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Abstract 9 

Sorption of metals on minerals is a key process in treatment water, natural aquatic environments, and 10 

other water related technologies. Sorption processes are usually simulated with surface complexation 11 

models; however, identifying numeric values for the thermodynamic constants from batch experiments 12 

requires a robust parameter estimation technique that does not get trapped into local minima. Recently, 13 

Particle Swarm Optimization (PSO) techniques have attracted many researchers to optimize model 14 

parameters in several fields of research. In this work, uranium at low concentrations was sorbed on quartz 15 

at different pH, and the hydroPSO R optimization package was used -by the first time- to calibrate the 16 

PHREEQC geochemical model, version 3.1.2. . Results show that thermodynamic parameter values 17 

identified with hydroPSO are more reliable than those identified with the well-known parameter 18 

estimation (PEST) software, when both parameter estimation software are coupled to PHREEQC using 19 

the same thermodynamic input data. In addition, post-processing tools included in hydroPSO were helpful 20 

for the correct interpretation of uncertainty in the obtained model parameters and simulated values. Thus, 21 

hydroPSO proved to be an efficient and versatile optimization tool for identifying reliable thermodynamic 22 

parameter values of the PHREEQC geochemical model. 23 

Keywords: particle swam optimization; hydroPSO; PHREEQC; surface complexation; uranium; sorption 24 

Introduction and Scope 25 

Particle Swarm Optimization technique (PSO) is an evolutionary optimization technique proposed by 26 

Eberhart and Kennedy  (1995) and was influenced by the activities of flocks of birds in search of corn 27 
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(Kennedy and Eberhart, 1995; Eberhart and Kennedy, 1995). Both PSO and genetic algorithms (GA) 28 

shares a few similarities (Eberhart and Shi, 1998). GA have evolutionary operators like crossover or 29 

selection while PSO does not have it (Eberhart and Shi, 1998). Recently, PSO has been implemented in a 30 

wide range of applications, e.g. in the water resources (e.g., Bisselink et al. 2016, Zambrano-Bigiarini and 31 

Rojas, 2013; Abdelaziz and Zambrano-Bigiarini, 2014), geothermal resources (Ma et al., 2013; Beck et 32 

al., 2010), finance and economics (Das, 2012),  in structural design (Kaveh and Talatahari, 2009; Schutte 33 

and Groenwold, 2003), economics and finance  (Huang et al., 2006; Das, 2012), and applications of video 34 

and image analysis (Donelli and Massa, 2005; Huang and  Mohan, 2007 ). For example, the groundwater 35 

model MODFLOW2000/2005 was linked with PSO to estimate permeability coefficients (Sedki and 36 

Ouazar, 2010) and a multi-objective PSO code was used to derive rainfall runoff model parameters by 37 

introducing the Pareto rank concept  (Gill et al., 2006). Notwithstanding recent popularity, PSO has never 38 

been used to calculate the parameters of a surface complexation model (SCMs) simulating sorption 39 

behavior of metal and metalloids on mineral surfaces. Hence, this paper attempts to examine the efficiency 40 

and effectiveness of PSO for parameter estimation of a surface complexation model as is PHREEQC 41 

(Parkhurst and Appelo, 1999). 42 

Nowadays, a number of PSO software codes exist such as MADS (Harp and Vesselinov, 2011; Vesselinov 43 

and Harp, 2012) and OSTRICH (Matott, 2005), with most of the codes using the basic PSO formulation 44 

developed in 1995. However, in this paper we  use the latest Standard Particle Swarm Optimization 45 

proposed in literature (Clerk, 2012; Zambrano-Bigiarini et al., 2013), named SPSO2011, as implemented 46 

in the  hydroPSO R package (R Core team, 2016) version 0.3-3 (Zambrano-Bigiarini and Rojas, 2013; 47 

2014). hydroPSO is an independent R package that includes  the newest Standard PSO  (SPSO-2011) , 48 

which was specifically developed to calibrate a wide range of environmental models. In addition, the 49 

plotting functions in hydroPSO are user-friendly and aid the numeric and visual interpretation of the 50 

optimization results. The source code, installation files, tutorial (vignette), and manual are available on 51 

http://cran.r-project.org/web/packages/hydroPSO. 52 

 53 
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hydroPSO is used in this paper, for the first time, to estimate the parameters of a surface complexation for 54 

