
MicroHH 1.0: a computational fluid dynamics code for direct
numerical simulation and large-eddy simulation of atmospheric
boundary layer flows
Chiel C. van Heerwaarden1,2, Bart J. H. van Stratum1,2, Thijs Heus3, Jeremy A. Gibbs4, Evgeni
Fedorovich5, and Juan Pedro Mellado2

1Meteorology and Air Quality Group, Wageningen University, Wageningen, The Netherlands
2Max Planck Institute for Meteorology, Hamburg, Germany
3Cleveland State University, Cleveland, OH, USA
4Department of Mechanical Engineering, University of Utah, UT, USA
5University of Oklahoma, Norman, OK, USA

Correspondence to: Chiel van Heerwaarden
(chiel.vanheerwaarden@wur.nl)

Abstract. This paper describes MicroHH 1.0, a new and open source (www.microhh.org) computational fluid dynamics code

for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation, but also supports

large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and

the parametrizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of

convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established5

test cases. The full numerical model, including the associated parametrizations for LES, has been tested for a set of cases

under stable and unstable conditions, under the Boussinesq and anelastic approximation, and with dry and moist convection

under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256

to 32,768 processes. The Graphical Processing Unit (GPU)-enabled version of the code can reach a speedup of more than an

order of magnitude for simulations that fit in the memory of a single GPU.10

1 Introduction

In this paper we present a description of MicroHH 1.0, a new Computational Fluid Dynamics code for the simulation of

turbulent flows in doubly periodic domains, with a focus on those in the atmosphere. MicroHH is designed for the direct

numerical simulation (DNS) technique, but also supports the large-eddy simulation (LES) technique. Its applications range

from neutral channel flows to cloudy atmospheric boundary layers in large domains. MicroHH is written in C++ and the15

Graphical Processing Units-enabled parts of the code in CUDA. The simulation algorithms have been designed and are written

from scratch with the goal to create a fast and highly parallel code that is able to run on machines with more than 10,000 cores.

This is a key requirement for the code to be able to perform DNS at very high Reynolds numbers, or to do LES at very fine

grids (grid spacing less than 1 m), or in domains that approach the synoptic scales (beyond 1000 km). We decided to start from

1

www.microhh.org

scratch, in order to be able to use C++ and its extensive possibilities in object oriented- and metaprogramming. Furthermore,

the implementation of a dynamical core that is fully fourth-order in space, which is very beneficial for DNS, but to retain the

option to switch to second-order accuracy for LES, required a new code design.

Even though we started from scratch, many of the ideas are the results of our experiences with other codes. Here, DALES

(Heus et al., 2010), UCLA-LES (Stevens et al., 2005), and PALM (Maronga et al., 2015), deserve a reference as MicroHH5

could not have been possible without those.

This paper is built up as following: in Sect. 2, we provide a full description of the governing equations of the dynamical

core, and their numerical implementation is discussed in Sect. 3. Subsequently, in Sect. 4 we present the parameterizations and

their underlying assumptions. Section 5 discusses the technical details of the code, and Sections 6 and 7 explain how to run the

model and which output is generated. This is followed by a series of model tests on the validity and accuracy of the dynamical10

core in Sect. 8, and a series of more applied atmospheric flow cases based on previous studies (Sect. 9). Hereafter, the parallel

performance is evaluated (Sect. 10). Then, an overview of published work with MicroHH is presented (Sect. 11), followed by

the future plans (Sect. 12) and the concluding remarks (Sect. 13). Finally, there is a short description where to get MicroHH,

and where to find its tutorials and a selection of visualisations (Sect. 14).

2 Dynamical core: governing equations15

The dynamical core of MicroHH solves the conservation equations of mass, momentum, and energy under the anelastic ap-

proximation (Bannon, 1996). Under this approximation, the state variables density, pressure, and temperature are described as

small fluctuations (denoted with a prime in this paper) from corresponding vertical reference profiles (denoted with subscript

zero) that are functions of height only. This form of the approximation directly simplifies to the Boussinesq approximation if

the reference density ρ0(z) is taken to be constant with height z. Consequently, MicroHH does not need separate implemen-20

tations of Boussinesq and anelastic approximations. To facilitate the subsequent discussion of the conservation equations, we

define the scale height for density Hρ based on the reference density profile

Hρ ≡
(

1

ρ0

dρ0

dz

)−1

. (1)

2.1 Conservation of mass

The conservation of mass is formulated using Einstein summation as25

∂ρ0ui
∂xi

= ρ0
∂ui
∂xi

+ ρ0wH
−1
ρ = 0, (2)

where ui is the velocity vector (u,v,w) and xi is the position vector (x,y,z). This formulation conserves the reference mass,

as density perturbations are ignored in the equation (Lilly, 1996).

Under the Boussinesq approximation (Hρ → ∞), Eq. 2 simplifies to conservation of volume

∂ui
∂xi

= 0. (3)30

2

2.2 Thermodynamic relations and conservation of momentum

The thermodynamic relation between the fluctuations of virtual potential temperature, pressure, and density under the anelastic

approximation is (see Bannon (1996) for its derivation)

θ′v
θv0

=
p′

ρ0gHρ
− ρ′

ρ0
, (4)

where θ′v is the perturbation virtual potential temperature, θv0 the reference virtual potential temperature, p′ is the perturbation5

pressure, g is the gravity acceleration, and ρ′ is the perturbation density.

The corresponding momentum equation is written in the flux form, in order to assure momentum conservation. The hydro-

static balance dp0/dz = −ρ0g has been subtracted and Eq. 4 has been used to introduce potential temperature as the buoyancy

variable to formulate the conservation of momentum as

∂ui
∂t

= − 1

ρ0

∂ρ0uiuj
∂xj

− ∂

∂xi

(
p′

ρ0

)
10

+ δi3g
θ′v
θv0

+ ν
∂2ui
∂x2

j

+Fi, (5)

where δ is the Kronecker delta, ν the kinematic viscosity, and vector Fi represents external forces resulting from parameter-

izations or large-scale forcings. As Bannon (1996) showed, this formulation is energy-conserving in the sense that there is a

consistent transfer between kinetic and potential energy.

Under the Boussinesq approximation, the two equations simplify to15

θ′v
θv0

= − ρ
′

ρ0
, (6)

∂ui
∂t

= −∂uiuj
∂xj

− 1

ρ0

∂p′

∂xi

+ δi3g
θ′v
θv0

+ ν
∂2ui
∂x2

j

+Fi. (7)

2.3 Pressure equation

The equation to acquire the pressure is diagnostic, because density fluctuations are neglected in the mass conservation equation20

under the anelastic approximation (Eq. 2). To simplify the notation, we define a function f (ui) that contains all right-hand side

terms of Eq. 5, except the pressure gradient. To arrive at the equation that allows us to solve for the pressure, we multiply the

equation with the base density ρ0 and take its divergence. Conservation of mass ensures that the tendency term vanishes, and

an elliptic equation for pressure remains

∂

∂xi

[
ρ0

∂

∂xi

(
p′

ρ0

)]
=

∂ρ0f (ui)

∂xi
. (8)25

Under the Boussinesq approximation the equation simplifies to

∂2

∂x2
i

(
p′

ρ0

)
=

∂f (ui)

∂xi
. (9)

In Sect. 3 we explain how these equations are solved numerically.

3

2.4 Conservation of an arbitrary scalar

The conservation equation of an arbitrary scalar φ is written in flux form

∂φ

∂t
= − 1

ρ0

∂ρ0ujφ

∂xj
+κφ

∂2φ

∂x2
j

+Sφ, (10)

where κφ is the diffusivity of the scalar, and Sφ represents sources and sinks of the variable.

2.5 Conservation of energy5

MicroHH provides multiple options for the energy conservation equation. The conservation equation for potential temperature

for dry dynamics θ can be written as

∂θ

∂t
= − 1

ρ0

∂ρ0ujθ

∂xj
+κθ

∂2θ

∂x2
j

+
θ0

ρ0cpT0
Q, (11)

where κθ is the thermal diffusivity for heat, and Q represents external sources and sinks of heat. A second option for moist

dynamics is available. This has an identical conservation equation, but with liquid water potential temperature θl, rather than θ10

as the conserved variable (see Sect. 3.9 for details).

A third, more simplified mode, is available for dry dynamics under the Boussinesq approximation. Here, the equation of state

(Eq. 6) can be eliminated and the conservation of momentum and energy can be written in terms of buoyancy b≡ (g/θv0)θ′v

as

∂ui
∂t

+
∂uiuj
∂xj

= − 1

ρ0

∂p′

∂xi
+ δi3b+ ν

∂2ui
∂x2

j

, (12)15

∂b

∂t
+
∂buj
∂xj

= κb
∂2b

∂x2
j

+Qb, (13)

with κb being the diffusivity for buoyancy, and Qb is an external buoyancy source. By using buoyancy, length and time remain

as the only two dimensions, which proves convenient for dimensional analysis. In this formulation, θ′v is the fluctuation of the

virtual potential temperature with respect to the surface value θv0. The consequence is that the buoyancy increases with height

in a stratified atmosphere, analogously to the virtual potential temperature (see Garcia and Mellado (2014), their Fig. B1 and20

van Heerwaarden and Mellado (2016), their Fig. 7a)

With a slight modification to the definition of θ′v , it is possible to study slope flows in periodic domains. We define θ′v as the

fluctuation with respect to a linearly stratified background profile θv0 + (dθv/dz)0z. The background stratification in units of

buoyancy is N2 ≡ (g/θv0)(dθv/dz)0. If we work out the governing equations again and introduce a slope α (x-axis pointing

upslope, see Fedorovich and Shapiro (2009), their Fig. 1) in the x-direction, we find25

∂u

∂t
+
∂uju

∂xj
= − 1

ρ0

∂p′

∂x
+ sin(α)b+ ν

∂2u

∂x2
j

, (14)

∂w

∂t
+
∂ujw

∂xj
= − 1

ρ0

∂p′

∂z
+ cos(α)b+ ν

∂2w

∂x2
j

, (15)

∂b

∂t
+
∂buj
∂xj

= κb
∂2b

∂x2
j

− (u sin(α) +w cos(α))N2 +Qb, (16)

4

where the evolution equation of v is omitted as it contains no changes.

