
Rebuttal	to	review	of	Dr.	Bou-Zeid	
	
The	authors	thank	the	reviewer	for	his	kind	words	in	his	opening	paragraph.	We	will	address	
his	comments	point-by-point.	
	

1. Eq	11:	It	would	be	useful	to	explain	what	Q	represents	physically	(phase	change,	
radiative	divergence,	.	.	.).	Also	it	should	be	included	in	13	since	the	authors	also	use	
it	to	represent	sources	of	heat	unrelated	to	evaporation/condensation.	
Q	can	be	any	source	or	sink	of	heat.	Phase	changes	are	excluded	from	Q,	as	the	dry	
dynamics	do	not	support	those,	and	the	moist	dynamics	are	based	on	the	liquid	
water	potential	temperature	that	is	constant	under	phase	changes.	The	reviewer	is	
correct	that	sources	and	sinks	need	to	be	included	in	Eq.	13	as	well,	and	we	will	do	
so	in	the	revised	manuscript.	
	

2. Page	5,	first	few	paragraphs	of	the	section	“Gird”	and	many	other	places	in	the	text.	
The	authors	use	too	many	paragraphs.	Some	should	be	consolidated.	E.g.	the	first	2	
paragraphs	of	this	section	should	be	joined.	
We	will	carefully	go	through	the	text	and	merge	paragraphs	at	the	suggested	
location	and	wherever	appropriate.	
	

3. Eq	28:	So	I	presume	here	the	authors	use	j	as	the	vertical	index.	That	should	be	
specified.	Also	maybe	at	some	point	the	authors	should	point	out	that	only	the	
bottom	and	top	boundary	conditions	(is	it	detailed	sufficiently?)	need	a	special	
treatment	like	this	since	the	other	are	periodic.	
The	reviewer	is	correct	that	j	is	the	vertical	index.	We	will	explicitly	mention	this	in	
the	revised	manuscript.	We	will	also	include	an	explicit	reference	to	the	fact	that	
only	the	vertical	dimension	needs	a	special	treatment.	
	

4. Eq	28	again:	At	some	point	later	in	the	paper	I	thought	the	authors	mention	that	with	
4th	order	accurate	scheme	2	ghost	cells	are	needed.	If	that	is	so,	why	is	there	a	need	
for	a	biased	formulation	in	28	that	would	only	use	one	ghost	cell	below	the	surface.	
Many	operations	involve	a	sequential	application	of	two	operators.	For	instance,	in	
the	4th-order	diffusion,	we	compute	the	laplacian	as	the	divergence	of	a	gradient.	In	
this	operation,	only	the	gradient	can	make	use	of	both	ghost	cells,	but	the	
divergence	cannot,	and	therefore	relies	on	a	biased	operator	at	the	wall.	
	

5. Eq	36	and	other	places:	it	would	be	useful	if	for	each	of	these	options	(2nd	versus	4th	
order	for	example),	the	flag	that	controls	it	in	the	code	input	file	is	listed.	This	will	
make	it	easy	for	the	user	to	see	how	to	control	these	options.	
MicroHH	comes	with	a	document	that	lists	all	the	available	options.	We	have	failed	
to	mention	this	in	the	text	and	will	add	it	to	the	revised	manuscript.	We	will	explain	
as	well	in	the	revised	manuscript	that	the	model	defaults	to	the	order	of	generated	
grid.	
	

6. Eq	41:	tilde	is	later	used	for	filtering.	Maybe	denote	the	intermediate	velocity	with	
something	else	like	an	asterisk.	
We	will	follow	the	suggestion	of	the	reviewer	to	avoid	confusion	between	filtered	



variables	and	the	intermediate	velocity.	
	

7. The	fact	that	the	code	is	mainly	periodic	in	the	horizontal	direction	should	be	under-	
lined	earlier	in	the	paper	than	it	is	now.	Maybe	in	the	abstract.	
We	agree	with	the	reviewer	that	an	earlier	notification	is	necessary,	because	it	
clarifies	both	the	grid	description	and	the	pressure	solver.	We	will	introduce	it	in	the	
introduction	of	the	revised	manuscript.	
	

8. After	Eq	47:	please	provide	a	reference	to	the	“Thomas	algorithm”	
We	will	include	a	reference	in	the	revised	manuscript.	
	

9. LES	equations	63	and	so	on	are	only	for	very	high	RE,	i.e.	wall	modeled	LES.	Please	
specify	that.	Also	it	would	be	simple	to	use	the	code	as	a	finite	Re	LES	code	by	
keeping	the	viscous	term	in	63.	Why	is	this	not	pursued?	
We	will	follow	the	reviewer’s	suggestion	and	mention	that	our	LES	is	developed	for	
very	high	Re.	Extending	our	code	to	a	finite	Re	LES	code	would	be	trivial,	but	has	not	
been	pursued	yet.	The	reason	is	that	most	MicroHH	users	that	run	the	model	in	LES-
mode	run	atmospheric	cases.	
	

10. “Surface	Model”	section.	The	authors	only	provide	the	LES	surface	model.	This	should	
be	specified.	Also	better	is	to	add	a	description	of	how	the	DNS	wall	boundary	
condition	is	treated,	presumably	through	a	viscous	wall	stress.	Also,	the	language	
seems	to	suggest	that	the	LES	is	only	over	rough	walls.	There	is	nothing	that	prevent	
the	code	from	simulating	a	smooth	surface	using	the	z0	(�	ν/u*)	of	a	smooth	wall.	
This	should	be	clarified.	
The	description	of	the	DNS	boundary	conditions	is	contained	in	3.7,	but	we	failed	to	
make	this	clear	to	the	reviewer.	We	will	improve	both	Section	3.7	and	4.2	to	clarify	
our	implementation.	The	code	could	indeed	specify	the	z0	of	a	smooth	wall,	but	also	
here,	it	has	not	been	implemented	yet.	
	

11. First	line	after	eq	73:	please	add	“kinematic”	to	the	description	of	B0.	
Correct.	We	will	add	this.	
	

12. Eq	74:	the	application	of	a	log	law	to	each	velocity	component	separately	is	an	
approximation	so	the	equals	here	should	be	replaced	by	≈.	Also	this	is	a	LOCAL	MOST	
wall	model.	This	is	not	a	trivial	detail	and	should	be	specified	and	discussed	briefly	
with	references	to	papers	that	discuss	the	implications	in	more	detail.	
We	will	introduce	the	approximation	symbol.	Furthermore,	we	will	discuss	the	
results	with	respect	to	existing	literature,	such	as	the	reviewer’s	paper	in	Physics	of	
Fluids	(2005).	
	

13. Eqs	87	and	88:	why	not	use	an	explicit	approach	using	the	fluxes	at	the	previous	time	
step?	This	is	commonly	done	and	since	the	CFL	condition	is	typically	quite	<	1	this	
should	be	ok?	What	are	the	advantages	of	an	explicit	approach?	
Using	the	fluxes	of	the	previous	time	step	is	often	a	good	solution,	but	can	lead	to	
inaccuracies	under,	for	instance,	free	convection,	where	fluxes	and	wind	speeds	can	
change	fast	at	the	surface,	or	under	conditions	of	changing	stability.	Our	methods	



have	a	100%	convergence	guarantee	under	all	conditions.	Furthermore,	it	is	based	
on	a	lookup	table	that	starts	searching	from	the	value	at	the	previous	time	step,	
which	makes	it	a	very	fast	procedure.	
	

14. Eq	90	is	confusing.	For	example,	under	steady	state	this	almost	looks	like	the	pressure	
gradient	is	0.	Should	the	mean	RHS	<f1>	be	added?	The	fact	that	the	pressure	
gradient	force	must	balance	the	surface	stress	force	under	steady	state	should	be	
stated.	
With	Eq.	90,	we	aimed	to	show	that	the	forcing	is	just	part	of	the	total	tendency	
(note	the	Fp;ls	suffix).	It	is	a	definition	rather	than	an	equality.	As	we	have	failed	to	
explain	it	properly,	we	will	clarify	this	in	the	improved	manuscript.	
	

15. Eq	93:	is	the	momentum	balance	changed	when	a	subsidence	velocity	is	added	to	
scalars?	
It	is	not.	Solving	the	momentum	balance	in	a	doubly-periodic	domain	under	
subsidence	conditions	is	a	non-trivial	exercise	that	deserves	its	own	study.	We	follow	
the	simplified	treatment	that	is	used	in	other	codes	such	as	DALES	and	UCLALES.	We	
will	add	an	additional	explanation	to	the	paper.	
	

16. Page	18	lines	9-11:	please	provide	reference	or	URLs	for	these	libraries	and	codes.	
We	will	add	URLs	to	the	referenced	libraries	and	tools.	
	

17. Figure	1:	which	of	the	blue	or	green	is	the	energy	conserving	4th	order	or	the	most	
accurate.	Also,	did	the	authors	describe	the	2	methods	using	these	names	in	the	
numerics	section?	
The	green	line	is	the	energy-conserving	discretization,	whereas	the	blue	line	is	the	
accurate	one.	Surprisingly,	the	energy-conserving	discretization	is	in	the	Taylor-
Green-vortex	test	case	also	the	most	accurate	one,	but	this	does	not	apply	to	all	test	
cases.	We	forgot	to	explain	the	abbreviations	in	the	legend	of	Figure	1,	and	will	do	so	
in	the	figure	caption	of	the	revised	manuscript.	Furthermore,	we	will	improve	the	
color	scheme	to	ensure	that	all	cases	can	be	easily	distinguished.	
	

18. ALL	figures	look	like	they	have	problems	with	some	axis	labels	(some	minus	signs	
appear)	and	so	on,	please	improve	quality.	If	all	looks	good	on	the	authors	computers	
check	that	the	PDF	appears	the	same	on	other	machines.	
Something	apparently	went	wrong	in	the	process	of	adding	the	GMD	logos	to	the	
manuscript.	In	the	current	online	version,	as	well	as	in	the	revised	manuscript,	all	
labels	are	in	order.	
	

19. Why	include	RK3	in	the	code	release	at	all	given	the	results?	
We	will	keep	the	RK3	case	for	testing	purposes	and	for	potential	extension	with	
implicit-in-time	diffusion	in	the	future.	The	reviewer	is	correct	that	our	tests	show	
that	the	RK4	scheme	is	beneficial	under	all	conditions.	
	

20. Page	20	line	9,	delete	“for”	
We	will	fix	the	sentence.	
	



21. Figure	2:	slope	at	smallest	dt	looks	the	same	for	RK3	and	RK4,	no?	
It	appears	so.	The	lines	are	bumpy	and	the	exact	slopes	are	hard	to	extract.	We	hope	
nonetheless,	that	the	reviewer	is	convinced	about	the	difference	in	convergence	and	
accuracy	between	the	two	methods.	
	

22. Figure	4:	symbols	not	appearing	in	legend.	
We	believe	this	is	related	to	the	previous	problem	(point	18)	we	had	with	the	figure	
axes.	In	our	current	version,	all	symbols	are	visible.	
	

23. Section	8.4:	give	some	info	about	MOSER	code	for	comparison.	
The	code	of	MOSER	is	spectral	with	Chebychev	polynomials	in	the	non-periodic	
dimension.	We	will	explain	this	in	the	revised	manuscript.	
	

24. Page	22	line	6-10:	use	of	word	“data”	to	describe	MOSER	results	is	not	a	good	choice	
here.	
We	will	refer	to	MOSER’s	result	as	“model	output	data”,	rather	than	“data”	in	the	
revised	manuscript.	
	

25. Figure	6:	clearly	the	spectra	of	MOSER	have	some	noise	or	aliasing	issues	that	should	
be	mentioned.	
The	spectra	of	MOSER	display	aliasing	in	the	pressure	data,	most	likely	related	to	the	
velocity	multiplications	in	the	Poisson	equation	that	solves	for	the	pressure.	We	will	
make	this	clear	in	the	text.	
	

26. Page	24	Line	17:	here	the	authors	use	the	term	“potential	temperature	flux”	but	
previous	they	used	“buoyancy	flux”.	Pick	one	since	they	mean	the	same	thing	in	dry	
cases.	I	would	suggest	potential	T	flux	since	it	is	a	more	accurate	physics	description.	
We	distinguish	between	the	two.	The	dry	dynamics	have	potential	temperature	as	
the	governing	variable,	therefore	the	bottom	BC	is	a	potential	temperature	flux.	Our	
simplified	thermodynamics	use	buoyancy	as	the	governing	variable,	and	therefore	a	
kinematic	buoyancy	flux	as	the	bottom	BC.	We	will	clarify	the	text.	
	

27. Figure	7:	maybe	use	log	scale	for	y.	
We	will	remake	the	figure	with	a	log	scale	and	introduce	it	into	the	revised	paper.	
	

28. Page	25	line	8:	delete	“quickly”	
We	will	remove	the	word	“quickly”.	
	

29. Figure	9a:	area	coverage	of	what?	Updrafts?	Please	clarify.	
We	were	referring	to	the	area	coverage	of	cloud	and	cloud-core	that	are	contained	
in	the	legend.	We	will	make	this	explicitly	clear	in	the	figure	caption	in	the	revised	
manuscript.	
	

30. Section	9.3	and	in	general	how	is	the	code	initialized?	Random	perturbations	are	
added	to	mean	profiles?	Did	the	author	try	alternative	approaches	to	seed	
turbulence?	
The	code	is	initialized	with	random	perturbations	over	the	mean	profiles,	which	is	



sufficient	for	convective	cases.	We	have	also	the	options	of	introducing	large	vortices	
that	are	more	efficient	in	generating	turbulence	under	neutral	or	stable	conditions.	
We	will	explain	these	options	in	the	revised	manuscript.	
	

31. Section	10:	please	provide	info	about	the	machines	in	section	10.1	(interconnect	
speed,	processors	per	node,	memory	per	nodes,	...).	These	details	are	needed	to	
understand	code	scaling.	
We	will	introduce	references	to	the	machine	specifications	and	introduce	a	brief	
description	of	each	of	them	in	the	revised	manuscript.	
	

32. Figure	11:	x	axis	label	should	be	“processors”	
We	will	fix	this	in	the	revised	manuscript	and	use	the	word	“cores”.	



Rebuttal	to	anonymous	reviewer	
	

The	authors	thank	the	reviewer	for	his	thorough	review.	We	will	first	address	the	reviewer’s	

high-level	comments,	and	thereafter	the	detailed	comments	point-by-point.	

	

High-level	suggested	revisions:	
1. In	sections	1-2,	switching	between	anelastic	and	Boussinesq	should	be	made	clearer,	

and	with	what	approximations.	In	the	rest	of	the	paper,	it	should	be	clear	what	
“mode”	each	test	is	run	in.	-	Claims	of	conservation	should	state	the	caveat	that	the	
simplified	equations	are	in	flux-conservation	form,	but	that	they	are	not	fully	mass-	
or	energy-conservative	(for	example,	looking	at	total	mass,	\rho_0	+	\rho’,	in	
equation	10,	is	not	conservative).	p7	l18	how	is	it	"fully	energy	conserving”?	-	A	little	
more	discussion	of	why	this	discretization	was	chosen,	and	what	its	
benefits/limitations	are.	A	little	extra	information	would	be	a	good	way	to	flesh	out	
the	conclusion	and	provide	more	context	for	the	reader.	
We	will	improve	the	revised	manuscript	with	respect	to	the	differences	between	

Boussinesq	and	anelastic	in	the	model	implementation.	In	short,	the	implementation	

of	the	governing	equations	is	the	same	under	both	approximations,	but	under	

Boussinesq,	the	reference	density	and	potential	temperature	are	constant	with	

height	in	the	momentum	and	mass-conservation	equations.	

	

Based	on	the	reviewer’s	comments,	we	have	not	made	our	claims	of	energy	

conservation	sufficiently	clear.	In	Bannon	(1996)’s	anelastic	approximation,	the	

governing	equations	are	energy	conserving,	in	the	sense	that	there	is	a	correct	

transfer	between	kinetic	and	potential	energy.	This,	however,	does	not	mean	that	

the	discrete	implementation	is	energy	conserving.	Our	spatial	discretization	that	

follows	Morinishi	et	al.	(1998),	conserves	mass,	momentum,	and	kinetic	energy,	

which	we	demonstrate	in	the	paper.	We	will	make	the	distinction	between	energy	

conservation	in	the	governing	equations	and	in	the	implementation	clear	throughout	

the	improved	manuscript.	
	

