanalysis data (e.g., NCEP, 6h, 2.5◦) with20

high-spatial-resolution monthly climate data (e.g., CRU, 0.5◦). The latter process resulted in the CRUNCEP dataset (Viovy

and Ciais, 2016; Wei et al., 2014), which, while global, is large even by modern standards (ca. 350 Gb), is not available at

spatial resolution greater than 0.5◦, and covers only the period 1901-2014.

Forcing data for global vegetation and other models with shorter than monthly resolution at higher spatial resolutions than

0.5◦, or for any other period than the last ca. 120 years, e.g., for the future or the more distant past, may therefore only be25

available through downscaling techniques. One approach to overcome the limitations of currently available datasets could be

to use GCM output directly, however, most GCM output currently available does not have greater than 0.5◦ spatial resolution,

with the current generation of GCMs typically approaching ca. 1◦× 1◦ degree. Furthermore, there is a general observation

that daily meteorology produced by GCMs is not realistic, particularly for precipitation (Dai, 2006; Stephens et al., 2010; Sun

et al., 2006). An alternative approach is, therefore, to perform temporal downscaling on monthly meteorological data using a30

statistical weather generator.

Statistical weather generators were first developed primarily for crop and hydrological modeling at the field to catchment

scale (Richardson, 1981; Woolhiser and Pegram, 1979; Woolhiser and Roldan, 1982). The weather generator was parameterized

using daily meteorological observations at one or more weather stations close to the area of interest, although some attempts

were made to generalize the parameterization over larger, sub-continental regions (e.g., Wilks, 1999b, 1998; Woolhiser and35
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Roldán, 1986). Locally parameterized weather generators have been applied to a very wide range of studies (Wilks, 2010; Wilks

and Wilby, 1999), and enhanced to include additional meteorological variables beyond the original precipitation, temperature,

and solar radiation (e.g., Parlange and Katz, 2000). Applications of a weather generator at continental to global scales was still

limited, however, because of the need to perform local parameterization.

The need to simulate daily meteorology in regions of the world with short, unreliable, or unavailable daily meteorological5

timeseries brought about the realization that certain features of weather generator parameterization might be generalized across

a range of climates (Geng and Auburn, 1987; Geng et al., 1986). This ultimately led to the development of globally applicable

weather generators (Friend, 1998), and their incorporation in DGVMs (Bondeau et al., 2007; Gerten et al., 2004; Pfeiffer et al.,

2013). The original global parameterization (Geng et al., 1986) of these weather generators was, however, limited to seven

weather stations, mostly in the temperate latitudes. Friend (1998) does not publish the parameters used in his global weather10

generator, but we assume these were the same as the original Geng and Auburn (1987) and Geng et al. (1986) models. Given

the availability of 1) large datasets of daily meteorology, and 2) computers powerful enough to process these data, we therefore

decided that it would be valuable to revisit these parameterizations, perform a systematic and quantitative evaluation of the

resulting downscaled meteorology, and potentially improve our ability to perform monthly-to-daily downscaling of common

meteorological variables with a single, globally applicable parameterization.15

In the following sections we describe Global-WGEN (GWGEN), a weather generator parameterized using more than 50 mil-

lion daily weather observations from all continents and latitudes. We demonstrate how updated schemes for simulating precip-

itation occurrence and amount, and for bias correcting wind speed, further improve the quality of the model simulations. We

perform an extensive model evaluation and parameter uncertainty analysis in order to settle on a parameter set that provides

the most accurate, globally applicable results. We comment on the limitations of the model and priorities for future research.20

GWGEN is an open-source, stand-alone model that may be incorporated into any number of models designed to work at global

scale, including, e.g., vegetation, hydrology, climatology, and animal distribution models.

2 Model description

GWGEN requires the following six monthly summary values as input: 1) total monthly precipitation, 2) the number of days

in the month with measurable precipitation (i.e., wet days), 3-4) monthly mean daily minimum and maximum temperature,25

5) mean cloud fraction, and 6) wind speed. The model outputs are the same variables, with daily resolution. This section

summarizes the basic workflow in the model which is also shown schematically in figure 1 and algorithm 1.

The first approximation of the daily variables comes from smoothing the monthly time series using a mean-preserving

algorithm (Rymes and Myers, 2001).

For precipitation we then first use the Markov Chain approach (section 3.2.1) to decide the wet/dry state of the day. If it is30

a wet day, we calculate the gamma parameters using the equations (7) and (8). The resulting distribution allows us to draw a

random number, the precipitation amount of the currently simulated day. If we are above the threshold µ, we draw a second

random number from the GP distribution parameterized via equation (9) and the chosen GP shape.
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Figure 1. Schematic workflow of GWGEN. After smoothing the monthly input, the Markov Chain is used to decide, whether it is a dry or

a wet day. If it is a wet day, we draw a random number from the Gamma-GP distribution. Furthermore, the other means of the variables

(T̄min/max, c̄, w̄) are adjusted and their daily values are calculated using the estimated standard deviations and residuals. The wind speed

furthermore undergoes a square root transformation before applying the cross correlation and in the end is corrected using the bias correction.

A quality check in the end restricts our model to be within a 5% range of the observed total precipitation and to replicate the number of wet

days from the input.

The next step modifies the means of temperature, wind speed and cloud fraction depending on the wet/dry state of the day

(lines 11 and 15 in algorithm 1). After that, we use the cross-correlation approach described in Richardson (1981) (lines 18 -

20 and subsubsection 3.2.6) and calculate the daily values of these variables. Finally we use the quantile-based bias correction

described in section 3.4 to correct the simulated wind speed.

We restrict the weather generator to reproduce the exact number of wet days (±1) as the input and to be within a 5% range5

of the total monthly precipitation (with a maximum allowed deviation of 0.5mm). If the program cannot produce these results,

the procedure described above is repeated (see line 4).