3 Dynamical core: numerical implementation

3.1 Grid

MicroHH is discretized on a staggered Arakawa C-grid, where the scalars are located in the center of a grid cell and the three

velocity components at the faces. The code can work with stretched grids in the vertical dimension. The grid is initialized from5

a vertical profile that contains the heights of the cell centres. The locations of the faces are determined consistently with the

spatial order of the interpolations that are described in Sect. 3.4. All spatial operators in the model, such as the advection and

diffusion, default to the same order as the grid, and can be overriden according to the user’s wishes (see Sect. 6).

There is the option to apply a uniform translation velocity to the grid, thus to let the grid move with the flow. This so-called

Galilean transformation is allowed as the Navier-Stokes equations are invariant under translation. It has the potential to allow10

for larger time steps and to increase the accuracy of simulations.

3.2 Three-dimensional fields

In order to solve the governing equations, MicroHH generates at initialization three-dimensional fields of the prognostic vari-

ables. These are the three velocity components (Eqs. 5 or 7), and the thermodynamic variables (Eqs. 11, 13, or 16). Further-

more, the user has the option to define additional passive scalars (Eq. 10). Each of the prognostic fields has an additional15

three-dimensional field assigned to store its tendency (see Sect. 3.3). Furthermore, a diagnostic field is assigned for the pres-

sure, as well as three or four additional ones for intermediate computations. Newly implemented physical parameterizations

have the option to request additional three-dimensional fields at initialization of the specific parameterization.

The generation of turbulence requires perturbations to the initial fields. MicroHH has two option to superimpose perturba-

tions on any of the prognostic variables. These perturbations can be random noise of which the amplitude and location can be20

controlled, as well as two-dimensional rotating vortices with an axis aligned with the x- or y-dimension. The former option is

the most commonly used method to start convective turbulence, whereas the latter is the default for neutral or stably-stratified

flows, which develop turbulence more easily from larger perturbations.

3.3 Time integration

The prognostic equations are solved using low-storage Runge-Kutta time integration schemes. Such schemes require two fields25

per variable: one that contains the actual value, which we denote with φ in this section, and one that represents the tendencies,

denoted with δφ. The code provides two options: a three-stage third-order scheme (Williamson, 1980) and a five-stage fourth-

order scheme (Carpenter and Kennedy, 1994). Both can be written in the same generic form in semi-discrete formulation

5

as

(δφ)n = f (φn) + an (δφ)n−1 (17)

φn+1 = φn + bn∆t(δφ)n , (18)

where f is a function that represents the computation of all right-hand side terms, an and bn are the coefficients for the Runge-

Kutta method at stage n, and ∆t is the time step. Expression f (φn) represents thus the actual tendency calculated using, for5

instance, Eqs. 5 or 10, whereas (δφ)n is a composite of the actual tendency and those from the previous stages. In low-storage

form, the tendencies of the previous stage (δφ)n−1 are retained and multiplied with an at the beginning of a stage, except for

the first stage, where a1 = 0.

For the third-order scheme the vectors an and bn are

an =

{
0,−5

9
,−153

128

}
, (19)10

bn =

{
1

3
,
15

16
,

8

15

}
. (20)

For the fourth-order scheme the vectors a and b are

an =

{
0,− 567301805773

1357537059087
,−2404267990393

2016746695238
,

−3550918686646

2091501179385
,−1275806237668

842570457699

}
(21)

bn =

{
1432997174477

9575080441755
,

5161836677717

13612068292357
,
1720146321549

2090206949498
,15

3134564353537

4481467310338
,

2277821191437

14882151754819

}
(22)

The reduced truncation error of the fourth-order scheme makes the scheme preferable over the third-order scheme under

many conditions (see Sect. 8.2). The code can be run with a fixed ∆t, as well as an adaptive time step based on the local flow

velocities.

3.4 Building blocks of the spatial discretization20

The spatial operators are based on finite differences. The code supports second-order and fourth-order accurate discretizations

following Morinishi et al. (1998); Vasilyev (2000). From Taylor series, spatial operators can be derived that constitute the

building blocks of more advanced operators, such as the advection and diffusion operators. In the following subsections we

describe the elementary operators and the composite operators that can be derived from them. We have selected a set of

examples that cover the relevant operators.25

We define two second-order interpolation operators, one with a small stencil and one with a wide stencil, as

φi,j,k ≈ φ
2x

i,j,k ≡
φi− 1

2 ,j,k
+φi+ 1

2 ,j,k

2
, (23)

φi,j,k ≈ φ
2xL

i,j,k ≡
φi− 3

2 ,j,k
+φi+ 3

2 ,j,k

2
, (24)

6

Interpolations are marked with a bar. The superscript indicates the spatial order (2), and the direction (x) and has an extra

qualifier L when it is taken using the wide stencil. The subscript indicates the position on the grid (i, j).

The gradient operators, denoted with letter δ, are defined in a similar way

∂φ

∂x

∣∣∣∣
i,j,k

≈ δ2x (φ)i,j,k ≡
φi+ 1

2 ,j,k
−φi− 1

2 ,j,k

xi+ 1
2
−xi− 1

2

(25)

∂φ

∂x

∣∣∣∣
i,j,k

≈ δ2xL (φ)i,j,k ≡
φi+ 3

2 ,j,k
−φi− 3

2 ,j,k

xi+ 3
2
−xi− 3

2

(26)5

We use the Einstein summation in the operators. For instance, the divergence of vector ui|i,j,k can be written as δ2xi (ui)i,j,k.

The fourth-order operators, written down in the same notation, are defined as

φi,j,k ≈ φ
4x

i,j,k ≡
−φi− 3

2 ,j,k
+ 9φi− 1

2 ,j,k
+ 9φi+ 1

2 ,j,k
−φi+ 3

2 ,j,k

16
. (27)

The biased version of this operator (subscript b) can be applied in the vicinity of the boundaries at the bottom and top. Here,

we show the biased stencil that can be applied for vertical interpolation near the bottom10

φi,j,k ≈ φ
4zb

i,j,k ≡
5φi,j,k− 1

2
+ 15φi,j,k+ 1

2
− 5φi,j,k+ 3

2
+φi,j,k+ 5

2

16
. (28)

Note that we only write down the bottom boundary for brevity.

The centered and biased fourth-order gradient operators are

∂φ

∂x

∣∣∣∣
i,j,k

≈ δ4x (φ)i,j,k

≡
φi− 3

2 ,j,k
− 27φi− 1

2 ,j,k
+ 27φi+ 1

2 ,j,k
−φi+ 3

2 ,j,k

xi− 3
2
− 27xi− 1

2
+ 27xi+ 1

2
−xi+ 3

2

, (29)15

and

∂φ

∂z

∣∣∣∣
i,j,k

≈ δ4zb (φ)i,j,k

≡
−23φi,j,k− 1

2
+ 21φi,j,k+ 1

2
+ 3φi,j,k+ 3

2
−φi,j,k+ 5

2

−23zk− 1
2

+ 21zk+ 1
2

+ 3zk+ 3
2
− zk+ 5

2

. (30)

3.5 Boundary conditions

The lateral boundaries in MicroHH are periodic. The bottom and top boundary conditions can be formulated in their most20

general form as the Robin boundary condition

aφs + b
∂φ

∂z

∣∣∣∣
s

= c, (31)

with a, b and c as constants. This gives the Dirichlet boundary condition when a= 1, b= 0, and the Neumann boundary

condition when a= 0, b= 1.

7

MicroHH makes use of ghost cells in order to avoid the need of biased schemes for single interpolation or gradient operators

near the wall. The values at the ghost cells are derived making use of the boundary conditions following Morinishi et al. (1998).

The ghost cells for the Dirichlet boundary conditions in the second-order accurate discretization are

φ− 1
2

= 2c−φ 1
2
, (32)

whereas those for the Neumann boundary condition are5

φ− 1
2

= −c
(
−z− 1

2
+ z 1

2

)
+φ 1

2
. (33)

In case of the fourth-order scheme, we have two ghost cells, and therefore a second boundary condition is required. Here, we

set the third derivative equal to zero following (Morinishi et al., 1998). For the Dirichlet boundary condition we then acquire

the following expressions for the ghost cells

φ− 1
2

=
8c− 6φ 1

2
+φ 3

2

3
, (34)10

φ− 3
2

= 8c− 6φ 1
2

+φ 3
2
, (35)

whereas in case of a Neumann boundary condition we find

φ− 1
2

= −c
z− 3

2
− 27z− 1

2
+ 27z 1

2
− z 3

2

24
+φ 1

2
, (36)

φ− 3
2

= −3c
z− 3

2
− 27z− 1

2
+ 27z 1

2
− z 3

2

24
+φ 3

2
. (37)

3.6 Advection15

We use the previously introduced notation to describe the more complex operators and expand them for illustration. The

advection term is discretized in the flux form, where φ is an arbitrary scalar located in the center of the grid cell. In the

second-order case, this gives the following discretization:

∂uφ

∂x

∣∣∣∣
i,j,k

+
∂vφ

∂y

∣∣∣∣
i,j,k

≈ δ2x
(
uφ

2x
)
i,j,k

+ δ2y
(
vφ

2y
)
i,j,k

=
ui+ 1

2 ,j,k
φ

2x

i+ 1
2 ,j,k
−ui− 1

2 ,j,k
φ

2x

i− 1
2 ,j,k

xi+ 1
2
−xi− 1

2

20

+
vi,j+ 1

2 ,k
φ

2y

i,j+ 1
2 ,k
− vi,j− 1

2 ,k
φ

2y

i,j− 1
2 ,k

yj+ 1
2
− yj− 1

2

. (38)

The discretization of the advection of the velocity components (see Eqs. 5 and 7) involves extra interpolations as the following

example illustrates:

∂vu

∂x

∣∣∣∣
i,j,k

= δ2x
(
v2yu2x

)
i,j,k

=
v2y

i+ 1
2 ,j,k

u2x
i+ 1

2 ,j,k
− v2y

i− 1
2 ,j,k

u2x
i− 1

2 ,j,k

xi+ 1
2
−xi− 1

2

. (39)25

8

In the standard fourth-order scheme, the scalar advection in flux form is represented by

∂uφ

∂x

∣∣∣∣
i,j,k

≈ δ4x
(
uφ

4x
)
i,j,k

=
(
ui− 3

2 ,j,k
φ

4x

i− 3
2 ,j,k
− 27ui− 1

2 ,j,k
φ

4x

i− 1
2 ,j,k

+27ui+ 1
2 ,j,k

φ
4x

i+ 1
2 ,j,k
−ui+ 3

2 ,j,k
φ

4x

i+ 3
2 ,j,k

)
/
(
xi− 3

2
− 27xi− 1

2
+ 27xi+ 1

2
−xi+ 3

2

)
. (40)5

Hereafter, we assume that operator notation is clear and only expand it where necessary.