U(VI)-Quartz system, to properly capture the non-linear interactions between the model parameters. The 55 

aim of this article is to examine the suitability of hydroPSO as a global optimisation tool for parameter 56 

estimation of geochemical models, in particular PHREEQC -3.1.2. To this end, surface/sorption reaction 57 

constants (log K) of the surface complexation model (SCM) obtained with hydroPSO will be compared to 58 

those previously obtained with PEST (Doherty, 2010) by Nair et al. (2014). 59 

PEST and PSO are both model-independent parameter optimizers, i.e., they do not require making any 60 

change to the model. PEST is uses the Gauss- Marquardt-Levenberg method to minimize, in the weighted 61 

least squares sense, the differences between observations and the corresponding model simulated 62 

values(Abdelaziz and Bakr, 2012; Edet et al., 2014). PEST is gradient based algorithm initially calculates 63 

the Jacobian Matrix. Then the Jacobian matrix is used to build and  upgrade parameter vector to enhance 64 

the searching and the ability to acquire a smaller objective function value (Doherty, 2005). The model 65 

then iterates towards some parameters adjusting the model parameters on the basis of a new Marquardt 66 

lambdas value (Doherty, 2005). Hence, Lambda drives the objective function for faster converging. As a 67 

local optimizer, PEST is sensitive to the initial condition (see a complete description in Doherty, 2005, 68 

2010). In contrast, PSO is global optimizers which randomly initialize a population of particles within the 69 

D-dimensional parameter space. PSO allows to initializing the position of each particle using a random 70 

uniform distribution or Latin Hypercube Sampling (LHS), while velocities can be initialized in zero, with 71 

two different random distributions, or with two different LHS strategies (see Zambrano-Bigiarini and 72 

Rojas, 2013). Velocity and position of each particle in the parameter space are updated in successive 73 

iterations following equations specific to the selected PSO version (see a complete description in 74 

Zambrano-Bigiarini and Rojas, 2013 and Abdelaziz and Zambrano-Bigiarini, 2014). As a state-of-the-art 75 

global optimizer, PSO is less subject get trapped into local minima compared to PEST. 76 

Model description 77 
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PHREEQC version 3.1.2 (Parkhurst and Appelo, 1999), the database of Nuclear Energy Agency 78 

thermodynamic NEA_2007 (Grenthe et al., 2007), as well as the LLNL database (Lawrence Livermore 79 

National Laboratory) are used to model sorption. Both databases were modified by set constant values for 80 

MUO2(CO3)3
2-

  and M2UO2(CO3)3
0
 species (M equals Ca, Mg, Sr) taken from Geipel et al.(2008) and 81 

Dong and Brooks (2006, 2008). PHREEQC is a geochemical code which is capable to simulate sorption, 82 

surface complexation, and other types of reactions. SCMs are considered to be suitable tools to describe 83 

the processes at liquid-solid interfaces (Huber and Lützenkirchen, 2009). Surface Complexation 84 

Modelling (SCM) has been widely employed to simulate the sorption of metal species from aqueous 85 

solution depending on solution concentration and pH value as well as ionic strength and redox conditions 86 

(Davis et al., 2004; Štamberg et al., 2003; Zheng et al., 2003). A group of reactions of aqueous species 87 

from the bulk solution with the surface of the sorbent leads to the formation of surface complexes. The 88 

constants for these reactions (surface complexation constants, log K) are indispensable for SCM.  89 

There are different SCMs like generalized two layer model (GTLM), nonelectrostatic model (NEM), 90 

constant capacitance model (CCM), diffuse-layer model (DLM), modified triple-layer model (modified 91 

TLM). Here, a generalized two layer model (GTLM) (Dzombak and Morel, 1990) was used to simulate 92 

the sorption behavior of U(VI) on quartz. The GTLM was used instead of other models because it is 93 

relatively simple and can be used in a wide range of chemical conditions. A comprehensive review of 94 

GTLM is presented in Dzombak and Morel (1990).  Quartz is a nonporous mineral and non-layered, and 95 

therefore, the actual area of surface is supposed to be equal to the specific surface area. In this study, the 96 

surface of quartz is considered as a single binding site which takes the charge for every surface reaction. 97 

The sorption reactions and log K values are related to the aqueous species and thus depend on the 98 

thermodynamic database used. Uranyl carbonate complexes—(UO2)2CO3(OH)3ˉ, UO2(CO3)2
2
ˉ and 99 

UO2(CO3)3
4
ˉ—are the dominant species under our experimental conditions. Therefor, the surface-100 

complexation reactions for quartz were calculated with respect to these species.  101 

The sorption of U(VI) on quartz was investigated and discussed by (Huber and Lützenkirchen, 2009). 102 

