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Abstract 7 
 8 

Recently, Particle Swarm Optimization (PSO) techniques have attracted many 9 

researchers to optimize model parameters in several fields of research. This article 10 

paper explains, for the first time, how to interface the hydroPSO R optimization 11 

package and PEST with the PHREEQC geochemical model, version 2.3.1. The 12 

main theme involved the sorption of low concentration uranium on quartz at 13 

different pH. Sorption of metals on minerals is a key process in treatment water, 14 

natural aquatic environments, and other water related technologies. Sorption 15 

processes can be simulated by means of surface complexation models. However, 16 

determining thermodynamic constants for surface species from batch experiments 17 

requires robust parameter estimation tool that does not get stuck in local minima. 18 

In this work, uranium at low concentrations was sorbed on quartz at different pH. 19 

Results show that hydroPSO delivers more reliable thermodynamic parameter 20 

values than PEST when both are coupled to PHREEQC using the same 21 

thermodynamic input data (Nair et al., 2014). Besides, Postpost-processing tools 22 

included in hydroPSO are helpful for the interpretation of the results. Thus, 23 

hydroPSO is a recommended as an optimization tool for PHREEQC with respect 24 

to inverse modeling to determine reliable and meaningful thermodynamic 25 

parameter values. 26 

 27 

 28 

Introduction and Scope 29 

 30 

Particle Swarm Optimization technique (PSO) is an evolutionary optimization 31 

approach proposed by Eberhart and Kennedy (1995) and was influenced by the 32 

activities of flocks of birds in search of corn (Kennedy and Eberhart 1995, and 33 

Eberhart and Kennedy 1995). PSO and genetic algorithms (GA) shares a few 34 

similarities (Eberhart and Shi 1998). GA has evolutionary operators like crossover 35 

or selection, while PSO does not have it (Eberhart and Shi 1998). Recently, PSO 36 

28 has a wide range of applications, including water resources (Zambrano-37 

Bigiarini and Rojas, 2013, Abdelaziz and Zambrano-Bigiarini 2014), geothermal 38 

resources (Ma et al., 2013; Beck et al., 2010), structural design (Kaveh and 39 

Talatahari, 2009; Schutte and Groenwold, 2003), economics and finance (Huang et 40 
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al., 2006; Das 2012), and applications of video and image analysis (Donelli and 41 

Massa, 2005; Huang and Mohan, 2007). For example, the groundwater model 42 

MODFLOW 2000/2005 was linked with PSO to estimate permeability coefficients 43 

(Sedki and Ouazar, 2010) and a multi-objective PSO code was used to derive a 44 

rainfall runoff model parameters (Gill et al.,2006). Notwithstanding PSO recent 45 

popularity, the PSO has never been used to calculate the parameters in surface 46 

complexation model (SCMs) simulating sorption behavior of metal and metalloids 47 

on mineral surfaces. Hence, this article attempts to examine the efficiency and 48 

effectiveness of PSO for parameter estimation of a surface complexation model as 49 

is PHREEQC (Parkhurst and Appelo, 1999).  50 

 51 

Today, a number of PSO software codes exist such as MADS (Harp and 52 

Vesselinov, 2011; Vesselinov and Harp, 2012) and OSTRICH (Matott, 2005) , 53 

with most of the codes using the basic PSO formulation 54 

developed in 1995. However, in this paper the latest Standard Particle Swarm 55 

Optimization, SPSO2011 (Clerk, 2012; Zambrano-Bigiarini et al., 2013). This is 56 

same as in the hydroPSO R package (R Core team, 2016) version 0.3-3 57 

(Zambrano-Bigiarini and Rojas, 2013; 2014). hydroPSO is an independent R 58 

package that includes the latest Standard PSO (SPSO-2011), which was 59 

specifically developed to calibrate a wide range of environmental models. In 60 

addition, the plotting functions in hydroPSO are user-friendly and aid the numeric 61 

and visual interpretation of the optimization results. The source code, installation 62 

files, tutorial (vignette), and manual available on http://cran.r-63 

project.org/web/packages/hydroPSO. hydroPSO is used in this paper, for the first 64 

time, to estimate the parameters of a surface complexation for U(VI)-Quartz 65 

system, to properly capture the non-linear interactions between the model 66 

parameters. The aim of this article is to examine the versatility of hydroPSO as 67 

parameter estimation tool for geochemical modeling with PHREEQC -3.1.2. 68 
 69 
 70 

