Particle Swarm Optimization for Surface Complexation with the PHREEQC geochemical model

5 MS No: grid-2017-38

7 Abstract

1

2

3

4

6

8

28

Recently, Particle Swarm Optimization (PSO) techniques have attracted many 9 researchers to optimize model parameters in several fields of research. This article 10 paper explains, for the first time, how to interface the hydroPSO R optimization 11 package and PEST with the PHREEQC geochemical model, version 2.3.1. The 12 main theme involved the sorption of low concentration uranium on quartz at 13 different pH. Sorption of metals on minerals is a key process in treatment water, 14 natural aquatic environments, and other water related technologies. Sorption 15 processes can be simulated by means of surface complexation models. However, 16 determining thermodynamic constants for surface species from batch experiments 17 requires robust parameter estimation tool that does not get stuck in local minima. 18 In this work, uranium at low concentrations was sorbed on quartz at different pH. 19 Results show that hydroPSO delivers more reliable thermodynamic parameter 20 values than PEST when both are coupled to PHREEQC using the same 21 thermodynamic input data-(Nair et al., 2014). Besides, Postpost-processing tools 22 included in hydroPSO are helpful for the interpretation of the results. Thus, 23 24 hydroPSO is a recommended as an optimization tool for PHREEOC with respect to inverse modeling to determine reliable and meaningful thermodynamic 25 parameter values. 26 27

29 Introduction and Scope

30 Particle Swarm Optimization technique (PSO) is an evolutionary optimization 31 approach proposed by Eberhart and Kennedy (1995) and was influenced by the 32 activities of flocks of birds in search of corn (Kennedy and Eberhart 1995, and 33 Eberhart and Kennedy 1995). PSO and genetic algorithms (GA) shares a few 34 similarities (Eberhart and Shi 1998). GA has evolutionary operators like crossover 35 or selection, while PSO does not have it (Eberhart and Shi 1998). Recently, PSO 36 28 has a wide range of applications, including water resources (Zambrano-37 Bigiarini and Rojas, 2013, Abdelaziz and Zambrano-Bigiarini 2014), geothermal 38 39 resources (Ma et al., 2013; Beck et al., 2010), structural design (Kaveh and Talatahari, 2009; Schutte and Groenwold, 2003), economics and finance (Huang et 40

Formatted: Numbering: Continuous

Formatted: Font: 14 pt

Formatted: Font: 14 pt
Formatted: Font: 14 pt
Formatted: Justified
Formatted: Font: 14 pt
Formatted: Font: (Default) Times New Roman, 14 pt
Formatted: Font: 14 pt
Formatted: Font: 14 pt
Formatted: Font: 14 pt
Formatted: Font: 14 pt
Formatted: Font: (Default) Times New Roman, 14 pt
Formatted: Font: 14 pt