However, formation of Mg-, Ca-, and Sr–Uranyl-Carbonato complexes shows a significant impact on the 103 
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sorption of uranium on quartz. This was studied by Nair and Merkel (2011) in batch experiments adding 104 

10 g of powdered quartz to 0.1 liter of water containing rather low U(VI) concentrations (0.126X10
-6

 M) 105 

in the absence  and presence of Mg, Sr, and Ca (1 mM) at a pH value between 9 and 6.5 in steps of 0.5. 106 

NaHCO3 (1 x 10
-3

 M) and NaCl (1.5 x 10
-3

 M) were used as ionic-strength buffers. The low U-107 

concentrations were used to avoid precipitation of Ca-U-carbonates. In the absence of alkaline earth 108 

elements, the percentage of uranium was sorbed on quartz ca. 90% independent from pH. In the existence 109 

of Mg, Sr, and Ca, the percentage of sorption of uranium on quartz declined to 50, 30, and 10%, 110 

correspondingly (Nair and Merkel, 2011).  111 

Table 1 displays the parameter ranges used to optimize the 6 parameters selected to calibrate PHREEQC, 112 

based on Nair et al., 2014. 113 

Table 1: Complexation reactions with their respective log K range values.  114 

Corresponding Reaction ID Parameter 

Range values  

 Calibrated 

Parameter 

log K 

  Min Max  

Q_xOH + UO2(CO3)3
4–

 

+ OH
–
 ⇌ 

Q_xOUO2(CO3)3
5–

 + 

H2O   

K1 24 26 25.156 

Q_xOH + UO2(CO3)2
2–

 

+ OH
–
 ⇌ 

Q_xOUO2(CO3)2
3–

  + 

H2O 

K2 20 23 21.18 

Q_xOH + UO2CO3  ⇌ 

Q_xOUO2CO3
-
 + H

+ 
K3 -8 -5 -5.589 

Q_xOH + UO2OH
+
 ⇌ 

Q_xOUO2OH + H
+ 

K4 2 4 3.229 

Q_xOH + 

(UO2)2CO3(OH)3
– 
  ⇌ 

Q_xO(UO2)2CO3(OH)3
2–

 

+ H
+ 

K5 5 8 6.733 

Q_xOH + Na
+
  ⇌ 

Q_xONa + H
+ 

K6 -7 -4 -5.842 

Q_xOH: Silanol surface site 
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 115 

Computational implementation 116 

Inverse modeling is a complex issue for modelers as a result of the numerous uncertainties in model 117 

parameters and observations (e.g., Carrera et al., 2005; Beven, 2006). Particle Swarm Optimisation (PSO) 118 

is an evolutionary optimisation algorithm originally developed by Kennedy and Eberhart (1995), which 119 

has proven to be highly efficient when solving a large collection of case studies from different disciplines 120 

(see, e.g., Poli, 2008). In PSO each individual of the population searches for the global optimum in a 121 

multidimensional parameter space, considering the individual and collective past experiences. The 122 

canonical PSO algorithm starts with a random initialization of the particles' positions and velocities within 123 

the multi-dimensional parameter space. Velocity and position of each particle in the parameter space are 124 

updated in successive iterations following equations specific to the selected PSO version, trying to find the 125 

minimum (or maximum) of a user-defined objective function (see a complete description in Zambrano-126 

Bigiarini and Rojas, 2013). In the last decades, several improvements have been proposed to the canonical 127 

PSO algorithm, and hydroPSO implements several of them in a single piece of software. In particular, 128 

hydroPSO implements six PSO variants (equations used to update particles' position and velocities), four 129 

different topologies, two different initialization of particles' positions (random uniform distribution or 130 

Latin Hypercube Sampling), five different alternatives for initializing particles' velocities, among many 131 

other fine-tunning options (see Zambrano-Bigiarini and Rojas, 2013). In the  application of hydroPSO to 132 

PHREEQC, the following configuration was used: a swarm with 10 particles, 200 iterations, LH 133 

initialisation of particle positions and velocities, random topology with 11 informants, acceleration 134 

coefficients c1 and c2 equal to 2.05, linearly decreasing clamping factor for Vmax in the range [1.0, 0.5], and 135 

use of the Clerc’s constriction factor instead of the inertia weight. The hydroPSO R package v0.3-3 (Rojas 136 

and Zambrano-Bigiarini, 2012; Zambrano-Bigiarini and Rojas, 2013; 2014) is a model-independent 137 

optimization package,  which implements a state-of-the-art PSO algorithm to carry out a global parameter 138 

optimisation, and it has been successfully applied as calibration tool for both hydrogeological and 139 

hydrological models (Zambrano-Bigiarini and Rojas, 2013; Thiemig et al., 2013; Abdelaziz and 140 
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Zambrano-Bigiarini, 2014; Bisselink et al., 2016), requiring no instruction or template files as UCODE 141 