Model description 71 

 72 

PHREEQC version 2.3 (Parkhurst and Appelo, 1999) is used to model the sorption 73 

and the database of Nuclear Energy Agency thermodynamic NEA_2007 (Grenthe 74 

et al., 2007), as well as the LLNL database (Lawrence Livermore National 75 

Laboratory) is used to model sorption. Both databases were modified by set 76 

constant values for MUO2 (CO3)3
2- and M2UO2 (CO3)3

0 species (M equals Ca, Mg, 77 

Sr) obtained from the work of Geipel et al. (2008) and Dong and Brooks (2006, 78 

2008). PHREEQC is a geochemical model code, capable of simulating sorption, 79 

surface complexation, and other types of reactions. Surface Complexation 80 
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Modelling (SCM) is considered a suitable tool to describe the processes at liquid-81 

solid interfaces (Huber and Lützenkirchen, 2009). SCM has been widely employed 82 

to simulate the metals sorption from aqueous solution depending on pH and 83 

concentration of the solution as well as ionic strength and redox conditions (Davis 84 

et al., 2004; Štamberg et al., 2003; Zheng et al., 2003). Thus the result of group 85 

reactions within the aqueous species in the surface of the sorbent and the bulk 86 

solution, that leads to the surface complexes formation. The constants of surface 87 

sorption reaction (log K) values are inevitable for SCM. Such constants are 88 

universal constants, not site-specific, and hence transferable. There are different 89 

SCMs including two layer model (GTLM), non-electrostatic model (NEM), 90 

constant capacitance model (CCM), diffuse-layer model (DLM), modified triple-91 

layer model (modified TLM). Here, a generalized two layer model (GTLM) 92 

(Dzombak and Morel, 1990) was used to simulate the sorption behavior of U(VI) 93 

on quartz. The GTLM was used instead of other models because it is relatively 94 

simple and can be used in a wide range of chemical conditions. A comprehensive 95 

review of GTLM is presented in Dzombak and Morel (1990). Quartz is a 96 

nonporous mineral and non-layered, and therefore, the actual area of surface is 97 

supposed to be equal to the specific surface area. In this study, the surface of quartz 98 

is considered as a single binding site and takes the charge for every surface 99 

reaction. The sorption reactions and log K values are related to the aqueous species 100 

and thus depend on the thermodynamic database used. Uranyl carbonate 101 

complexes—(UO2)2CO3 (OH)3
ˉ, UO2(CO3)2

2ˉ and UO2(CO3)3
4ˉ are the dominant 102 

species under our experimental conditions. Therefore, the surface complexation 103 

reactions for quartz were calculated with respect to these species.  104 

 105 

The sorption of U (VI) on quartz were investigated and discussed by 80 (Huber 106 

and Lützenkirchen 2009). However, formation of Mg-, Ca-, and Sr–Uranyl-107 

Carbonato complexes show a significant impact on sorption of uranium on quartz. 108 

This was studied by Nair and Merkel (2011) in batch experiments by adding 10 g 109 

of powdered quartz to 0.1 liter of water containing low U concentrations (0.126 9 110 

10-6 M) in the absence and existence of Mg, Sr, and Ca (1 mM) at pH of between 111 

6.5 and 9 in steps of 0.5. NaHCO3 (1 x 10-3 M) and NaCl (1.5 x 10-3 M) were used 112 

as ionic-strength buffers. The low U concentrations were used to avoid 113 

precipitation of Ca-U-carbonates. In the non-existence of alkaline earth elements, 114 

the percentage of uranium was sorbed on quartz ca. 90% independent from pH. In 115 

the presence of Mg, Sr, and Ca, the percentage of sorption of uranium on quartz 116 

declined to 50, 30, and 10%, respectively (Nair and Merkel, 2011).  117 

 118 

Table 1 displays the parameter ranges used to optimize the 6 parameters selected to 119 

calibrate PHREEQC based on the work of Nair et al. (2014). 120 
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 121 