Detailed	minor	revisions:		
2. p1	abstract:	"code	reaches	speedups	of	more	than	...	conventional	code”	running	on	

what	processors?	Generally	best	to	express	it	as	a	%	of	peak	FLOPS	and	specific	to	the	
two	architectures	you	compare	in	results.	
We	will	explicitly	mention	in	the	abstract	that	it	concerns	single-GPU	simulations	and	

move	the	detailed	information	to	the	section	on	the	scaling.		
	

3. 	p1	"approach	the	synoptic	scales”	remove	the?	to	clarify,	maybe	add	LES	resolution	
(<	1km?)	at	“scales	of	1000km	or	more”?	
We	will	follow	the	reviewer’s	suggestion	and	add	some	explicit	numbers	to	the	

statement.	
	

4. p2	l3,	“order	codes”?	Older	codes?		
“Order	codes”	will	be	changed	to	“other	codes”.	

	



5. p2	last	intro	paragraph	.	.	.	it	is	worth	mentioning	Sec	5	(output),	and	7	(instructions	
to	reproduce),	to	encourage	others	to	do	the	same,	maybe	mention	w/	sec	13	or	even	
move	those	sections	to	the	end?	
We	agree	with	the	reviewer	that	all	sections	need	to	be	mentioned.	We	are	not	sure	

what	the	reviewer	means	by	“encouraging	others	to	do	the	same”	Does	this	refer	to	

reproducing	our	test	cases?	
	

6. 	p2	l18	“constant	with	height	z”	maybe	restate	\rho_0(z)	only	to	support	eq.	(2)?	
We	will	write	rho_0(z)	instead	of	rho_0,	to	make	clear	that	rho_0	is	a	function	of	

height.	
	

7. p3	Derivation	of	eq(4)	should	be	either	referenced	or	add	an	extra	step	...	eq	(5)	
should	come	first,	for	example,	to	introduce	the	potential	temperature	EOS	that’s	
sub-	stituted	into	eq(4).	-	p3	l20	perturbational	pressure	form	-	not	conservative	/	
does	not	match	eq	(2)?	
The	reviewer	is	correct.	We	shall	swap	the	order	of	the	equation	of	state	and	the	

momentum	equation	and	cite	the	paper	of	Bannon	(1996)	earlier.	
	

8. p4	l16,	introduced	N	without	an	equation/definition?	
We	shall	introduce	the	definition	of	N2	=	db_0/dz	in	the	text,	and	do	so	for	all	

thermodynamic	modes.	

	
9. p6-7	I	appreciate	the	compactness	of	the	notation	and	clarity	in	presenting	it.		

We	appreciate	the	kind	words	of	the	reviewer.	It	has	been	a	challenge	to	find	a	

suitable	notation.	
	

10. p7	eq	(40),	why	not	use	a	similarly	compact	4th-order	5-pt	wide	stencil,	instead	of	the	
larger	7-pt	wide	one?	
The	7-pt	stencil	has	the	advantage	that	it	is	built	out	of	the	same	building	blocks	as	

the	other	operators,	and	thus	uses	the	same	ghost	cells.	
	

11. p9	DFT	solver	eq	(45)	is	not	clear	...	assuming	periodic	bc’s	or	cosine	transform	for	
Neumann	bc’s	on	pressure?	Is	there	a	reference	for	this	approach?	
The	DFT	operator	is	only	performed	in	the	periodic	x	and	y	directions.	Based	on	

comments	of	the	first	reviewer,	we	will	introduce	earlier	in	the	paper	that	our	code	

is	periodic	in	the	two	horizontal	dimensions.	
	

12. p9	“hat”	DFT	notation	conflicts	with	“average”	notation	on	p6.	
We	will	introduce	a	different	symbol	for	the	Fourier	transform	in	the	revised	

manuscript.	
	

13. 	p9	eq(46-47)	could	mention	“corresponding	to	eq(39-40)	respectively”	around	l17-
18?	
We	agree	with	the	reviewer’s	suggestion	and	will	refer	to	those	equations.	

	
14. 	p9	l24,	Ah!	That’s	a	big	assumption,	periodic	lateral	boundaries.	Should	be	moved	up	

and	stated	prominantly,	along	with	motivation/limitations.	Now	I	understand	why	p4	



l15	“periodic	with	slopes”	was	introduced.	
Following	both	reviewers’	comments,	we	will	introduce	in	the	introduction	that	our	

code	is	doubly	periodic.	
	

15. p11	l12-16,	is	the	model-top	pressure	constant	in	time	or	modified	every	time	step?	
what	value	is	used?	
The	model	top	pressure	is	the	final	result	of	the	described	procedure	and	depends	

on	the	surface	pressure	and	the	chosen	reference	profiles	of	temperature	and	

humidity.	MicroHH	has	the	option	of	a	constant	profile	in	time,	as	well	as	a	reference	

profile	that	updates	in	time.	

	
16. p12	l5,	is	filtering	actually	applied	in	your	algorithm,	and	if	so,	at	what	resolution?	Do	

you	do	anything	to	prevent	discrete	aliasing	of	unresolved	wavelengths?	
We	do	not	use	explicit	filtering,	but	rely	on	the	grid	scale	as	a	filter,	which	is	a	

common	procedure	with	atmospheric	LES.	With	our	numerical	schemes,	aliasing	

errors	are	small.	We	will	introduce	a	short	discussion	on	this	in	the	revised	

manuscript.	

	
17. p12	tilde	variables	conflict	with	tilde	“intermediate	velocity”	in	eq	(41)	

We	will	use	a	different	symbol	in	the	revised	manuscript.	

	
18. p12	eq	(67)	S_{ij}	subscript?	and	what’s	the	definition	of	Sˆ2?	

In	the	revised	manuscript	we	will	write	the	full	expression	in	terms	of	S_{ij}.	The	

reviewer	is	correct	that	we	forgot	the	subscripts.	
	

19. p12	l21,	Nˆ2	definition	here	different	than	above	p4	l16?	
The	reviewer	is	correct.	We	have	failed	to	make	clear	that	depending	on	the	chosen	

thermodynamics,	an	appropriate	definition	of	N
2
	is	used.	We	will	clarify	this	in	the	

improved	manuscript,	as	mentioned	in	our	reply	to	point	8.	

	
20. p13-15	sec	4.2	.	.	.	is	this	a	new	atm	turbulence	model?	The	reference	Wyngaard	

(2010)	is	an	entire	book,	and	it	is	not	clear	which	tests	warrant	which	boundary	
conditions,	etc.	p15	l5	is	particularly	confusing	.	.	.	might	be	worth	describing	
Obukhov	length	and	its	use	as	a	stability/mixing	parameter,	and	why	a	look-up	table	
is	needed.	
We	will	clarify	the	text.	The	lookup	table	is	only	there	for	performance	reasons,	as	it	

outperforms	a	Newton-Raphson	method.	
	

21. p15	l11,	why	would	you	not	just	include	a	background	U_f	and	define	a	perturba-	
tional	velocity	from	that?	That	would	be	compatible	with	periodic	bc’s,	guarantee	
mass	conservation,	etc.	
By	doing	so,	the	problem	will	remain.	If	the	large-scale	pressure	force	is	applied	to	

the	perturbation	velocities	only,	it	is	no	longer	ensured	that	the	perturbations	

average	to	zero,	without	applying	the	presented	correction.	

	



22. p15	bottom	“adveciton”	should	be	“advection”?	
The	reviewer	is	correct.	
	

23. p17	l19.	“precompiler	statements”?	Meaning	#define	of	GPU	CUDA	code?	Any	
thoughts	or	statements	on	maintaining	the	different	code	bases	in	your	C++	frame-	
work?	
The	use	of	precompiler	statements	is	unavoidable,	as	we	do	not	want	to	force	the	

non-GPU	user	to	install	CUDA	and	compile	the	GPU	code	as	well.	We	have	chosen	for	

an	implementation	in	which	the	GPU	code	based	is	minimized,	in	order	to	ensure	

maintainability.	We	will	elaborate	our	description	of	the	CUDA	implementation.	
	

24. p18	top,	MPI-IO	should	have	a	reference?		
We	will	introduce	a	reference.	

	
25. p18	l9,	change	netCDF	footnote	to	reference?		

We	will	introduce	a	reference.	

	
26. p18,	maybe	sections	5-7	should	be	moved/merged	with	13	or	all	in	an	appendix?	

We	disagree	with	the	reviewer	here.	We	consider	the	presented	topics	in	sections	5-

7	of	high	relevance	for	a	model	description	paper.	Section	13	is	located	at	the	end	of	

the	paper	following	the	GMD	guidelines.	

	
27. 	p18	l25,	love	the	post-processing	mode	based	on	restart	files!	

We	thank	the	reviewer	for	this	compliment.	We	would	be	very	happy	if	this	

convinces	the	reviewer	to	use	our	code.	
	

28. p19	eq	(98)	should	“4	\pi	y”	be	z?	
The	reviewer	is	correct!	

	
29. 	p19	figure	1	/	p20	l1	discussion	...	L1	error	in	2D	should	asymptote	to	hˆ4,	even	with	

3rd-order	boundary	errors	(O(N)	pts	*	O(hˆ3)	boundary	error	vs.	O(Nˆ2)	pts	O(hˆ4)	
interior	error).	Please	explain?	Also	adding	a	2nd	set	of	dotted	lines	for	3rd-	and	4th-
order	on	the	bottom	set	if	u,v	4M	fields	will	better	show	the	break.	
In	the	4

th
-order	scheme,	the	boundary	condition	for	vertical	velocity	w	is	set	for	

global	mass	conservation	rather	than	for	4
th
-order	accuracy.	We	will	add	a	second	

set	of	dotted	lines	to	help	the	reader	observe	the	convergence	of	the	schemes.	
	

30. p20	l8,	"diffusion	off”	you	mean	viscosity,	no	source	terms,	etc.	so	that	total	energy	
should	be	conserved?	What’s	your	equation	for	“energy”	in	this	test?		
In	this	case,	energy	is	kinetic	energy.	The	model	is	run	without	viscosity	and	source	

terms,	but	with	pressure	solver	to	satisfy	the	continuity	equation.	We	will	clarify	this	

in	the	improved	manuscript.	
	

31. p20	l10,	“its	energy	conservation.”	you	mean	improved?	It	doesn’t	conserve	energy	
exactly.	
The	spatial	discretization	does	conserve	energy,	but	it	is	the	time	discretization	that	



does	not.	We	shall	clarify	this	in	the	text.	
	

32. p20	figure	2,	maybe	put	top	figure	on	log	|\DeltaE|	scale	as	well	to	distinguish	the	
results	better?	
We	prefer	to	keep	our	axis	in	its	current	form	to	show	that	our	schemes	are	losing	

energy	and	therefore	cannot	lead	to	a	blowup	of	the	numerical	solution.	This	is	not	

possible	if	we	plot	the	absolute	value	on	a	log	scale.	We	shall	clarify	this	in	the	

improved	manuscript.	

	
33. p21,	line	4.	Isn’t	there	a	difference	in	maximum	CFL	for	each	as	well?	

There	is.	In	this	experiment,	however,	we	chose	to	compare	the	accuracy	that	can	be	

achieved	a	fixed	time	step,	as	this	allows	us	to	estimate	the	convergence.	
	

34. 	p22,	l6,	“perfect	match”	.	.	.	so	perfect	it’s	hard	to	see	any	difference	at	all.	What	do	
you	attribute	that	too,	since	you	have	completely	different	discretizations,	etc.	How	
were	the	Moser	1999	results	so	similar?	Could	you	quantify	the	differences,	plot	
them,	and	explain	them?		
Both	codes	have	fully	converged	results	and	are	therefore	identical	if	sufficient	

samples	are	averaged.	Direct	numerical	simulation	has,	unlike	LES,	an	exact	solution,	

which	makes	the	solution	independent	of	the	numerical	schemes	at	sufficient	

resolution.	
	

35. p24,	l12	.	.	.	ditto	for	“nearly	perfect	match”	here.	Fig	6	also	shows	a	“kink”	in	E_pp	at	
higher	\kappa.	Is	it	worth	explaining?	
MOSER	has	spectral	schemes,	which	introduce	aliasing	errors	in	the	highest	wave	

numbers.	Even	though	aliasing	errors	are	removed	when	the	nonlinear	operators	are	

applied,	the	solver	for	the	pressure	introduces	new	ones.	
	

36. p26	l8,	Fig	9a,d	-	why	are	the	vertical	velocities	diverging	with	resolution?	
This	is	often	observed	in	LES-simulations	of	cumulus-topped	boundary	layers.	

Individual	plumes	that	have	a	radius	of	only	a	few	grid	cells	tend	to	overestimate	

velocity.	

	
37. p29	bottom	p30.	By	putting	these	on	a	single	GPU,	you	are	avoiding	communication	

overheads	for	the	GPU.	Did	you	run	1	MPI	rank	on	the	GPU?	Did	you	run	“n”	MPI	
ranks	on	the	CPU?	For	the	B512	run	you	are	getting	very	good	(90%?)	strong	scaling	
for	1-4	CPU	nodes.	
In	our	view,	GPUs	mostly	deliver	a	benefit	if	simulations	can	be	run	on	a	single	GPU.	

Therefore,	we	have	taken	one	GPU.	Furthermore,	at	the	moment,	MicroHH	is	only	

supporting	single	GPU	simulations.	We	agree	with	the	reviewer	that	our	comparison	

might	be	unfair	in	the	sense	that	the	GPU	simulation	does	not	need	communication,	

whereas	the	CPU	simulation	does.	We	have,	however,	decided	to	focus	on	

simulation	of	sizes	that	are	common	in	atmospheric	LES	studies.	We	will	improve	the	

discussion	in	the	paper	to	make	this	clear.	
	

	 	



38. p30	l4,	“a	parameterizations	.	.	.	has	been”	singular?	
The	reviewer	is	correct!	
	

39. p30	section	12	.	.	.	could	add	a	more	comprehensive	summary,	call	out	any	
limitations	or	tradeoffs.	
We	will	elaborate	the	conclusions	and	highlight	MicroHH’s	most	important	features	

and	limitations	in	the	revised	manuscript.	
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Abstract. This paper describes MicroHH 1.0, a new and open source (www.microhh.org) computational fluid dynamics code

for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation, but also supports

large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and

the parametrizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of

convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established5

test cases. The full numerical model, including the associated parametrizations for LES, has been tested for a set of cases

under stable and unstable conditions, under the Boussinesq and anelastic approximation, and with dry and moist convection

under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256

to 32,768 processes. The Graphical Processing Unit-enabled
:::
Unit

:::::::::::::
(GPU)-enabled

:
version of the code reaches speedups

:::
can

::::
reach

::
a
:::::::
speedup of more than an order of magnitude with respect to the conventional code for a variety of cases

::
for

::::::::::
simulations10

:::
that

::
fit

::
in

:::
the

:::::::
memory

::
of
::
a
:::::
single

:::::
GPU.

1 Introduction

In this paper we present a description of MicroHH 1.0, a new Computational Fluid Dynamics code for the simulation of

turbulent flows
::
in

::::::
doubly

:::::::
periodic

::::::::
domains, with a focus on those in the atmosphere. MicroHH is designed for the direct

numerical simulation (DNS) technique, but also supports the large-eddy simulation (LES) technique. Its applications range15

from neutral channel flows to cloudy atmospheric boundary layers in large domains. MicroHH is written in C++ and the

Graphical Processing Units-enabled parts of the code in CUDA. The simulation algorithms have been designed and are written

from scratch with the goal to create a fast and highly parallel code that is able to run on machines with more than 10,000

cores. This is a key requirement for the code to be able to perform DNS at very high Reynolds numbers, or to do LES
::
at

::::
very

1
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::::
high

::::::::
resolution

:::::
(grid

::::::
spacing

::::
less

::::
than

:
1
::::

m),
::
or

:
in domains that approach the synoptic scales

:::::::
(beyond

::::
1000

::::
km). We decided

to start from scratch, in order to be able to use C++ and its extensive possibilities in object oriented- and metaprogramming.