(Poeter et al., 2005; Abdelaziz and Merkel, 2015) and PEST software (Doherty, 2005; 2013) do. In order 142 

to couple hydroPSO with the PHREEQC geochemical model, three text files have to be prepared by the 143 

user to handle data transfer between the model code and the optimization engine: (i) 'ParamFiles.txt', 144 

which describes the names of a set of parameters to be estimated and locations in the model input files to 145 

be utilized in the inverse procedure, (ii) 'ParamRanges.txt', which defines the minimum and maximum 146 

values that each selected parameter might have during the optimization,  and (iii) ‘PSO_OBS.txt’, which 147 

contains the observations that will be compared against its simulated counterparts. In addition, a user-148 

defined R script file ('Read_output.R') have to be prepared, containing the instructions to read model 149 

outputs, while an R script template provided by hydroPSO (Rojas and Zambrano-Bigiarini, 2012) has to 150 

be slightly modified by the user in order to carry out the optimization. Figure 1a shows a flow chart that 151 

depicts how hydroPSO is coupled with  PHREEQC to calibrate its parameters. Run-phreeqc.bat is a batch 152 

file to run PHREEQC-3.1.2 in the DOS environment, which reads *.phrq files to produce *.prn files as 153 

output (simulated data); *.ins files are instructions to read model outputs, by using the Read-output.R 154 

script. At each iteration, hydroPSO modifies model parameter values to minimize the value of the user-155 

defined objective function. Finally, the new parameter values are updated following the locations provided 156 

in the 'ParamFiles.txt' file. In contrast, to couple PEST with PHREEQC, four files are required: i) template 157 

files (*.tpl), ii) instruction files (*.ins), iii) a main control file (*.pst), and  iv) a batch file to execute  158 

PHREEQC and PEST(*.bat) . Template files are built to modify the input files for PHREEQC with other 159 

values while an instruct ion file is employed to extract the simulated values from the output file for 160 

PHREEQC. The main control file includes a model application will be run, the observations, parameters 161 

to be estimated, control data keywords, and etc.  For further information about PEST read the manual is 162 

recommended. However, Figure 1a,b shows  the key files used to couple PHREEQC with hydroPSO, and 163 

explains the flowchart and files involved in the inverse modelling of the surface complexation constants 164 

for the U(VI) sorption model.  165 



8 

 

 166 

Figure 1: Flow chart used to couple a) PHREEQC with hydroPSO, b) PHREEQC with PEST 167 

involved in inverse modeling of surface complexation constants for uranium carbonate (U(VI)) 168 

species on quartz with the PHREEQC geochemical model. 169 

For numerical optimization, the residual sum of squares (RSS or SSR, see Equation ( 1) was utilized to 170 

compute the goodness of fit (GoF) between the  corresponding model outputs (C
s
j ) and observed U-171 

carbonate concentration values (C
o
j) at different pH values for every iteration step  i ; n is number of 172 

observation points (measured sorption U(VI) onto quartz). Minimizing the residual sum of squares was 173 

chosen as the method for estimating the surface/sorption reaction constants in calibrations by Nair et al. 174 

(2014) when PEST was combined with PHREEQC. It was decided for consistency to select SSR as the 175 

criterion for goodness of fit when applying hydroPSO with PHREEQC. After some initial trials, the 176 

number of maximum iterations T was set to 200 and the number of particles used to search for the 177 

minimum RSS in the parameter space was fixed at 10 (i.e., 2000 runs of  the model).  The rest of 178 

parameters were set to the default values defined in hydroPSO. More information about SPSO 2011 can 179 

be found in Clerc (2012) , Zambrano-Bigiarini et. al. (2013), while detailed information about hydroPSO 180 

can be found in Zambrano-Bigiarini and Rojas (2013).All the input files required for  running PHREEQC 181 

and hydroPSO can be found in the supplementary material 182 

(https://zenodo.org/record/1044951#.WgVTbVuCzIU ), including all the optimization results. 183 

𝑺𝑺𝑹 =∑(𝑪𝒋
𝒔 − 𝑪𝒋

𝒐)
𝟐

𝒏

𝒋=𝟏

 