41	al., 2006; Das 2012), and applications of video and image analysis (Donelli and		Formatted
42	Massa, 2005; Huang and Mohan, 2007). For example, the groundwater model		
43	MODFLOW 2000/2005 was linked with PSO to estimate permeability coefficients	////	
44	(Sedki and Ouazar, 2010) and a multi-objective PSO code was used to derive a		
45	rainfall runoff model parameters (Gill et al., 2006). Notwithstanding PSO recent /		
46	popularity, the PSO has never been used to calculate the parameters in surface /		
47	complexation model (SCMs) simulating sorption behavior of metal and metalloids		
48	on mineral surfaces. Hence, this article attempts to examine the efficiency and	/	
49	effectiveness of PSO for parameter estimation of a surface complexation model as	/	Commented [h1]: What parameters?
50	is PHREEQC (Parkhurst and Appelo, 1999).	>	Formatted
51			
52	Today, a number of PSO software codes exist such as MADS (Harp and	1	Formatted
53	Vesselinov, 2011; Vesselinov and Harp, 2012) and OSTRICH (Matott, 2005),		
54	with most of the codes using the basic PSO formulation		
55	developed in 1995. However, in this paper the latest Standard Particle Swarm		
56	Optimization, SPSO2011 (Clerk, 2012; Zambrano-Bigiarini et al., 2013). This is		Formatted
57	same as in the hydroPSO R package (R Core team, 2016) version 0.3-3		
58	(Zambrano-Bigiarini and Rojas, 2013; 2014). hydroPSO is an independent R		
59	package that includes the latest Standard PSO (SPSO-2011), which was		
60	specifically developed to calibrate a wide range of environmental models. In	//	
61	addition, the plotting functions in <i>hydroPSO</i> are user-friendly and aid the numeric	/	
62	and visual interpretation of the optimization results. The source code, installation /		
63	files, tutorial (vignette), and manual available on http://cran.r-	\langle	Field Code Changed
64	project.org/web/packages/hydroPSO. hydroPSO is used in this paper, for the first		Formatted: Hyperlink, Font: 14 pt, Font color: Auto
65	time, to estimate the parameters of a surface complexation for $U(VI)$ -Quartz		
66	system, to properly capture the non-linear interactions between the model		
67	parameters. The aim of this article is to examine the versatility of hydroPSO as		
68 69	parameter estimation tool for geochemical modeling with PHREEQC -3.1.2.	<	Commented [h2]: See lines 33-35. Harmonize!
70			Formatted: Font: 14 pt
71	Model description	~	Formatted: Font: 14 pt
72			Formatted: Justified
73	PHREEQC version 2.3 (Parkhurst and Appelo, 1999) is used to model the sorption		Formatted
74	and the database of Nuclear Energy Agency thermodynamic NEA_2007 (Grenthe	/	
75	et al., 2007), as well as the LLNL database (Lawrence Livermore National)	/	
76	Laboratory) is used to model sorption. Both databases were modified by set	/	Commented [h3]: Check?
77	constant values for MUO ₂ (CO ₃) $_3^2$ and M ₂ UO ₂ (CO ₃) $_3^0$ species (M equals Ca, Mg,	-1	Formatted
78	Sr) obtained from the work of Geipel et al. (2008) and Dong and Brooks (2006,	//	
79	2008). PHREEQC is a geochemical model code, capable of simulating sorption,	/	
80	surface complexation, and other types of reactions. Surface Complexation	/	

1		
81	Modelling (SCM) is considered a suitable tool to describe the processes at liquid-	Formatted
82	solid interfaces (Huber and Lützenkirchen, 2009). SCM has been widely employed	
83	to simulate the metals sorption from aqueous solution depending on pH and	
84	concentration of the solution as well as ionic strength and redox conditions (Davis //	
85	et al., 2004; Stamberg et al., 2003; Zheng et al., 2003). Thus the result of group /	
86	reactions within the aqueous species in the surface of the sorbent and the bulk	
87	solution, that leads to the surface complexes formation. The constants of surface	
88	sorption reaction (log K) values are inevitable for SCM. Such constants are	
89	SCMs including two layer model (CTLM) non electrostatic model (NEM)	
90	<u>SCMS including two layer model (CCM) diffuse layer model (DLM) modified triple</u>	
91	layer model (modified TIM) Here a generalized two layer model (GTIM)	
92	(Dzombak and Morel 1990) was used to simulate the sorption behavior of U(VI)	
95	on quartz. The GTI M was used instead of other models because it is relatively	
95	simple and can be used in a wide range of chemical conditions. A comprehensive	
96	review of GTLM is presented in Dzombak and Morel (1990). Quartz is a	
97	nonporous mineral and non-layered, and therefore, the actual area of surface is	
98	supposed to be equal to the specific surface area. In this study, the surface of quartz	
99	is considered as a single binding site and takes the charge for every surface	
100	reaction. The sorption reactions and log K values are related to the aqueous species	
101	and thus depend on the thermodynamic database used. Uranyl carbonate	
102	complexes— $(UO_2)_2CO_3$ (OH) ₃ , $UO_2(CO_3)_2^2$ and $UO_2(CO_3)_3^4$ are the dominant	
103	species under our experimental conditions. Therefore, the surface complexation	
104	reactions for quartz were calculated with respect to these species.	
105		
106	The sorption of U (VI) on quartz were investigated and discussed by 80 (Huber	Formatted
107	and Lützenkirchen 2009). However, formation of Mg-, Ca-, and Sr-Uranyl-	
108	Carbonato complexes show a significant impact on sorption of uranium on quartz.	
109	This was studied by Nair and Merkel (2011) in batch experiments by adding 10 g /	
110	of powdered quartz to 0.1 liter of water containing low U concentrations (0.126 9	
111	<u>10-6 M) in the absence and existence of Mg, Sr, and Ca (1 mM) at pH of between //</u>	
112	<u>6.5 and 9 in steps of 0.5. NaHCO₃ (1 x 10^{-5} M) and NaCl (1.5 x 10^{-5} M) were used /</u>	
113	as ionic-strength buffers. The low U concentrations were used to avoid	
114	precipitation of Ca-U-carbonates. In the non-existence of alkaline earth elements,	
115	the percentage of uranium was sorbed on quartz ca. 90% independent from pH. In	
116	the presence of Mg, Sr, and Ca, the percentage of sorption of uranium on quartz	
117	declined to 50, 30, and 10%, respectively (Nair and Merkel, 2011).	
118	Table 1 displays the personator reprace used to optimize the 6 personators related to	f Formattad
120	calibrate DHDEEOC based on the work of Nair et al. (2014)	
1120	canorate r inclede based on the work of Nail et al. (2014)	