MicroHH has a fully kinetic energy-conserving fourth-order advection scheme (Morinishi et al., 1998) available. The scheme

is constructed by interpolation of two kinetic energy-conserving second-order discretizations to eliminate the second-order

error as illustrated below

∂uφ

∂x

∣∣∣∣
i,j,k

≈ 9

8
δ2x
(
uφ

2x
)
i,j,k
− 1

8
δ2xL

(
uφ

2xL
)
i,j,k

(41)10

to ensure that velocity variances are conserved under advection.

Velocity interpolations, such as those in Eq. 39, still need to be performed with fourth-order accuracy (Eq. 27) in order to be

fourth-order accurate (see Morinishi et al. (1998) for details). The expression

∂vu

∂x

∣∣∣∣
i,j,k

≈ 9

8
δ2x
(
v4yu2x

)
i,j,k
− 1

8
δ2xL

(
v4yu2xL

)
i,j,k

(42)

includes, for instance, a combination of second- and fourth-order interpolations.15

To increase the overall accuracy of the second-order advection operator, there is an option available to only increase the

interpolation part to fourth order

∂uφ

∂x

∣∣∣∣
i,j,k

≈ δ2x
(
uφ

4x
)
i,j,k

. (43)

3.7 Diffusion

We apply a discretization for diffusion that can be written as the divergence of a gradient, using the building blocks defined20

earlier in this section. As this operator is identical in all directions, we present it in one direction only

κφ
∂2φ

∂x2

∣∣∣∣
i,j,k

≈ κφδ
2x
(
δ2x (φ)

)
i,j,k

, (44)

κφ
∂2φ

∂x2

∣∣∣∣
i,j,k

≈ κφδ
4x
(
δ4x (φ)

)
i,j,k

. (45)

On an equidistant grid, this provides the well-known second-order accurate operator for the second derivative

κφδ
2x
(
δ2x (φ)

)
i,j,k

= κφ
φi−1,j,k − 2φi,j,k +φi+1,j,k

(∆x)
2 , (46)25

where ∆x is the uniform grid spacing.

9

wall

d
o

m
a

in
g

h
o

st
 c

el
ls

Figure 1. Schematic of the diffusion discretization near the wall. The green node is the evaluation point at the center of the first cell above

the wall, the red node is the stencil of the divergence operator, and yellow nodes show the stencils of the four gradient operators over which

the divergence is evaluated. White nodes indicate the extent of the stencil.

For the fourth-order accurate operator, a seven-point stencil is used:

κφδ
4x
(
δ4x (φ)

)
i,j,k

=
κφ

576(∆x)
2 (φi−3,j,k − 54φi−2,j,k + 783φi−1,j,k

−1460φi,j,k + 783φi+1,j,k − 54φi+2,j,k +φi+3,j,k) . (47)

Whereas diffusion can be computed with fourth-order accuracy using a five-point stencil, we use a seven-point stencil as it5

extends naturally to non-uniform grids as explained in Castillo et al. (1995). The usage of a seven-point stencil requires special

care near the walls. In Fig. 1 we show an example of how the second derivative in the vertical direction is computed for a scalar

at the first model level (green node in Fig. 1). The calculation of the divergence (Fig. 1, red stencil) requires the gradient located

at the first face below the wall (lowest red node in Fig. 1), which can only be acquired using the biased gradient operator (Eq.

30 and yellow stencil connected to lowest red node in Fig. 1). The extent of the complete stencil near the wall (white nodes,10

Fig. 1) is thus six points, rather than seven.

3.8 Pressure

Eqs. 8 and 9 are solved following the method of Chorin (1968). This is a fractional step method that first computes intermediate

values of the velocity components for the next time step, based on all right hand side terms of the momentum conservation

10

equation Eq. 5

u∗i |t+1
i,j,k = ui|ti,j,k + ∆t fi|ti,j,k , (48)

with the intermediate velocity components denoted with an asterix.

The velocity values at the next time step can be computed as soon as the pressure is known, using

ui|t+1
i,j,k = u∗i |t+1

i,j,k −∆t δnxi

(
p

ρ0

)∣∣∣∣t
i,j,k

. (49)5

In order to compute the pressure, we multiply the previous equation with the reference density and take its gradient, arriving at

δnxi (ρ0ui)|t+1
i,j,k = δnxi (ρ0u

∗
i)|t+1

i,j,k

− ∆t δnxi

[
ρ0δ

nxi

(
p

ρ0

)]∣∣∣∣t
i,j,k

, (50)

where n indicates the spatial order, and the subscript i in superscript xi indicates that δnxi is a divergence operator. The left

hand side equals zero due to mass conservation at the next time step (Eq. 2). The resulting equation is the Poisson equation10

that is the discrete equivalent of Eq. 8. Rewriting this equation leads to

δnxi (ρ0u
∗
i)|t+1

i,j,k

∆t
= δnxi

[
ρ0δ

nxi

(
p

ρ0

)]∣∣∣∣t
i,j,k

. (51)

To simplify the notation, we denote the left-hand side term as ψ and the p/ρ0 term on the right hand side as π. Solving a

Poisson equation is a global operation. Because the computed fields are periodic in the horizontal directions on an equidistant

grid, and a Poisson equation is linear, we can perform a Fourier transform in the two horizontal directions15

ψ̂l,m,k =−k2
∗nπ̂l,m,k − l2∗nπ̂l,m,k + δnz [ρ0δ

nz (π̂)]l,m,k , (52)

where Fourier transformed variables are denoted with a hat, the spatial order of the operation with n, and the wave numbers

in the two horizontal dimensions x and y are l and m respectively. Variables k2
∗ and l2∗ are the squares of the modified wave

numbers

−k2
∗2 ≡ 2

cos(k∆x)

(∆x)
2 − 2

(∆x)
2 (53)20

and

−k2
∗4 ≡ 2

cos(3k∆x)− 54cos(2k∆x) + 783cos(k∆x)

576(∆x)
2

− 1460

576(∆x)
2 , (54)

where the former is the modified wave number for the second-order accurate solver and the latter is the wave number for

the fourth-order one. Note that the coeffecients correspond to those in Eqs. 46 and 47. Both expressions satisfy the limit25

lim∆x→0 k
2
∗n = k2, where n is the order of the scheme.

11

Solving Eq. 52 for π̂ requires solving a banded matrix for the vertical direction in which the walls are located. This matrix

is tridiagonal for the second-order solver and hepta-diagonal for the fourth-order solver. For this, a standard Thomas algorithm

(Thomas, 1949) is used. After the pressure is acquired, inverse Fourier transforms are applied and subsequently the pressure

gradient term (see Eqs. 5 and 7) is computed for all three components of the velocity tendency. Note that the computation of

the corrected velocity components does not require a boundary condition for pressure (see Vreman (2014) for details).5

3.9 Thermodynamics

MicroHH supports the potential (θ) and liquid water potential (θl) temperature as thermodynamic variables (Sect. 2.5). The dry

(θ) and moist (θl) thermodynamics are related through the use of a total specific humidity qt, which is defined as the sum of

the water vapour specific humidity (qv) and the cloud liquid water specific humidity (ql). In the absence of liquid water, θl = θ,

in the presence of liquid water, the liquid water potential temperature is approximated as (Betts, 1973)10

θl ≈ θ−
Lv

cp Π
ql, (55)

where Lv is the latent heat of vaporization, cp the specific heat of dry air at constant pressure, and Π is the Exner function

Π =

(
p

p00

)Rd/cp

, (56)

where p is the hydrostatic pressure, p00 a constant reference pressure, and Rd the gas constant for dry air. The cloud liquid

water content is calculated as15

ql = max(0, qt− qs), (57)

where qs is the saturation specific humidity

qs =
ε es

p− (1− ε) es
, (58)

with ε the ratio between the gas constant for dry air and the gas constant for water vapour (Rd/Rv), and es the saturation vapor

pressure. The latter is approximated using a 10th order Taylor expansion at T = 0 degree Celsius of the Arden Buck equation20

(Buck, 1981). ql is adjusted iteratively to arrive at a consistent state where qv = qs. Finally, the virtual potential temperature

(Eq. 5) is defined in MicroHH as

θv ≡ θ
(

1−
[
1− Rv

Rd

]
qt−

Rv

Rd
ql

)
(59)

12

The base state pressure and density are calculated assuming a hydrostatic equilibrium: dp0 =−ρ0gdz, with the density defined

as ρ0 = p0/(Rd Π θv0). Integration with height results in

p0;k+1 = p0;k exp

(−g(zk+1− zk)

Rd Π θv0

)
(60)

where θv0 is the average virtual potential temperature between zk and zk+1. This equation is applied from a given surface

pressure to the model top, alternating the calculations at the full and half model levels. That is, given the full thermodynamic5

state (pressure and density) at a full level k, the thermodynamic state can be advanced from the half level k− 1
2 to k+ 1

2 . Using

the newly calculated state at k+ 1
2 , pressure and density at k+ 1 can be calculated.

The base state density ρ0 that is used in the dynamical core (Sect. 2) is calculated using the initial virtual potential tempera-

ture profile, and is not updated during the experiment. The density and hydrostatic pressure used in the moist thermodynamics

can optionally be updated every time step, following the same procedure as explained in Boing (2014).10

3.10 Rotation

The effects of a rotating reference frame on an f -plane can be included through the Coriolis force. The acceleration due to the

Coriolis force Fi,cor is computed for the two horizontal velocity components (index 1 and 2 in Eqs. 5 and 7) as

F1,cor|i,j,k = f0vi,j,k, (61)

F2,cor|i,j,k = −f0ui,j,k, (62)15

with f0 as Coriolis parameter specified by the user.