3 Model development

GWGEN is based on the WGEN weather generator (Richardson, 1981), using the method of defining the model parameters

based on monthly summaries described by Geng et al. (1986) and Geng and Auburn (1987). GWGEN diverges from the original10
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Algorithm 1 Basic workflow of GWGEN

Require: monthly precipitation Pin [mm], cloud cover fraction cin, minimum ( Tmin,in [◦C]) and maximum ( Tmax,in [◦C]) temperature,

wind speed win [m/s], number of wet days nin

Output: daily Pi [mm/d], ci,Ti [◦C],wi [m/s] and the wet/dry state si ∈ {0,1}

1: for month m in input do

2: smooth the monthly data using Rymes and Myers (2001)

3: Set j = 0, χ= 0

4: while j ≡ 0 or
∣∣∣∑di∈mPi−Pin

∣∣∣>min(5% ·Pin,0.5mm) or |nsim−nin|> 1 do

5: for day di in m do

6: Calculate p11,p101,p001 after equations (1) - (3) using n {Precipitation occurence after Wilks (1999a)}

7: Use the Markov chain to determine whether di is wet (si = 1) or dry (si = 0)

8: if si = 1 then

9: Calculate θ,α and σ via eq. (7)-(9) {Precipitation amount after Neykov et al. (2014)}

10: Draw a random number Pi from the Gamma-GP distribution, eq. (6)

11: Set Tmin,i = Tmin,wet,Tmax,i = Tmax,wet, ci = cwet,wi = wwet from eq. (10) and (12) and tables 1, 3

12: Set σTmin,i = σTmin,wet,σTmax,i = σTmax,wet,σw,i = σw,wet,σc,i = σc,wet from eq. (11), (13) and (14) and tables 1, 2, 3

13: else

14: Set Pi = 0mm/d

15: Set Tmin,i = Tmin,dry,Tmax,i = Tmax,dry, ci = cdry,wi = wdry from eq. (10) and (12) and tables 1, 3

16: Set σTmin,i = σTmin,dry,σTmax,i = σTmax,dry,σw,i = σw,dry,σc,i = σc,dry from eq. (11), (13) and (14) and tables 1, 2, 3

17: end if

18: Draw 4 normally distributed random numbers ε ∈ R4 {Cross correlation after Richardson (1981)}

19: Set the residuals χi =
(
χTmin χTmax χc χw

)
=Aχi−1 +Bε ∈ R4 with A and B from eq. (17)

20: Calculate daily variables via

Tmin,i = χTmin ·σTmin,i +Tmin,i ci = χc ·σc,i + ci

Tmax,i = χTmax ·σTmax,i +Tmax,i wi =
(
χw ·
√
σw,i +

√
wi

)2
21: Apply bias correction w (eq. (23))

22: j = j+ 1

23: end for

24: end while

25: end for
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WGEN by using a hybrid-order Markov chain to simulate precipitation occurrence (Wilks, 1999a), and a hybrid Gamma-GP

distribution (Furrer and Katz, 2008; Neykov et al., 2014) to estimate precipitation amount. Temperature, cloud cover, and wind

speed are calculated following (Richardson, 1981), using cross correlation and depending on the wet/dry-state of the day. We

further add a quantile-based bias correction for wind speed and minimum temperature, which improves the simulation results

significantly.5

In the following subsections, we first describe the global weather station database used to develop and evaluate the model,

then describe the underlying relationships that we use to define GWGEN’s parameters.

3.1 Development of a global weather station database

To parameterize GWGEN, we assembled a global dataset of daily meteorological observations. Precipitation and minimum and

maximum daily temperature come from the daily Global Historical Climatology Network (GHCN-Daily) database (Menne10

et al., 2012b, a). The GHCN-Daily consists of observations collected at ca. 100’000 weather stations on all continents and

many oceanic islands. As the GHCN-Daily stations are highly concentrated in some parts of the world, particularly in the

conterminous United States, we selected stations for our study using a geographic anti-aliasing filter to avoid an especially

strong geographic bias in the generation of the model parameters. Dividing the world up into a 0.5◦ grid, we selected the single

station with the longest record in each cell, if one was present. While the GHCN-Daily units for precipitation have a nominal15

precision of 0.1 mm, several of the stations in the United States reported precipitation in fractions of an inch, which were later

converted to mm. To ensure uniform precision across all of our calibration stations — this was particularly important when

generating the probability density functions for precipitation amount — we selected only those GHCN-Daily stations where

all precipitation amounts between 0.1 and 1.0 mm d−1 were reported in the record. This resulted in 9508 stations covering all

continents, although the distribution is strongly heterogenous, with the majority of the stations in North America, despite our20

geographic filter (Figure 2, top panel). For cloud cover, windspeed, and to calculate cross-correlations between temperature,

cloud cover, and windspeed, we used the Extended Edited Cloud Report Archive (EECRA) database (Hahn and Warren, 1999).

The geographic distribution of the 6978 EECRA stations we selected is different than the GHCN-Daily, with more stations

in Europe (Figure 2, middle panel), but overall a relatively similar number of stations were used from both datasets. For the

observations from both GHCN-Daily and EECRA, we made one additional filtering step, selecting only complete months,25

i.e., months with no days having missing observations, for further processing. In total, our database of daily meteorological

observations used in the model parameterization contains ca. 69 million individual records.

Finally, we reserved some weather station records for model evaluation that were not used for model parameterization.

These were individual stations, or two stations separated by a maximum distance of 1 km, where all of the daily meteorological

variables that GWGEN simulates (P, Tmin, Tmax, c, w) were recorded on the same dates in the EECRA database. This merged30

selection from EECRA and GHCN resulted in a set of 921 stations representing ca. 15 million daily records, with observations

on all continents, although the geographic distribution is once again highly heterogenous, with a particularly high density of

stations in Japan and Germany (Figure 2, bottom panel).
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9508 GHCN parameterization stations, 36M days

6978 EECRA parameterization stations

921 Evaluation stations

9508 GHCN parameterization stations, 36M days
6978 EECRA parameterization stations, 33M days

921 GHCN-EECRA Evaluation stations, 15M days

Figure 2. Weather stations used for parameterization and evaluation of the weather generator. The uppermost panel shows the locations of

the stations used for parameterizing precipitation and temperature, the middle panel shows the stations for cloud fraction and wind speed, as

well as for calculating the cross correlations between temperature, cloud fraction, and wind speed. The lower plot shows the location of the

stations used to evaluate the model, which were excluded from the parameterization stations.
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Figure 3. Transition probabilities vs. wet fraction. The red density plot in the background shows the density of the observations, and the blue

lines are the linear regression line of the probability against the wet fraction. The fit for the p11 transition probability was forced to the point

(1,1), the others were forced to (0,0). The underlying data for the fits correspond to the means of the the multi-year series for each month

for each station.

