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Abstract. A method, based on climate pattern-scaling, has been developed to expand a small number of projections of fields

of a selected climate variable (X) into an ensemble that encapsulates a wide range of indicative model structural uncertainties.

The method described in this paper is referred to as the Ensemble Projections Incorporating Climate model uncertainty (EPIC)

method. Each ensemble member is constructed by adding contributions from (1) a climatology derived from observations

that represents the time invariant part of the signal, (2) a contribution from forced changes in X where those changes can be5

statistically related to changes in global mean surface temperature (Tglobal), and (3) a contribution from unforced variability

that is generated by a stochastic weather generator. The patterns of unforced variability are also allowed to respond to changes

in Tglobal. The statistical relationships between changes in X (and its patterns of variability) with Tglobal are obtained in a

‘training’ phase. Then, in an ‘implementation’ phase, 190 simulations of Tglobal are generated using a simple climate model

tuned to emulate 19 different Global Climate Models (GCMs) and 10 different carbon cycle models. Using the generated10

Tglobal time series and the correlation between the forced changes in X and Tglobal, obtained in the ‘training’ phase, the forced

change in the X field can be generated many times using Monte Carlo analysis. A stochastic weather generator is used to

generate realistic representations of weather which include spatial coherence. Because GCMs and Regional Climate Models

(RCMs) are less likely to correctly represent unforced variability compared to observations, the stochastic weather generator

takes as input measures of variability derived from observations, but also responds to forced changes in climate in a way that is15

consistent with the RCM projections. This approach to generating a large ensemble of projections is many orders of magnitude

more computationally efficient than running multiple GCM or RCM simulations. Such a large ensemble of projections permits

a description of a Probability Density Function (PDF) of future climate states rather than a small number of individual story

lines within that PDF which may not be representative of the PDF as a whole; the EPIC method largely corrects for such

potential sampling biases. The method is useful for providing projections of changes in climate to users wishing to investigate20

the impacts and implications of climate change in a probabilistic way. A web-based tool, using the EPIC method to provide

probabilistic projections of changes in daily maximum and minimum temperatures for New Zealand, has been developed and

is described in this paper.
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1 Introduction

While future changes in climate will follow a single trajectory, it is highly unlikely that any single climate model projection will

correctly simulate that trajectory. The use of a single model projection is therefore insufficient for assessing the potential future

state of the climate. Rather, what is required is a large (e.g. 10,000 member) ensemble of projections that provides a probabilistic

portrayal of how the climate is expected to evolve. Clustering of trajectories within that probabilistic envelope then shows where5

any single trajectory has a higher likelihood of occurring. Probabilistic simulations of future climate, presented as Probability

Density Functions (PDFs), give decision-makers a much clearer picture of likelihoods of future climate states compared to a

single projection, or a small set of projections (Watterson et al., 2008). That said, if decision-makers are presented with PDFs

obtained from the same family of models, these may be biased by the assumptions and limitations inherent in a single family of

models that do not explore the possible trajectories seen in other model families. PDFs of future climate that consider a greater10

number of sources of uncertainty, including uncertainty resulting from structural differences in the underlying models, provide

more robust information needed for quantitative risk assessments, since the likelihood of any particular trajectory can be better

estimated.

Exploring expected changes in extreme weather events also requires probabilistic simulations of future climate. While cli-

mate change may result in a small shift in the mean and/or standard deviation of a PDF of a selected climate variable, the tails15

of the distribution, which represent extreme weather events, can exhibit fractionally much larger changes (see Figure 1.8 in

Solomon et al. (2007)). It is especially important that extreme events, which by their nature are unusual, are captured in an

ensemble of projections.

Resolving changes in the frequency of regional-scale extreme weather events requires large ensembles of projections of high

spatial and temporal resolution. Generating such ensembles using models which simulate all important physical processes,20

such as Global Climate Models (GCMs) or Regional Climate Models (RCMs), is currently computationally prohibitive. The

ideas underlying climate pattern-scaling suggest a means of overcoming this hurdle and form the basis for the newly devel-

oped Ensemble Projections Incorporating Climate model uncertainty (EPIC) method described here. First, a robust statistical

relationship is derived between the local climate variable of interest (X) and some associated readily generated predictor. In

climate pattern-scaling, this predictor is typically the global mean surface temperature (Tglobal). If observations are being used25

to establish this relationship, then observed values of X and Tglobal would be used. If GCM or RCM output is used to establish

the relationship, then X and Tglobal should come from the same model simulation.