4 Physical parameterizations

4.1 Subfilter-scale model for large-eddy simulation

With the governing equations described in Sect. 2 it is possible to resolve the flow down to the scales where molecular viscosity

acts. In many applications, however, such simulations are too costly. In that case, one may opt for large-eddy simulation (LES),20

where filtered equations are used to describe the largest scales of the flow, and the subfilter-scale motions are modeled. The

LES implementation in MicroHH assumes very high Reynolds numbers in which the molecular viscosity is neglected. Filtering

of the anelastic conservation of momentum equation (Eq. 5), with a tilde applied to denote filtered variables, leads to

∂ũi
∂t

= − 1

ρ0

∂ρ0ũiũj
∂xj

− ∂π

∂xi
− 1

ρ0

∂ρ0τij
∂xj

+ δi3g
θ̃′v
θv0

+Fi. (63)25

In this equation, a tensor τij is defined as

τij ≡ ũiuj − ũiũj −
1

3
(ũiui− ũiũi) . (64)

13

This is the anisotropic subfilter-scale kinematic momentum flux tensor. The isotropic part of the full momentum flux tensor

has been added to the pressure, providing the modified pressure

π ≡ p̃′

ρ0
+

1

3
(ũiui− ũiũi) . (65)

As τij contains the filtered product of unfiltered velocity components, this quantity needs to be parameterized. MicroHH uses

the Smagorinsky-Lilly (Lilly, 1968) model, in which τij is modeled as5

τij = −Km

(
∂ũi
∂xj

+
∂ũj
∂xi

)
, (66)

with Km interpreted as the subfilter eddy-diffusivity. This quantity is modeled as

Km = λ2S

1−
g

θv0

∂θ̃v
∂z

PrtS2

1
2

, (67)

and is proportional to the magnitude S ≡ (2SijSij)
1
2 of the strain tensor Sij , which is defined as

Sij ≡ 1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (68)10

The subfilter eddy diffusivity thus takes into account the local stratification and the turbulent Prandtl number Prt. The latter is

set to 1
3 by default, but can be overridden in the settings. The length scale λ is the mixing length defined following Mason and

Thomson (1992), as

1

λn
=

1

[κ(z+ z0)]
n +

1

(cs∆)
n , (69)

which is an arbitrary matching function (n is a free parameter, set to 2 in MicroHH) between the mixing length following15

wall scaling to the subfilter length scale (filter size) ∆≡ (∆x∆y∆z)
1
3 , related to the grid spacing. The grid scale is used as

an implicit filter, thus no explicit filtering is applied. In case of a high-Reynolds number atmospheric LES with an unresolved

near-wall flow, the vertical gradients of the horizontal velocity components ∂ũi,j/∂z in the strain tensor are replaced with the

theoretical gradients predicted from Monin-Obukhov similarity theory. Evaluation of these gradients is explained in detail in

Section 4.2.20

The same approach is followed for all scalars, including the thermodynamic variables discussed in Sect. 2.5:

∂φ̃

∂t
= − 1

ρ0

∂ρ0ũj φ̃

∂xj
− 1

ρ0

∂ρ0Rφ,j
∂xj

+ S̃φ. (70)

The term Rφ,j refers to the subfilter flux of φ̃ and is defined as

Rφ,j = ũjφ− ũj φ̃. (71)

The subfilter-scale flux is parameterized in terms of the gradient25

Rφ,j =−Km

Prt

∂φ̃

∂xj
. (72)

14

4.2 Surface model

The LES implementation of MicroHH uses a surface model that is constrained to rough surfaces and high Reynold numbers,

which is a typical configuration for atmospheric flows. This model computes the surface fluxes of the horizontal momentum

components and the scalars (including thermodynamic variables) using Monin-Obukhov Similarity Theory (MOST) (Wyn-

gaard (2010, his Sect. 10.2)). MOST relates surface fluxes of variables to their near-surface gradients using empirical functions5

that depend on the height of the first model level z1 divided by the Obukhov length L as an argument. Length L is defined as

L ≡ − u3
∗

κB0
, (73)

where u∗ is the friction velocity, κ is the Von Karman constant and B0 is the surface kinematic buoyancy flux. L represents the

height at which the buoyancy production/destruction of turbulence kinetic energy equals the shear production. In MicroHH,

we use a local implementation of MOST, i.e., each grid point has its own value of L. This choice can lead to a overestimation10

of near-surface wind due to violation of the MOST assumption of horizontal homogeneity (Bou-Zeid et al., 2005, their Fig.

18), but it allows for a more straightforward extension to heterogeneous land surfaces.

Following MOST, the friction velocity u∗ and the momentum fluxes may be related to the near-surface wind gradient as

κz1

u∗

∂U

∂z
≈−κz1u∗

u′w′
∂ũ

∂z
≈−κz1u∗

v′w′
∂ṽ

∂z
≈ φm

(z1

L

)
, (74)

where U is defined as
√
ũ2 + ṽ2, and u′w′ and v′w′ as the surface momentum fluxes for the two wind components. These15

relationships can be integrated from the roughness length z0m to z1 resulting in

u∗ = fm (U1−U0) , (75)

u′w′ = −u∗fm (ũ1− ũ0) , (76)

v′w′ = −u∗fm (ṽ1− ṽ0) , (77)

with fm defined as:20

fm ≡ κ

ln

(
z1

z0m

)
−Ψm

(z1

L

)
+Ψm

(z0m

L

) , (78)

with Ψm desribed in Eqs. 83 and 85.

The same procedure for scalars is followed, with

κz1u∗

φ′w′
∂φ̃

∂z
= φh

(z1

L

)
, (79)

and in integrated form25

φ′w′ = u∗fh

(
φ̃1− φ̃0

)
, (80)

with

fh ≡ κ

ln

(
z1

z0h

)
−Ψh

(z1

L

)
+Ψh

(z0h

L

) , (81)

15

with Ψh desribed in Eqs. 83 and 85.

The functions φm, φh, Ψm, and Ψh are empirical and depend on the static stability of the atmosphere. Under unstable

conditions we follow (Wilson, 2001; Wyngaard, 2010)

φm,h =
(

1 + γm,h |ζ|2/3
)−1/2

, (82)

Ψm,h = 3ln

(
1 +φ−1

m,h

2

)
, (83)5

where ζ is the ratio of a height and the Obukhov length L, γm = 3.6 and γh = 7.9. Under stable conditions we use (Högström,

1988; Wyngaard, 2010)

φm,h = 1 +λm,hζ, (84)

Ψm,h = −λm,hζ, (85)

where λm = 4.8 and λh = 7.8.10

With the equations above, the surface fluxes, surface values and near-surface gradients can be computed, but only if the

Obukhov length L is known. The surface model calculates the Obukhov length by relating the dimensionless parameter z1/L

to a Richardson number. The employed formulation of the Richardson number depends on the chosen boundary condition in

the model. Three possible options are available:

– fixed momentum fluxes and a fixed surface buoyancy flux. Both the friction velocity u∗ and the surface buoyancy fluxB015

are specified. Under these conditions we define the Richardson number Ria equal to z1/L; L can be computed directly

from the expression

Ria ≡
z1

L
=−κz1B0

u3
∗

. (86)

– a fixed horizontal velocity U0 at the surface and a fixed surface buoyancy flux B0. The friction velocity u∗ is unknown.

Now, L needs to be retrieved from the implicit relationship20

Rib ≡
z1

L
f3
m =− κz1B0

(U1−U0)
3 . (87)

– a fixed surface velocity U0 and a fixed surface buoyancy b0. With this boundary condition, the surface values of the

horizontal velocities and the buoyancy are given, and both u∗ and the surface buoyancy flux B0 are unknown. L is then

retrieved from

Ric ≡
z1

L

f2
m

fh
=
κz1

(
b̃1− b̃0

)
(U1−U0)

2 . (88)25

In cases of the latter two options, a solver is required to find the value of L that satisfies the equation, as fm (Eq. 78) and fh

(Eq. 81) both depend on L as well. For performance reasons, we have created a lookup table-based approach that relates L to

the Richardson number. The lookup table has 104 entries, of which 90 percent is spaced uniformly between z1/L=−5 to 5.

The remaining 10 percent are used to stretch the negative range up to z1/L=−104 to allow for the correct free convection

limit.30

16

4.3 Large-scale forcings

4.3.1 Pressure force

MicroHH provides two options to introduce a large-scale pressure force into the model. The first is to enforce a constant

massflux through the domain in the streamwise direction. In this approach the desired large-scale velocity Uf is set, and the

corresponding pressure gradient is computed. We follow here the approach of van Reeuwijk (2007). In this approach, the5

u-component of the horizontal momentum equation (Eq. 5) is volume-averaged to acquire

〈u〉n+1−〈u〉n
∆t

= 〈f1〉−
〈
∂

∂x

(
p

ρ0

)〉
+Fp;ls, (89)

where brackets indicate a volume average, f1 contains all the righthand side terms of the u-component of the conservation of

momentum, except for the dynamic pressure, which is contained in the second term. The large-scale pressure force Fp;ls, which

is to be computed, is the last term. We can now set 〈u〉n+1
= Uf to explicitly set the volume-averaged velocity in the next time10

step. Furthermore, the volume-averaged horizontal pressure gradient vanishes, because of the periodic boundary condition,

which makes Fp;ls the only unknown. The acquired pressure force Fp;ls will be added as an external force in the equation of

zonal velocity (F1 in Eqs 5 and 7).

The second option is to enforce a large-scale pressure force through the geostrophic wind components ug and vg , in combi-

nation with rotation, with the accelerations of the two horizontal velocity components Fi,p;ls calculated as15

F1,p;ls|i,j,k = −f0vg;k, (90)

F2,p;ls|i,j,k = f0ug;k, (91)

where ug;k and vg;k are user-specified vertical profiles of geostrophic wind components.

4.3.2 Large-scale sources and sinks

Large-scale sources and sinks, representing for instance large-scale advection or radiative cooling, can be prescribed for each20

variable separately. The user has to provide vertical profiles of large-scale sources and sinks Sφ;ls that are added to the total

tendencies.

4.3.3 Large-scale vertical velocity

A second method of introducing large-scale thermodynamic effects is through the inclusion of a large-scale vertical velocity.