121			
122 123	Computational implementation		Formatted: Font: 14 pt
124		~	Formatted: Justified
125	Inverse modeling is a procedure issue for modelers as a result of the numerous		Formatted: Font: 14 nt
126	uncertainties in model parameters and observations (e.g., Carrera et al., 2005,	\sim	Formatted: Highlight
127	Beven, 2006). The hydroPSO R package v0.3-3 (Rojas and Zambrano-Bigiarini,		Formatted: Font: 14 pt
128	2012; Zambrano-Bigiarini and Rojas, 2013; 2014) is a model-independent	$\langle -$	Formatted: Font: 14 pt
129	optimization package, which has been successfully applied as calibration tool for		Formatted, Highlight
130	both hydrogeological and hydrological models, requiring no instruction or template		Formatted: Fighight
131	files as UCODE (Poeter et al., 2005, Abdelaziz and Merkel, 2015) and PEST		Formatted: Font: 14 pt, Highlight
132	(Doherty, 2005; 2013) do.	_	Commented [h4]: Harmonize with lines 43-46 of original
133		\searrow	
134	In order to couple hydroPSO with the PHREEQC geochemical model, three text		Formatted: Font: 14 pt
135	files have to be prepared by the user to handle data transfer between the model		Formatted: Font: 14 pt
136	code and the optimization engine: (i) 'ParamFiles.txt', which describes the names		
137	of a set of parameters to be estimated and locations in the model input files to be		
138	utilized in the inverse procedure, (ii) 'ParamRanges.txt', which defines the		
139	minimum and maximum values that each selected parameter might have during the		
140	optimization, and (iii) 'PSO_OBS.txt', which contains the observations that will be		
141	compared against its simulated counterparts. In addition, a user-defined R script		
142	file ('Read_output.R') have to be prepared, containing the instructions to read	/	Formatted: Font: 14 pt, Highlight
143	model outputs, while an R script template provided by hydroPSO (Rojas and	_ //	Formatted: Highlight
144	Zambrano-Bigiarini, 2012) has to be slightly modified by the user in order to carry		Formatted: Font: 14 pt, Highlight
145	out the optimization.		Formatted: Highlight
146			Formatted: Font: 14 pt, Highlight
147	In contrast to coupling PEST with PHREEQC, it was required that PEST be run	/	Formatted: Highlight
148	with PHREEQC. PEST needs ASCII output and input files. The four files required		Formatted: Font: 14 pt, Highlight
149	were: 1) template files (*.tpl), 11) instruction files (*.ins), 111) a main control file		Formatted: Highlight
150	(*.pst), and iv) a batch file to execute PHREEQC and PEST(*.bat). Template files		Formatted: Font: 14 pt
151	instruction file was employed to extract the simulated values from the output file		Formatted: Font: 14 pt
152	for PHREFOC The main control file includes a model application to run the		Formatted: Font: 14 pt
154	observations parameters to be estimated control data keywords and etc. Details of		Formatted: Highlight
155	PEST are contained in the manual (). Figure 1 shows the key files used to	$\langle \rangle$	Formatted: Font: 14 pt
156	couple PHREEQC with hydroPSO, and explains the flowchart and files involved	N	Formatted: Font: 14 pt, Highlight
157	in the inverse modelling of the surface complexation constants for the U(VI)	$\left \right \right $	Formatted: Font: 14 pt
158	sorption model.	//	Formatted: Highlight
159			Formatted: Font: 14 pt