3.2 Parameterization

3.2.1 Precipitation occurrence

Following Geng et al. (1986), we expect to find a good relationship between the fraction of days in a month with measurable

precipitation and the probability that any given day will be wet. Following Wilks (1999a) we use a hybrid-order model that

retains first-order Markov dependence for wet spells but allows second-order dependence for dry sequences; this hybrid-order5

scheme has been shown to be a good compromise between performance and simplicity. To parameterize the precipitation

occurrence part of the model, we thus calculated transition probabilities for a wet day being followed by a wet day (p11), for

a wet day being followed by a dry day being followed by a wet day (p101) and for two dry days being followed by a wet

day (p001). We perform this analysis on a station and month-wise basis, i.e., we first extract each of the (complete) Januaries,
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Februaries, etc. for a given station, and then merge all of the Januaries (Februaries, Marches, etc...) for this station into a single

series representing each month. Merging months over several years is particularly important for stations that have relatively

little precipitation in a given month; for example, it could take several years of observations to observe a single (p101) event.

The final transition probabilities were then regressed against the fraction of days in the month with precipitation, which show

the characteristic linear relationship described by Geng et al. (1986) (Figure 3).5

Because the transition probabilities (p001) and (p101) must be zero by definition when the fraction of wet days (fwet) is zero,

i.e., a completely dry month, we force the linear regression between these quantities to pass through the origin. Likewise, we

require the regression line for (p11) to equal 1 when fwet is 1. One has to note, however, that this methodology artificially

increases the R2 coefficient for the fit because we fix the intercept (see for example Gordon, 1981).

The analysis results in the the following relationships:10

p11 = 0.2549 + 0.7451 · fwet (1)

p101 = 0.8463 · fwet (2)

p001 = 0.7240 · fwet. (3)

In the weather generator (see line 6 in algorithm 1) we determine if any given day will have precipitation by calculating the

appropriate probability density function selected from equations (1)-(3) on the basis of the precipitation state of the previous15

day (or two). Comparing the calculated probability from the selected equation with a random number u ∈ [0,1], a precipitation

day is simulated if u is greater than its corresponding probability.

3.2.2 Precipitation amount

Following the original WGEN (Richardson, 1981), GWGEN disaggregates precipitation amount using a statistical distribution.

A number of different probability density functions have been used to estimate precipitation amount in weather generators20

including, e.g., single exponential or mixed exponential, one or two parameter gamma, or Weibull distribution (Wilks and

Wilby, 1999). The strong relationship between the gamma scale parameter and the mean precipitation on wet days noted

by Geng et al. (1986) makes generation of precipitation amounts with only monthly input data feasible. It is based upon

the fact that the expected value of a gamma random variable equals the product of its two parameters. i.e E(Γ) = αθ. The

gamma distribution, however, shows poor performance in simulating high-precipitation events consistent with observations.25

Furrer and Katz (2008) and Neykov et al. (2014) suggest that a hybrid probability density function, based on both gamma

and the generalized pareto (GP) distribution, has superior accuracy in simulating extreme precipitation events when compared

to gamma alone. Because of its superior accuracy and ease of implementation, we therefore adopt the hybrid gamma-GP

distribution for simulating precipitation amount in GWGEN.
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Figure 4. Mean precipitation - Gamma scale relationship. The blue line represents the best fit line of the mean precipitation on wet days to

the estimated gamma scale parameter of the corresponding distribution. Each data point corresponds to one multi-year series of one month

for one station.

The probability density function (pdf) of the gamma distribution is defined as

f(x) =


xα−1e−

x
θ

θαΓ(α) for x > 0

0 for x= 0
(4)

where α > 0 is the shape, and θ > 0 the scale parameter. The pdf of the generalized pareto (GP) distribution is defined via

g(x) =


1
σ

(
1 + ξ (x−µ)

σ

)− 1
ξ−1

for ξ 6= 0

1
σ e
− x−µσ for ξ = 0

(5)

with σ > 0 being the scale parameter and ξ ∈ R the shape parameter. µ is the location parameter.5

Following Furrer and Katz (2008), we define the hybrid gamma-GP pdf as

h(x) =

f(x) for x≤ µ

(1−F (µ))g(x) for x > µ
, (6)

where F (µ) describes the cumulative gamma distribution function at the threshold µ. In our weather generator however, we

first draw a random number from the gamma distribution and, if we are above the threshold, we draw another random number

from the GP distribution. Thus, the frequency of precipitation events larger than µ is determined by the gamma distribution,10

but the actual amount of precipitation simulated when above the threshold µ is determined by the GP distribution (Furrer and

Katz, 2008).
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Figure 5. Correlation of minimum temperature on wet and dry days to the monthly mean. The y-axes show the mean minimum temperature

on wet or dry days respectively, the blue line corresponds to the best fit line. Parameters of the fits are also shown in table 1.

To determine the parameters of the hybrid distribution for precipitation, we started with the simple strategy by Geng et al.

(1986). As above when calculating the Markov chain parameters, we created multi-year series for each of the parameterization

stations for each month and extracted the days with precipitation. If a series contained more than 100 entries, we fit a gamma

distribution using maximum likelihood to it in order to estimated the α and θ parameters.

Following Geng et al. (1986), we then fit a regression line of the gamma scale parameter against the mean precipitation on5

wet days p̄d (see figure 4) and found the relationship

θ = 1.262 p̄d. (7)

As proposed by Geng et al. (1986), we use this relationship in our model to estimate the scale parameter of the distribution.

Using this approach, the gamma shape parameter α is a constant, given via

α=
p̄d
θ

=
1

1.262
. (8)10

The GP scale parameter σ on the other hand is calculated during the simulation following Neykov et al. (2014) via

σ =
1−F (µ)

f(µ)
. (9)

The other parameters of the GP distribution are obtained through a sensitivity analysis described in section 3.5.