Furthermore, the implementation of a dynamical core that is fully fourth-order in space, which is very beneficial for DNS, but

to retain the option to switch to second-order accuracy for LES, required a new code design.

Even though we started from scratch, many of the ideas are the results of our experiences with order
::::
other

:
codes. Here,5

DALES (Heus et al., 2010), UCLA-LES (Stevens et al., 2005), and PALM (Maronga et al., 2015), deserve a reference as

MicroHH could not have been possible without those.

This paper is built up as following: in Sect. 2, we provide a full description of the governing equations of the dynamical

core, and their numerical implementation is discussed in Sect. 3. Subsequently, in Sect. 4 we present the parameterizations

and their underlying assumptions. Section 5 discusses the technical details of the code
:
,
:::
and

:::::::
Sections

::
6
::::
and

:
7
:::::::
explain

::::
how

::
to10

:::
run

:::
the

:::::
model

::::
and

:::::
which

::::::
output

::
is

::::::::
generated. This is followed by a series of model tests on the validity and accuracy of the

dynamical core in Sect. 8, and a series of more applied atmospheric flow cases based on previous studies (Sect. 9). Hereafter,

the parallel performance is evaluated (Sect. 10). After
:::::
Then,

::
an

::::::::
overview

::
of

:::::::::
published

::::
work

::::
with

:::::::::
MicroHH

:
is
:::::::::
presented

:::::
(Sect.

:::
11),

::::::::
followed

::
by

:
the future plans (Sect. 12) and the concluding remarks (Sect. 13)

:
.
::::::
Finally, there is a short description where

to get MicroHH, and where to find its tutorials and a selection of visualisations (Sect. 14).15

2 Dynamical core: governing equations

The dynamical core of MicroHH solves the conservation equations of mass, momentum, and energy under the anelastic ap-

proximation (Bannon, 1996). Under this approximation, the state variables density, pressure, and temperature are described as

small fluctuations (denoted with a prime in this paper) from corresponding vertical reference profiles (denoted with subscript

zero) that are functions of height only. This form of the approximation directly simplifies to the Boussinesq approximation if20

the reference density ⇢0 is assumed
:::::
⇢0(z)

::
is

:::::
taken to be constant with height z.

:::::::::::
Consequently,

::::::::
MicroHH

:::::
does

:::
not

::::
need

:::::::
separate

:::::::::::::
implementations

::
of

::::::::::
Boussinesq

:::
and

::::::::
anelastic

:::::::::::::
approximations.

:
To facilitate the subsequent discussion of the conservation equa-

tions, we define the scale height for density H
⇢

based on the reference density profile

H
⇢

⌘
✓

1

⇢0

d⇢0
dz

◆�1

. (1)

2.1 Conservation of mass25

The conservation of mass is formulated using Einstein summation as
@⇢0ui

@x
i

= ⇢0
@u

i

@x
i

+ ⇢0wH�1
⇢

= 0, (2)

where u
i

is the velocity vector (u,v,w) and x
i

is the position vector (x,y,z).
:::
This

::::::::::
formulation

:::::::::
conserves

:::
the

::::::::
reference

:::::
mass,

::
as

::::::
density

:::::::::::
perturbations

:::
are

:::::::
ignored

::
in

:::
the

:::::::
equation

:::::::::::
(Lilly, 1996).

:

Under the Boussinesq approximation (H
⇢

! 1), Eq. 2 simplifies to conservation of volume30

@u
i

@x
i

= 0. (3)
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2.2 Conservation of momentum
::::::::::::::
Thermodynamic

::::::::
relations and the equation

:::::::::::
conservation

:
of state

::::::::::
momentum

The
::::::::::::
thermodynamic

:::::::
relation

:::::::
between

:::
the

:::::::::
fluctuations

:::
of

:::::
virtual

::::::::
potential

::::::::::
temperature,

::::::::
pressure,

:::
and

::::::
density

:::::
under

:::
the

::::::::
anelastic

::::::::::::
approximation

:
is
::::

(see
::::::::::::::::
Bannon (1996) for

::
its

:::::::::
derivation)

:

✓0
v

✓
v0

:::

=

:

p0

⇢0gH
⇢

� ⇢0

⇢0
,

:::::::::::

(4)

:::::
where

::
✓0
v::

is
:::
the

::::::::::
perturbation

::::::
virtual

:::::::
potential

:::::::::::
temperature,

:::
✓
v0:::

the
::::::::
reference

::::::
virtual

:::::::
potential

:::::::::::
temperature,

::
p0

::
is

::
the

:::::::::::
perturbation5

:::::::
pressure,

::
g

::
is

::
the

:::::::
gravity

::::::::::
acceleration,

::::
and

::
⇢0

::
is

:::
the

::::::::::
perturbation

::::::
density.

:

:::
The

::::::::::::
corresponding

:
momentum equation is written in the flux form, in order to assure the best possible mass and momentum

conservation. The hydrostatic balance dp0/dz = �⇢0g has been subtracted to arrive at the perturbation form
:::
and

:::
Eq.

:
4
::::

has

::::
been

::::
used

::
to

::::::::
introduce

::::::::
potential

::::::::::
temperature

::
as

:::
the

::::::::
buoyancy

:::::::
variable

::
to

::::::::
formulate

:::
the

:::::::::::
conservation

::
of

::::::::::
momentum

::
as

@u
i

@t
= � 1

⇢0

@⇢0ui

u
j

@x
j

� @

@x
i

✓
p0

⇢0

◆
10

+ �
i3g

✓0
v

✓
v0

+ ⌫
@2u

i

@x2
j

+ F
i

, (5)

where p0 is the perturbation pressure, � is the Kronecker delta, g is the gravity acceleration, ✓0
v

is the perturbation virtual

potential temperature, ✓
v0 the reference virtual potential temperature, ⌫ the kinematic viscosity, and vector F

i

represents exter-

nal forces resulting from parameterizations or large-scale forcings.
::
As

::::::::::::::::::::
Bannon (1996) showed,

:::
this

::::::::::
formulation

:
is
::::::::::::::::
energy-conserving

::
in

:::
the

:::::
sense

::::
that

::::
there

::
is
::
a

::::::::
consistent

:::::::
transfer

:::::::
between

::::::
kinetic

:::
and

::::::::
potential

::::::
energy.15

The corresponding equation of state is (see Bannon (1996) for its derivation)

✓0
v

✓
v0

=

p0

⇢0gH
⇢

� ⇢0

⇢0
.

Under the Boussinesq approximation, the two equations simplify to

✓0
v

✓
v0

=

:
�
:

⇢0

⇢0
, (6)

@u
i

@t
= �@u

i

u
j

@x
j

� 1

⇢0

@p0

@x
i

20

+ �
i3g

✓0
v

✓
v0

+ ⌫
@2u

i

@x2
j

+ F
i

,=�. (7)

2.3 Pressure equation

The equation to acquire the pressure is diagnostic, because density fluctuations are neglected in the mass conservation equation

under the anelastic approximation (Eq. 2). To simplify the notation, we define a function f (u
i

) that contains all right-hand side

terms of Eq. 5, except the pressure gradient. To arrive at the equation that allows us to solve for the pressure, we multiply the25

equation with the base density ⇢0 and take its divergence. Conservation of mass ensures that the tendency term vanishes, and

3



an elliptic equation for pressure remains

@

@x
i


⇢0

@

@x
i

✓
p0

⇢0

◆�
=

@⇢0f (u
i

)

@x
i

. (8)

Under the Boussinesq approximation the equation simplifies to

@2

@x2
i

✓
p0

⇢0

◆
=

@f (u
i

)

@x
i

. (9)

In Sect. 3 we explain how these equations are solved
:::::::::
numerically.5

2.4 Conservation of an arbitrary scalar

The conservation equation of an arbitrary scalar � is written in flux form

@�

@t
= � 1

⇢0

@⇢0uj

�

@x
j

+
�

@2�

@x2
j

+ S
�

, (10)

where 
�

is the diffusivity of the scalar, and S
�

represents sources and sinks of the variable.

2.5 Conservation of energy10

MicroHH provides multiple options for the energy conservation equation. The conservation equation for potential temperature

for dry dynamics ✓ can be written as

@✓

@t
= � 1

⇢0

@⇢0uj

✓

@x
j

+
✓

@2✓

@x2
j

+

✓0
⇢0cpT0

Q, (11)

where 
✓

is the thermal diffusivity for heat, and Q represents
::::::
external

:
sources and sinks of heat. A second option for moist dy-

namics is available. This has an identical conservation equation, but with liquid water potential temperature ✓
l

(moist dynamics),15

rather than ✓ as the conserved variable (see Sect. 3.9 for details).

A third, more simplified mode, is available for dry dynamics under the Boussinesq approximation. Here, the equation of

state
::::
(Eq.

::
6) can be eliminated and the conservation of momentum and energy can be written using buoyancy b ⌘ �(g/⇢0)⇢

0

as
::
in

:::::
terms

::
of

::::::::
buoyancy

::::::::::::
b ⌘ (g/✓

v0)✓
0
v::

as
:

@u
i

@t
+

@u
i

u
j

@x
j

= � 1

⇢0

@p0

@x
i

+ �
i3b + ⌫

@2u
i

@x2
j

, (12)20

@b

@t
+

@bu
j

@x
j

= 
b

@2b

@x2
j

.+Q
b

:::
, (13)

with 
b

being the diffusivity for buoyancy.
:
,
:::
and

:::
Q

b ::
is

::
an

:::::::
external

::::::::
buoyancy

::::::
source.

:::
By

:::::
using

::::::::
buoyancy,

:::::
length

::::
and

::::
time

::::::
remain

::
as

:::
the

::::
only

:::
two

::::::::::
dimensions,

::::::
which

:::::
proves

::::::::::
convenient

:::
for

::::::::::
dimensional

:::::::
analysis.

::
In

::::
this

::::::::::
formulation,

:::
✓0
v ::

is
:::
the

:::::::::
fluctuation

::
of

:::
the

:::::
virtual

::::::::
potential

::::::::::
temperature

::::
with

::::::
respect

::
to

:::
the

::::::
surface

:::::
value

::::
✓
v0.

:::
The

:::::::::::
consequence

::
is

:::
that

:::
the

::::::::
buoyancy

::::::::
increases

::::
with

::::::
height

::
in

:
a
::::::::
stratified

::::::::::
atmosphere,

::::::::::
analogously

::
to

:::
the

::::::
virtual

::::::::
potential

::::::::::
temperature

:::
(see

::::::
Garcia

::::
and

:::::::
Mellado

::::::
(2014),

:::::
their

:::
Fig.

:::
B1

::::
and25

:::
van

:::::::::::
Heerwaarden

:::
and

::::::::
Mellado

::::::
(2016),

::::
their

::::
Fig.

:::
7a)
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With a slight modification to the previous set of equations
::::::::
definition

::
of

:::
✓0
v

, it is possible to study slope flows in periodic

domains. If we
::
We

::::::
define

::
✓0
v::

as
:::

the
::::::::::

fluctuation
::::
with

::::::
respect

::
to

::
a

::::::
linearly

::::::::
stratified

::::::::::
background

::::::
profile

:::::::::::::::
✓
v0 + (d✓

v

/dz)0z.
::::
The

:::::::::
background

:::::::::::
stratification

::
in

:::::
units

::
of

::::::::
buoyancy

::
is

:::::::::::::::::::::
N2 ⌘ (g/✓

v0)(d✓
v

/dz)0.
::
If

:::
we

::::
work

::::
out

:::
the

::::::::
governing

::::::::
equations

:::::
again

::::
and

introduce a slope ↵ (positive anticlockwise
:::::
x-axis

::::::::
pointing

:::::::
upslope,

:::
see

:::::::::::::::::::::::::::
Fedorovich and Shapiro (2009),

::::
their

::::
Fig.

::
1) in the

x-direction, take the proper gravity vector, and subtract the background buoyancy profile N2z from the buoyancy value, the5

set of Eqs. 12 and ?? becomes

@u

@t
+

@u
j

u

@x
j

= � 1

⇢0

@p0

@x
+ sin(↵)b + ⌫

@2u

@x2
j

,

@w

@t
+

@u
j

w

@x
j

= � 1

⇢0

@p0

@z
+ cos(↵)b + ⌫

@2w

@x2
j

,
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+
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b
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� (u sin(↵) + w cos(↵))N2

::
we

::::
find10
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:::::::::

=

:
� 1

⇢0

@p0

@x
+ sin(↵)b + ⌫

@2u

@x2
j

,

:::::::::::::::::::::::

(14)

@w

@t
+

@u
j

w

@x
j

::::::::::

=

:
� 1

⇢0

@p0

@z
+ cos(↵)b + ⌫

@2w

@x2
j

,

:::::::::::::::::::::::

(15)

@b

@t
+

@bu
j

@x
j

:::::::::

=

:

b

@2b

@x2
j

� (u sin(↵) + w cos(↵))N2
+ Q

b

,

::::::::::::::::::::::::::::::::::

(16)

where the evolution equation of v is omitted as it contains no changes.
:
v

::
is

::::::
omitted

::
as

::
it
:::::::
contains

:::
no

:::::::
changes.

:

3 Dynamical core: numerical implementation15

3.1
::::

Grid

::::::::
MicroHH

::
is

:::::::::
discretized

::
on

::
a
::::::::
staggered

::::::::
Arakawa

::::::
C-grid,

:::::
where

:::
the

::::::
scalars

:::
are

:::::::
located

::
in

:::
the

:::::
center

::
of

::
a

:::
grid

::::
cell

:::
and

:::
the

:::::
three

::::::
velocity

:::::::::::
components

:
at
:::
the

:::::
faces.

::::
The

::::
code

:::
can

:::::
work

::::
with

::::::::
stretched

::::
grids

::
in

:::
the

:::::::
vertical

:::::::::
dimension.

:::
The

::::
grid

::
is

::::::::
initialized

:::::
from

:
a
::::::
vertical

::::::
profile

::::
that

:::::::
contains

:::
the

:::::::
heights

::
of

:::
the

:::
cell

:::::::
centres.

::::
The

::::::::
locations

::
of

:::
the

:::::
faces

:::
are

:::::::::
determined

:::::::::::
consistently

::::
with

:::
the

:::::
spatial

:::::
order

::
of

:::
the

::::::::::::
interpolations

:::
that

:::
are

::::::::
described

:::
in

::::
Sect.

::::
3.4.

:::
All

:::::
spatial

::::::::
operators

:::
in

:::
the

::::::
model,

::::
such

::
as

:::
the

::::::::
advection

::::
and20

::::::::
diffusion,

::::::
default

::
to

:::
the

::::
same

:::::
order

::
as

:::
the

::::
grid,

::::
and

:::
can

::
be

:::::::::
overriden

::::::::
according

::
to

:::
the

:::::
user’s

::::::
wishes

::::
(see

::::
Sect.

:::
6).

:::::
There

::
is

::
the

::::::
option

::
to

:::::
apply

:
a
:::::::
uniform

:::::::::
translation

:::::::
velocity

::
to
:::
the

:::::
grid,

:::
thus

::
to
:::
let

:::
the

::::
grid

:::::
move

::::
with

:::
the

::::
flow.

::::
This

::::::::
so-called

:::::::
Galilean

::::::::::::
transformation

::
is

:::::::
allowed

::
as

:::
the

::::::::::::
Navier-Stokes

::::::::
equations

:::
are

::::::::
invariant

:::::
under

:::::::::
translation.

::
It

:::
has

:::
the

::::::::
potential

::
to

:::::
allow

::
for

:::::
larger

:::::
time

::::
steps

:::
and

::
to
::::::::
increase

::
the

::::::::
accuracy

::
of

::::::::::
simulations.

:
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3.2
::::::::::::::::

Three-dimensional
:::::
fields

::
In

:::::
order

::
to

:::::
solve

:::
the

:::::::::
governing

:::::::::
equations,

:::::::::
MicroHH

::::::::
generates

::
at
:::::::::::

initialization
::::::::::::::::

three-dimensional
:::::
fields

::
of

:::
the

::::::::::
prognostic

::::::::
variables.