In this case, each scalar gets an additional source term Sφ,w,ls of the form25

Sφ,w,ls|i,j,k = −wls;k δ
2x (〈φ〉k) , (92)

where wls;k is a user-specified vertical profile of large-scale vertical velocity, 〈φ〉k is the horizontally-averaged vertical profile

at height zk for scalar φ. The tendency term is not applied to the momentum variables.

17

4.4 Buffer layer

MicroHH has the option to damp gravity waves in the top of the simulation domain in a so-called buffer layer. The source term

Sφ,buf associated with the damping at grid cell i, j,k is calculated for an arbitrary variable φ as

Sφ,buf|i,j,k =
φi,j,k −φ0;k

τd;k
(93)

where φ0 is taken from a user-specified vertical reference profile, and time scale τd is a measure for the strength of the damping.5

It varies with height and is calculated at height zk following

τ−1
d;k = σ

(
zk − zb;bot
zb;top− zb;bot

)β
, (94)

where σ is the damping frequency chosen by the user and β an exponent that describes the shape of the vertical profile of the

damping frequency, which is always zero at the bottom (zb;bot) and σ at the top (zb;top) of the layer.

5 Technical details of the code10

5.1 Code structure

MicroHH is written in C++ and uses elements of object-oriented programming and template metaprogramming. The code

components are written in classes that define the interface. Inheritance is used to allow for specializations of classes. This

way of organizing the code has two advantages: it minimizes switches and it allows code components and their extensions to

reside in their own file, which increases code clarity and facilitates the merging of new code extensions. High performance15

of computational kernels is achieved by executing kernels in their own function, with explicit inclusions of the restrict

keyword to notify the compiler that fields do not overlap in memory. Furthermore, compiler-specific pragmas are used to aid

vectorization on Intel compilers.

5.2 GPU

MicroHH is enabled to run on fast and energy-efficient Graphical Processing Units (GPU). This promising technique has been20

pioneered in atmospheric flows by Schalkwijk et al. (2012) and has shown its potential in weather forecasting (Schalkwijk

et al., 2015). The implementation is based on NVIDIA’s CUDA. The CPU and GPU version reside in the same code base,

where the GPU implementation is activated with the help of precompiler statements. The philosophy is that the entire model

is initialized on the CPU and that the GPU implementation is only activated right before starting the main time loop. At that

moment, the required fields are copied in double precision accuracy to the GPU, and the entire time integration is done there.25

Synchronization only happens when statistics have to be computed or when restart files or cross sections of flow fields are

saved to disk, to ensure high performance. The design choice to do the entire initialization on the CPU minimizes the amount

of GPU code, and therefore allows for maintaining a single code base for the CPU and GPU code.

18

5.3 Parallelization

The code uses the Message Passing Interface (MPI) in order to run on a large number of cores. The three-dimensional simu-

lation domain is split into vertically-oriented columns standing on a two-dimensional grid. The code assigns one MPI task to

each grid column using the MPI_Cart_create function, and uses this grid to detect the IDs of neighboring processes. In order

to avoid complex packing routines, we make use of MPI datatypes wherever possible. The MPI calls are hidden in an interface5

to avoid the need to manually write MPI calls.

The input/output (IO) is entirely based on MPI-IO, the parallel IO framework that comes with MPI, to ensure that three-

dimensional fields and two-dimensional cross sections are stored as single files. We have chosen MPI-IO in order to limit the

number of files resulting from simulations on a large number of processes and to allow for restarts on a different number of

processes. In order to keep complexity of the IO as low as possible, we make use of the MPI_Sub_array function in combination10

with MPI_File_write_all in order to write the fields.

5.4 External dependencies

MicroHH depends on several external software tools or libraries. It uses the CMake (https://cmake.org) build system for

the generation of Makefiles. CMake allows for parallel builds, which minimizes the compilation time, and it is easy to add

configurations for different machines. Furthermore, the FFTW3 library (Frigo and Johnson, 2005) is used for the computation15

of fast-Fourier transforms. The statistical routines make use of netCDF software developed by UCAR/Unidata (http://doi.

org/10.5065/D6H70CW6). In order to run the provided test cases and their output scripts, a Python (https://www.python.org)

installation including the NumPy (van der Walt et al. (2011), http://www.numpy.org) and Matplotlib (Hunter (2007), https:

//matplotlib.org) modules is required. Automatic documentation generation can be done using Doxygen (http://doxygen.org),

but this is optional.20

6 Running simulations

In order to run a simulation with MicroHH, a sequence of steps needs to be taken. Each simulation has an .ini file that

contains the settings of the simulation, a .prof file that contains the (initial) vertical profiles of all required variables, and,

if time-varying boundary conditions are desired, a file with the prescribed time evolution for all time-varying boundary con-

ditions. MicroHH provides a document (doc/input.pdf) that contains an overview of all possible options that can be25

specified in the .ini file.

To prepare a simulation with the name test_simulation, MicroHH needs to be run in the following way

./microhh init test_simulation

where it is assumed that test_simulation.ini and test_simulation.prof are available in the directory where

the command is triggered. This procedure will create the initial fields of all prognostic variables and save the required fields30

for those model components that need to save their state to guarantee bitwise identical restarts.

19

https://cmake.org
http://doi.org/10.5065/D6H70CW6
http://doi.org/10.5065/D6H70CW6
http://doi.org/10.5065/D6H70CW6
https://www.python.org
http://www.numpy.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
http://doxygen.org

After the previously described initialization phase, the execution of

./microhh run test_simulation

will start the actual simulation. Depending on the chosen output intervals, the simulation will create restart files, statistics, cross

sections, and field dumps. MicroHH can restart from any time at which the restart files are saved.

The last mode in which the code can run is the post-processing mode. By running5

./microhh post test_simulation

the code will generate statistics from saved restart files at a specified time interval. This mode allows the user to create new

statistics and calculate those from saved data, without having to rerun the simulation.

7 Model output

7.1 Statistics10

A large set of output statistics can be computed during runtime at user-specified time intervals. The statistics module provides

vertical profiles of means, second-, third- and fourth-order moments of all prognostic variables, as well as advective and

diffusive fluxes. Furthermore, there are multiple diagnostic variables, such as the pressure, the pressure variance and its vertical

flux. The thermodynamics generate their own statistics based on the chosen option. The moist thermodynamics provides a

large set of cloud statistics. There is a separate module for budget statistics, which provides the budgets of all components of15

the Reynolds stress tensor, and those of the variance and vertical flux of the thermodynamic variables.

One of the key features of the MicroHH statistics routine is that an arbitrary mask can be passed into the routine over which

the statistics are calculated. This allows, for instance, for a very simple way of computing conditional statistics in updrafts or

clouds, which is demonstrated later in Section 9.2.

7.2 Two- and three-dimensional output20

It is possible to save two-dimensional cross sections and three-dimensional fields of any of the prognostic and diagnostic

variables of the model, as well as of derived variables. This output can be made at user-specified time intervals. Cross sections

can be made in any chosen xy−, xz−, and yz−plane. Derived variables (any arbitrary function of existing model variables),

can be easily added to the code by the user.

8 Validation of the dynamical core25

In this section, we present a series of cases intended to validate MicroHH under a wide range of settings. Each of these test

cases is available in the cases/ directory in the MicroHH repository, where all detailed settings can be found (see Sect. 14).

Below, we present only the most relevant information per case.

20

10−2 10−1

∆x [-]

10−12

10−10

10−8

10−6

10−4

10−2

E
rr

or
[-

]
u2
u4
u4M

w2
w4
w4M

p2
p4
p4M

Figure 2. Convergence of the spatial discretization error in the two-dimensional Taylor-Green vortex. Subscript 2 indicates the second-order

scheme, 4 the most accurate fourth-order scheme, and 4M the fully energy-conserving fourth-order scheme. The dashed black line is the

reference for second-order convergence, the dotted black lines indicate fourth-order convergence.

8.1 Taylor-Green vortex

The two-dimensional Taylor-Green vortex (cases/taylorgreen) presents an ideal test case for a dynamical core as it has

an analytical solution, even though it is nonlinear. This flow is composed of two rotating vortices whose evolution in a domain

[0,1;0,0.5] is described with

u(x,z, t) = sin(2πx)cos(πz)f(t), (95)5

w(x,z, t) = cos(2πx)sin(πz)f(t), (96)

p(x,z, t) = 1
4 (sin(4πx) + sin(4πz))f(t)2, (97)

where f(t) = 8π2νt.

We use the analytical form at t= 0 as the initial condition and run this case for one vortex rotation (t= 1), with ν =

(800π2)−1. We compare the result against the analytical solution for a set of grid spacings and with the second-order and10

fourth-order dynamical core; for the latter we compare the most accurate advection scheme and the fully energy-conserving

one.

Figure 2 shows the error convergence of the simulations. The error for a variable φ is computed as
∑

∆x∆z |φi,k −φref,i,k, |
over the two-dimensional domain, where ∆x and ∆z are the uniform grid spacings used in this case and φref is the analytical

solution. All variables converge according to the order of the numerical scheme. The fourth-order dynamical core loses accu-15

21

100 101

∆t [-]

10−8

10−7

10−6

10−5

10−4

10−3

| ∆
K

E
| [

-]
b)

RK3
RK4

O(3)
O(4)

0 200 400 600 800 1000
t [-]

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

∆K
E
×

10
3

[-
]

a)

RK3: dt=10
RK4: dt=10
RK3: dt=5
RK4: dt=5
RK3: dt=2.5
RK4: dt=2.5

Figure 3. Time evolution of the kinetic energy change ∆KE during 1000 time units of random noise advection for the RK3 and RK4 time

integration schemes with three different time steps (a). Kinetic energy change convergence of the temporal discretization for the RK3 and

RK4 scheme (b).

racy at fine grid spacings. This is due to the boundary condition for the vertical velocity that sacrifies an order of accuracy to

ensure global mass conservation (Morinishi et al., 1998).

8.2 Kinetic energy conservation and time accuracy

The second test of the dynamical core consists of combined evaluation of kinetic energy (KE≡ 1
2

(
u2 + v2 +w2

)
) conservation

and time accuracy (cases/conservation). In this experiment, we run the model with only the advection and pressure5

solver enabled and advect random noise through the domain for 1000 seconds. These tests have been conducted with the

third- and fourth-order Runge-Kutta schemes. We have chosen the fourth-order spatial discretization in order to demonstrate

its energy conservation.