 

( 1 ) 

 

https://zenodo.org/record/1044951#.WgVTbVuCzIU
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Results and Discussion 184 

One of the vital and useful approaches to evaluate the efficacy of model performance is through 185 

plotting the simulation against observed values (visualizing outcome of model). The observed and 186 

simulated sorption ratio and the calculated sorption ratio are compared in Figure 2. The coefficient of 187 

determination (R2) for the relation between calculated and observed values is 0.89, indicating a high linear 188 

correlation and thus high model quality (Figure 2).  189 

 190 

Figure 2: Scatter plot with the experimentally observed and calculated values of uranium carbonate 191 

(sorption %). 192 
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 193 

Figure 3: Evolution of the normalized swarm radius (δ norm) and the global optimum (SSR) over 194 

200 iterations. 195 

In hydroPSO there are two types of criteria for convergence: i) absolute, when the global optimum 196 

found in a given iteration is below/above than a user-defined threshold (useful for 197 

minimization/maximization problems where the true minimum/maximum is known); ii) relative, when 198 

the  absolute difference between the model performance in the current iteration and the model 199 

performance in the previous iteration for the best performing particle is less or equal to a user-defined 200 

threshold (useful to prevent too many model runs without any improvement in the optimum found by the 201 

algorithm). If none of the two previous criteria are met, then the algorithm stops when the user-defined 202 

number of iterations is finally achieved. Figure 3 shows the evolution of the best model performance (i.e., 203 

smallest RSS) found by all the particles in a given iteration, and the normalized swarm radius (δnorm, a 204 

measure of the spread of the population in the range of search-space) versus the iterations number. One 205 

may observe that both δnorm and the  best model performance become smaller with an increasing iteration 206 

number, which indicates that the main particles are “flying” around a small region in parameter space. 207 

Only 100 iterations (i.e., 100x10 =1000 model runs) were enough to reach the region of the global 208 
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optimum (i.e., RSS ca. 2.52), and the remaining iterations were just used to refine the search as shown in 209 

Figure 3.  210 

The boxplots in Figure 4 are graphical representations of the values sampled during optimization. The 211 

bottom and top of the box show the first and third quartiles of the distribution of each one of the 212 

surface/sorption reaction constants (log K) sampled during the opimization, respectively. The horizontal 213 

line within the box denotes the median of the distribution. Points outside the whiskers are considered to be 214 

outliers, where notches are within ±1.58IQR/sqrt(n), IQR represents the interquartile range and n the total 215 

number of parameter sets used in the optimization. The horizontal red lines in Figure 4 point out the 216 

optimum value found during optimization for each parameter. 217 

 218 

Figure 4: Boxplots for the optimised parameters. The horizontal red lines indicate the optimum 219 

value for each parameter. Parameter names are defined in Table 1. 220 
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Two dimensional dotty plots in Figure 5 depict the goodness-of-fit values achieved by different 221 

parameter sets. They are suitable for identifying ranges where different sets of parameters lead to the same 222 

model performance (equifinallity, Beven , 2006).   223 

Figure 5 shows the model performance as function of the interaction of different parameter ranges. 224 

The (quasi) three-dimensional dotty plot shown in Figure 5 is a projection of the values of pairs of 225 

parameters onto the model response surface “RSS”. Parameter values where the model presents high 226 

performance are shown in light-blue (points density), whilst the parameter values where the model shows 227 

low performance are shown in dark-red (points density).  This figure was used to identify regions of the 228 

solution space with good and bad model performances (Figure 5).  229 
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 230 

Figure 5: Quasi three-dimensional dotty plots. 231 

Visual inspection of Figure 5 shows a good exploratory capability of PSO because the particles are 232 

well spread over the entire range space. It is clearly visible that the parameter samples are denser around 233 

the optimum value (lowest SSR), showing a small uncertainty range around the optimum value.  234 

Figure 6 and Figure 7 give a graphical summary for optimised parameters. Empirical Cumulative 235 

Density Functions (ECDF) in Figure 6 shows the sampled frequencies for the six calibrated parameters. 236 

The horizontal gray dotted lines show the median of the distribution (cumulative probability equal to 0.5) 237 

whiles the vertical gray dotted lines depict the corresponding parameter value, display at the top of every 238 
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figure (Figure 6). The thin vertical red line in Figure 7 points out the optimum value achieved for each 239 

parameter. Histograms in figure 7 show near-normal distributions for K1 and K2, while k4 and k5 follow 240 

a skewed distribution with sampled values concentrated near the upper boundary of each parameter. 241 