:::::
These

:::
are

::::
the

:::::
three

:::::::
velocity

::::::::::
components

:::::
(Eqs.

::
5
::
or
:::

7),
::::

and
:::
the

::::::::::::::
thermodynamic

::::::::
variables

:::::
(Eqs.

:::
11,

:::
13,

:::
or

::::
16).

::::::::::
Furthermore,

:::
the

::::
user

:::
has

:::
the

::::::
option

::
to

:::::
define

::::::::
additional

:::::::
passive

:::::
scalars

::::
(Eq.

::::
10).

::::
Each

::
of

:::
the

:::::::::
prognostic

:::::
fields

:::
has

::
an

:::::::::
additional

::::::::::::::
three-dimensional

::::
field

::::::::
assigned

::
to

::::
store

::
its

::::::::
tendency

:::
(see

:::::
Sect.

::::
3.3).

:::::::::::
Furthermore,

:
a
:::::::::
diagnostic

::::
field

:
is
::::::::
assigned

::
for

:::
the

::::::::
pressure,5

::
as

::::
well

::
as

:::::
three

::
or

::::
four

:::::::::
additional

::::
ones

:::
for

::::::::::
intermediate

::::::::::::
computations.

::::::
Newly

:::::::::::
implemented

::::::::
physical

::::::::::::::
parameterizations

:::::
have

::
the

::::::
option

::
to

::::::
request

:::::::::
additional

:::::::::::::::
three-dimensional

:::::
fields

::
at

::::::::::
initialization

::
of

:::
the

:::::::
specific

::::::::::::::
parameterization.

:

:::
The

:::::::::
generation

::
of

:::::::::
turbulence

:::::::
requires

:::::::::::
perturbations

:
to
:::
the

:::::
initial

::::::
fields.

::::::::
MicroHH

:::
has

:::
two

::::::
option

::
to

::::::::::
superimpose

:::::::::::
perturbations

::
on

::::
any

::
of

:::
the

:::::::::
prognostic

:::::::::
variables.

:::::
These

::::::::::::
perturbations

:::
can

:::
be

:::::::
random

:::::
noise

::
of

::::::
which

:::
the

:::::::::
amplitude

:::
and

::::::::
location

:::
can

:::
be

:::::::::
controlled,

::
as

::::
well

::
as

::::::::::::::
two-dimensional

:::::::
rotating

::::::
vortices

::::
with

:::
an

::::
axis

::::::
aligned

::::
with

:::
the

::
x-

:::
or

:::::::::::
y-dimension.

:::
The

::::::
former

::::::
option

::
is10

::
the

:::::
most

:::::::::
commonly

::::
used

:::::::
method

::
to

::::
start

:::::::::
convective

:::::::::
turbulence,

:::::::
whereas

:::
the

:::::
latter

::
is

:::
the

::::::
default

::
for

:::::::
neutral

::
or

:::::::::::::
stably-stratified

:::::
flows,

:::::
which

:::::::
develop

:::::::::
turbulence

::::
more

::::::
easily

::::
from

:::::
larger

::::::::::::
perturbations.

3.3 Time integration

The prognostic equations are solved using low-storage Runge-Kutta time integration schemes. Such schemes require two fields

per variable: one that contains the actual value, which we denote with � in this section, and one that represents the tendencies,15

denoted with ��. The code provides two options: a three-stage third-order scheme (Williamson, 1980) and a five-stage fourth-

order scheme (Carpenter and Kennedy, 1994). Both can be written in the same generic form in semi-discrete formulation

as

(��)

n

= f (�
n

) + a
n

(��)

n�1 (17)

�
n+1 = �

n

+ b
n

�t(��)

n

, (18)20

where f is a function that represents the computation of all right-hand side terms, a
n

and b
n

are the coefficients for the Runge-

Kutta method at stage n, and �t is the time step. Expression f (�
n

) represents thus the actual tendency calculated using, for

instance, Eqs. 5 or 10, whereas (��)

n

is a composite of the actual tendency and those from the previous stages. In low-storage

form, the tendencies of the previous stage (��)

n�1 are retained and multiplied with a
n

at the beginning of a stage, except for

the first stage, where a1 = 0.25

For the third-order scheme the vectors a
n

and b
n

are

a
n

=

⇢
0,�5

9

,�153

128

�
, (19)

b
n

=

⇢
1

3

,
15

16

,
8

15

�
. (20)
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For the fourth-order scheme the vectors a and b are

a
n

=

⇢
0,� 567301805773

1357537059087

,�2404267990393

2016746695238

,

�3550918686646

2091501179385

,�1275806237668

842570457699

�
(21)

b
n

=

⇢
1432997174477

9575080441755

,
5161836677717

13612068292357

,
1720146321549

2090206949498

,

3134564353537

4481467310338

,
2277821191437

14882151754819

�
(22)5

The reduced truncation error of the fourth-order scheme makes the scheme preferable over the third-order scheme under

many conditions (see Sect. 8.2). The code can be run with a fixed �t, as well as an adaptive time step based on the local flow

velocities.

3.4 Grid

MicroHH is discretized on a staggered Arakawa C-grid, where the scalars are located in the center of a grid cell and the three10

velocity components at the faces.

The code can work with stretched grids in the wall-bounded dimension. The grid is initialized from a vertical profile that

contains the heights of the cell centres. The locations of the faces are determined consistently with the spatial order of the

interpolations that are described in the next section.

There is the option to apply a uniform translation velocity to the grid, thus to let the grid move with the flow. This so-called15

Galilean transformation is allowed as the Navier-Stokes equations are invariant under translation. It has the potential to allow

for larger time steps and to increase the accuracy of simulations.

3.4 Building blocks of the spatial discretization

The spatial operators are based on finite differences. The code supports second-order and fourth-order accurate discretizations

following Morinishi et al. (1998); Vasilyev (2000). From Taylor series, spatial operators can be derived that constitute the20

building blocks of more advanced operators, such as the advection and diffusion operators. In the following subsections we

describe the elementary operators and the composite operators that can be derived from them. We use only two dimensions for

brevity
:::
have

:::::::
selected

::
a

::
set

:::
of

::::::::
examples

:::
that

:::::
cover

:::
the

:::::::
relevant

::::::::
operators.

We define two second-order interpolation operators, one with a small stencil and one with a wide stencil, as

�
i,j i,j,k

:::
⇡ �

2x
i,j i,j,k

:::
⌘

�
i� 1

2 ,j,k
+�

i+ 1
2 ,j,k

2

, (23)25

�
i,j i,j,k

:::
⇡ �

2xL
i,j i,j,k

:::
⌘

�
i� 3

2 ,j,k
+�

i+ 3
2 ,j,k

2

, (24)

Interpolations are marked with a hat
:::
bar. The superscript indicates the spatial order (2), and the direction (x) and has an extra

qualifier L when it is taken using the wide stencil. The subscript indicates the position on the grid (i, j).
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The gradient operators, denoted with letter �, are defined in a similar way

@�

@x

���� i,j i,j,k:::
⇡ �2x (�)

i,j i,j,k

:::
⌘

�
i+ 1

2 ,j,k
��

i� 1
2 ,j,k x

i+ 1
2

� x
i� 1

2
(25)

@�

@x

���� i,j i,j,k:::
⇡ �2xL (�)

i,j i,j,k

:::
⌘

�
i+ 3

2 ,j,k
��

i� 3
2 ,j,k x

i+ 3
2

� x
i� 3

2
(26)

We use the Einstein summation in the operators. For instance, the divergence of vector u
i

|
i,j :::::

u
i

|
i,j,k:

can be written as

�2xi
(u

i

)

i,j ::::::::::
�2xi

(u
i

)

i,j,k

.5

The fourth-order operators, written down in the same notation, are defined as

�
i,j i,j,k

:::
⇡ �

4x
i,j i,j,k

:::
⌘

��
i� 3

2 ,j,k
+ 9�

i� 1
2 ,j,k

+ 9�
i+ 1

2 ,j,k
��

i+ 3
2 ,j,k

16

. (27)

The biased version of this operator (subscript b) can be applied in the vicinity of the boundaries
:
at
:::
the

:::::::
bottom

:::
and

::::
top.

:::::
Here,

::
we

:::::
show

:::
the

::::::
biased

:::::
stencil

::::
that

:::
can

::
be

:::::::
applied

:::
for

::::::
vertical

:::::::::::
interpolation

::::
near

:::
the

::::::
bottom

�
i,j i,j,k

:::
⇡ 4xb

i,j

�4zb
i,j,k

:::
⌘

5�
i,j,k� 1

2
+ 15�

i,j,k+ 1
2

� 5�
i,j,k+ 3

2
+�

i,j,k+ 5
2

16

. (28)10

Note that we only write down the bottom boundary for brevity.

The centered and biased fourth-order gradient operators are

@�

@x

���� i,j i,j,k:::
⇡ �4x (�)

i,j i,j,k

:::

⌘
�
i� 3

2 ,j,k
� 27�

i� 1
2 ,j,k

+ 27�
i+ 1

2 ,j,k
��

i+ 3
2 ,j,k x

i� 3
2

� 27x
i� 1

2
+ 27x

i+ 1
2

� x
i+ 3

2
, (29)

and15

@�

@z

���� i,j i,j,k:::
⇡ �4xb4zb

::
(�)

i,j i,j,k

:::

⌘
�23�

i,j,k� 1
2

+ 21�
i,j,k+ 1

2
+ 3�

i,j,k+ 3
2

��
i,j,k+ 5

2 �23x
i� 1

2
z
k� 1

2
::::

+ 21x
i+ 1

2
z
k+ 1

2
::::

+ 3x
i+ 3

2
z
k+ 3

2
::::

� x
i+ 5

2
z
k+ 5

2
::::

.(30)

3.5
::::::::

Boundary
:::::::::
conditions

:::
The

::::::
lateral

:::::::::
boundaries

::
in
:::::::::

MicroHH
:::
are

::::::::
periodic.

::::
The

::::::
bottom

::::
and

:::
top

::::::::
boundary

:::::::::
conditions

::::
can

::
be

::::::::::
formulated

::
in

::::
their

:::::
most

::::::
general

::::
form

::
as

:::
the

::::::
Robin

::::::::
boundary

::::::::
condition20

a�
s

+ b
@�

@z

����
s

= c,

::::::::::::::

(31)

::::
with

::
a,

:
b
::::

and
::
c
::
as

:::::::::
constants.

::::
This

:::::
gives

:::
the

::::::::
Dirichlet

::::::::
boundary

:::::::::
condition

:::::
when

:::::::::::
a = 1, b = 0,

::::
and

:::
the

::::::::
Neumann

:::::::::
boundary

::::::::
condition

::::
when

:::::::::::
a = 0, b = 1.

:
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::::::::
MicroHH

:::::
makes

:::
use

:::
of

::::
ghost

::::
cells

::
in
:::::
order

::
to

:::::
avoid

:::
the

::::
need

::
of

::::::
biased

:::::::
schemes

:::
for

:::::
single

:::::::::::
interpolation

::
or

:::::::
gradient

::::::::
operators

:::
near

:::
the

:::::
wall.

:::
The

::::::
values

::
at

::
the

:::::
ghost

::::
cells

:::
are

::::::
derived

:::::::
making

:::
use

::
of

:::
the

::::::::
boundary

:::::::::
conditions

::::::::
following

:::::::::::::::::::
Morinishi et al. (1998).

:::
The

:::::
ghost

::::
cells

:::
for

:::
the

:::::::
Dirichlet

:::::::::
boundary

::::::::
conditions

::
in
:::
the

:::::::::::
second-order

:::::::
accurate

::::::::::::
discretization

:::
are

�� 1
2

:::

=

:
2c �� 1

2
,

:::::::

(32)

:::::::
whereas

::::
those

:::
for

:::
the

::::::::
Neumann

::::::::
boundary

::::::::
condition

:::
are

:
5

�� 1
2

:::

=

:
�c
⇣
�z� 1

2
+ z 1

2

⌘
+� 1

2
.

:::::::::::::::::::

(33)

::
In

::::
case

::
of

:::
the

::::::::::
fourth-order

:::::::
scheme,

:::
we

::::
have

::::
two

:::::
ghost

::::
cells,

::::
and

::::::::
therefore

:
a
::::::
second

::::::::
boundary

::::::::
condition

::
is
::::::::
required.

:::::
Here,

:::
we

::
set

:::
the

:::::
third

::::::::
derivative

:::::
equal

::
to

::::
zero

::::::::
following

::::::::::::::::::::
(Morinishi et al., 1998).

:::
For

:::
the

::::::::
Dirichlet

::::::::
boundary

::::::::
condition

:::
we

::::
then

:::::::
acquire

::
the

:::::::::
following

:::::::::
expressions

:::
for

:::
the

:::::
ghost

::::
cells

:

�� 1
2

:::

=

:

8c � 6� 1
2

+� 3
2

3

,
:::::::::::::

(34)10

�� 3
2

:::

=

:
8c � 6� 1

2
+� 3

2
,

::::::::::::

(35)

:::::::
whereas

::
in

::::
case

::
of

:
a
::::::::
Neumann

::::::::
boundary

::::::::
condition

:::
we

::::
find

�� 1
2

:::

=

:
�c

z� 3
2

� 27z� 1
2

+ 27z 1
2

� z 3
2

24

+� 1
2
,

::::::::::::::::::::::::::::::

(36)

�� 3
2

:::

=

:
�3c

z� 3
2

� 27z� 1
2

+ 27z 1
2

� z 3
2

24

+� 3
2
.

:::::::::::::::::::::::::::::::

(37)

3.6 Advection15

We use the previously introduced notation to describe the more complex operators and expand them for illustration. The

advection term is discretized in the flux form, where � is an arbitrary scalar located in the center of the grid cell. In the

second-order case, this gives the following discretization:

@u�

@x

���� i,j i,j,k:::
+

@v�

@y

���� i,j i,j,k:::
⇡ �2x

⇣
u�

2x
⌘

i,j i,j,k

:::
+ �2y

⇣
v�

2y
⌘

i,j i,j,k

:::

=

u
i+ 1

2 ,j,k
�
2x
i+ 1

2 ,j,k
� u

i� 1
2 ,j,k

�
2x
i� 1

2 ,j,k x
i+ 1

2
� x

i� 1
2

20

+

v
i,j+ 1

2 ,k
�
2y
i,j+ 1

2 ,k
� v

i,j� 1
2 ,k
�
2y
i,j� 1

2 ,k y
j+ 1

2
� y

j� 1
2
. (38)

The discretization of the advection of the velocity components (see Eqs. 5 and 7) involves extra interpolations as the following

example illustrates:

@vu

@x

���� i,j i,j,k:::
= �2x

�
v2yu2x

�
i,j i,j,k

:::

=

v2y
i+ 1

2 ,j,k
u2x
i+ 1

2 ,j,k
� v2y

i� 1
2 ,j,k

u2x
i� 1

2 ,j,k x
i+ 1

2
� x

i� 1
2
. (39)25
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In the standard fourth-order scheme, the scalar advection in flux form is represented by

@u�

@x

���� i,j i,j,k:::
⇡ �4x

⇣
u�

4x
⌘

i,j i,j,k

:::

=

 
u
i� 3

2 ,j i�
3
2 ,j,k

:::::

�
4x

i� 3
2 ,j i�

3
2 ,j,k

:::::

� 27u
i� 1

2 ,j i�
1
2 ,j,k

:::::

�
4x

i� 1
2 ,j i�

1
2 ,j,k

:::::

+27u
i+ 1

2 ,j i+
1
2 ,j,k

:::::

�
4x

i+ 1
2 ,j i+

1
2 ,j,k

:::::

� u
i+ 3

2 ,j i+
3
2 ,j,k

:::::

�
4x

i+ 3
2 ,j i+

3
2 ,j,k

:::::

!

/
⇣
x
i� 3

2
� 27x

i� 1
2

+ 27x
i+ 1

2
� x

i+ 3
2

⌘
. (40)5

Hereafter, we assume that operator notation is clear and only expand it where necessary.