The loss of kinetic energy as a function of time is shown in Fig. 3a. The fourth-order scheme results in a smaller energy loss

for the same time step and a faster convergence. The error-convergence plot (Fig. 3b) shows that the error convergence is in10

accordance with the order of the respective scheme. Furthermore, it illustrates the fact that, if high accuracy in time is desired,

22

−0.12 0.00 0.12 0.24 0.36 0.48
u [m s−1]

0

3

6

9

12

15

z
[m

]

a)

Analytical
MicroHH

−0.4 0.0 0.4 0.8 1.2 1.6
b [m s−2]

0

3

6

9

12

15
z

[m
]

b)

Figure 4. Normalized numerical Prandtl-model solutions for velocity u (left) and buoyancy b (right) compared to their analytical counterparts.

the five-stage fourth-order scheme is less expensive than the three-stage third-order scheme. For instance, at a ∆t of 10, the

error of the fourth-order scheme is approximately equal to the error of the third-order scheme at a ∆t of 2.5. To reach this

accuracy, the fourth-order scheme needs only 5 steps per 10 time units, whereas the third-order scheme needs 12 steps.

8.3 Laminar anabatic flow

To test the buoyancy routine and the option to put the domain on a slope, a Prandl-type anabatic slope flow (Prandtl, 1942) has5

been simulated (cases/prandtlslope). In this test case, the surface is inclined at an angle of 30◦ and a linearly stratified

atmosphere (N = 1 s−1) is heated from below with a fixed surface buoyancy flux of 0.005 m2 s−3.

The fluid, which was initially at rest, goes through a series of decaying oscillations after the buoyancy flux is applied at

the surface. Eventually, it reaches the steady state corresponding to the Prandtl model solution. Numerical integration was

performed sufficiently long for the oscillation amplitude to become a small fraction of the amplitude of the first oscillation.10

Comparison of horizontal wind u and buoyancy b of analytical and numerical solutions is shown in Fig. 4. For both variables

the solutions closely agree with each other.

23

100 101 102
0

5

10

15

20

25

〈 u
〉 [

-]

a)
Moser
MicroHH

100 101 102

z [-]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

〈 u
′ iu
′ i〉1

/2
[-

]

b)

〈u′u′〉
〈v′v′〉
〈w′w′〉

Figure 5. Velocity means and variances for Moser et al. (1999) channel flow case at Reynolds-τ 590. The dashed vertical lines marks the

spectra locations. Height z is normalized with uτ/ν, velocities with u−1
τ .

8.4 Turbulent channel flow

For fully turbulent flows, the numerical solutions cannot be compared against any analytical testcases. Therefore, we validate

our results against a channel flow at a Reynolds-τ number of 590 (Moser et al., 1999) for means, variances, spectra, and

second-order budget statistics (cases/moser590). The case is run at a resolution of 768 × 384 × 256 grid points. The

original numerical simulation data of Moser et al. (1999) has been produced on a 384× 384× 256 grid, with spectral schemes5

in the horizontal dimensions and Chebyshev polynomials in the vertical.

Figure 5a shows the normalized horizontally-averaged streamwise velocity. The normalized rms of all three velocity compo-

nents are presented in Fig. 5b. All plotted variables show a perfect match with the data and are indistinguishable from Moser’s

data. In order to further assess the accuracy of the data, we show the second-order budgets of the variances in Fig. 6. Also here,

the match with the reference data is excellent, which indicates that the whole range of spatial scales in the flow is represented10

well and that the fourth-order scheme is well able to pick up the small-scale details of the flow.

The findings in the previous paragraph are further corroborated by the spectra shown in Fig. 7. Over the whole range of

scales, the match between our simulation and that of Moser et al. (1999) is excellent. Note that the spectra from Moser’s

simulation display an increase in pressure variance at the highest wave numbers. This increase is the result of aliasing errors at

high wave numbers that are typical for the spectral schemes that Moser et al. (1999) used.15

24

100 101 102

−0.4

−0.2

0.0

0.2

0.4

∂
〈 u
′ u
′ 〉 /

∂t
[-

]

a)

ε
S
Tt

Tν
P

Moser
MicroHH

100 101 102
−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

∂
〈 v
′ v
′ 〉 /

∂t
[-

]

b)

ε
S
Tt

Tν
P

100 101 102

z [-]

−0.06

−0.04

−0.02

0.00

0.02

0.04

∂
〈 w
′ w
′ 〉 /

∂t
[-

]

c)

ε
Tt
Tν

P
Tp

100 101 102

z [-]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

∂
〈 T

K
E
〉 /

∂t
[-

]

d)

ε
S

Tt
Tν

Tp

Figure 6. Budgets of variances and TKE compared against Moser et al. (1999)’s reference data at Reynolds-τ of 590. Height z is normalized

with uτ/ν, the variances and TKE budget with ν/u4
τ .

8.5 Turbulent katabatic flow

The final evaluation of the dynamical core without parametrizations enabled is based on the direct numerical simulation of

a turbulent katabatic flow. Here, a buoyancy driven slope flow is simulated following the setup of Fedorovich and Shapiro

(2009) (cases/drycblslope). A flow over a slope inclined at an angle α of 60◦ is simulated with a fixed uniform surface

buoyancy flux of -0.5 m2 s−3. The simulation is performed in a domain of 0.64 m × 0.64 m × 1.6 m using a uniform grid of5

256 × 256 × 640 points. The initial state is a fluid at rest with a linear buoyancy stratification N of 1 s−1. No-slip boundary

conditions are applied at the bottom, free-slip at the top.

Turbulent motion starts quickly after the buoyancy flux is applied at the surface. It is characterized by random, large-

amplitude fluctuations of velocity and buoyancy fields in the near-slope core region, and shows a quasi-periodic oscillatory

behavior at larger distances from the slope. Mean profiles of along-slope velocity component and buoyancy, as well as profiles10

of second-order turbulence statistics, such as kinematic turbulent fluxes of momentum and buoyancy, and velocity-component

and buoyancy fluctuation variances, were evaluated by averaging the simulated flow fields spatially over the along-slope planes

and temporally over five oscillation periods beyond the transition stage.

25

100 101 102

κ

10−6

10−5

10−4

10−3

10−2

10−1

100

E
[-

]

a) Streamwise, z+= 5

Euu
Evv
Eww
Epp

Moser
MicroHH

100 101 102

κ

10−6

10−5

10−4

10−3

10−2

10−1

100

b) Spanwise, z+= 5

Euu
Evv
Eww
Epp

100 101 102

κ

10−6

10−5

10−4

10−3

10−2

10−1

100

c) Streamwise, z+= 99

Euu
Evv
Eww
Epp

100 101 102

κ

10−6

10−5

10−4

10−3

10−2

10−1

100

d) Spanwise, z+= 99

Euu
Evv
Eww
Epp

Figure 7. Spectra of all velocity components and pressure compared against Moser et al. (1999)’s reference data at Reynolds-τ of 590. The

velocity spectra are normalized with u−2
τ , the pressure spectra with u−4

τ

For comparison, the same katabatic flow case was reproduced using the numerical code (hereafter referred to as FS09) that

was employed to simulate turbulent slope flows in Shapiro and Fedorovich (2008) and Fedorovich and Shapiro (2009). In that

code, the time advancement was performed with an Asselin-filtered second-order leapfrog scheme (Durran, 2013). The spatial

discretizations are identical to the second-order accurate ones of MicroHH.

Numerical results obtained with both numerical codes testify that stable environmental stratification in combination with5

negative surface buoyancy forcing in the katabatic flow leads to an effective suppression of vertical turbulent exchange in the

flow region adjacent to the slope. This suppression results in a shallow near-surface sublayer with strong buoyancy gradients

(Fig. 8a) capped by a narrow jet with peak velocity located very close to the ground (Fig. 8b). Further comparison has been per-

formed on the slope-normal fluxes of momenum and buoyancy (not shown), where a nearly perfect match has been reproduced

as well.10

9 Validation of atmospheric large-eddy simulations

9.1 Dry convective boundary layer with strong inversion

As a first test case of MicroHH in LES mode, we present that of Sullivan and Patton (2011) (cases/sullivan2011). This

is a dry clear convective boundary layer that grows into a linearly stratified atmosphere with a very strong capping inversion

(see Fig. 9a). The system is heated from the bottom by applying a constant kinematic heat flux of 0.24 K m s−1. The domain15

size is 5120 m × 5120 m × 2048 m. Gravity wave damping has been applied in the top 25 percent of the domain. Simulations

have been run for three hours with three spatial resolutions. The time-averaged profiles have been calculated over the last hour.

26

−4.5 −3.0 −1.5 0.0 1.5
u [m s−1]

0.01

0.1

1

z
[m

]

a)

FS09
MicroHH

−30 −20 −10 0 10
b [m s−2]

0.01

0.1

1

z
[m

]
b)

Figure 8. Profile of the mean along-slope velocity (a) and buoyancy (b) as predicted by MicroHH and FS09.

The results show the formation of a well-mixed layer with an overlying capping inversion (see Fig. 9a) and the associated

linear heat-flux profile with negative flux values in the entrainment zone (see Fig. 9b). The change of both quantities with

resolution highlights the intrinsic challenge in resolving a boundary layer with an inversion layer that is stronger than the

numerical schemes can accurately resolve. At coarse resolution, the strong inversion leads to an unphysical overshoot of the

potential temperature flux above the boundary layer top (see Fig. 9b). This overshoot leads to a numerical mixed layer on top5

of the entrainment zone that vanishes with increasing resolution.

9.2 BOMEX

The BOMEX shallow cumulus case (Siebesma et al., 2003) (cases/bomex), S03 hereafter, provides the opportunity to

evaluate the moist thermodynamics (see Sect. 3.9) and large-scale forcings. We have repeated the case as described in S03 at

the original resolution of the study (100 m × 100 m × 40 m) and at a higher resolution (10 m × 10 m × 9.375 m).10

27

300 304 308
θ [K]

0

200

400

600

800

1000

1200

1400

1600

z
[m

]

a)

483

1203

4803

−0.2 0.2 0.6 1.0
w′θ ′/Q0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

z/
z i

b)

Figure 9. Vertical profiles of horizontally-averaged potential temperature (a) and normalized kinematic heat flux (b). The boundary layer

depth zi is the location of the maximum vertical gradient in the potential temperature profile shown in (a).