 242 

Figure 6: Empirical cumulative density functions for each calibrated parameter.  243 
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 244 

Figure 7: Histograms of calibrated parameter values. Horizontal axis shows the sampled range for 245 

each parameter and vertical axis represents the amount of parameter sets in each of the classes used 246 
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to divide the horizontal axis.247 
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 248 
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Figure 8 illustrates the correlation matrix among K values and model performance (SSR), with horizontal 249 

and vertical axes displaying the ranges used for the calibration of each parameter. The figure represents 250 

that highest correlation coefficient occurred among the measure of model performance (SSR) and K4, K6, 251 

and K3. In addition, a higher correlation coefficient was observed between K4 and K5, K3 and K4, and 252 

K1 and K6.  253 
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 254 
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Figure 8: Correlation matrix between model performance (SSR) and calibrated parameters.  255 

Red lines represents lowess smoothing, using locally-weighted polynomial regression, and numbers 256 

in the upper panel represents the Pearson-moment correlation coefficient between each pair of 257 

parameters. Vertical and horizontal axes illustrate the physical range utilized for parameter 258 

optimization. *** stands for a p < 0.001 ; ** stands for p < 0.01, according to level of statistical 259 

significance  260 

Figure 9 shows the model output using hydroPSO fitted log-K values and the monitored sorption ratio. 261 

 262 

Figure 9: Observed and simulated sorption of uranium in quartz vs pH with both PEST and 263 

hydroPSO calibrated log-k values.  264 

It is worthwhile to mention that the surface complexation constants for the equations 1, 2, and 5 are 265 

more important and the equations that are less important are 3, 4, and 6 in optimizing the “log K” values. 266 

It proves that UO2(CO3)3
4–

, UO2(CO3)2
2–

, and (UO2)CO3(OH)3
-
  are the most dominate species sorption on 267 

quartz. From the optimized model, the surface complexation constants for the equations 2 and 4 was 268 

optimized to be 21.18 and 3.229 respectively (Nair et al., 2014), which is higher than the electrostatic (ES) 269 
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and nonelectrostatic (NES) models, while the optimized value for equation 1 is 25.156, which is higher 270 

than the NES model and almost the same as the ES model (Nair et al., 2014).      271 

Comparing the results of optimized log-K values for GTLM as sorption model which obtained by 272 

hydroPSO versus previous work done by Nair et al. (2014). The experimental conditions and the 273 

PHREEQC modelling assumptions were the same during the PEST optimisation. In other words, PEST 274 

was applied for the similar case and the same data, we can show that the log k values obtained with 275 

hydroPSO are better estimations than those obtained by PEST, except for pH=7. The main reason is that 276 

PSO is a global optimization technique, which searches for optimum values in the parameter space as 277 

defined by the ranges given in Table 1, while PEST searches on a neighborhood of the initial solution. In 278 

particular, PEST carries out inverse modelling by computing value of parameters that minimize a 279 

weighted least-squares objective function via the Gauss-Marquardt-Levenberg non-linear regression 280 

method (Marquardt, 1963). Actually, a major drawback of PEST, as of all gradient-based techniques, is 281 

the dependency of the quality of the optimization results upon the initial point used for the optimization, 282 

which might lead to a local optimum rather than the global one. Thus, PSO techniques offer promising 283 

possibilities for similar surface complexation and reactive transport applications in hydrogeology and 284 

hydrochemistry. 285 

Conclusions 286 

The coupling of hydroPSO and PHREEQC was successfully carried to estimate surface complexation 287 

constants for uranium (VI) species on quartz, based on a data set published by Nair and Merkel(2011), and 288 

Nair et al.(2014). The open-source hydroPSO R package proved to be a useful tool for inverse modeling 289 

of surface complexation models with PHREEQC and allowed a prompt evaluation of the calibration 290 

results. Furthermore, thermodynamic values obtained with hydroPSO provided a better match to 291 

observation sorption rates in comparison to those obtained with PEST, using the same input data.  292 
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Data availability 293 

PHREEQC is available in the following http://www.hydrochemistry.eu/ph3/index.html. Source code, 294 

tutorials, and reference manual of hydroPSO can be obtained from https://CRAN.R-295 

project.org/package=hydroPSO.  The PHREEQC model input files along with the R scripts used for 296 

coupling it with hydroPSO and the model outputs can be obtained from the Zenodo repository 297 

(https://zenodo.org/record/1044951#.WgVTbVuCzIU ). 298 
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