MicroHH has a fully
::::::
kinetic energy-conserving fourth-order advection scheme (Morinishi et al., 1998) available. This

:::
The

scheme is constructed by interpolation of two
:::::
kinetic

:
energy-conserving second-order schemes

::::::::::::
discretizations to eliminate the

second-order error as illustrated below

@u�

@x

���� i,j i,j,k:::
⇡ 9

8

�2x
⇣
u�

2x
⌘

i,j i,j,k

:::
� 1

8

�2xL
⇣
u�

2xL
⌘

i,j i,j,k

:::
(41)10

::
to

:::::
ensure

::::
that

:::::::
velocity

::::::::
variances

:::
are

::::::::
conserved

:::::
under

:::::::::
advection.

:

Velocity interpolations, such as those in Eq. 39, still need to be performed with fourth-order accuracy (Eq. 27) in order to be

fourth-order accurate (see Morinishi et al. (1998) for details). The expression

@vu

@x

���� i,j i,j,k:::
⇡ 9

8

�2x
�
v4yu2x

�
i,j i,j,k

:::
� 1

8

�2xL
�
v4yu2xL

�
i,j i,j,k

:::
(42)

includes, for instance, a combination of second- and fourth-order interpolations.15

To increase the overall accuracy of the second-order advection operator, there is an option available to only increase the

interpolation part to fourth order

@u�

@x

���� i,j i,j,k:::
⇡ �2x

⇣
u�

4x
⌘

i,j i,j,k

:::
. (43)

3.7 Diffusion

We apply a discretization for diffusion that can be written as the divergence of a gradient, using the building blocks defined20

earlier in this section. As this operator is identical in all directions, we present it in one direction only


�

@2�

@x2

���� i,j i,j,k:::
⇡ 

�

�2x
�
�2x (�)

�
i,j i,j,k

,
:::

(44)


�

@2�

@x2

���� i,j i,j,k:::
⇡ 

�

�4x
�
�4x (�)

�
i,j i,j,k

.
:::

(45)

On an equidistant grid, this provides the well-known second-order accurate operator for the second derivative


�

�2x
�
�2x (�)

�
i,j i,j,k

:::
= 

�

�
i�1,j,k � 2�

i,j,k

+�
i+1,j,k

(�x)

2 , (46)25

where �x is the uniform grid spacing.
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Figure 1.
::::::::
Schematic

::
of

:::
the

:::::::
diffusion

::::::::::
discretization

:::
near

:::
the

::::
wall.

:::
The

:::::
green

::::
node

::
is

::
the

::::::::
evaluation

::::
point

::
at
:::
the

:::::
center

::
of

:::
the

:::
first

:::
cell

:::::
above

::
the

::::
wall,

:::
the

:::
red

::::
node

:
is
:::
the

:::::
stencil

::
of

:::
the

::::::::
divergence

:::::::
operator,

:::
and

:::::
yellow

:::::
nodes

::::
show

:::
the

::::::
stencils

::
of

::
the

::::
four

::::::
gradient

:::::::
operators

::::
over

:::::
which

::
the

::::::::
divergence

::
is
::::::::
evaluated.

:::::
White

::::
nodes

::::::
indicate

:::
the

:::::
extent

::
of

:::
the

:::::
stencil.

For the fourth-order accurate operator, a seven-point stencil is used:


�

�4x
�
�4x (�)

�
i,j i,j,k

:::

=


�

576(�x)

2

✓
�
i�3,j i�3,j,k

:::::
� 54�

i�2,j i�2,j,k
:::::

+ 783�
i�1,j i�1,j,k

:::::

�1460�
i,j i,j,k

:::
+ 783�

i+1,j i+1,j,k
:::::

� 54�
i+2,j i+2,j,k

:::::
+�

i+3,j i+3,j,k
:::::

◆
. (47)

The seven point wide stencil and its properties has been discussed in detail in Castillo et al. (1995).5

:::::::
Whereas

::::::::
diffusion

:::
can

::
be

:::::::::
computed

::::
with

::::::::::
fourth-order

::::::::
accuracy

:::::
using

:
a
:::::::::
five-point

::::::
stencil,

:::
we

:::
use

:
a
::::::::::
seven-point

::::::
stencil

::
as

::
it

::::::
extends

::::::::
naturally

::
to

::::::::::
non-uniform

:::::
grids

::
as

::::::::
explained

::
in

:::::::::::::::::
Castillo et al. (1995).

::::
The

:::::
usage

::
of

:
a
::::::::::
seven-point

::::::
stencil

:::::::
requires

::::::
special

:::
care

::::
near

:::
the

:::::
walls.

::
In

::::
Fig.

:
1
:::
we

:::::
show

::
an

:::::::
example

::
of
::::
how

:::
the

::::::
second

::::::::
derivative

:::
in

::
the

:::::::
vertical

:::::::
direction

::
is
::::::::
computed

:::
for

::
a

:::::
scalar

:
at
:::
the

::::
first

:::::
model

:::::
level

:::::
(green

::::
node

::
in

::::
Fig.

:::
1).

:::
The

:::::::::
calculation

::
of

:::
the

:::::::::
divergence

:::::
(Fig.

::
1,

::
red

:::::::
stencil)

:::::::
requires

:::
the

:::::::
gradient

::::::
located

:
at
:::
the

::::
first

::::
face

:::::
below

:::
the

::::
wall

:::::::
(lowest

:::
red

::::
node

::
in

::::
Fig.

::
1),

::::::
which

:::
can

::::
only

:::
be

:::::::
acquired

:::::
using

:::
the

::::::
biased

:::::::
gradient

:::::::
operator

::::
(Eq.10

::
30

:::
and

::::::
yellow

::::::
stencil

:::::::::
connected

::
to

::::::
lowest

:::
red

::::
node

:::
in

:::
Fig.

:::
1).

::::
The

:::::
extent

::
of
::::

the
:::::::
complete

::::::
stencil

::::
near

:::
the

::::
wall

::::::
(white

::::::
nodes,

:::
Fig.

::
1)

::
is
::::
thus

:::
six

::::::
points,

:::::
rather

::::
than

:::::
seven.

:
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3.8 Pressure

Eqs. 8 and 9 are solved following the method of Chorin (1968). This is a fractional step method that first computes intermediate

values of the velocity components for the next time step, based on all right hand side terms of the momentum conservation

equation Eq. 5

u⇤
i

::

����
t+1

i,j,k

= u
i

|t
i,j,k

+ �t f
i

|t
i,j,k

, (48)5

with the intermediate velocity components denoted with a tilde
::
an

::::::
asterix.

The velocity values at the next time step can be computed as soon as the pressure is known, using

u
i

|t+1
i,j,k

= u⇤
i

::

����
t+1

i,j,k

� �t �nxi

✓
p

⇢0

◆����
t

i,j,k

. (49)

In order to compute the pressure, we multiply the previous equation with the reference density and take its gradient, arriving at

�nxi
(⇢0ui

)|t+1
i,j,k

= �nxi

✓
⇢0u

⇤
i

::

◆����
t+1

i,j,k

10

� �t �nxi


⇢0�

nxi

✓
p

⇢0

◆�����
t

i,j,k

, (50)

where n indicates the spatial order, and the subscript i in superscript x
i

indicates that �nxi is a divergence operator. The left

hand side equals zero due to mass conservation at the next time step (Eq. 2). The resulting equation is the Poisson equation

that is the discrete equivalent of Eq. 8. Rewriting this equation leads to

�nxi
(⇢0u

⇤
i

)|t+1
i,j,k

�t
= �nxi


⇢0�

nxi

✓
p

⇢0

◆�����
t

i,j,k

. (51)15

To simplify the notation, we denote the left-hand side term as  and the p/⇢0 term on the right hand side as ⇡. Solving a

Poisson equation is a global operation. Because the computed fields are periodic in the horizontal directions on an equidistant

grid, and a Poisson equation is linear, we can perform a Fourier transform in the two horizontal directions

b 
l,m,k

= �k2
⇤nb⇡l,m,k

� l2⇤nb⇡l,m,k

+ �nz [⇢0�
nz

(b⇡)]

l,m,k

, (52)

where Fourier transformed variables are denoted with a hat, the spatial order of the operation with n, and the wave numbers20

in the two horizontal dimensions x and y are l and m respectively. Variables k2
⇤ and l2⇤ are the squares of the modified wave

numbers

�k2
⇤2 ⌘ 2

cos(k�x)

(�x)

2 � 2

(�x)

2 (53)

and

�k2
⇤4 ⌘ 2

cos(3k�x) � 54cos(2k�x) + 783cos(k�x)

576(�x)

225

� 1460

576(�x)

2 , (54)
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where the former is the modified wave number for the second-order accurate solver and the latter is the wave number for

the fourth-order one.
::::
Note

::::
that

:::
the

::::::::::
coeffecients

::::::::::
correspond

::
to

:::::
those

::
in
:::::

Eqs.
::
46

::::
and

:::
47.

:
Both expressions satisfy the limit

lim�x!0 k2
⇤n = k2, where n is the order of the scheme.

Solving Eq. 52 for b⇡ requires solving a banded matrix , which
:::
for

:::
the

::::::
vertical

::::::::
direction

::
in

:::::
which

:::
the

:::::
walls

:::
are

:::::::
located.

::::
This

:::::
matrix

:
is tridiagonal for the second-order solver and hepta-diagonal for the fourth-order solver. For this, a standard Thomas5

algorithm
:::::::::::::
(Thomas, 1949) is used. After the pressure is acquired, inverse Fourier transforms are applied and subsequently

the pressure gradient term (see Eqs. 5 and 7) is computed for all three components of the velocity tendency. Note that the

computation of the corrected velocity components does not require a boundary condition for pressure (see Vreman (2014) for

details).

3.9 Boundary conditions10

The lateral boundaries in MicroHH are periodic. The bottom and top boundary conditions can be formulated in their most

general form as the Robin boundary condition

a�
s

+ b
@�

@z

����
s

= c,

with a, b and c as constants. This gives the Dirichlet boundary condition when a = 1, b = 0, and the Neumann boundary

condition when a = 0, b = 1.15

MicroHH makes use of ghost cells in order to avoid the need of biased schemes for single interpolation or gradient operators

near the wall. The values at the ghost cells are derived making use of the boundary conditions following Morinishi et al. (1998).

The ghost cells for the Dirichlet boundary conditions in the second-order accurate discretization are

�� 1
2

= 2c �� 1
2
,

whereas those for the Neumann boundary condition are20

�� 1
2

= �c
⇣
�z� 1

2
+ z 1

2

⌘
+� 1

2
.

In case of the fourth-order scheme, we have two ghost cells, and therefore a second boundary condition is required. Here, we

set the third derivative equal to zero following (Morinishi et al., 1998). For the Dirichlet boundary condition we then acquire

the following expressions for the ghost cells

�� 1
2

=

8c � 6� 1
2

+� 3
2

3

,25

�� 3
2

= 8c � 6� 1
2

+� 3
2
,

13



whereas in case of a Neumann boundary condition we find

�� 1
2

= �c
z
i� 3

2
� 27z

i� 1
2

+ 27z
i+ 1

2
� z

i+ 3
2

24

+� 1
2
,

�� 3
2

= �3c
z
i� 3

2
� 27z

i� 1
2

+ 27z
i+ 1

2
� z

i+ 3
2

24

+� 3
2
.

3.9 Thermodynamics

MicroHH supports the potential (✓) and liquid water potential (✓l) temperature as thermodynamic variables (Sect. 2.5). The dry5

(✓) and moist (✓l) thermodynamics are related through the use of a total specific humidity qt, which is defined as the sum of

the water vapour specific humidity (qv) and the cloud liquid water specific humidity (ql). In the absence of liquid water, ✓l = ✓,

in the presence of liquid water, the liquid water potential temperature is approximated as (Betts, 1973)

✓l ⇡ ✓� Lv

cp ⇧

ql, (55)

where Lv is the latent heat of vaporization, cp the specific heat of dry air at constant pressure, and ⇧ is the Exner function10

⇧ =

✓
p

p00

◆
Rd/cp

, (56)

where p is the hydrostatic pressure, p00 a constant reference pressure, and Rd the gas constant for dry air. The cloud liquid

water content is calculated as

ql = max(0, qt � qs), (57)

where qs is the saturation specific humidity15

qs =

✏ es
p � (1 � ✏) es

, (58)

with ✏ the ratio between the gas constant for dry air and the gas constant for water vapour (Rd/Rv), and es the saturation vapor

pressure. The latter is approximated using a 10th order Taylor expansion at T = 0 degree Celsius of the Arden Buck equation

(Buck, 1981). ql is adjusted iteratively to arrive at a consistent state where qv = qs. Finally, the virtual potential temperature

(Eq. 5) is defined in MicroHH as20

✓v ⌘ ✓

✓
1 �


1 � Rv

Rd

�
qt � Rv

Rd
ql

◆
(59)
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The base state pressure and density are calculated assuming a hydrostatic equilibrium: dp0 = �⇢0gdz, with the density defined

as ⇢0 = p0/(Rd ⇧ ✓v0). Integration with height results in

p0;k+1 = p0;k exp

✓
�g(z

k+1 � z
k

)

Rd ⇧ ✓v0

◆
(60)

where ✓v0 is the average virtual potential temperature between z
k

and z
k+1. This equation is applied from a given surface

pressure to the model top, alternating the calculations at the full and half model levels. That is, given the full thermodynamic5

state (pressure and density) at a full level k, the thermodynamic state can be advanced from the half level k� 1
2 to k+

1
2 . Using

the newly calculated state at k +

1
2 , pressure and density at k + 1 can be calculated.

The base state density ⇢0 that is used in the dynamical core (Sect. 2) is calculated using the initial virtual potential tempera-

ture profile, and is not updated during the experiment. The density and hydrostatic pressure used in the moist thermodynamics

can optionally be updated every time step, following the same procedure as explained in Boing (2014).10

3.10 Rotation

The effects of a rotating reference
:::::
frame

:::
on

::
an

:::::::
f -plane

:
can be included through the Coriolis force. MicroHH can run on an

f -plane, where the related tendencies of
:::
The

:::::::::::
acceleration

:::
due

::
to

:::
the

:::::::
Coriolis

:::::
force

:::::
F
i,cor::

is
::::::::
computed

:::
for

:
the two horizontal

velocity components are calculated as
:::::
(index

:
1
::::
and

:
2
::
in

::::
Eqs.

::
5
:::
and

::
7)

:::
as

F1,cor
::::

���� i,j,k,Fcor i,j,k
:::

= f0vi,j,k, (61)15

F2,cor
::::

���� i,j,k,Fcor i,j,k
:::

= �f0ui,j,k

, (62)

with f0 as Coriolis parameter specified by the user.

4 Physical parameterizations

4.1 Subfilter-scale model for large-eddy simulation

With the governing equations described in Sect. 2 it is possible to resolve the flow down to the scales where molecular viscosity20

acts. In many applications, however, such simulations are too costly. In that case, one may opt for large-eddy simulation (LES),

where filtered equations are used to describe the largest scales of the flow, and the subfilter-scale motions are modeled.
:::
The

::::
LES

:::::::::::::
implementation

::
in

::::::::
MicroHH

:::::::
assumes

::::
very

::::
high

::::::::
Reynolds

:::::::
numbers

::
in

:::::
which

:::
the

:::::::::
molecular

:::::::
viscosity

::
is

::::::::
neglected.