3.2.3 Temperature

Following the standard WGEN methodology (Richardson, 1981) and Geng et al. (1986), daily temperature is determined15

through 2 processes: First, the wet/dry state of the day, and second the cross correlation (subsubsection 3.2.6).

In the weather generator, we know from the Markov chain (subsubsection 3.2.1), whether the current simulated day is a wet

or dry day. Based upon the simple linear relationships
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Figure 7. Correlation of standard deviation of the minimum and maximum temperature on wet and dry days to the monthly mean. The y-axes

show the standard deviation, the x-axes the mean on wet or dry days respectively. The bars have a width of 0.1◦C (the data accuracy) and

indicate the mean standard deviation for a given mean minimum temperature in one month. The lines are fitted to these bars, where the green

and red polynomials of order 5 are the use all the data below or above 0◦C respectively and the blue and violet lines are a linear extrapolation

of the data below −40◦C (or −30◦C for Tmax) or above 25◦C (or 35◦C) respectively. The red density plot in the background indicates the

spread of the data. The bars and the density plot are based on the single month for each station (i.e. not the multi-year monthly series as for,

e.g. mean temperature (figure 5 and 6)). Parameters of the fits are also shown in table 1.
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Table 1. Fit results of temperature correlation for wet and dry days for figures 5, 6, 10 and 11. The coefficients c0 to c3 correspond to the

coefficients used in equations (10) and (14).

plot variable R2 c0 c1 c2 c3

6 Tmax,dry 0.9969 0.0727 1.0211 0 0

6 Tmax,wet 0.9752 -0.5204 0.9459 0 0

5 Tmin,dry 0.9972 -0.5100 1.0188 0 0

5 Tmin,wet 0.9840 1.0411 0.9685 0 0

11 wsd,dry 0.4243 0 1.0860 -0.2407 0.0222

11 wsd,wet 0.5003 0 0.8184 -0.1263 0.0093

10 wdry 0.9930 0 0.9437 0 0

10 wwet 0.9723 0 1.0937 0 0

Table 2. Fit results of the correlation of temperature standard deviation with the corresponding mean on wet/dry days for figure 7. The

underlying equations are shown in equation (11).

R2 c0 c1 c2 c3 c4 c5

variable interval

Tmax,sd,dry (-∞, -30] 0.0125 7.3746 0.0154 0 0 0 0

(-30, 0.0] 0.6721 4.6170 -0.3387 -0.0188 -0.0003 0.000003 0.0000001

(0.0, 35] 0.9744 4.7455 -0.0761 0.0189 -0.0013 0.00003 -0.0000002

(35,∞) 0.0390 3.2554 -0.0218 0 0 0 0

Tmax,sd,wet (-∞, -30] 0.0366 6.6720 0.0364 0 0 0 0

(-30, 0.0] 0.7362 3.8601 -0.2186 0.0039 0.0015 0.00006 0.0000007

(0.0, 35] 0.9508 3.7919 -0.0313 0.0161 -0.0012 0.00003 -0.0000002

(35,∞) 0.2530 5.5529 -0.0973 0 0 0 0

Tmin,sd,dry (-∞, -40] 0.6006 10.8990 0.1271 0 0 0 0

(-40, 0.0] 0.9509 3.5676 -0.1154 0.0282 0.0020 0.00004 0.0000003

(0.0, 25] 0.9825 3.7941 0.0330 -0.0150 0.0019 -0.0001 0.000002

(25,∞) 0.7784 -4.6194 0.2261 0 0 0 0

Tmin,sd,wet (-∞, -40] 0.1661 9.7272 0.1011 0 0 0 0

(-40, 0.0] 0.9285 3.0550 -0.2116 0.0137 0.0014 0.00004 0.0000003

(0.0, 25] 0.9633 3.2187 -0.0451 0.0209 -0.0026 0.00010 -0.000001

(25,∞) 0.0089 0.5571 0.0244 0 0 0 0

x̄wet = c0,x,wet + c1,x,wet · x̄

x̄dry = c0,x,dry + c1,x,dry · x̄ (10)
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we adjust the monthly mean x̄ of the variable x ∈ {Tmin,Tmax}.
To estimate the values of the parameters c0 and c1 in the above equations, we follow the same procedure as for the parameters

of the Markov chain (subsubsection 3.2.1). We extracted the complete months for Tmin and Tmax from the GHCN-Daily dataset

and created a multi-year series for each month and station. We then regressed the mean on wet and dry days separated against

the overall mean of each month (Figures 5 and 6). Through this procedure, we estimate the parameters necessary for equations5

(10) (see table 1).

To estimate residual noise, we also need an estimate of the standard deviation of the variable (see subsubsection 3.2.6).

Figure 7 shows the correlation between standard deviation on wet and dry days and the corresponding mean. The means of the

standard deviations (black bars in figure 7) indicate a strong but non-linear relationship between the standard deviation and the

corresponding mean. The correlation changes particularly at 0◦C. We therefore use two different polynomials of order 5 for10

the values below and above the freezing point. Furthermore, to account for the sparse data below −40◦C and above 25◦C for

minimum temperature (or−30◦C and 35◦C for maximum temperature), we use an extrapolation for the extremes as indicated

by the blue and violet lines in figure 7. The formulae for the standard deviations σ of minimum and maximum temperature are

therefore a combination of 4 polynomials:

σTmin,wet/dry =



p1(T̄min,wet/dry), for T̄min,wet/dry ≤−40◦C

p5(T̄min,wet/dry), for − 40◦C < T̄min,wet/dry ≤ 0◦C

p5(T̄min,wet/dry), for 0◦C < T̄min,wet/dry ≤ 25◦C

p1(T̄min,wet/dry), for 25◦C < T̄min,wet/dry

15

σTmax,wet/dry =



p1(T̄max,wet/dry), for T̄max,wet/dry ≤−30◦C

p5(T̄max,wet/dry), for − 30◦C < T̄max,wet/dry ≤ 0◦C

p5(T̄max,wet/dry), for 0◦C < T̄max,wet/dry ≤ 35◦C

p1(T̄max,wet/dry), for 35◦C < T̄max,wet/dry

. (11)

p1 in eq. (11) denotes a polynomial of order 1, p5 a polynomial of order 5. The coefficients of the different polynomials are

shown in table 2.