Once the relationship between X and Tglobal has been determined, then, given multiple versions of Tglobal, multiple time

series of X can be generated based on that relationship. This methodology assumes that many versions of Tglobal can be

simulated in a way that captures the inherent variability resulting from structural uncertainties in GCMs and carbon cycle30

models in a computationally efficient way, e.g., through the use of a simple climate model (SCM). If the large ensemble of

Tglobal time series spans the range of model structural uncertainties, then the resultant ensemble of generated X time series

will reflect that spread in uncertainties, e.g., as done in Reisinger et al. (2010).
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A number of previous studies (e.g. Murphy et al. (2007), Sexton (2012) and Harris et al. (2010)) used a method that was

designed by the UK Met Office (Murphy et al., 2009) to provide probabilistic projections of future climate for Europe. Their

method combines information from a perturbed physics ensemble (PPE), multi-model ensembles to capture model structural

uncertainties, and observations. Since GCMs have been shown to not be structurally independant (Masson and Knutti (2011),

Knutti et al. (2013)), multi-model ensembles benefit from model weighting to improve the ensemble performance (Knutti et5

al., 2017). The limitations of these methods are that large computer resources are required to run the ensembles of simulations

required which limit the ability to apply this method across many different greenhouse gas emissions scenarios.

2 Models and Data Sources

2.1 Regional Climate Model

An RCM simulation, or a number of RCM simulations, are used to provide the time series used to train EPIC i.e. to quanti-10

tatively establish the relationship between the change in annual mean global mean surface temperature and the change in the

climate variable of interest and its variability. RCM simulations used in this study were performed using the Hadley Centre

regional climate model HadRM3-PRECIS (Jones et al. , 2004) that has been modified to be used for New Zealand (Bhaskaran

et al., 1999, 2002; Drost et al., 2007) and described in further detail in Mullan et al. (2016). The RCM domain spans 32◦S to

52◦S and 160◦E to 193◦E (167◦W) on a regular rotated grid with a horizontal resolution of 0.27◦ and with the North Pole at15

48◦N and 176◦E. Such a rotated grid, with the equator running through the New Zealand domain, ensures a quasi-uniform grid

box spacing. The 0.27◦ resolution results in a domain of 75×75 grid points, reduces computation time for long simulations,

and has been shown to be adequte in previous studies (Drost et al., 2007). The spatial resolution necessitates a computational

time step of 3 minutes. The model orography and vegetation data sets were updated from those used by Drost et al. (2007) to

the high resolution surface orography data set used in NIWA’s operational forecast model (Ackerley et al., 2012); differences20

in the vegetation fields are small. The first year of model simulation (the spin-up) is excluded from the analysis as this is used

to achieve quasi-equilibrium conditions of the land surface and the overlying atmosphere.

The RCM lateral boundary conditions can be sourced either from meteorological reanalyses (these are typically used for

hindcast simulations) or from Global Climate Model (GCM) output. The Atmosphere-only GCM (AGCM) used in this study

was HadAM3P developed by the Hadley Centre in the UK and forced by prescribed sea surface temperatures (SSTs) and25

sea ice extent at the air-sea interface for past and future climate simulations. HadAM3P is a slightly improved version of

the atmospheric component of HadCM3 with 19 vertical levels and a horizontal resolution of 1.875◦ longitude by 1.25◦

latitude. HadAM3P simulate all atmospheric and land surface processes relevant to climate (Pope et al., 2000). Processes

related to clouds, radiation, the boundary layer, diffusion, gravity wave drag, advection, precipitation and the sulfur cycle

are all parameterized in HadAM3P. Additional details regarding HadAM3P are available in Gordon et al. (2000), Pope and30

Stratton (2002), Pope et al. (2000), and Gregory et al. (1994). The output from the RCM was then statistically downscaled to a

0.05◦×0.05◦ grid (Mullan et al., 2016).
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The prescribed boundary conditions for the HadAM3P model were obtained from 6 Atmosphere-Ocean GCM (AOGCM)

simulations obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive, viz. simulations from the

BCC-CSM1-1, CESM1-CAM5, GFDL-CM3, GISS-EL-R, HadGEM2-ES, NorESM1-M models. These AOGCMs were se-

lected for their ability to best simulate changes in synoptic scale climate around New Zealand.

Most GCM and RCM simulations display biases when compared to observations. The RCM simulations used in this study5

were partially bias-corrected by bias-correcting the SSTs that are used as lower boundary conditions for the HadAM3P simu-

lations, which then provided the lateral boundary conditions for the RCM simulations.