:
Filtering

of the anelastic conservation of momentum equation (Eq. 5), with a tilde applied to denote filtered variables, leads to

@eu
i

@t
= � 1

⇢0

@⇢0eui

eu
j

@x
j

� @⇡

@x
i

� 1

⇢0

@⇢0⌧ij
@x

j

25

+ �
i3g

e✓0
v

✓
v0

+ F
i

. (63)
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In this equation, a tensor ⌧
ij

is defined as

⌧
ij

⌘ gu
i

u
j

� eu
i

eu
j

� 1

3

(gu
i

u
i

� eu
i

eu
i

) . (64)

This is the anisotropic subfilter-scale kinematic momentum flux tensor. The isotropic part of the full momentum flux tensor

has been added to the pressure, providing the modified pressure

⇡ ⌘ ep0

⇢0
+

1

3

(gu
i

u
i

� eu
i

eu
i

) . (65)5

As ⌧
ij

contains the filtered product of unfiltered velocity components, this quantity needs to be parameterized. MicroHH uses

the Smagorinsky-Lilly (Lilly, 1968) model, in which ⌧
ij

is modeled as

⌧
ij

= �K
m

✓
@eu

i

@x
j

+

@eu
j

@x
i

◆
, (66)

with K
m

interpreted as the subfilter eddy-diffusivity. This quantity is modeled as

K
m

= �22S
ij

Sij
1
2

0

BB@1 �

g

✓
v0

@e✓
v

@z
Pr

t

S2

1

CCA

1
2

, (67)10

and is proportional to the magnitude of S of
:::::::::::::
S ⌘ (2S

ij

S
ij

)

1
2

::
of the strain tensor

:::
S
ij

,
:::::
which

::
is

::::::
defined

::
as

:

S
ij

⌘ 1

2

✓
@eu

i

@x
j

+

@eu
j

@x
i

◆
. (68)

The subfilter eddy diffusivity thus takes into account the local stratification N2 ⌘ (g/✓
v0)/(@e✓

v

/@z) and the turbulent Prandtl

number Pr
t

. The latter is set to 1
3 by default, but can be overridden in the settings. The length scale � is the mixing length

defined following Mason and Thomson (1992), as15

1

�n
=

1

[(z + z0)]
n

+

1

(c
s

�)

n

, (69)

which is an arbitrary
::::::::
matching

:::::::
function

:
(n is a free parameter, set to 2 in MicroHH) matching function between the mixing

length following wall scaling to the subfilter length scale (filter size) � ⌘ (�x�y�z)

1
3 , related to the grid spacing.

:::
The

::::
grid

::::
scale

::
is

::::
used

:::
as

::
an

:::::::
implicit

:::::
filter,

::::
thus

:::
no

::::::
explicit

:::::::
filtering

::
is
:::::::

applied.
:

In case of a high-Reynolds number atmospheric LES

with an unresolved near-wall flow, the vertical gradients of the horizontal velocity components @eu
i,j

/@z in the strain tensor20

are replaced with the theoretical gradients predicted from Monin-Obukhov similarity theory. Evaluation of these gradients is

explained in detail in Section 4.2.

The same approach is followed for all scalars, including the thermodynamic variables discussed in Sect. 2.5:

@e�
@t

= � 1

⇢0

@⇢0euj

e�
@x

j

� 1

⇢0

@⇢0R�,j

@x
j

+

eS
�

. (70)

The term R
�,j

refers to the subfilter flux of e� and is defined as25

R
�,j

=

gu
j

�� eu
j

e�. (71)
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The subfilter-scale flux is parameterized in terms of the gradient

R
�,j

= �K
m

Pr
t

@e�
@x

j

. (72)

4.2 Surface model

:::
The

::::
LES

:::::::::::::
implementation

::
of

:
MicroHH uses a surface model to compute

:::
that

::
is
::::::::::
constrained

::
to

:::::
rough

:::::::
surfaces

:::
and

:::::
high

:::::::
Reynold

:::::::
numbers,

::::::
which

::
is

::
a

::::::
typical

:::::::::::
configuration

:::
for

:::::::::::
atmospheric

:::::
flows.

::::
This

::::::
model

::::::::
computes

:
the surface fluxes of the horizontal5

momentum components and the scalars (including thermodynamic variables) in flows over rough surfaces at high Reynolds

numbers. This is a typical configuration for atmospheric flows. The surface model is entirely built on
:::::
using Monin-Obukhov

Similarity Theory (MOST) (see Wyngaard (2010))that
:::::::::::::::::::::::::::
Wyngaard (2010, his Sect. 10.2)).

::::::
MOST

:
relates surface fluxes of vari-

ables to their near-surface gradients using empirical functions that depend on the height of the first model level z1 divided by

the Obukhov length L as an argument. Length L is defined as10

L ⌘ � u3
⇤

B0
, (73)

where u⇤ is the friction velocity,  is the Von Karman constant and B0 is the surface
::::::::
kinematic

:
buoyancy flux. L represents the

height at which the buoyancy production/destruction of turbulence kinetic energy equals the shear production.
:
In

:::::::::
MicroHH,

:::
we

:::
use

:
a
:::::
local

:::::::::::::
implementation

::
of

::::::
MOST,

::::
i.e.,

::::
each

::::
grid

::::
point

::::
has

::
its

::::
own

:::::
value

::
of

:::
L.

::::
This

:::::
choice

::::
can

::::
lead

::
to

:
a
:::::::::::::
overestimation

::
of

::::::::::
near-surface

::::
wind

::::
due

::
to

::::::::
violation

::
of

:::
the

::::::
MOST

::::::::::
assumption

::
of

::::::::
horizontal

:::::::::::
homogeneity

:::::::::::::::::::::::::::::::
(Bou-Zeid et al., 2005, their Fig. 18),15

:::
but

:
it
::::::
allows

:::
for

:
a
:::::
more

::::::::::::
straightforward

:::::::::
extension

::
to

::::::::::::
heterogeneous

::::
land

:::::::
surfaces.

:

Following MOST, the friction velocity u⇤ and the momentum fluxes may be related to the near-surface wind gradient as

z1
u⇤

@U

@z
=⇡

:
� z1u⇤

u0w0
@eu
@z

=⇡
:

� z1u⇤

v0w0
@ev
@z

=⇡
:
�
m

⇣z1
L

⌘
, (74)

where U is defined as
p
eu2

+ ev2, and u0w0 and v0w0 as the surface momentum fluxes for the two wind components. These

relationships can be integrated from the roughness length z0m to z1 resulting in20

u⇤ = f
m

(U1 � U0) , (75)

u0w0
= �u⇤fm (eu1 � eu0) , (76)

v0w0
= �u⇤fm (ev1 � ev0) , (77)

with f
m

defined as:

f
m

⌘ 

ln

✓
z1

z0m

◆
� 

m

⇣z1
L

⌘
+ 

m

⇣z0m
L

⌘ , (78)25

with  
m

desribed in Eqs. 83 and 85.

The same procedure for scalars is followed, with

z1u⇤

�0w0
@e�
@z

= �
h

⇣z1
L

⌘
, (79)
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and in integrated form

�0w0
= u⇤fh

⇣
e�1 � e�0

⌘
, (80)

with

f
h

⌘ 

ln

✓
z1
z0h

◆
� 

h

⇣z1
L

⌘
+ 

h

⇣z0h
L

⌘ , (81)

with  
h

desribed in Eqs. 83 and 85.5

The functions �
m

, �
h

,  
m

, and  
h

are empirical and depend on the static stability of the atmosphere. Under unstable

conditions we follow (Wilson, 2001; Wyngaard, 2010)

�
m,h

=

⇣
1 + �

m,h

|⇣|2/3
⌘�1/2

, (82)

 
m,h

= 3ln

 
1 +��1

m,h

2

!
, (83)

where ⇣ is the ratio of a height and the Obukhov length L, �
m

= 3.6 and �
h

= 7.9. Under stable conditions we use (Högström,10

1988; Wyngaard, 2010)

�
m,h

= 1 +�
m,h

⇣, (84)

 
m,h

= ��
m,h

⇣, (85)

where �
m

= 4.8 and �
h

= 7.8.

With the equations above, the surface fluxes, surface values and near-surface gradients can be computed, but only if the15

Obukhov length L is known. The surface model calculates the Obukhov length by relating the dimensionless parameter z1/L

to a Richardson number. The employed formulation of the Richardson number depends on the chosen boundary condition in

the model. Three possible options are available:

– fixed momentum fluxes and a fixed surface buoyancy flux. Both the friction velocity u⇤ and the surface buoyancy flux B0

are specified. Under these conditions we define the Richardson number Ri
a

equal to z1/L; L can be computed directly20

from the expression

Ri
a

⌘ z1
L

= �z1B0

u3
⇤

. (86)

– a fixed horizontal velocity U0 at the surface and a fixed surface buoyancy flux B0. The friction velocity u⇤ is unknown.

Now, L needs to be retrieved from the implicit relationship

Ri
b

⌘ z1
L

f3
m

= � z1B0

(U1 � U0)
3 . (87)25

– a fixed surface velocity U0 and a fixed surface buoyancy b0. With this boundary condition, the surface values of the

horizontal velocities and the buoyancy are given, and both u⇤ and the surface buoyancy flux B0 are unknown. L is then
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retrieved from

Ri
c

⌘ z1
L

f2
m

f
h

=

z1

⇣
eb1 �eb0

⌘

(U1 � U0)
2 . (88)

In cases of the latter two options, a lookup table is created with
:::::
solver

::
is

:::::::
required

::
to

::::
find

:::
the

:::::
value

::
of

:
L as a function of

:::
that

::::::
satisfies

:::
the

::::::::
equation,

:::
as

:::
f
m ::::

(Eq.
:::
78)

:::
and

:::
f
h::::

(Eq.
:::
81)

::::
both

::::::
depend

:::
on

::
L

::
as

:::::
well.

:::
For

:::::::::::
performance

:::::::
reasons,

:::
we

::::
have

::::::
created

::
a

::::::
lookup

:::::::::
table-based

::::::::
approach

:::
that

::::::
relates

::
L

::
to

:::
the

:
Richardson number. The lookup table has 10

4 entries, of which 90 percent is5

spaced uniformly between z1/L = �5 to 5. The remaining 10 percent are used to stretch the negative range up to z1/L = �10

4

to allow for the correct free convection limit.

4.3 Large-scale forcings

4.3.1 Pressure force

MicroHH provides two options to introduce a large-scale pressure force into the model. The first is to enforce a constant10

massflux through the domain in the streamwise direction. In this approach the desired large-scale velocity U
f

is set, and the

corresponding pressure gradient is computed. We follow here the approach of van Reeuwijk (2007). In this approach, the

u-component of the horizontal momentum equation (Eq. 5) is volume-averaged to acquire

huin+1 � huin

�t
= hf1i �

⌧
@

@x

✓
p

⇢0

◆�
+ F

p;lsp;ls,
::

(89)

where brackets indicate a volume average, f1 contains all the righthand side terms of the u-component of the conservation of15

momentum, except for the dynamic pressure, which is contained in the second term. The large-scale pressure force F
p;ls :::

F
p;ls,

which is to be computed, is the last term. We can now set huin+1
= U

f

to explicitly set the volume-averaged velocity in the

next time step. Furthermore, the volume-averaged horizontal pressure gradient vanishes, because of the periodic boundary

condition, which makes F
p;ls ::::

F
p;ls the only unknown. The acquired pressure force

::::
F
p;ls will be added following

@u

@t

����
i,j,k,Fp;ls

= F
p;ls20

::
as

::
an

:::::::
external

:::::
force

::
in

:::
the

:::::::
equation

::
of

:::::
zonal

:::::::
velocity

:::
(F1::

in
::::
Eqs

:
5
::::
and

::
7).

:

The second option is to enforce a large-scale pressure force through the geostrophic wind components u
g

and v
g

, in combi-

nation with rotation, with the tendencies
:::::::::::
accelerations of the two horizontal velocity components calculated as

::::
F
i,p;ls:::::::::

calculated

::
as

F1,p;ls
::::

���� i,j,k,Fp;ls i,j,k
:::

= �f0vg;k, (90)25

F2,p;ls
::::

���� i,j,k,Fp;ls i,j,k
:::

= f0ug;k, (91)

where u
g;k and v

g;k as
::
are

:
user-specified vertical profiles of geostrophic wind components.
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4.3.2 Large-scale sources and sinks

Large-scale sources and sinks, representing for instance large-scale adveciton
::::::::
advection or radiative cooling, can be prescribed

for each variable separately. The user has to provide vertical profiles of large-scale tendencies S
�;ls ::::::

sources
::::
and

::::
sinks

::::
S
�;ls:that

are added to the total tendencies.

4.3.3 Large-scale vertical velocity5

A second method of introducing large-scale thermodynamic effects is through the inclusion of a large-scale vertical velocity.

In this case, each scalar gets an additional tendency term
:::::
source

::::
term

::::::
S
�,w,ls of the form

S
�,w,ls

::::

���� i,j,k,lsi,j,k:::
= �w

ls;k ls;k
::
�2x (h�i

k

) , (92)

where
::::
wls;k::

is
:
a
::::::::::::
user-specified

:::::::
vertical

:::::
profile

::
of
::::::::::

large-scale
::::::
vertical

:::::::
velocity,

:
h�i

k

is the horizontally-averaged vertical profile

at height z
k

for scalar �.
:::
The

::::::::
tendency

::::
term

::
is

:::
not

::::::
applied

::
to

:::
the

::::::::::
momentum

::::::::
variables.

:
10

4.4 Buffer layer

MicroHH has the option to damp gravity waves in the top of the simulation domain in a so-called buffer layer. The tendency

:::::
source

::::
term

:::::
S
�,buf:associated with the damping at grid cell i, j,k is calculated for an arbitrary variable � as

S
�,buf

::::

���� i,j,k,bufi,j,k
:::

=

�
i,j,k

��0;k

⌧
d;k

(93)

where �0 is taken from a user-specified
::::::
vertical

:
reference profile, and time scale ⌧

d

is a measure for the strength of the damping.15

It varies with height and is calculated at height z
k

following

⌧�1
d;k = �

✓
z
k

� z
b;bot

z
b;top � z

b;bot

◆
�

, (94)

where � is the damping frequency chosen by the user and � an exponent that describes the shape of the vertical profile of the

damping frequency, which is always zero at the bottom (z
b;bot) and � at the top (z

b;top) of the layer.

5 Model output20

4.1 Statistics

A large set of output statistics can be computed during runtime at user-specified time intervals. The statistics module provides

vertical profiles of means, second-, third- and fourth-order moments of all prognostic variables, as well as advective and

diffusive fluxes. Furthermore, there are multiple diagnostic variables, such as the pressure, the pressure variance and its vertical

flux. The thermodynamics generate their own statistics based on the chosen option. The moist thermodynamics provides a large25

set of cloud statistics.
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There is a separate module for budget statistics, which provides the budgets of all components of the Reynolds stress tensor,

and those of the variance and vertical flux of the thermodynamic variables.

One of the key features of the MicroHH statistics routine is that an arbitrary mask can be passed into the routine over which

the statistics are calculated. This allows, for instance, for a very simple way of computing conditional statistics in updrafts or

clouds, which is demonstrated later in Section 9.2.5

4.1 Two- and three-dimensional output

It is possible to save two-dimensional cross sections and three-dimensional fields of any of the prognostic and diagnostic

variables of the model, as well as of derived variables. This output can be made at user-specified time intervals. Cross sections

can be made in any chosen xy�, xz�, and yz�plane. Derived variables (any arbitrary function of existing model variables),

can be easily added to the code by the user.10

5 Technical details of the code

5.1 Code structure

MicroHH is written in C++ and uses elements of object-oriented programming and template metaprogramming. The code

components are written in classes that define the interface. Inheritance is used to allow for specializations of classes. This

way of organizing the code has two advantages: it minimizes switches and it allows code components and their extensions to15

reside in their own file, which increases code clarity and facilitates the merging of new code extensions. High performance

of computational kernels is achieved by executing kernels in their own function, with explicit inclusions of the restrict

keyword to notify the compiler that fields do not overlap in memory. Furthermore, compiler-specific pragmas are used to aid

vectorization on Intel compilers.

5.2 GPU20

MicroHH is enabled to run on fast and energy-efficient Graphical Processing Units (GPU). This promising technique has been

pioneered in atmospheric flows by Schalkwijk et al. (2012) and has shown its potential in weather forecasting (Schalkwijk

et al., 2015). The implementation is based on NVIDIA’s CUDA. The CPU and GPU version reside in the same code base,

where the GPU implementation is activated with the help of precompiler statements. The philosophy is that the entire model is

initialized on the CPU and that the GPU implementation is only activated right before starting the main time loop. At that stage25

:::::::
moment,

:
the required fields are copied in double precision accuracy to the GPU, and the entire time integration is done there.