Formatted: Font: 14 pt

160

	Figure 1. Flow short with files involved in inverse modeling of surface		
161	Figure 1: Flow chart with mes involved in inverse modeling of surface		
162	complexation constants for uranium carbonate $(O(VI))$ species on quartz with the DHDEEOC geochemical model		
163	the PHREEQC geochemical model.		
164			
165	The conversion of the second of the second descent the second sec		
166	For numerical optimization, equation 1 was used to compute the residual sum of		Formatted: Font: 14 pt
167	the squared (RSS or SSR):		
168			
109			Formatted
170	$\underline{SSR} = \sum (C_i^s - C_i^o)^2 \tag{1}$	/	Formatted (
171	<u>i=1</u>		Formatted: Font: 12 pt
172			Formatted: Font: Not Italic
173	This equation (1) was then utilized to compute the goodness of fit (GoF) between		7 Formatted
174	the corresponding model outputs (Cs) and observed values (Co) for every time		(
175	step <i>i</i> . After some initial trials, the number of maximum iterations <i>T</i> was set to 200		
176	and the number of particles used to search for the minimum RSS in the parameter		
177	space was fixed at 10 (i.e., 2000 runs of the model). The rest of parameters were		
178	set to the default values defined in hydroPSO. Detailed and additional information		
179	on SPSO 2011 and hydroPSO are contained in Clerc (2012), Zambrano-Bigiarini /		
180	et. al. (2013), Zambrano-Bigiarini and Rojas (2013). Finally, all the input files		
181	required for running PHREEQC and hydroPSO can be found in the supplementary		
182	material (https://doi.org/10.5281/zenodo.803874), including all the optimization /		
183	results.		
184			
185			
186	Results and Discussion		Formatted: Font: 14 pt
187			
188	One of the vital and useful approaches to evaluate the efficacy of model-	<	Formatted: Font: 14 pt
189	performance is through plotting the simulation against observed values (visualizing		Formatted: Justified
190	outcome of model). The variable observed sorption ratio and the calculated	>	Formatted
191	sorption ratio were compared in Figure 2. It is clear that there is a very good fit		((
192	between the calculated and the experimentally observed values. The coefficient of		
193	determination (r ²), in this case almost 0.89 indicates a good match between the		
194	observed and calculated values (Figure 2). Only 100 iterations were enough to	//	
195	achieve the region of the global optimum, i.e., 100 x100 =1000 model runs. The	/	
196	rest iterations numbers were placed to refine the search as shown in Figure 3.		
197	▲	/	Formatted: Font: (Default) Times New Roman, 14 pt
198			

199	Figure 2: Scatter plot with the experimentally observed and calculated values	1	Formatted	
200	of uranium carbonate (sorption %).	$\left \right $	Commented [h5]: Include line of fit	
201			Formatted: Font: 14 pt	
202	Figure 3: Evolution of the normalized swarm radius (δ norm) and the global	1	Formatted	
203	optimum (SSR) over 200 iterations.			
204				
205				
206	Figure 3 shows the evolution of the global optimum (best model performance for a		Formatted	
207	given iteration, i.e., smallest SSR) and the normalized swarm radius (<i>difference of the states of t</i>			
208	measure of the spread of the population flying over the range of search-space)			
209	versus the iterations number. One may observe that both <i>shorm</i> and the global			
210	optimum become smaller with an increasing iteration number, which indicates that			
211	the main particles are "flying" around a small portion of the solution space. The			
212	optimum value was achieved when the SSR was ca. 2.52. Figure 4 presents the	//		
213	values ofsampled during optimization.			
214	A		Formatted: Font color: Custom Color(RGB(0,0,10))	
215	Figure 4: Boxplots for calibrated parameter. The horizontal red lines indicate	1	Formatted)
216	the optimum value for each parameter. The bottom and top of the box			
217	demonstrate the first and third quartiles, respectively. The horizontal line within			
218	the box stands for the median. The points outside the notches are considered to			
219	be outliers, where notches are within ±1.58IQR/sqrt(n), while IQR represents the	//		
220	interquartile range and n the number of points. The horizontal red lines	/		
221	represent the optimum value found during optimization for each parameter.			
222	A	~	Formatted: Font: 14 pt, Italic	
223			Formatted: Justified	
224	The SSR was chosen as an indicator for goodness of fit (GoF). Two dimensional	1	Formatted	
225	dotty plots in Figure 5 depict the goodness of fit achieved by different parameter			
226	sets. They are suitable for identifying parameter ranges, leading to high or roughly	//		
227	the same model performance (Beven and Binley, 1992).	/		
228				
229	Figure 5 shows the model performance as function of the interaction of different	1	Formatted	
230	parameter ranges. This figure was used to identify regions of the solution space			
231	with good and bad model performances.			
232				
233	Figure 5: Quasi three-172 dimensional dotty plots. The (quasi) three-		Formatted	
234	dimensional dotty plot shown in Figure 5 is a projection of the values of pairs of			
235	parameters onto the model response surface (goodness-of-fit value). Parameter			
236	values where the model presents high performance are shown in light-blue (high			
237	points density), whilst the parameter values where the model shows low			
228	nerformance are shown in dark-red (low points density).	/		