2.2 Simple Climate Model

In this study, MAGICC (Model for Assessment of Greenhouse-gas Induced Climate Change; Meinshausen et al. (2011); Mein-

shausen et al. (2011)) is the simple climate model (SCM) used to generate an ensemble of Tglobal time series. MAGICC is a10

reduced complexity climate model with an upwelling diffusive ocean and is coupled to a simple carbon cycle model that in-

cludes carbon dioxide (CO2) fertilization and temperature feedback parameterisations of the terrestrial biosphere and oceanic

uptake. MAGICC can be tuned to emulate the behaviour of 19 different CMIP3 AOGCMs (Meehl et al., 2007) and 10 carbon

cycle models (Friedlingstein et al., 2006). The resultant 190 different ‘tunings’ for MAGICC can be used to generate 190

equally probable Tglobal time series that provide an indication of the spread in Tglobal resulting from structural uncertainties15

in AOGCMs and the carbon cycle models used in C4MIP (Coupled Carbon Cycle Climate Model Intercomparison Project).

When used as predictors for changes in local climate variables, and using the prior established quantitative relationship between

Tglobal and the X , these 190 Tglobal time series can be used to generate 190 time series emulating X .

The EPIC method does not attempt to faithfully represent the full, true PDF of potential tuning parameters both for the

AOGCM tunings and the carbon cycle model tunings i.e. were MAGICC tuned to a different set of AOGCMs (e.g. the CMIP520

set rather than the CMIP3 set), we would obtain a different set of tuning files which could lead to a somewhat different

spread in our generated ensembles. The purpose of this paper is not to generate perfect ensembles that encapsulate structural

model uncertainty in a completely accurate way but rather to describe a method that provides a better representation of that

uncertainty than can be achieved with only a limited set of RCM simulations. The robustness of the EPIC method depends on

the set of AOGCM and carbon cycle model tunings available and as more comprehensive sets (that better reflect the likelihood25

of some tunings over others) become available, we expect that the large ensembles generated by EPIC to better reflect the true

underlying uncertainties.

2.3 Virtual Climate Station Network

While the RCM simulations have been partially bias corrected, we recognise that some biases may remain. Therefore, we build

our projections off an observational data set, so that, in the absence of any forced changes in climate, the projections default30

to observations (this is described in greater detail below). Observationally-based time series are obtained from the so-called

Virtual Climate Station Network (VCSN). The VCSN data set for the New Zealand land surface is constructed on a regular

0.05◦×0.05◦ grid from spatially inhomogeneous and temporally discontinuous quality controlled weather station data (Tait et
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al., 2005). The values estimated on the 0.05◦×0.05◦ grid are based on thin plate smoothing spline interpolation using a spatial

interpolation model as described in Tait, (2008).

3 Methodology

For a given geographic location, each ensemble member, covering the period 1960 to 2100, is constructed from contributions

including:5

1. a climatology derived from observations that represents the time invariant part of the signal,

2. a contribution from long-term forced changes in the magnitude of the variable of interest where those changes scale with

changes in anomalies in global mean surface temperature (T′global), and

3. a contribution from weather, generated by a stochastic weather generator that incorporates both forced and unforced

variability.10

The construction of each of these signals is described in greater detail below with a high level overview of how these contri-

butions are related shown in Figure 1. The methodology described below pertains to a selected single greenhouse gas (GHG)

emissions scenario and the daily maps of the climate variable of interest (X; here daily maximum (Tmax) and daily mini-

mum (Tmin) surface temperatures) are obtained from one or more RCM simulations. To produce the results for this study, 10

ensemble members were generated for each of the 190 Tglobal time series from MAGICC to produce an ensemble of 190015

members. These ensemble members were generated over the period 1960 to 2100. The Tmax and Tmin fields were obtained

from six RCM simulations driven by the Representative Concentration Pathway (RCP) 8.5 GHG emissions scenario for the

period 1971-2100. RCP 8.5 was choosen as it displays a high climate signal to noise ratio, resulting in the most robust re-

gression results (Huntingford and Cox (2000), Mitchell (2003)), but the methodology is valid for any choosen GHG emission

scenarios assuming a robust regression fit is obtained during the training phase. The assumption, which has been verified (not20

shown here), is that the dependence of X on Tglobal is independant of the GHG emissions scenario used for the training. All

anomalies were calculated with respect to the period 2000 to 2010. This anomaly period was choosen as the change in X over

the 21st century was of interest.
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Figure 1. Flow chart illustrating the processes involved in generating a single EPIC ensemble member based on training from a selected
RCM simulation. Numbers in brackets refer to the Section where more details are provided.

3.1 The climatology

At each 0.05◦ by 0.05◦ (approximately 5km) grid point, a mean annual cycle is calculated from daily observational data from

2001 to 2010. For this study, these observational data were obtained from VCSN (Section 2.3). Since the 10 year baseline

period is rather short, a climatology derived by calculating calendar day means would still contain some weather-induced

noise. Therefore, a regression model which includes an offset basis function, expanded in two Fourier series (Fourier pairs) to5

account for seasonality (see Section 2.4 of Kremser et al. (2014)), is fitted to the daily observational data to obtain the mean

annual cycle. The first 2 Fourier series expansions are given in Eq. 1.