 122 

Computational implementation 123 

 124 

Inverse modeling is a procedure issue for modelers as a result of the numerous 125 

uncertainties in model parameters and observations (e.g., Carrera et al., 2005, 126 

Beven, 2006). The hydroPSO R package v0.3-3 (Rojas and Zambrano-Bigiarini, 127 

2012; Zambrano-Bigiarini and Rojas, 2013; 2014) is a model-independent 128 

optimization package, which has been successfully applied as calibration tool for 129 

both hydrogeological and hydrological models, requiring no instruction or template 130 

files as UCODE (Poeter et al., 2005, Abdelaziz and Merkel, 2015) and PEST 131 

(Doherty, 2005; 2013) do.  132 

 133 

In order to couple hydroPSO with the PHREEQC geochemical model, three text 134 

files have to be prepared by the user to handle data transfer between the model 135 

code and the optimization engine: (i) 'ParamFiles.txt', which describes the names 136 

of a set of parameters to be estimated and locations in the model input files to be 137 

utilized in the inverse procedure, (ii) 'ParamRanges.txt', which defines the 138 

minimum and maximum values that each selected parameter might have during the 139 

optimization, and (iii) ‘PSO_OBS.txt’, which contains the observations that will be 140 

compared against its simulated counterparts. In addition, a user-defined R script 141 

file ('Read_output.R') have to be prepared, containing the instructions to read 142 

model outputs, while an R script template provided by hydroPSO (Rojas and 143 

Zambrano-Bigiarini, 2012) has to be slightly modified by the user in order to carry 144 

out the optimization.  145 

 146 

In contrast to coupling PEST with PHREEQC, it was required that PEST be run 147 

with PHREEQC. PEST needs ASCII output and input files. The four files required 148 

were: i) template files (*.tpl), ii) instruction files (*.ins), iii) a main control file 149 

(*.pst), and iv) a batch file to execute PHREEQC and PEST(*.bat). Template files 150 

were built to modify the input files for PHREEQC with other values while an 151 

instruction file was employed to extract the simulated values from the output file 152 

for PHREEQC. The main control file includes a model application to run, the 153 

observations, parameters to be estimated, control data keywords, and etc. Details of 154 

PEST are contained in the manual (             ). Figure 1 shows the key files used to 155 

couple PHREEQC with hydroPSO, and explains the flowchart and files involved 156 

in the inverse modelling of the surface complexation constants for the U(VI) 157 

sorption model. 158 

 159 

 160 
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Figure 1: Flow chart with files involved in inverse modeling of surface 161 

complexation constants for uranium carbonate (U(VI)) species on quartz with 162 

the PHREEQC geochemical model. 163 

 164 

 165 

For numerical optimization, equation 1 was used to compute the residual sum of 166 

the squared (RSS or SSR): 167 

 168 

     n 169 

SSR = Σ (Ci
s-Ci

o)2         (1) 170 

              i=1 171 

 172 

This equation (1) was then utilized to compute the goodness of fit (GoF) between 173 

the corresponding model outputs (Cs ) and observed values (Co) for every time 174 

step i. After some initial trials, the number of maximum iterations T was set to 200 175 

and the number of particles used to search for the minimum RSS in the parameter 176 

space was fixed at 10 (i.e., 2000 runs of the model). The rest of parameters were 177 

set to the default values defined in hydroPSO.  Detailed and additional information 178 

on SPSO 2011 and hydroPSO are contained in Clerc (2012), Zambrano-Bigiarini 179 

et. al. (2013), Zambrano-Bigiarini and Rojas (2013). Finally, all the input files 180 

required for running PHREEQC and hydroPSO can be found in the supplementary 181 

material (https://doi.org/10.5281/zenodo.803874), including all the optimization 182 

results. 183 

 184 

 185 

Results and Discussion 186 

 187 

One of the vital and useful approaches to evaluate the efficacy of model 188 

performance is through plotting the simulation against observed values (visualizing 189 

outcome of model). The variable observed sorption ratio and the calculated 190 

sorption ratio were compared in Figure 2. It is clear that there is a very good fit 191 

between the calculated and the experimentally observed values. The coefficient of 192 

determination (r2), in this case almost 0.89 indicates a good match between the 193 

observed and calculated values (Figure 2). Only 100 iterations were enough to 194 

achieve the region of the global optimum, i.e., 100 x100 =1000 model runs. The 195 

rest iterations numbers were placed to refine the search as shown in Figure 3. 196 