239		
240		
241	Visual inspection of Figure 5 shows a good exploratory capability of PSO because	Â
242	the particles are well spread over the entire range space. It is clearly shown that the	_
243	parameter samples are denser around the optimum value (lowest SSR), indicating a	
244	low standard deviation around the optimum value. Nevertheless, the optimum	4
245	value obtained for K3 and K2 indicated the particles were converging into a small	\backslash
246	region of the solution space.	$\overline{\ }$
247		$\overline{\ }$
248	Figures 6 and 7 give a graphical summary for calibrated parameters.	
249		
250	Empirical Cumulative Density Functions (ECDF) in Figure 6 shows the sampled	$\langle \rangle$
251	frequencies for the six parameters.	$\langle \rangle$
252		$\langle \rangle$
253		$\langle \rangle$
254		$\langle \rangle$
255	Figure 6: Empirical cumulative density functions against each parameter of	
256	parameter values. The horizontal gray dotted lines show a median of the	
257	distribution (cumulative probability 180 equal to 0.5), while the vertical gray	
258	dotted lines depict a cumulative probability of 0.5, and its value is displayed in	\backslash
259	the top of every figure.	\backslash
260		
261	Figure 7: Histograms of calibrated 188 parameter values. The vertical red line	
262	point out the optimum value achieved for each parameter. The histograms and	
263	ECDFs show near-normal distributions for K1 and K2, while k4 and k5 follow a	\sum
264	skewed distribution with more sampled values near the upper boundary.	$\langle \rangle$
265		
266	Figure 8 illustrates the correlation matrix among K values and model performance	\mathbb{Z}
267	(SSR), with horizontal and vertical axes displaying the ranges used for the	4
268	calibration of each parameter. The figure show that highest correlation coefficient	4
269	is among the measure of model performance (SSR) and k4, k6, 193 and k3. In	4
270	addition, a higher correlation coefficient was observed between k4 and k5, k3 and	\leq
271	<u>K4, and K1 and K6.</u>	\backslash
272		
273	Figure 8: Correlation matrix among model performance (SSR) and 196	\langle
274	calculated parameters. Vertical and horizontal axes illustrate the physical	
275	range utilized for parameter identification. *** stands for a $p < 0.001$; **	
276	stands for $p < 0.01$, according to level of statistical significance	
277		$\langle \rangle$

λ	Formatted: Font: 14 pt
/	Formatted: Font: 14 pt
	Formatted: Highlight
-	Formatted: Font: 14 pt
-	Formatted: Font: 14 pt
	Formatted: Highlight
	Formatted: Font: 14 pt
	Formatted: Font: 14 pt
	Formatted: Font: 14 pt
	Formatted: Font: 14 pt, Highlight
	Formatted: Highlight
$\langle \rangle$	Formatted: Font: 14 pt, Highlight
)	Formatted: Font: 14 pt
Ù	Formatted: Font: 14 pt
	Formatted: Font: 14 pt
$\left(\right)$	Commented [h6]: Which six parameters?
	Formatted: Highlight
$\left(\right)$	Formatted: Highlight
$\left(\right)$	Formatted: Font: 14 pt
	Formatted: Font: Bold, Italic
	Formatted: Font: 14 pt
1	Formatted: Font: 14 pt
\int	Formatted
Ú	Formatted: Font: 14 pt
	Formatted: Font: Bold, Italic
	Formatted: Justified
	Formatted: Font: 14 pt
J	Formatted: Font: (Default) Times New Roman, 14 pt
	Formatted: Font: 14 pt
	Formatted: Font: 14 pt
	Formatted: Font: 14 pt
	Formatted: Font: (Default) Times New Roman, 14 pt
	Formatted: Font: 14 pt
	Formatted: Font: 14 pt