Synchronization only happens when statistics have to be computed or when restart files or cross sections of flow fields are

saved to disk, to ensure high performance.
:::
The

:::::
design

::::::
choice

::
to

:::
do

:::
the

:::::
entire

::::::::::
initialization

:::
on

:::
the

::::
CPU

:::::::::
minimizes

:::
the

:::::::
amount

::
of

::::
GPU

:::::
code,

:::
and

::::::::
therefore

::::::
allows

:::
for

::::::::::
maintaining

:
a
:::::
single

:::::
code

::::
base

::
for

:::
the

:::::
CPU

:::
and

:::::
GPU

::::
code.

:
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5.3 Parallelization

The code uses the Message Passing Interface (MPI) in order to run on a large number of cores. The three-dimensional simula-

tion domain is split into vertically-oriented columns standing on a two-dimensional grid.

The code assigns one MPI task to each grid column using the MPI_Cart_create function, and uses this grid to detect the IDs

of neighboring processes. In order to avoid complex packing routines, we make use of MPI datatypes wherever possible. The5

MPI calls are hidden in an interface to avoid the need to manually write MPI calls.

The input/output (IO) is entirely based on MPI-IO
:
,
:::
the

::::::
parallel

:::
IO

:::::::::
framework

::::
that

::::::
comes

::::
with

:::::
MPI, to ensure that three-

dimensional fields and two-dimensional cross sections are stored as single files. We have chosen MPI-IO in order to limit the

number of files resulting from simulations on a large number of processes and to allow for restarts on a different number of

processes. In order to keep complexity of the IO as low as possible, we make use of the MPI_Sub_array function in combination10

with MPI_File_write_all in order to write the fields.

5.4 External dependencies

MicroHH depends on several external software tools or libraries. It uses the CMake (https://cmake.org
:
) build system for the

generation of Makefiles. CMake allows for parallel builds, which minimizes the compilation time, and it is easy to add con-

figurations for different machines. Furthermore, the FFTW3 library (Frigo and Johnson, 2005) is used for the computation of15

fast-Fourier transforms. The statistical routines make use of netCDF software developed by UCAR/Unidata 1(http://doi.org/10.

5065/D6H70CW6). In order to run the provided test cases and their output scripts, a Python
:
(https://www.python.org

:
)
:
instal-

lation including the NumPy and Matplotlib
:::::::::::::::::::::
(van der Walt et al. (2011),

:
http://www.numpy.org)

::::
and

:::::::::
Matplotlib

:::::::::::::
(Hunter (2007),

https://matplotlib.org)
:

modules is required. Automatic documentation generation can be done using Doxygen
:
(http://doxygen.

org), but this is optional.20

6 Running simulations

In order to run a simulation with MicroHH, a sequence of steps needs to be taken. Each simulation has an .ini file that

contains the settings of the simulation, a .prof file that contains the (initial) vertical profiles of all required variables, and,

if time-varying boundary conditions are desired, a file with the prescribed time evolution for all time-varying boundary con-

ditions.
:::::::
MicroHH

::::::::
provides

::
a

::::::::
document

::
(
:::::::::::::::
doc/input.pdf

:
)
::::
that

:::::::
contains

:::
an

::::::::
overview

::
of

:::
all

:::::::
possible

:::::::
options

::::
that

:::
can

:::
be25

:::::::
specified

::
in

:::
the

:::::
.ini

:::
file.

To prepare a simulation with the name test_simulation, MicroHH needs to be run in the following way

./microhh init test_simulation

1

22
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where it is assumed that test_simulation.ini and test_simulation.prof are available in the directory where

the command is triggered. This procedure will create the initial fields of all prognostic variables and save the required fields30

for those model components that need to save their state to guarantee bitwise identical restarts.

After the previously described initialization phase, the execution of

./microhh run test_simulation

will start the actual simulation. Depending on the chosen output intervals, the simulation will create restart files, statistics, cross

sections, and field dumps. MicroHH can restart from any time at which the restart files are saved.5

The last mode in which the code can run is the post-processing mode. By running

./microhh post test_simulation

the code will generate statistics from saved restart files at a specified time interval. This mode allows the user to create new

statistics and calculate those from saved data, without having to rerun the simulation.

7
:::::
Model

:::::::
output10

7.1
:::::::
Statistics

:
A
:::::
large

:::
set

::
of

:::::
output

::::::::
statistics

:::
can

:::
be

::::::::
computed

::::::
during

::::::
runtime

::
at
::::::::::::
user-specified

::::
time

::::::::
intervals.

:::
The

::::::::
statistics

::::::
module

::::::::
provides

::::::
vertical

:::::::
profiles

::
of

:::::::
means,

:::::::
second-,

:::::
third-

::::
and

:::::::::::
fourth-order

::::::::
moments

::
of

:::
all

:::::::::
prognostic

:::::::::
variables,

::
as

::::
well

:::
as

::::::::
advective

::::
and

:::::::
diffusive

::::::
fluxes.

:::::::::::
Furthermore,

::::
there

:::
are

:::::::
multiple

:::::::::
diagnostic

::::::::
variables,

::::
such

::
as

:::
the

::::::::
pressure,

::
the

:::::::
pressure

::::::::
variance

:::
and

::
its

:::::::
vertical

::::
flux.

:::
The

::::::::::::::
thermodynamics

::::::::
generate

::::
their

::::
own

::::::::
statistics

:::::
based

:::
on

:::
the

::::::
chosen

:::::::
option.

:::
The

::::::
moist

::::::::::::::
thermodynamics

:::::::
provides

::
a15

::::
large

:::
set

::
of

:::::
cloud

::::::::
statistics.

:::::
There

::
is

:
a
::::::::

separate
::::::
module

:::
for

::::::
budget

::::::::
statistics,

:::::
which

::::::::
provides

:::
the

:::::::
budgets

::
of

::
all

:::::::::::
components

::
of

::
the

::::::::
Reynolds

:::::
stress

::::::
tensor,

::::
and

::::
those

::
of
:::
the

::::::::
variance

:::
and

:::::::
vertical

:::
flux

::
of

:::
the

:::::::::::::
thermodynamic

::::::::
variables.

:

:::
One

::
of
:::
the

::::
key

:::::::
features

::
of

:::
the

::::::::
MicroHH

:::::::
statistics

::::::
routine

::
is
::::
that

::
an

::::::::
arbitrary

::::
mask

:::
can

:::
be

::::::
passed

:::
into

:::
the

::::::
routine

::::
over

::::::
which

::
the

::::::::
statistics

:::
are

:::::::::
calculated.

::::
This

::::::
allows,

:::
for

::::::::
instance,

:::
for

:
a
::::
very

::::::
simple

::::
way

::
of

:::::::::
computing

::::::::::
conditional

:::::::
statistics

::
in
::::::::
updrafts

::
or

::::::
clouds,

:::::
which

::
is

:::::::::::
demonstrated

::::
later

::
in

:::::::
Section

:::
9.2.

:
20

7.2
::::
Two-

::::
and

:::::::::::::::
three-dimensional

:::::::
output

:
It
::
is
::::::::

possible
::
to

::::
save

::::::::::::::
two-dimensional

:::::
cross

:::::::
sections

::::
and

:::::::::::::::
three-dimensional

:::::
fields

:::
of

:::
any

:::
of

:::
the

:::::::::
prognostic

::::
and

:::::::::
diagnostic

:::::::
variables

::
of

:::
the

::::::
model,

::
as

::::
well

:::
as

::
of

::::::
derived

::::::::
variables.

::::
This

::::::
output

:::
can

:::
be

::::
made

::
at
::::::::::::
user-specified

::::
time

::::::::
intervals.

:::::
Cross

:::::::
sections

:::
can

::
be

:::::
made

::
in

::::
any

::::::
chosen

:::::
xy�,

::::
xz�,

::::
and

:::::::::
yz�plane.

:::::::
Derived

:::::::
variables

:::::
(any

:::::::
arbitrary

:::::::
function

::
of

:::::::
existing

::::::
model

:::::::::
variables),

:::
can

::
be

:::::
easily

::::::
added

::
to

:::
the

::::
code

::
by

:::
the

:::::
user.25
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8 Validation of the dynamical core

In this section, we present a series of cases intended to validate MicroHH under a wide range of settings. Each of these test

cases is available in the cases/ directory in the MicroHH repository, where all detailed settings can be found (see Sect. 14).

Below, we present only the most relevant information per case.

8.1 Taylor-Green vortex

The two-dimensional Taylor-Green vortex (cases/taylorgreen) presents an ideal test case for a dynamical core as it has

an analytical solution, even though it is nonlinear. This flow is composed of two rotating vortices whose evolution in a domain

[0,1;0,0.5] is described with5

u(x,z, t) = sin(2⇡x)cos(⇡z)f(t), (95)

w(x,z, t) = cos(2⇡x)sin(⇡z)f(t), (96)

p(x,z, t) =

1
4

✓
sin(4⇡x) + sin(4⇡yz

:
)

◆
f(t)2, (97)

where f(t) = 8⇡2⌫t.

We use the analytical form at t = 0 as the initial condition and run this case for one vortex rotation (t = 1), with ⌫ =10

(800⇡2
)

�1. We compare the result against the analytical solution for a set of grid spacings and with the second-order and

fourth-order dynamical core; for the latter we compare the most accurate advection scheme and the fully energy-conserving

one.

Figure 2 shows the error convergence of the simulations. The error for a variable � is computed as
P

�x�z |�
i,k

��ref,i,k, |
over the two-dimensional domain, where �x and �z are the uniform grid spacings used in this case and �ref is the analytical15

solution. All variables converge according to the order of the numerical scheme. The fourth-order dynamical core loses accu-

racy at fine grid spacings. This is due to the boundary condition for the vertical velocity that sacrifies an order of accuracy to

ensure global mass conservation (Morinishi et al., 1998).

8.2 Energy
::::::
Kinetic

:::::::
energy conservation and time accuracy

The second test of the dynamical core consists of combined evaluation of energy
:::::
kinetic

::::::
energy

::::::::::::::::::::::
(KE ⌘ 1

2

�
u2

+ v2 + w2
�
)5

conservation and time accuracy (cases/conservation). In this experiment, we switch the diffusion off and
::
run

:::
the

::::::
model

::::
with

::::
only

:::
the

::::::::
advection

::::
and

:::::::
pressure

::::::
solver

:::::::
enabled

:::
and

:
advect random noise through the domain for 1000 seconds. These

tests have been conducted with the third- and fourth-order Runge-Kutta schemes. We have chosen for the fourth-order spatial

discretization in order to demonstrate its energy conservation.

The loss of
:::::
kinetic

:
energy as a function of time is shown in Fig. 3a. The fourth-order scheme results in a smaller energy10

loss for the same time step and an a faster convergence. The error-convergence plot (Fig. 3b) shows that the error convergence

is in accordance with the order of the respective scheme. Furthermore, it illustrates the fact that, if high accuracy in time is

desired, the five-stage fourth-order scheme is less expensive than the three-stage third-order scheme. For instance, at a �t of
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Figure 2. Convergence of the spatial discretization error in the two-dimensional Taylor-Green vortex.
:::::::
Subscript

:
2
:::::::
indicates

:::
the

::::::::::
second-order

::::::
scheme,

:
4
:::
the

::::
most

:::::::
accurate

:::::::::
fourth-order

::::::
scheme,

::::
and

:::
4M

:::
the

::::
fully

::::::::::::::
energy-conserving

:::::::::
fourth-order

:::::::
scheme. The dashed black line is the

reference for second-order convergence, the dotted black line for
:::
lines

:::::::
indicate fourth-order convergence.

10, the error of the fourth-order scheme is approximately equal to the error of the third-order scheme at a �t of 2.5. To reach

this accuracy, the fourth-order scheme needs only 5 steps per 10 time units, whereas the third-order scheme needs 12 steps.

8.3 Laminar katabatic
:::::::
anabatic

:
flow5

To test the buoyancy routine and the option to put the domain on a slope, a laminar katabatic flow
::::::::::
Prandl-type

:::::::
anabatic

:::::
slope

::::
flow

:::::::::::::
(Prandtl, 1942) has been simulated , based on the test case of Prandtl (1942) ((cases/prandtl

::::::::::::::
prandtlslope). In

this test case, the surface is inclined at an angle of 30

� and a linearly stratified atmosphere (N = 1 s�1) is cooled
:::::
heated

:
from

below with a fixed surface buoyancy flux of -0.005
::::
0.005 m2 s�3.

The fluid, which was initially at rest, goes through a series of decaying oscillations after the negative buoyancy flux is applied10

at the surface. Eventually, it reaches the steady state corresponding to the Prandtl model solution. Numerical integration was

performed sufficiently long for the oscillation amplitude to become a small fraction of the amplitude of the first oscillation.

Comparison of
::::::::
horizontal

::::
wind

::
u
:::
and

:::::::::
buoyancy

:
b
::
of

:
analytical and numerical solutions , which very closely agree with each

other, is presented
:
is
::::::
shown

:
in Fig. 4.

:::
For

::::
both

::::::::
variables

:::
the

:::::::
solutions

:::::::
closely

::::
agree

::::
with

:::::
each

:::::
other.

8.4 Turbulent channel flow

For fully turbulent flows, the numerical solutions cannot be compared against any analytical testcases. Therefore, we validate5

our results against a channel flow at a Reynolds-⌧ number of 590 (Moser et al., 1999) for means, variances, spectra, and
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Figure 3. Time evolution of the
:::::
kinetic energy loss

:::::
change

::::
�KE

:
during 1000 time units of random noise advection for the RK3 and RK4

time integration schemes with three different time steps (a). Error
:::::
Kinetic

::::::
energy

:::::
change

:
convergence of the temporal discretization for the

RK3 and RK4 scheme (b).

second-order budget statistics (cases/moser590). The case is run at a resolution of 768 ⇥ 384 ⇥ 256 grid points.
:::
The

::::::
original

:::::::::
numerical

:::::::::
simulation

:::
data

::
of

:::::::::::::::::::
Moser et al. (1999) has

:::::
been

::::::::
produced

::
on

:
a
::::
384

::
⇥

:::
384

::
⇥

::::
256

::::
grid,

::::
with

::::::
spectral

::::::::
schemes

::
in

:::
the

:::::::::
horizontal

::::::::::
dimensions

:::
and

:::::::::
Chebyshev

:::::::::::
polynomials

::
in

:::
the

:::::::
vertical.

Figure 5a shows the normalized horizontally-averaged streamwise velocity. The normalized rms of all three velocity compo-10

nents are presented in Fig. 5b. All plotted variables show a perfect match with the data and are indistinguishable from Moser’s

data. In order to further assess the accuracy of the data, we show the second-order budgets of the variances in Fig. 6. Also here,

the match with the reference data is excellent, which indicates that the whole range of spatial scales in the flow is represented

well and that the fourth-order scheme is well able to pick up the small scale
:::::::::
small-scale details of the flow.

The findings in the previous paragraph are further corroborated by the spectra shown in Fig. 7. Over the whole range of15

scales, the match between our simulation and that of Moser
::::::::::::::::
Moser et al. (1999) is excellent.

::::
Note

::::
that

::
the

:::::::
spectra

::::
from

:::::::
Moser’s

::::::::
simulation

:::::::
display

::
an

:::::::
increase

::
in

:::::::
pressure

:::::::
variance

::
at
:::
the

:::::::
highest

::::
wave

::::::::
numbers.

::::
This

:::::::
increase

::
is

:::
the

:::::
result

::
of

:::::::
aliasing

:::::
errors

::
at

::::
high

::::
wave

::::::::
numbers

:::
that

:::
are

::::::
typical

:::
for

:::
the

::::::
spectral

::::::::
schemes

:::
that

:::::::::::::::::::::
Moser et al. (1999) used.
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Figure 4. Normalized numerical Prandtl-model solutions for velocity u (left) and buoyancy b (right) compared to their analytical counterparts.

8.5 Turbulent katabatic flow

The final evaluation of the dynamical core without parametrizations enabled is based on the direct numerical simulation of a5

turbulent katabatic flow. Here, a buoyancy driven slope flow is simulated following the setup of Fedorovich and Shapiro (2009)

(cases/drycblslope).

A flow over a slope inclined at an angle ↵ of 60� is simulated with a fixed uniform surface buoyancy flux of -0.5 m2 s�3.

The simulation is performed in a domain of 0.64 m ⇥ 0.64 m ⇥ 1.6 m using a uniform grid of 256 ⇥ 256 ⇥ 640 points. The

initial state is a fluid at rest with a linear buoyancy stratification N of 1 s�1. No-slip boundary conditions are applied at the10

bottom, free-slip at the top.