This case produces non-precipitating shallow cumulus. It has a large-scale cooling applied that represents radiation, as well

as a large-scale drying to allow the atmosphere to relax to a steady state. In addition, a large-scale vertical velocity is applied

over a certain height range to reproduce the appropriate synoptic conditions.

The simulation is run for 6 hours. Statistics are recorded during the final hour, including conditional statistics for the

cloud-covered fields (ql > 0) and for the cloud cores (ql > 0 and θv > 0). The vertical profile of area coverage and profiles5

of horizontally-average liquid water potential temperature θl, total water qt, and vertical velocity w are shown in Fig. 10. All

mean and conditionally sampled statistics at the original resolution are predominantly within one standard deviation of the

ensemble mean of data from all models that participated in S03. The horizontally-averaged vertical velocities in the cloud and

cloud core decrease considerably with an increase in resolution.

9.3 GABLS110

To evaluate the LES mode for stable atmospheric conditions, the GABLS1 LES intercomparison case (Beare et al., 2006)

(cases/gabls1) was reproduced. The boundary layer develops in this case from a shallow well-mixed layer into a weakly

stable boundary layer, driven by a prescribed negative tendency of the surface temperature over a total integration time of 9

hours. The Boussinesq approximation is used, the advection scheme uses fourth-order accurate interpolations (Eq. 27), and the

Smagorinsky subgrid turbulence scheme is set up with a Smagorinsky constant equal to 0.12, and a subgrid turbulent Prandtl15

number of unity. The experiments are performed at two different resolutions with grid cells of 2 m and 6.25 m, and compared

to the models which participated in the study of Beare et al. (2006).

28

0 2 4 6 8
area [%]

0

500

1000

1500

2000
z

[m
]

a)
cloud
core

100×100×40 m
10×10×9.4m

298 300 302 304
θl [K]

b)

domain
cloud
core

8 12 16 20
qt [g kg−1]

c)

0 1 2 3 4
w [m s−1]

d)

Figure 10. BOMEX LES intercomparison (S03). Shown are the domain mean, and conditionally sampled cloud (ql > 0) and cloud core

(ql > 0 and b−〈b〉> 0) vertical profiles of (a) area coverage of cloud and cloud core, (b) liquid water potential temperature, (c) total specific

humidity and (d) vertical velocity. The results are averaged over t = 18000 s – 21600 s. The shaded area denotes the mean ± one standard

deviation of the participating models from S03, the solid and dashed lines the results from MicroHH, using the original (solid) and a higher

resolution (dashed) setup.

Figure 11 shows the domain and time-averaged (over a period from 28800 to 32400 s) vertical profiles of potential tem-

perature (〈θ〉) and the velocity component (〈u〉), and also time series of the boundary layer depth (zABL) and friction velocity

(u∗). At the largest grid spacing of 6.25 m, it takes approximately 2 hours for the flow to become turbulent, as is evident from

the delayed boundary layer growth and abrupt changes in u∗. Nonetheless, typical features like the low-level jet (Fig. 11b) are

well reproduced, and all statistics are predominantly within the range of results from Beare et al. (2006). With the grid spacing5

reduced to 2 m, the flow becomes turbulent nearly instantaneously, but the resulting boundary layer depth and surface friction

velocity are on the low side compared to the 5 models from Beare et al. (2006) which were run at this resolution.

10 Performance

10.1 CPU

The parallel performance of MicroHH has been evaluated in strong- (cases/strongscaling) and weak-scaling10

(cases/weakscaling) experiments. The case used is direct numerical simulation of a buoyancy driven atmospheric bound-

ary layer based on van Heerwaarden et al. (2014). For each simulation in the scaling experiments, a series of time steps is

performed, and the mean cost per step is calculated over the series. The strong-scaling experiment has been performed on

LRZ’s SuperMUC1 machine (Phase 1 Thin Node 8-core Sandy Bridge-EP Xeon E5-2680 8C, 2 processors per node, Infini-

1https://www.lrz.de/services/compute/supermuc/

29

https://www.lrz.de/services/compute/supermuc/

263 264 265 266 267
〈θ〉 [K]

0

50

100

150

200

250

300

z
[m

]

a)
∆ = 2.00 m
∆ = 6.25 m

0 2 4 6 8 10
〈u〉 [m s−1]

0

50

100

150

200

250

300

z
[m

]

b)

0 1 2 3 4 5 6 7 8 9
time [h]

0

50

100

150

200

250

z A
B

L
[m

]

c)

0 1 2 3 4 5 6 7 8 9
time [h]

0.0

0.1

0.2

0.3

0.4

0.5

u ∗
[m

s−
1]

d)

Figure 11. GABLS1 LES intercomparison (Beare et al., 2006). Shown are the vertical profiles of (a) potential temperature and (b) u-

component of the velocity, and time series of the (c) boundary layer depth and (d) surface friction velocity. The shaded areas show the range

in the results from the models that participated in the Beare et al. (2006) study. The dotted black lines show the initial conditions.

band FDR10 interconnect). In this experiment, simulations were performed on 1024× 1024× 1024 and 2048× 2048× 1024

grid points, with the number of processes increased throughout the scaling experiment. The weak-scaling experiment has been

performed on Forschungszentrum Jülich’s Juqueen2 machine (IBM PowerPC A2, 1.6 GHz, 16 cores per node, 5D Torus net-

work, 40 GBps). In this experiment, a fixed 64× 32× 1024 grid is assigned to each processor and throughout the experiment

the domain size is increased. The results of both experiments are shown in Figure 12.5

The strong-scaling experiment shows that increasing the number of processors leads to faster simulations. The speedup is

initially close to linear, but each consecutive increase in the number of cores makes the model less efficient. Based on these

results, we conclude that for the chosen test case and for the used supercomputers, a work load of approximately 2× 106 grid

points per core is the best balance between speed and computational efficiency.

The weak scaling shows almost 90 percent efficiency going from 512 to 8192 cores, beyond that the scaling falls off to 8010

percent. This can be explained by physical properties of the machine; beyond 8192 cores a simulation no longer fits on one

midplane (a physical unit consisting of 8192 cores), leading to slower communication.

10.2 Performance GPU (CUDA) implementation

The GPU implementation of MicroHH allows for fast simulations on a single device. The current state-of-the-art GPUs feature

12 GB of memory, thus simulations of maximally 512× 512× 512 grid points of a flow with three velocity components,15

pressure, two scratch fields for temporary storage, and a single scalar fit in memory. Within this experiment, we compare thus

GPU simulations that do not need communication against CPU simulations that require communication between cores and

2http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html

30

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html

103 104

100

101

Sp
ee

du
p

[-
]

a) Strong scaling SuperMUC

1024×1024×1024
2048×2048×1024

103 104

Cores [-]

0.6

0.8

1.0
E

ffi
ci

en
cy

[-
]

b) Weak scaling Juqueen

64×32×1024

Figure 12. Speed-up from a strong-scaling experiment (a). Efficiency from a weak-scaling experiments (b). Black lines indicate perfect

speed-up and efficiency. The dashed red lines show the efficiency change relative to the previous measurement.

nodes. The reason for doing so, is that nearly all of the simulations of the presented results in Sections 8 and 9 fit within the

memory of a single GPU.

To test the performance of such simulations, the performance of MicroHH on an NVIDIA Quadro K6000 (using CUDA

6.5) has been compared against the Max Planck Institute for Meteorology’s cluster Thunder (2 Intel Xeon E5-2670 CPU’s per

node, 16 cores per node). Three benchmark cases have been chosen: the BOMEX moist convection case on grids of 643, 1283,5

2563 and 5122× 384, and the channel flow cases of Moser et al. (1999) at a Reynolds-τ number of 180 and 590.

The results shown in Table 1 point to the great potential of GPU computing. For the considered cases, which all fit on a

single GPU, it takes at least 32 cores to reach equal performance. Only at 64 cores, the CPU simulations are notably faster.

Therefore, for simulations that fit into its memory, the GPU provides an excellent alternative for the CPU, especially because

the GPU is very energy efficient.10

11 Published studies

To date, several studies have been published that make use of MicroHH or data generated with MicroHH. Van Heerwaarden

et al. (2014) studied the scaling of flow over heterogeneously heated land surfaces using DNS and LES, Gentine et al. (2015)

31

Table 1. Speedup of GPU simulation compared to respective CPU simulation performed on n cores.

case n=1 n=16 n=32 n=64

B64 18.49 1.93 1.14 0.95

B128 28.01 2.98 1.51 0.92

B256 27.76 3.02 1.59 0.91

B512 29.88 3.03 1.56 0.86

M180 21.57 2.17 1.13 0.69

M600 22.55 2.25 1.06 0.60

used LES to study the structure of the inversion of a convective boundary layer, van Heerwaarden and Mellado (2016) developed

scaling laws for the convective boundary layer over a surface with a constant temperature from DNS data, McColl et al. (2017)

improved surface-layer similarity under mildly convective conditions with the help of DNS data, and Umphrey et al. (2017)

used DNS data produced with MicroHH as a reference for their simulations of slope flow.

12 Future plans5

There are several ongoing projects to extend the model. Currently, a parameterization for microphysics has been developed,

and an interactive land surface model is under development. In addition, the immersed boundary method following Tseng and

Ferziger (2003) is being implemented to allow for simulations of flow over obstacles and hills.

Furthermore, preliminary experiments have been performed to include a Domain-Specific Language (DSL) to enable the

expression of complex finite difference operators in simple and compact syntax (https://github.com/Chiil/stencilbuilder/). This10

development has shown great potential, for two reasons. First, the DSL prevents implementation errors, as the explicit indexing

in computational kernels with spatial operators can be omitted. Second, the DSL allows for simple implementation of system-

specific tuning, such as loop tiling or OpenMP.

13 Conclusions

This paper has presented a full description of MicroHH, a new computational fluid dynamics code for simulations of turbulent15

flows in the atmospheric boundary layer. The governing equations and their implementation has been presented, and a broad

validation under a wide range of settings has been shown. MicroHH delivers the expected error convergence of the spatial

and temporal schemes, and has proven to be mass, momentum, and energy conserving. The code delivers good performance

in weak and strong scaling experiments. Its current limitations are the absense of horizontal boundary conditions other than

periodic, and the limited set of available physical parameterizations. Both limitations will be addressed in future versions of20

the code.