278	Figure 9 shows the model output using hydroPSO fitted log-K values and the
270	monitored sorption ratio
280	
281	Figure 9: Observed and simulated sorption of uranium in quartz vs pH with
282	both PEST and hydroPSO calibrated log-k values.
283	
284	It is worthwhile to mention that the surface complexation constants for the Formatted
285	equations 1, 2, and 4 are more important and the equations that are less important
286	are 3, 5, and 6 in optimizing the "log K" values. It proves that $UO_2 (CO_3)_3^4$, UO_2
287	$(CO_3)_2^{2-}$, and UO_2OH^+ are the dorminant species sorbed on quartz. Commented [h7]: Where are equations 2, 3, 4, 5 and 6?
288	
289	Formatted: Font: 14 pt
290	From the optimized model, the surface complexation constants for the equations 2
291	and 4 was optimized to be 21.18 and 3.229 respectively, which is higher than the
292	electrostatic (ES) and nonelectrostatic (NES) models, while the optimized value for
293	equation 1 is 25.156, which is higher than the NES model and almost the same as
294	the ES model.
295	
296	Comparing the results of optimized log-K values with hydroPSO with previous Formatted: Font: 14 pt
297	work of Nair et al. (2014). PEST was applied for the similar case and from the Formatted: Justified
298	same data, it can be shown that the log k values obtained with hydroPSO are better
299	than those obtained with PEST. The main reason is that PSO is a global
300	optimization technique, which searches for optimum values in the whole
301	parameters space, while PEST searches on a neighborhood of the initial solution.
302	In particular, PEST carries out inverse modelling by computing value of parameter //
303	that minimizes a weighted least-squares objective function via Gauss-Marquardt-
304	Levenberg non-linear regression method (Marquardt, 1963). Actually, a major
305	drawback of PEST, as of all gradient-based techniques, is the dependency of the
306	quality of the optimization results upon the initial point used for the optimization,
307	which might lead to a local optimum rather than the global one. Thus, PSO
308	techniques offer promising possibilities for similar surface complexation and
309	reactive transport applications in hydrogeology and hydrochemistry.
310	
311	
312	Conclusions Formatted: Font: 14 pt
313	Formatted: Justified
214	The second second public of the second public of the second secon
514	Ine coupling of nydropSO and PHREEQC was successfully done to estimate Formatted
314 315	<u>surface complexation constants for uranium (VI) species on quartz. The open-</u>
314 315 316	<u>surface complexation constants for uranium (VI) species on quartz. The open-</u> source hydroPSO R package was confirmed to be <u>a robust tool for inverse</u>