These coefficients are based on the means of the standard deviation (black bars in figure 7). We chose this procedure to

give the same weight to all temperatures. Otherwise the fit would be dominated by the temperature values around the freezing20

points.

3.2.4 Cloud fraction

Monthly mean cloud fraction is disaggregated, as for temperature, using the standard WGEN procedure of adding statistical

noise to a wet- or dry-day mean and accounting for cross-correlation among the different weather variables. For the parameter-

ization of the cloud fraction equations, we used the EECRA dataset. The original dataset contains eight measurements per day25
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Figure 8. Correlation of cloud fraction on wet and dry days to the monthly mean.The y-axes show the mean cloud fraction on wet or dry

days respectively, the blue line corresponds to the best fit line. Parameters of the fits are also shown in table 3.
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Figure 9. Correlation of standard deviation of the cloud fraction on wet and dry days to the corresponding monthly mean. The y-axes show

the standard deviation, the x-axes the mean on wet or dry days respectively. The blue line corresponds to the best fit line. Parameters of the

fits are also shown in table 3.

of the total cloud cover in units of octas, i.e., values ranging from 0 (clear sky) to 8 (overcast). Hence, to calculate the daily

cloud fraction, those values were averaged and divided by 8 to produce a daily mean.

To adjust the monthly mean depending on the wet/dry state of the day, we could not use a simple linear relationship as we

used for temperature because cloud fraction is bounded by a lower limit 0 and an upper limit of 1. Furthermore, we observed

that cloud cover on wet days is usually greater or equal to the monthly mean cloud cover, whereas the cloud cover on dry days5

is usually less or equal to the monthly mean cloud cover. This results in a concave curve for the wet case and a convex curve

for dry days. We used a qualitative graphical analysis to develop "best guess" equations that had the desired shape and propose

the following formulae for the regression linking cloud cover on wet or dry days to the overall mean:
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Table 3. Fit results of cloud correlation for wet and dry days for figure 8

plot variable a std. err. of a R2

8 cdry 0.4302 0.0013 0.8745

8 cwet -0.7376 0.0006 0.3881

9 csd,dry 1.0448 0.0004 0.2803

9 csd,wet 0.9881 0.0006 0.0802
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Figure 10. Correlation of wind speed on wet and dry days to the monthly mean.The y-axes show the mean cloud fraction on wet or dry days

respectively, the blue line corresponds to the best fit line. Parameters of the fits are also shown in table 1.

c̄wet =
−ac,wet− 1

a2
c,wet · c̄− a2

c,wet− ac,wet
− 1

ac,wet

c̄dry =
−ac,dry− 1

a2
c,dry · c̄− a2

c,dry− ac,dry
− 1

ac,dry
(12)

with ac,wet < 0 and ac,dry > 0.

The standard deviation of cloud cover fraction becomes 0 when the mean monthly cloud fraction reaches both the minimum

or maximum limits of 0 and 1. Hence, for csd,dry and csd,wet we have an concave parabola with the formula5

σc,wet = a2
c,wet · c̄wet · (1− c̄wet)

σc,dry = a2
c,dry · c̄dry · (1− c̄dry) (13)

with ac,wet,ac,dry ≥ 0. Results of the fits can be seen in figure 8, 9 and the parameters in table 3.
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Figure 11. Correlation of standard deviation of wind speed on wet and dry days to the corresponding monthly mean. The y-axes show the

standard deviation, the x-axes the mean on wet or dry days respectively. The blue line corresponds to the best fit line, a third order polynomial

to the underlying red density plot. The black bars have a width of 0.1ms−1, the accuracy of the input data, and indicate the mean standard

deviations for the given interval range. Parameters of the fits are also shown in table 1.

3.2.5 Wind speed

The parameterization of the mean wind speed is based upon the same linear equation (10) as temperature. For the standard

deviation however, we use a third-order polynomial given that is forced through the origin, given via

σw,wet(w̄wet) = c1,w,wet w̄wet + c2,w,wet w̄
2
wet + c3,w,wet w̄

3
wet

σw,dry(w̄dry) = c1,w,dry w̄dry + c2,w,dry w̄
2
dry + c3,w,dry w̄

3
dry. (14)5

This better resolves the complex behavior close to 0ms−1 compared to a linear fit. The plots are shown in the figures 10 and

11 and the parameters for the fits are shown in table 1.

3.2.6 Cross correlation

Following Richardson (1981) we use cross correlation to add additional residual noise to the simulated meteorological vari-

ables, which provides more realism in the daily weather result. This methodology, based on Matalas (1967) preserves the serial10

and the cross correlation between the simulated variables. It implies that the serial correlation of each variable may be described

by a first-order linear autoregressive model

Given the cross correlation matrix M0 ∈ R4×R4 and the lag-1 correlation matrix M1 ∈ R4×R4, we calculate

A=M1M
−1
0 BBT =M0−M1M

−1
0 MT

1 . (15)
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The matrices A,B,M0 and M1 are calculated using the stations from the EECRA database in figure 2. The results are

M0 =


1. 0.565 0.041 0.035

0.565 1. −0.089 −0.043

0.041 −0.089 1. 0.114

0.035 −0.043 0.114 1.

 M1 =


0.933 0.55 0.016 0.03

0.557 0.417 −0.066 −0.043

0.004 −0.095 0.599 0.093

0.011 −0.063 0.061 0.672

 . (16)

leading to

A=


0.916 0.031 −0.018 0.001

0.485 0.135 −0.069 −0.047

0.004 −0.043 0.592 0.023

0.012 −0.043 −0.02 0.672

 B =


0.358 0. 0. 0.

0.112 0.809 0. 0.

0.142 −0.06 0.785 0.

0.077 −0.016 0.061 0.733

 . (17)

The columns and rows in the two matrices correspond to min. and max. temperature, cloud fraction and square root of wind5

speed, respectively.