 197 

 198 
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Figure 2: Scatter plot with the experimentally observed and calculated values 199 

of uranium carbonate (sorption %). 200 

 201 

Figure 3: Evolution of the normalized swarm radius (δ norm) and the global 202 

optimum (SSR) over 200 iterations. 203 

 204 

 205 

Figure 3 shows the evolution of the global optimum (best model performance for a 206 

given iteration, i.e., smallest SSR) and the normalized swarm radius (δnorm, a 207 

measure of the spread of the population flying over the range of search-space) 208 

versus the iterations number. One may observe that both δnorm and the global 209 

optimum become smaller with an increasing iteration number, which indicates that 210 

the main particles are “flying” around a small portion of the solution space. The 211 

optimum value was achieved when the SSR was ca. 2.52. Figure 4 presents the 212 

values of ………..sampled during optimization.  213 

 214 

Figure 4: Boxplots for calibrated parameter. The horizontal red lines indicate 215 

the optimum value for each parameter. The bottom and top of the box 216 

demonstrate the first and third quartiles, respectively. The horizontal line within 217 

the box stands for the median. The points outside the notches are considered to 218 

be outliers, where notches are within ±1.58IQR/sqrt(n), while IQR represents the 219 

interquartile range and n the number of points. The horizontal red lines 220 

represent  the optimum value found during optimization for each parameter. 221 

 222 

 223 

The SSR was chosen as an indicator for goodness of fit (GoF). Two dimensional 224 

dotty plots in Figure 5 depict the goodness of fit achieved by different parameter 225 

sets. They are suitable for identifying parameter ranges, leading to high or roughly 226 

the same model performance (Beven and Binley, 1992).  227 

 228 

Figure 5 shows the model performance as function of the interaction of different 229 

parameter ranges. This figure was used to identify regions of the solution space 230 

with good and bad model performances. 231 

 232 

Figure 5: Quasi three-172 dimensional dotty plots. The (quasi) three-233 

dimensional dotty plot shown in Figure 5 is a projection of the values of pairs of 234 

parameters onto the model response surface (goodness-of-fit value). Parameter 235 

values where the model presents high performance are shown in light-blue (high 236 

points density), whilst the parameter values where the model shows low 237 

performance are shown in dark-red (low points density). 238 
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 239 

 240 

Visual inspection of Figure 5 shows a good exploratory capability of PSO because 241 

the particles are well spread over the entire range space. It is clearly shown that the 242 

parameter samples are denser around the optimum value (lowest SSR), indicating a 243 

low standard deviation around the optimum value. Nevertheless, the optimum 244 

value obtained for K3 and K2 indicated the particles were converging into a small 245 

region of the solution space.  246 

 247 

Figures 6 and 7 give a graphical summary for calibrated parameters.  248 

 249 

Empirical Cumulative Density Functions (ECDF) in Figure 6 shows the sampled 250 

frequencies for the six parameters.  251 

 252 

 253 

 254 

Figure 6: Empirical cumulative density functions against each parameter of 255 

parameter values. The horizontal gray dotted lines show a median of the 256 

distribution (cumulative probability 180 equal to 0.5), while the vertical gray 257 

dotted lines depict a cumulative probability of 0.5, and its value is displayed in 258 

the top of every figure. 259 

 260 

Figure 7: Histograms of calibrated 188 parameter values. The vertical red line 261 

point out the optimum value achieved for each parameter. The histograms and 262 

ECDFs show near-normal distributions for K1 and K2, while k4 and k5 follow a 263 

skewed distribution with more sampled values near the upper boundary. 264 

 265 

Figure 8 illustrates the correlation matrix among K values and model performance 266 