evaluation of the calibration results.	Furthermor	e, mermou	rynanne	values obta	ined
with hydroPSO provided a better ma	atch to <mark>obser</mark>	ved sorpti	on rate	in comparise	on to
those obtained with PEST, using th	e same inpu	it data. Th	is is do	cumented by	y the
higher coefficient of determination f	or the results	s based on	<u>hydroP</u>	<u>SO.</u>	
2					
Finally, the paper basically treats the	e coupling of	f a parame	ter estin	mation code	with
PHREEQC. A limited data set was	used from th	e work of	Nair ar	nd Merkel (2	.011)
and Nair et al. (2014) to demonstr	ate the abil	ity of PSC) as an	optimizer 1	for a
geochemical model as PHREEQC.	The example	les were u	sed on	y for testing	g the
coupled-codes to show the link bet	ween PHRE	EQC and	hydroP	SO. Indeed,	it is
<u>obvious that more comprehensive da</u>	ata sets in the	e future ar	e neede	<u>d to get a be</u>	st-fit
and smaller degree of uncertainty.					
)					
Data and lakilitar					\ \ \
<u>Data availability</u>					\ \ \ \
<u>Data avanabinty</u>					
<u>PHREEQC</u> is avail	able	in	the	follo	wing
<u>PHREEQC</u> is avail http://www.hydrochemistry.eu/ph3/i	able ndex.html.	in Source	the code,	follo tutorials,	wing and
<u>PHREEQC</u> is avail <u>http://www.hydrochemistry.eu/ph3/i</u> reference manual of hydroPSO	<u>able</u> ndex.html <u>.</u> can be	in Source obtained	the code, from	follo tutorials, https://CRA	wing and N.R
<u>PHREEQC</u> is avail <u>http://www.hydrochemistry.eu/ph3/i</u> reference manual of hydroPSO project.org/package=hydroPSO. The	able ndex.html. can be PHREEQC	in Source obtained model inp	the code, from out files	follo tutorials, https://CRA along with t	$\frac{\text{wing}}{\text{and}}$
PHREEQC is avail http://www.hydrochemistry.eu/ph3/i reference manual of hydroPSO project.org/package=hydroPSO. The scripts used for coupling it with hydropsi is a script of the script	able ndex.html, can be PHREEQC IroPSO and	in Source obtained model ing the model	the code, from put files outputs	follo tutorials, https://CRA along with t s can be obta	wing and M.R. he R tined
PHREEQC is avail http://www.hydrochemistry.eu/ph3/i reference manual of hydroPSO project.org/package=hydroPSO. The scripts used for coupling it with hydropso from the Zenodo repository (https://z	able ndex.html. can be PHREEQC hoPSO and zenodo.org/r	in Source obtained model inp the model ecord/8033	the code, from out files outputs 874#.W	follo tutorials, https://CRA along with t s can be obta TigbY26zIV	$\frac{\text{wing}}{\text{and}}$ $\frac{\text{AN.R}}{\text{he R}}$ $\frac{\text{yined}}{\text{O}_{c}}$
)) 2 3 4 5 5 7 3 9	with <i>hydroPSO</i> provided a better mathose obtained with PEST, using the higher coefficient of determination for the provided a better mathod by the paper basically treats the PHREEQC. A limited data set was and Nair et al. (2014) to demonstration geochemical model as PHREEQC. coupled-codes to show the link betto obvious that more comprehensive data and smaller degree of uncertainty.	with <i>hydroPSO</i> provided a better match to observe those obtained with PEST, using the same input higher coefficient of determination for the results. Finally, the paper basically treats the coupling of PHREEQC. A limited data set was used from the and Nair et al. (2014) to demonstrate the abiling geochemical model as PHREEQC. The example coupled-codes to show the link between PHRE obvious that more comprehensive data sets in the and smaller degree of uncertainty.	with <i>hydroPSO</i> provided a better match to observed sorpti those obtained with PEST, using the same input data. The higher coefficient of determination for the results based on Finally, the paper basically treats the coupling of a parame PHREEQC. A limited data set was used from the work of and Nair et al. (2014) to demonstrate the ability of PSC geochemical model as PHREEQC. The examples were u coupled-codes to show the link between PHREEQC and obvious that more comprehensive data sets in the future are and smaller degree of uncertainty.	with <i>hydroPSO</i> provided a better match to observed sorption rate those obtained with PEST, using the same input data. This is do higher coefficient of determination for the results based on <i>hydroP</i> Finally, the paper basically treats the coupling of a parameter estin PHREEQC. A limited data set was used from the work of Nair ar and Nair et al. (2014) to demonstrate the ability of PSO as an geochemical model as PHREEQC. The examples were used onl coupled-codes to show the link between PHREEQC and hydroP obvious that more comprehensive data sets in the future are neede and smaller degree of uncertainty.	 with <i>hydroPSO</i> provided a better match to observed sorption rate in comparise those obtained with PEST, using the same input data. This is documented by higher coefficient of determination for the results based on <i>hydroPSO</i>. Finally, the paper basically treats the coupling of a parameter estimation code PHREEQC. A limited data set was used from the work of Nair and Merkel (2 and Nair et al. (2014) to demonstrate the ability of PSO as an optimizer is geochemical model as PHREEQC. The examples were used only for testing coupled-codes to show the link between PHREEQC and hydroPSO. Indeed, obvious that more comprehensive data sets in the future are needed to get a be and smaller degree of uncertainty.

Formatted: Font: 14 pt
Formatted: Font: 14 pt
Formatted: Highlight
Formatted: Font: 14 pt
Formatted: Font: 14 pt, Highlight
Formatted: Highlight
Formatted: Highlight
Formatted: Font: 14 pt
Formatted: Justified
Formatted: Font: 14 pt, Font color: Auto
Formatted: Font color: Auto
Formatted: Font: 14 pt, Font color: Auto
Formatted: Font color: Auto
Formatted: Font: 14 pt, Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font: 14 pt, Font color: Auto
Formatted: Font color: Auto
Formatted: Font: 14 pt, Font color: Auto
Formatted: Font color: Auto
Formatted: Font: 14 pt, Font color: Auto
Formatted: Font: (Default) Times New Roman, 14 pt, Font color: Auto
Formatted: Font: 14 pt, Font color: Auto
Formatted: Font: Times New Roman