In the weather generator, the variables Tmin,Tmax, c and w are then calculated using a combination of residual noise χi

(where i denotes the current simulated day) and the mean of the variables. χi is determined by the other variables and the

previous day using A and B from above (Richardson, 1981; Matalas, 1967). Hence, χi is given via

χi =
(
χTmin χTmax χc χw

)
=Aχi−1 +Bε ∈ R4. (18)10

The daily values for the variables are then calculated via

Tmin,i = χTmin
·σTmin,wet/dry + T̄min,wet/dry ci = χc ·σc,wet/dry + c̄wet/dry (19)

Tmax,i = χTmax
·σTmax,wet/dry + T̄max,wet/dry wi =

(
χw ·
√
σw,wet/dry +

√
w̄wet/dry

)2
(20)

with σTmin,wet/dry,σTmax,wet/dry from eq. (11), σc,wet/dry from eq. (13), σw,wet/dry from eq. (14), T̄min,wet/dry, T̄max,wet/dry, w̄wet/dry

from eq. (10) and c̄wet/dry from eq. (12).15

Since this procedure always requires the residuals from the previous day, χi−1, we initialize χ0 with 0, simulate the month

and then simulate it again.

Note that, through the entire procedure, wind speed is subject to a square-root transformation (also when calculatingM0 and

M1) to account for the fact that it is not normally distributed.

3.3 Model Evaluation20

To evaluate GWGEN, we started with the daily meteorology at the evaluation stations described above and calculated monthly

summaries. We used this monthly data to drive the model and simulate daily meteorology. The resulting daily series now has

18



0 50 100 150
obs. Precipitation [mm]

0

50

100

150

si
m

. P
re

ci
pi

ta
tio

n 
[m

m
]

R2 = 0.880

40 20 0 20
obs. Min. Temperature [ C]

40

20

0

20

si
m

. M
in

. T
em

pe
ra

tu
re

 [
C

]

R2 = 0.982

20 0 20 40
obs. Max. Temperature [ C]

20

0

20

40

si
m

. M
ax

. T
em

pe
ra

tu
re

 [
C

]

R2 = 0.988

0.0 0.2 0.4 0.6 0.8 1.0
obs. Cloud fraction [-]

0.00

0.25

0.50

0.75

1.00

si
m

. C
lo

ud
 fr

ac
tio

n 
[-] R2 = 0.977

0 10 20 30
observed Wind Speed [m/s]

0

10

20

30

si
m

ul
at

ed
 W

in
d 

S
pe

ed
 [m

/s
]

R2 = 0.840

Figure 12. QQ-plots for all variables with all quantiles (1, 5, 10, 25, 50, 75, 90, 95 and 99) for µ= 5.0mmmm, ξ = 1.5. The blue lines

are linear regression from simulation to observation. The red line shows the ideal fit (the identity line). Blue shaded areas represent the 95%

confidence interval. The plots compares the simulated quantile from the list above of one year of one station to the corresponding observed

quantile of the same year and station. The plot for wind speed underwent used the bias correction from subsection 3.4.

the same length as the observed meteorology from the GHCN and EECRA database. Because we cannot expect the weather

generator to reproduce the weather exactly as observed, for example the number of rainy days in a month may be the same as

observed but they may not occur in precisely the same order, our evaluation is restricted to comparing the statistical properties

of the input observed versus the output simulated daily meteorology.

Figure 12 shows the comparison of simulated versus observed values for each of the five meteorological variables handled5

by GWGEN. For temperature, wind, and cloud fraction, the model does an excellent job of downscaling monthly input to daily

resolution1. The comparison between precipitation amounts looks good when considering all of the data, however a closer look

into the results (Fig. 13) shows that while the higher precipitation percentiles are well captured using the hybrid Gamma-GP

1Note that the plot for wind speed has been bias corrected using the approach in subsection 3.4.
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Figure 13. QQ-plot for different quantiles for precipitation for µ= 5.0mm, ξ = 1.5. The blue lines are linear regression from simulation to

observation. The red line shows the ideal fit (the identity line). Blue shaded areas represent the 95% confidence interval. The plots compare

the simulated quantile of one year of one station to the corresponding observed quantile of the same year and station.

distribution, the lower percentiles show somewhat worse results. This observation of poor performance for very low values

also holds true for wind speed (not shown here). The lower values of the two variables, however, are very close to the precision

of the observation (0.1mm for precipitation and 0.1ms−1 for wind speed). Very small precipitation amounts and low wind

speeds are also less biophysically and ecologically important compared to the higher percentiles. We therefore consider the

results of the evaluation largely acceptable.5

In table 4 we also compare the simulated versus the observed frequencies. For very light rain (<=1mm), light rain (1-10mm),

heavy rain (10-20mm) and very heavy rain (>20mm). As we can see, our model underestimates the occurrence of very light

rain events (28.6% instead of 36.4%) and overestimates the light rain events (58.3% instead of 48.6%) but generally performs

much better than GCMs (Dai, 2006; Sun et al., 2006), especially when it comes to the heavy rain events.

3.4 Bias correction10

After evaluating the results of GWGEN for wind speed for the different quantiles (see previous subsection 3.3) we found a

strong, systematic bias between the simulated and the observed values. This observation led us to adopt a further measure to

improve the quality of the model output by implementing a quantile-based bias correction.
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Table 4. Simulated and observed precipitation frequencies for certain ranges. The frequency is defined as the number of precipitation

occurences in the specified range, divided by the total number of precipitation occurences.

Simulated Observed

Precip. range [mm]

(0, 1] 0.285688 0.364014

(1, 10] 0.583330 0.486415

(10, 20] 0.074063 0.090178

(20,∞] 0.056920 0.059392
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Figure 14. Basis for the wind bias correction. For the left plot, each data point corresponds to the difference of a simulated percentile to the

observed percentile. For the right plot (wind speed), each data point corresponds to the fraction of simulated to the observed wind speed for

a given percentile. The random number on the x-axis represents the residual value from a normal distribution centered at 0 with standard

deviation of unity, as it is used in the cross correlation approach (Richardson, 1981).