32

https://github.com/Chiil/stencilbuilder/

Table 2. Overview of used constants.

Symbol Description Value Units

κ Von Karman constant 0.4 -

g Gravitational acceleration 9.81 m s−2

cp Specific heat of dry air at constant pressure 1005 J kg−1 K−1

p00 Reference pressure 1 · 105 Pa

Rd Gas constant for dry air 287.04 J K−1 kg−1

Rv Gas constant for water vapor 461.5 J K−1 kg−1

Lv Latent heat of vaporization 2.5 · 106 J kg−1

14 Availability of code and resources

MicroHH has its own website at http://microhh.org. The code is hosted at GitHub and can be accessed either via the website, or

directly from https://github.com/microhh/microhh. The GitHub website includes a wiki with several tutorials, including one to

compile and run the code. The GitHub repository is coupled to Zenodo, which provides DOIs for released software. The release

on which the reference paper is based is found at https://zenodo.org/badge/latestdoi/14754940. A selection of visualizations5

can be viewed at the MicroHH channel on Vimeo https://vimeo.com/channels/microhh/.

Appendix A: Physical constants

Table 2 presents an overview of the chosen values for physical constants in the code.

Acknowledgements. Finishing the 1.0 version of MicroHH has only become possible thanks to extensive discussions and exchange of code

with many of the developers of DALES (Huug Ouwersloot, Stephan de Roode, Arnold Moene and Jordi Vilà-Guerau de Arellano), PALM10

(Björn Maronga and Siegfried Raasch), UCLA-LES (Linda Schlemmer and Bjorn Stevens) and ICON (Leonidas Linardakis). We thank

Alan Shapiro for the discussions on the bottom boundary condition for pressure for buoyancy driven flows and for his comments on the

manuscript. We thank Elie Bou-Zeid and an anonymous reviewer for their constructive comments on the manuscript. The authors gratefully

acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time for a GCS Large-Scale Project on the GCS share

of the supercomputer JUQUEEN at Jülich Supercomputing Centre (JSC).15

33

http://microhh.org
https://github.com/microhh/microhh
https://zenodo.org/badge/latestdoi/14754940
https://vimeo.com/channels/microhh/

References

Bannon, P. R.: On the anelastic approximation for a compressible atmosphere, J. Atmos. Sci., 53, 3618–3628, 1996.

Beare, R. J., Macvean, M. K., Holtslag, A. A., Cuxart, J., Esau, I., Golaz, J.-C., Jimenez, M. A., Khairoutdinov, M., Kosovic, B., Lewellen,

D., et al.: An intercomparison of large-eddy simulations of the stable boundary layer, Bound.-Layer Meteor., 118, 247–272, 2006.

Betts, A. K.: Non-precipitating cumulus convection and its parameterization, Quart. J. Roy. Meteor. Soc., 99, 178–196, 1973.5

Boing, S. J.: The interaction of deep convective clouds and their environment, TU Delft, Delft University of Technology, 2014.

Bou-Zeid, E., Meneveau, C., and Parlange, M.: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent

flows, Phys. of Fluids, 17, 025 105, doi:10.1063/1.1839152, 2005.

Buck, A. L.: New equations for computing vapor pressure and enhancement factor, J. Applied Met., 20, 1527–1532, 1981.

Carpenter, M. H. and Kennedy, C. A.: Fourth-order 2N-storage Runge-Kutta schemes, Tech. Rep. TM-109112, NASA Langley Research10

Center, 1994.

Castillo, J. E., Hyman, J. M., Shashkov, M. J., and Steinberg, S.: The sensitivity and accuracy of fourth order finite-difference schemes on

nonuniform grids in one dimension, Computers Math. Applic., 30, 41–55, 1995.

Chorin, A. J.: Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745–762, 1968.

Durran, D. R.: Numerical methods for wave equations in geophysical fluid dynamics, vol. 32, Springer Science & Business Media, 2013.15

Fedorovich, E. and Shapiro, A.: Structure of numerically simulated katabatic and anabatic flows along steep slopes, Acta Geophysica, 57,

981–1010, 2009.

Frigo, M. and Johnson, S. G.: The design and implementation of FFTW3, Proc. IEEE, 93, 216–231, 2005.

Gentine, P., Bellon, G., and van Heerwaarden, C. C.: A Closer Look at Boundary Layer Inversion in Large-Eddy Simulations and Bulk

Models: Buoyancy-Driven Case, J. Atmos. Sci., 72, 728–749, doi:10.1175/JAS-D-13-0377.1, 2015.20

Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Siebesma, A. P., Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino,

D., de Roode, S. R., and Vilà Guerau de Arellano, J.: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and an

overview of its applications, Geosci. Model. Dev., 3, 415–444, doi:10.5194/gmd-3-415-2010, 2010.

Högström, U.: Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation, Bound.-Layer Meteor., 42,

55–78, 1988.25

Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90–95, doi:10.1109/MCSE.2007.55, 2007.

Lilly, D.: A comparison of incompressible, anelastic and Boussinesq dynamics, Atmospheric research, 40, 143–151, 1996.

Lilly, D. K.: Models of cloud-topped mixed layers under a strong inversion, Quart. J. Roy. Meteor. Soc., 94, 292–309, 1968.

Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., and Raasch,

S.: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent30

developments, and future perspectives, Geoscientific Model Development Discussions, pp. 1539–1637, 2015.

Mason, P. J. and Thomson, D. J.: Stochastic backscatter in large-eddy simulation of boundary layers, J. Fluid Mech., 242, 51–78, 1992.

McColl, K. A., van Heerwaarden, C. C., Katul, G. G., Gentine, P., and Entekhabi, D.: Role of large eddies in the breakdown of the Reynolds

analogy in an idealized mildly unstable atmospheric surface layer, Quart. J. Roy. Meteor. Soc., pp. n/a–n/a, doi:10.1002/qj.3077, qJ-16-

0283.R2, 2017.35

Morinishi, Y., Lund, T. S., Vasilyev, O. V., and Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow,

J. Comput. Phys., 143, 90–124, 1998.

34

http://dx.doi.org/10.1063/1.1839152
http://dx.doi.org/10.1175/JAS-D-13-0377.1
http://dx.doi.org/10.5194/gmd-3-415-2010
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1002/qj.3077

Moser, R. D., Kim, J., and Mansour, N. N.: Direct numerical simulation of turbulent channel flow up to Re= 590, Phys. Fluids, 11, 943–945,

1999.

Prandtl, L.: Führer durch die Strömungslehre, Vieweg and Sohn, 1942.

Schalkwijk, J., Griffith, E. J., Post, F. H., and Jonker, H. J.: High-performance simulations of turbulent clouds on a desktop PC: Exploiting

the GPU, Bull. Amer. Meteor. Soc., 93, 307–314, 2012.5

Schalkwijk, J., Jonker, H. J., Siebesma, A. P., and Van Meijgaard, E.: Weather forecasting using GPU-based large-eddy simulations, Bull.

Amer. Meteor. Soc., 96, 715–723, 2015.

Shapiro, A. and Fedorovich, E.: Coriolis effects in homogeneous and inhomogeneous katabatic flows, Quart. J. Roy. Meteor. Soc., 134,

353–370, 2008.

Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng,10

C.-H., et al.: A large eddy simulation intercomparison study of shallow cumulus convection, J. Atmos. Sci., 60, 1201–1219, 2003.

Stevens, B., Moeng, C.-H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de Roode, S., Edwards, J., Golaz, J.-C., Jiang, H., Khairout-

dinov, M., Kirkpatrick, M. P., Lewellen, D. C., Lock, A., Müller, F., Stevens, D. E., Whelan, E., and Zhu, P.: Evaluation of Large-Eddy

Simulations via Observations of Nocturnal Marine Stratocumulus, Mon. Wea. Rev., 133, 1443–1462, 2005.

Sullivan, P. P. and Patton, E. G.: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy15

simulation, J. Atmos. Sci., 68, 2011.

Thomas, L. H.: Elliptic problems in linear difference equations over a network, Watson Sci. Comput. Lab. Rept., Columbia University, New

York, 1, 1949.

Tseng, Y.-H. and Ferziger, J. H.: A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys., 192, 593–623,

2003.20

Umphrey, C., DeLeon, R., and Senocak, I.: Direct Numerical Simulation of Turbulent Katabatic Slope Flows with an Immersed-Boundary

Method, Bound.-Layer Meteor., pp. 1–16, doi:10.1007/s10546-017-0252-3, 2017.

van der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy Array: A Structure for Efficient Numerical Computation, Computing in

Science & Engineering, 13, 22–30, doi:10.1109/MCSE.2011.37, 2011.

van Heerwaarden, C. C. and Mellado, J. P.: Growth and decay of a convective boundary layer over a surface with a constant temperature,25

Journal of the Atmospheric Sciences, 73, 2165–2177, 2016.

van Heerwaarden, C. C., Mellado, J. P., and De Lozar, A.: Scaling laws for the heterogeneously heated free convective boundary layer, J.

Atmos. Sci., 71, 3975–4000, 2014.

van Reeuwijk, M.: Direct simulation and regularization modeling of turbulent thermal convection, TU Delft, Delft University of Technology,

2007.30

Vasilyev, O. V.: High order finite difference schemes on non-uniform meshes with good conservation properties, J. Comput. Phys., 157,

746–761, 2000.

Vreman, A. W.: The projection method for the incompressible Navier–Stokes equations: The pressure near a no-slip wall, J. Comput. Phys.,

263, 353–374, 2014.

Williamson, J. H.: Low-Storage Runge-Kutta schemes, J. Comput. Phys., 35, 48–56, 1980.35

Wilson, D. K.: An alternative function for the wind and temperature gradients in unstable surface layers, Bound.-Layer Meteor., 99, 151–158,

2001.

Wyngaard, J. C.: Turbulence in the Atmosphere, Cambridge University Press, 2010.

35

http://dx.doi.org/10.1007/s10546-017-0252-3
http://dx.doi.org/10.1109/MCSE.2011.37