(SSR), with horizontal and vertical axes displaying the ranges used for the 267 

calibration of each parameter. The figure show that highest correlation coefficient 268 

is among the measure of model performance (SSR) and k4, k6, 193 and k3. In 269 

addition, a higher correlation coefficient was observed between k4 and k5, k3 and 270 

k4, and k1 and k6. 271 

 272 

Figure 8: Correlation matrix among model performance (SSR) and 196 273 

calculated parameters. Vertical and horizontal axes illustrate the physical 274 

range utilized for parameter identification. *** stands for a p < 0.001 ; ** 275 

stands for p < 0.01, according to level of statistical significance 276 

 277 
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Figure 9 shows the model output using hydroPSO fitted log-K values and the 278 

monitored sorption ratio. 279 

 280 

Figure 9: Observed and simulated sorption of uranium in quartz vs pH with 281 

both PEST and hydroPSO calibrated log-k values. 282 

 283 

It is worthwhile to mention that the surface complexation constants for the 284 

equations 1, 2, and 4 are more important and the equations that are less important 285 

are 3, 5, and 6 in optimizing the “log K” values. It proves that UO2 (CO3)3
4–, UO2 286 

(CO3)2
2–, and UO2OH+ are the dorminant species sorbed on quartz. 287 

 288 

 289 

From the optimized model, the surface complexation constants for the equations 2 290 

and 4 was optimized to be 21.18 and 3.229 respectively, which is higher than the 291 

electrostatic (ES) and nonelectrostatic (NES) models, while the optimized value for 292 

equation 1 is 25.156, which is higher than the NES model and almost the same as 293 

the ES model. 294 

 295 

Comparing the results of optimized log-K values with hydroPSO with previous 296 

work of Nair et al. (2014). PEST was applied for the similar case and from the 297 

same data, it can be shown that the log k values obtained with hydroPSO are better 298 

than those obtained with PEST. The main reason is that PSO is a global 299 

optimization technique, which searches for optimum values in the whole 300 

parameters space, while PEST searches on a neighborhood of the initial solution. 301 

In particular, PEST carries out inverse modelling by computing value of parameter 302 

that minimizes a weighted least-squares objective function via Gauss-Marquardt-303 

Levenberg non-linear regression method (Marquardt, 1963). Actually, a major 304 

drawback of PEST, as of all gradient-based techniques, is the dependency of the 305 

quality of the optimization results upon the initial point used for the optimization, 306 

which might lead to a local optimum rather than the global one. Thus, PSO 307 

techniques offer promising possibilities for similar surface complexation and 308 

reactive transport applications in hydrogeology and hydrochemistry. 309 

 310 

 311 

Conclusions 312 

 313 

The coupling of hydroPSO and PHREEQC was successfully done to estimate 314 

surface complexation constants for uranium (VI) species on quartz. The open-315 

source hydroPSO R package was confirmed to be a robust tool for inverse 316 

modeling of surface complexation models with PHREEQC and allowed a prompt 317 
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evaluation of the calibration results. Furthermore, thermodynamic values obtained 318 

with hydroPSO provided a better match to observed sorption rate in comparison to 319 

those obtained with PEST, using the same input data. This is documented by the 320 

higher coefficient of determination for the results based on hydroPSO.  321 

 322 

Finally, the paper basically treats the coupling of a parameter estimation code with 323 

PHREEQC. A limited data set was used from the work of Nair and Merkel (2011) 324 

and Nair et al. (2014) to demonstrate the ability of PSO as an optimizer for a 325 

geochemical model as PHREEQC. The examples were used only for testing the 326 

coupled-codes to show the link between PHREEQC and hydroPSO. Indeed, it is 327 

obvious that more comprehensive data sets in the future are needed to get a best-fit 328 

and smaller degree of uncertainty. 329 

 330 

Data availability 331 

 332 

PHREEQC is available in the following 333 

http://www.hydrochemistry.eu/ph3/index.html. Source code, tutorials, and 334 

reference manual of hydroPSO can be obtained from https://CRAN.R 335 

project.org/package=hydroPSO. The PHREEQC model input files along with the R 336 

scripts used for coupling it with hydroPSO and the model outputs can be obtained 337 

from the Zenodo repository (https://zenodo.org/record/803874#.WTigbY26zIV). 338 

 339 
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