We use an empirical distribution correction approach (quantile-mapping) (Lafon et al., 2012) to a posteriori correct the

simulated data. In the quantile evaluation (previous subsection 3.3) we saw that the simulated wind speed is a linear function of

the observed wind speed, i.e. wsim = intercept + slope ·wobs (best fit line in figure 12). Therefore, we use two steps here, one

is for the difference between simulation and observation (ideally 0), the other one is the fraction of observation and simulation

(ideally 1). The first one corresponds to the intercept with the y-axis in figure 12, the second one to the slope of the best fit line.5

The analysis is based on every second percentile between 1 and 100 (i.e. 1,3,5, . . .) and mapped to it’s corresponding random

number u ∈ R from a normal distribution as it is used for the cross correlation in the weather generator (section 3.2.6, x-axis

in figure 14 and Richardson (1981)).

Regarding the intercept (fig. 14, left) we see that it strongly follows an exponential function given through

fexp(u) = eau+b, a,b,u ∈ R. (21)10
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The slope (fig. 14, right) on the other hand can be described by a simple third-order polynomial given by

p3(u) = c0 + c1u+ c2u
2 + c3u

3, c0, c1, c2, c3,u ∈ R (22)

Hence, given the best fit lines in figure 14, the simulated wind speed is corrected via

w′sim =
wsim− fexp(u)

p3(u)
(23)

with a= 1.1582, b=−1.3359, c0 = 0.9954, c1 = 0.8508, c2 = 0.0278, c3 =−0.0671.5

3.5 Sensitivity analysis

The Generalized-Pareto part of the hybrid Gamma-GP distribution, which we used to simulate precipitation amount, has two

parameters: the GP shape, and the threshold parameter. Unlike the gamma parameters, we were unable to relate these GP

parameters to any of the monthly summary data we use as input to GWGEN. Hence, we decided to set fixed values for these

parameters, and determine them through a sensitivity analysis.10

To select the "best" values of the GP parameters, we compared simulated with observed precipitation amounts, running

GWGEN with a wide range of realistic parameter values. To quantitatively assess the model performance, we used two metrics:

1) direct comparison of the quantiles (see previous section), and 2) a Kolmogorov-Smirnov (KS) test that evaluates whether

two data samples come from significantly different distributions. Our criteria were

1. The R2 correlation coefficient between simulated and observed quantiles15

2. The fraction simulated precipitation
observed precipitation from the slopes in figure 13 and it’s deviation from unity

3. the fraction of simulated (station specific) years that are significantly different (KS test) from the observation

4. The mean of the above values

We tried two different approaches to select the gamma-GP crossover threshold: first we tried a fixed crossover point, second

we used a quantile-based crossover point. For the latter, the model chooses to use the GP distribution if the quantile of the20

random number drawn from the gamma distribution is above a certain quantile threshold. This introduces a flexible crossover

point in our hybrid distribution which, however, did not improve the results significantly. We therefore show here only the

results using the fixed crossover point.

The values of the crossover point for our sensitivity analysis were 2, 2.5, 3, 4 and from 5 to 20 in steps of 2.5 and 20 to

100 in steps of 5. Furthermore we varied the GP shape parameter from 0.1 to 3 in steps of 0.1 (810 experiments in total). The25

results of this sensitivity analysis are shown in the supplementary material, figure 15.

In general we found that the three criteria 1, 2 and 3 could not be optimized all together at the same time. The R2 is best for

high thresholds and low GP shape parameters, the slope is best for low to intermediate thresholds and a low GP shape and the

KS statistic is best for low threshold and intermediate GP shape parameters.
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However, R2 did not vary that much (from 0.68 to 0.74) and from a visual evaluation of the corresponding quantile plots we

saw that the higher quantiles (>90) were much better represented for a better KS result. Hence we chose to follow the KS test

criteria, which is also the strictest of our evaluation methods but again compared the different quantile plots to get good results

for the higher quantiles. Finally, we chose a threshold of 5mm and a GP shape parameter of 1.5. For this setting, 81.7% of the

simulated years do not show a significant difference compared to the observation, the mean R2 of the plots in figure 13 is 0.815

and the mean deviation of the slope from unity is 0.10 and for the upper quantiles (90 to 100), 0.017.

Nevertheless, in total the results seem to be fairly independent of the two parameters since even the amount of years without

significant differences vary from 73% to only 83%. It is however better than the gamma distribution alone which still has 78.6%

of station years not differing significantly but with a slope deviation from unity for the upper quantiles of 0.16. Thus using the

hybrid Gamma-GP distribution improves the simulation of high-amount precipitation events by roughly factor 10 compared to10

a standard Gamma approach.

4 Limitations

As demonstrated above, GWGEN successfully downscales monthly to daily meteorology with good correlation and low bias

when compared to observations. However, there are a few limitations of the model as currently described that should be

noted. Importantly, this version of GWGEN neither downscales all conceivable meteorological variables, nor does it provide a15

mechanism for generating daily meteorological timeseries across multiple points that are spatially autocorrelated. Concerning

the former point, while GWGEN simulates daily precipitation, temperature, cloud cover, and windspeed, it does not currently

handle other variables that might be important in land surface modeling, such as humidity or wind direction. On the latter

point, the lack of explicit simulation of spatial autocorrelation may make GWGEN unsuitable for certain applications, e.g.,

regional high-resolution hydrological modeling in small catchments (< ca. 2500 km2), where having the capability to simulate20

flood and other extremes is important. This is because the the weather generator could, e.g., simulate rainfall on different days

in different parts of the catchment, where in reality storm events would be highly autocorrelated in space and controlled by

mesoscale meteorological conditions.

5 Discussion and Outlook

GWGEN successfully downscales monthly to daily meteorology, for any point on the globe, in any climate, in any season, and25

in any time in recent earth history and into the near future (e.g., next century). It extends the original Richardson-type weather

generators to simulate wind speed along with precipitation, temperature, and cloud cover. The model requires only monthly

values of the meteorological variables to be downscaled, and does not rely on any other spatial information, e.g., whether or

not the location is in the tropics.