Turbulent motion starts quickly after the buoyancy flux is applied at the surface. It is characterized by random, large-

amplitude fluctuations of velocity and buoyancy fields in the near-slope core region, and shows a quasi-periodic oscillatory

behavior at larger distances from the slope. Mean profiles of along-slope velocity component and buoyancy, as well as profiles

of second-order turbulence statistics, such as kinematic turbulent fluxes of momentum and buoyancy, and velocity-component
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Figure 5. Velocity means and variances for Moser et al. (1999) channel flow case at Reynolds-⌧ 590. The dashed vertical lines marks the

spectra locations. Height z is normalized with u⌧/⌫, velocities with u�1
⌧ .

and buoyancy fluctuation variances, were evaluated by averaging the simulated flow fields spatially over the along-slope planes

and temporally over five oscillation periods beyond the transition stage.5

For comparison, the same katabatic flow case was reproduced using the numerical code (hereafter referred to as FS09) that

was employed to simulate turbulent slope flows in Shapiro and Fedorovich (2008) and Fedorovich and Shapiro (2009). In that

code, the time advancement was performed with an Asselin-filtered second-order leapfrog scheme (Durran, 2013). The spatial

discretizations are identical to the second-order accurate ones of MicroHH.

Numerical results obtained with both numerical codes testify that stable environmental stratification in combination with10

negative surface buoyancy forcing in the katabatic flow leads to an effective suppression of vertical turbulent exchange in the

flow region adjacent to the slope. This suppression results in a shallow near-surface sublayer with strong buoyancy gradients

(Fig. 8a) capped by a narrow jet with peak velocity located very close to the ground (Fig. 8b). Further comparison has been per-

formed on the slope-normal fluxes of momenum and buoyancy (not shown), where a nearly perfect match has been reproduced

as well.15
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⌧ .

9 Validation of atmospheric large-eddy simulations

9.1 Dry convective boundary layer with strong inversion

As a first test case of MicroHH in LES mode, we present that of Sullivan and Patton (2011) (cases/sullivan2011). This

is a dry clear convective boundary layer that grows into a linearly stratified atmosphere with a very strong capping inversion

(see Fig. 9a). The system is heated from the bottom by applying a constant kinematic potential temperature
:::
heat

:
flux of

0.24 K m s�1. The domain size is 5120 m ⇥ 5120 m ⇥ 2048 m. Gravity wave damping has been applied in the top 25 percent

of the domain. Simulations have been run for three hours with three spatial resolutions. The time-averaged profiles have been

calculated over the last hour.5

The results show the formation of a well-mixed layer with an overlying capping inversion (see Fig. 9a) and the associated

linear heat-flux profile with negative flux values in the entrainment zone (see Fig. 9b). The change of both quantities with

resolution highlights the intrinsic challenge in resolving a boundary layer with an inversion layer that is stronger than the

numerical schemes can accurately resolve. At coarse resolution, the strong inversion leads to an unphysical overshoot of the
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⌧

potential temperature flux above the boundary layer top (see Fig. 9b). This overshoot leads to a numerical mixed layer on top10

of the entrainment zone that disappears quickly
:::::::
vanishes

:
with increasing resolution.

9.2 BOMEX

The BOMEX shallow cumulus case (Siebesma et al., 2003) (cases/bomex), S03 hereafter, provides the opportunity to

evaluate the moist thermodynamics (see Sect. 3.9) and large-scale forcings. We have repeated the case as described in S03 at

the original resolution of the study (100 m ⇥ 100 m ⇥ 40 m) and at a higher resolution (10 m ⇥ 10 m ⇥ 9.375 m).5

This case produces non-precipitating shallow cumulus. It has a large-scale cooling applied that represents radiation, as well

as a large-scale drying to allow the atmosphere to relax to a steady state. In addition, a large-scale vertical velocity is applied

over a certain height range to reproduce the appropriate synoptic conditions.

The simulation is run for 6 hours. Statistics are recorded during the final hour, including conditional statistics for the

cloud-covered fields (q
l

> 0) and for the cloud cores (q
l

> 0 and ✓
v

> 0). The vertical profile of area coverage and profiles10

of horizontally-average liquid water potential temperature ✓
l

, total water q
t

, and vertical velocity w are shown in Fig. 10. All

mean and conditionally sampled statistics at the original resolution are predominantly within one standard deviation of the

ensemble mean of data from all models that participated in S03. The horizontally-averaged vertical velocities in the cloud and

cloud core decrease considerably with an increase in resolution.

9.3 GABLS115

To evaluate the LES mode for stable atmospheric conditions, the GABLS1 LES intercomparison case (Beare et al., 2006)

(cases/gabls1) was reproduced. The boundary layer develops in this case from a shallow well-mixed layer into a weakly
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Figure 8. Profile of the mean along-slope velocity (a) and buoyancy (b) as predicted by MicroHH and FS09.

stable boundary layer, driven by a prescribed negative tendency of the surface temperature over a total integration time of 9

hours. The Boussinesq approximation is used, the advection scheme uses fourth-order accurate interpolations (Eq. 27), and the

Smagorinsky subgrid turbulence scheme is set up with a Smagorinsky constant equal to 0.12, and a subgrid turbulent Prandtl

number of unity. The experiments are performed at two different resolutions with grid cells of 2 m and 6.25 m, and compared

to the models which participated in the study of Beare et al. (2006).5

Figure 11 shows the domain and time-averaged (over a period from 28800 to 32400 s) vertical profiles of potential tem-

perature (h✓i) and the velocity component (hui), and also time series of the boundary layer depth (zABL) and friction velocity

(u⇤). At the largest grid spacing of 6.25 m, it takes approximately 2 hours for the flow to become turbulent, as is evident from

the delayed boundary layer growth and abrupt changes in u⇤. Nonetheless, typical features like the low-level jet (Fig. 11b) are

well reproduced, and all statistics are predominantly within the range of results from Beare et al. (2006). With the grid spacing10

reduced to 2 m, the flow becomes turbulent nearly instantaneously, but the resulting boundary layer depth and surface friction

velocity are on the low side compared to the 5 models from Beare et al. (2006) which were run at this resolution.
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:
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and
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cloud
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humidity and (d) vertical velocity. The results are averaged over t = 18000 s – 21600 s. The shaded area denotes the mean ± one standard
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resolution (dashed) setup.
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10 Performance

10.1 CPU

The parallel performance of MicroHH has been evaluated in strong- (cases/strongscaling) and weak-scaling15

(cases/weakscaling) experiments. The case used is direct numerical simulation of a buoyancy driven atmospheric bound-

ary layer based on van Heerwaarden et al. (2014). For each simulation in the scaling experiments, a series of time steps

is performed, and the mean cost per step is calculated over the series. The strong-scaling experiment has been performed on

LRZ’s SuperMUC1 machine
::::::
(Phase

:
1
::::
Thin

:::::
Node

:::::
8-core

::::::
Sandy

:::::::::
Bridge-EP

::::
Xeon

::::::::
E5-2680

:::
8C,

:
2
:::::::::
processors

:::
per

:::::
node,

:::::::::
Infiniband

::::::
FDR10

:::::::::::
interconnect). In this experiment,

:
simulations were performed on 1024 ⇥ 1024 ⇥ 1024 and 2048 ⇥ 2048 ⇥ 1024 grid5

points, with the number of processes increased throughout the scaling experiment. The weak-scaling experiment has been per-

formed on Forschungszentrum Jülich’s Juqueen2 machine
::::
(IBM

::::::::
PowerPC

:::
A2,

:::
1.6

:::::
GHz,

:::
16

::::
cores

:::
per

:::::
node,

:::
5D

:::::
Torus

::::::::
network,

::
40

::::::
GBps). In this experiment, a fixed 64 ⇥ 32 ⇥ 1024 grid is assigned to each processor and throughout the experiment the

domain size is increased. The results of both experiments are shown in Figure 12.

The strong-scaling experiment shows that increasing the number of processors leads to faster simulations. The speedup is10

initially close to linear, but each consecutive increase in the number of cores makes the model less efficient. Based on these

results, we conclude that for the chosen test case and for the used supercomputers, a work load of approximately 2 ⇥ 10

6 grid

points per core is the best balance between speed and computational efficiency.
1https://www.lrz.de/services/compute/supermuc/
2http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
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The weak scaling shows almost 90 percent efficiency going from 512 to 8192 cores, beyond that the scaling falls off to 80

percent. This can be explained by physical properties of the machine; beyond 8192 cores a simulation no longer fits on one15

midplane (a physical unit consisting of 8192 cores), leading to slower communication.

10.2 Performance GPU (CUDA) implementation

The GPU implementation of MicroHH allows for fast simulations on a single device. The current state-of-the-art GPUs feature

12 GB of memory, thus simulations of maximally 512 ⇥ 512 ⇥ 512 grid points of a flow with three velocity components,

pressure, two scratch fields for temporary storage, and a single scalar fit in memory.
:::::
Within

::::
this

::::::::::
experiment,

::
we

::::::::
compare

::::
thus5

::::
GPU

::::::::::
simulations

::::
that

::
do

:::
not

:::::
need

:::::::::::::
communication

::::::
against

:::::
CPU

::::::::::
simulations

:::
that

:::::::
require

:::::::::::::
communication

:::::::
between

:::::
cores

::::
and

:::::
nodes.

::::
The

::::::
reason

:::
for

:::::
doing

:::
so,

:
is
::::

that
::::::
nearly

::
all

::
of
:::

the
::::::::::

simulations
:::
of

:::
the

::::::::
presented

::::::
results

::
in

:::::::
Sections

::
8

:::
and

::
9

::
fit

::::::
within

:::
the

:::::::
memory

::
of

:
a
:::::
single

:::::
GPU.

:

To test the performance of such simulations, the performance of MicroHH on an NVIDIA Quadro K6000 (using CUDA 6.5)

has been compared against the Max Planck Institute for Meteorology’s cluster Thunder (2 Intel Xeon E5-2670 CPU’s per node,10

16 cores per node, Intel 15.01 with OpenMPI 1.8.4). Three benchmark cases have been chosen: the BOMEX moist convection
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Table 1. Speedup of GPU simulation compared to respective CPU simulation performed on n cores.

case n=1 n=16 n=32 n=64

B64 18.49 1.93 1.14 0.95

B128 28.01 2.98 1.51 0.92

B256 27.76 3.02 1.59 0.91

B512 29.88 3.03 1.56 0.86

M180 21.57 2.17 1.13 0.69

M600 22.55 2.25 1.06 0.60

case on grids of 64

3, 128

3, 256

3 and 512

2 ⇥ 384, and the channel flow cases of Moser et al. (1999) at a Reynolds-⌧ number of

180 and 590.

The results shown in Table 1 point to the great potential of GPU computing. For the considered cases, which all fit on a

single GPU, it takes at least 32 cores to reach equal performance. Only at 64 cores, the CPU simulations are notably faster.

Therefore, for simulations that fit into its memory, the GPU provides an excellent alternative for the CPU, especially as
:::::::
because

the GPU is very energy efficient.

11
::::::::
Published

:::::::
studies

::
To

::::
date,

:::::::
several

::::::
studies

::::
have

::::
been

:::::::::
published

:::
that

:::::
make

:::
use

:::
of

::::::::
MicroHH

::
or

::::
data

:::::::::
generated

::::
with

:::::::::
MicroHH. Van Heerwaarden5

et al. (2014)
::::::
studied

::
the

:::::::
scaling

::
of

:::
flow

::::
over

::::::::::::::
heterogeneously

:::::
heated

::::
land

:::::::
surfaces

:::::
using

::::
DNS

:::
and

:::::
LES,

:::::::::::::::::::::
Gentine et al. (2015) used

::::
LES

::
to

:::::
study

:::
the

:::::::
structure

:::
of

:::
the

::::::::
inversion

::
of

::
a
:::::::::
convective

::::::::
boundary

:::::
layer,

::::::::::::::::::::::::::::::::::::::::
van Heerwaarden and Mellado (2016) developed

::::::
scaling

::::
laws

::
for

:::
the

:::::::::
convective

::::::::
boundary

::::
layer

::::
over

::
a

::::::
surface

::::
with

:
a
:::::::
constant

::::::::::
temperature

::::
from

::::
DNS

:::::
data,

:::::::::::::::::::::::::
McColl et al. (2017) improved

::::::::::
surface-layer

:::::::::
similarity

:::::
under

::::::
mildly

:::::::::
convective

:::::::::
conditions

::::
with

:::
the

::::
help

::
of

:::::
DNS

::::
data,

::::
and

::::::::::::::::::::::
Umphrey et al. (2017) used

:::::
DNS

:::
data

::::::::
produced

::::
with

:::::::::
MicroHH

::
as

:
a
::::::::
reference

:::
for

::::
their

::::::::::
simulations

::
of

:::::
slope

::::
flow.

:
10

12 Future plans

There are several ongoing projects to extend the model. Currently, a parameterizations
:::::::::::::
parameterization

:
for microphysics has

been developed, and an interactive land surface model is under development. In addition, the immersed boundary method

following Tseng and Ferziger (2003) is being implemented to allow for simulations of flow over obstacles and hills.

Furthermore, preliminary experiments have been performed to include a Domain-Specific Language (DSL) to enable the15

expression of complex finite difference operators in simple and compact syntax (https://github.com/Chiil/stencilbuilder/). This

development has shown great potential, for two reasons. First, the DSL prevents implementation errors, as the explicit indexing
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Table 2. Overview of used constants.

Symbol Description Value Units

 Von Karman constant 0.4 -

g Gravitational acceleration 9.81 m s�2

cp Specific heat of dry air at constant pressure 1005 J kg�1 K�1

p00 Reference pressure 1 · 105 Pa

Rd Gas constant for dry air 287.04 J K�1 kg�1

Rv Gas constant for water vapor 461.5 J K�1 kg�1

Lv Latent heat of vaporization 2.5 · 106 J kg�1

in computational kernels with spatial operators can be omitted. Second, the DSL allows for simple implementation of system-

specific tuning, such as loop tiling or OpenMP.

13 Conclusions

This paper has presented a full description of MicroHH, a new computational fluid dynamics code for simulations of turbulent

flows in the atmospheric boundary layer. The governing equations and their implementation has been presented, and a broad

validation under a wide range of settings has been shown.
::::::::
MicroHH

:::::::
delivers

:::
the

::::::::
expected

:::::
error

::::::::::
convergence

:::
of

:::
the

::::::
spatial5

:::
and

::::::::
temporal

:::::::
schemes,

::::
and

:::
has

::::::
proven

::
to
:::

be
:::::
mass,

::::::::::
momentum,

::::
and

::::::
energy

::::::::::
conserving.

:::
The

:::::
code

::::::
delivers

:::::
good

:::::::::::
performance

::
in

::::
weak

::::
and

::::::
strong

::::::
scaling

:::::::::::
experiments.

::
Its

:::::::
current

:::::::::
limitations

:::
are

:::
the

:::::::
absense

::
of

:::::::::
horizontal

::::::::
boundary

:::::::::
conditions

:::::
other

::::
than

:::::::
periodic,

::::
and

:::
the

::::::
limited

:::
set

::
of

::::::::
available

:::::::
physical

:::::::::::::::
parameterizations.

:::::
Both

:::::::::
limitations

::::
will

::
be

:::::::::
addressed

::
in

:::::
future

:::::::
versions

:::
of

::
the

:::::
code.

:

14 Availability of code and resources10

MicroHH has its own website at http://microhh.org. The code is hosted at GitHub and can be accessed either via the website, or

directly from https://github.com/microhh/microhh. The GitHub website includes a wiki with several tutorials, including one to

compile and run the code. The GitHub repository is coupled to Zenodo, which provides DOIs for released software. The release

on which the reference paper is based is found at https://zenodo.org/badge/latestdoi/14754940. A selection of visualizations

can be viewed at the MicroHH channel on Vimeo https://vimeo.com/channels/microhh/.15

Appendix A: Appendix
:::::::
Physical

:::::::::
constants

Table 2 presents an overview of the chosen values for physical constants in the code.
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