In general, the results of our downscaled meteorology are excellent, with all simulated variables showing both very high30

correlation and limited bias when compared to observations. We improved the simulation of daily precipitation amount by
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replacing the Gamma distribution used in the original Richardson-type weather generators with a hybrid Gamma-GP distribu-

tion, which results in the improved simulation of heavy precipitation events. The GP distribution is based upon a globally fixed

shape and location parameter, which may be an oversimplification, but is still ten times more accurate than traditional methods

that used Gamma alone. Our extensive sensitivity analysis to determine the best coefficients for the shape and location parame-

ters of the GP distribution suggest that further improvements might come through correlating the GP parameters to geographic5

region and/or seasonality (Maraun et al., 2009; Rust et al., 2009) or by introducing a dynamical location parameter (Frigessi

et al., 2002). Finally, we introduced a step to correct for systematic bias in the downscaling of temperature and wind speed.

Despite the limitations noted above, GWGEN will be useful in a wide range of applications, from global vegetation and

crop modeling, to large-scale hydrologic analyses, to understanding animal behavior, to forecasting of fire, insect outbreaks,

and other ecosystem disturbances. GWGEN may even be envisaged as a potential replacement for very large and cumbersome10

gridded datasets of high-temporal resolution meteorology such as CRUNCEP (Viovy and Ciais, 2016), especially for models

that use meteorological forcing at a daily timestep. The weather generator is particularly suited for the incorporation into

models that run on a spatial grid, for example, GWGEN can readily be incorporated into existing DGVMs such as LPJ-LMfire

(Pfeiffer et al., 2013) or LPJ-ML (Bondeau et al., 2007) that already rely on a weather generator to provide daily meteorology

for certain processes.15

While GWGEN does not handle spatial autocorrelation, in most DGVMs there is no lateral connection between gridcells,

and therefore an explicit representation of spatial autocorrelation in the driving daily meteorological data would have no effect

on the model output. We further note that if the monthly data used to drive the model are spatially autocorrelated –– this would

be the case when using gridded climatology for example –– then the result of the weather generator will also preserve this

autocorrelation, at least when the model results are analyzed on monthly or longer timescales.20

The limitations present in this version of GWGEN could be addressed in future versions. Methods for simultaneous multisite

weather generation exist (Wilks, 1998, 1999b, c) and could be adapted to GWGEN. However, even simpler methods to approx-

imate spatial autocorrelation could be possible. Running GWGEN with gridded monthly meteorology — this is the primary

application we foresee for the current version of the model — means that the input variables are already highly correlated

in space, i.e., the monthly climate in one gridcell generally closely resembles neighboring cells, outside of complex terrain25

containing sharp, monotonic climate gradients, e.g., rain shadows. Thus, one simple way of achieving a measure of spatial

autocorrelation in GWGEN would be to impose a spatial autocorrelation field on the sequence of random numbers used to

impose stochastic noise in the downscaling functions. If the random number sequence is similar between gridcells, then, e.g.,

rain is likely to fall on the same day, given that the transition probabilities will likely also be similar. Over moderate distances,

e.g., <50’s of km, it might even be sufficient to use the same random seed across all gridcells in a neighborhood. This would30

have the effect of producing strongly autocorrelated daily meteorology in space, with the only variations being imposed by the

underlying input monthly climatology.

Furthermore, it would be straightforward to include additional meteorological variables in the model framework, handling,

e.g., humidity in the same way that temperatures, cloud cover, and wind speed are disaggregated. Other variables, such as

pressure and wind direction, might be more difficult using the basic GWGEN structure because of the importance of auto-35
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correlation, particularly at high spatial resolution, and might benefit from a different approach towards weather generation.

Finally, GWGEN only downscales meteorology from monthly to daily values; for models that require an even shorter timestep,

e.g., 6-hourly, some extension of the model functionality would be required. For certain variables, e.g., temperatures, sub-daily

downscaling could be easily implemented (Cesaraccio et al., 2001), for other variables, such as precipitation, a large literature

on downscaling methods exists (e.g. Bennett et al., 2016), and global datasets of hourly meteorology for model calibration are5

available (e.g., the Integrated Surface Database, Smith et al., 2011).

6 Conclusions

Compiling a global database of daily precipitation, temperature, cloud cover, and wind speed measurements, we explored the

relationship between daily meteorology and monthly summaries first described in the context of weather downscaling by Geng

and Auburn (1987). Our analysis of more than 50 million individual records showed that daily-to-monthly relationships are10

relatively stable in space and time, and constant across a very wide range of stations from all latitudes and climate zones. With

the resulting relationships, we parameterized a WGEN/SIMMETEO-type weather generator, with the intention of creating a

generic scheme that could be applied anywhere over the earth’s land surface for the past, present, and (near) future.

7 Code availability

GWGEN, is open source software, and the code, utility programs for parameterization, evaluation and manipulating the raw15

weather station data, and complete documentation are available at https://github.com/ARVE-Research/gwgen/releases/tag/v1.

0.12. The original weather station database can be made available upon request to the authors or downloaded from Hahn and

Warren (1999) and Menne et al. (2012b). The weather generator module is programmed in FORTRAN, the parameterization,

evaluation and other supplementary tools are written in Python mainly using the numerical python libraries numpy and scipy

(Jones et al., 2001), statsmodels (Seabold and Perktold, 2010), as well as matplotlib (Hunter, 2007) and psyplot (Sommer, 2017)20

for the visualization. Detailed installation instructions can be found in the user manual: https://arve-research.github.io/gwgen/.

2A DOI will be provided when the paper is accepted
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Appendix A: Supplementary material

A1 Sensitivity analysis

a b

c d

Figure 15. Results of the sensitivity analysis for the (a) correlation coefficient R2, (b) deviation from a slope of unity, (c) the fraction of

significant different station years, (d) the mean of (a) - (c). For the plots in (a) and (b) we used the means of the 25th, 50th, 75th, 90th, 95th

and 99th percentiles. In general, 1 (dark green) is best, 0 (white) is worst. The dark red fields indicate experiments that failed because of a

too low threshold and too high GP shape parameter. Note the logarithmic scale on the y-axis.
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