β(d) = β0 +β1 × sin(2πd/365)+β2 × cos(2πd/365)+β3 × sin(4πd/365)+β4 × cos(4πd/365) (1)
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where d is the day number of the year and β is a the regression coefficient being expanded. By using an offset basis function

expanded in Fourier pairs, the resultant mean annual cycle is smooth. Examples of the mean annual cycle are shown in Figure

2 for four selected locations around New Zealand.
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Figure 2. Observations of daily maximum surface temperature (red) and daily minimum surface temperature (cyan) from VCSN together
with the mean annual cycle obtained from the regression model fit to the daily maximum surface temperature (magenta) and the daily
minimum surface temperature (blue) time series for four selected locations in New Zealand, over the period 2001 to 2010.

This repeating mean annual cycle then provides the stationary baseline for the entire period of interest e.g. 1960 to 2100.

3.2 Direct response to T′
global5

3.2.1 Training Phase

In the training phase, the first-order long-term forced change in X is established using the correlation between X ′ and T′global.

This relationship is expected to be dependent on the RCM simulation from which the variable of interest is obtained. There are

two ways in which this can be managed, viz.:

1. A statistical relationship is quantified for each RCM simulation providing data for the training phase of EPIC. Then, in10

the ‘implementation phase’ of EPIC (see below), for each ensemble member, a single relationship is randomly selected.
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2. A single statistical relationship is quantified using a concatenated time series obtained from all RCM simulations pro-

viding data for the training phase of EPIC. In the ‘implementation phase’, this relationship is used.

For the purposes of this study, method (1) is used as method (2) will tend to underestimate the true uncertainty of the relationship

between X ′ and T′global.

A simple linear correlation between X ′ and T′global is calculated for each of the 6 RCM simulations and each grid point5

independently, viz.:

X ′(t) = α×T ′global(y)+R(t) (2)

where X ′(t) are the daily anomalies with respect to the 2001-2010 mean annual cycle of X , T ′global(y) are the anomalies of an

annual mean global mean surface temperature time series obtained from the AGCM which provided the boundary conditions

for the selected RCM simulation, α is the regression coefficient and R is the residual which is the part of the signal that cannot10

be explained by the statistical model. In this case, the residuals are used by the stochastic weather generator (see Section 3.3)

to model higher order changes in the variability in X which are not captured by Eq. (2).

The mean annual cycle of X , which is used to calculate X ′, is generated using the same method and time period used to

calculate the mean annual cycle of the observational set. X ′, rather than X , is used in Eq. 2 as the change in the seasonal cycle

is of interest. Removing the mean annual cycle removed the need to add additional terms to describe the baseline seasonal15

cycle.

Because GCM and RCM output provide a much longer time series than observations and extend into a period of greater

changes in X , GCM or RCM output are preferentially used in this training phase. In this study, the input to the training phase

of EPIC, T′global is sourced from the AGCM that provided the boundary conditions for the RCM simulation. Both the T′global
time series used in the training phase and later in the implementation phase of EPIC need to be geophysically consistent. This20

geophysical consistency can be assessed by comparing the T′global time series obtained from the HadAM3P simulations, with

the T′global time series obtained from the CMIP5 AOGCMs that provided the SST boundary conditions for the HadAM3P

simulations (which were not used elsewhere in EPIC), as well as the 190 T′global time series obtained from MAGICC (Figure

3). There are clear differences between the T′global time series obtained from the CMIP5 AOGCMs and those obtained from

the HadAM3P simulations. This is because the SSTs from the CMIP5 AOGCMs are bias corrected before being used as the25

surface boundary conditions for the HadAM3P simulations. The 6 T′global time series from the HadAM3P simulations (used in

the training phase of EPIC) fall well within the envelope of the 190 MAGICC T′global time series used in the implementation

phase of EPIC, even though MAGICC is emulating a range of CMIP3 models.
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Figure 3. Annual mean global mean surface temperatures calculated from the CMIP5 AOGCM simulations under the RCP8.5 scenario
(coloured solid lines). The annual mean global means from the HadAM3P (dashed lines) and MAGICC (grey lines) for RCP8.5 are also
shown.

Because the fit coefficient,α, is expected to depend on season, it is expanded in two Fourier pairs to account for its seasonality

(Eq. 1). The resulting α has a smooth seasonal cycle which would not be the case if each month was fitted independently. When

embedded in Eq. (2), the resulting Eq. (3), has five fit coefficients (α0 to α4).

X ′(t) = (α0+α1× sin(2πd/365)+α2×cos(2πd/365)+α3× sin(4πd/365)+α4×cos(4πd/365))×T ′global(y)+R(t) (3)

The statistical model is solved using a multivariate least squares regression approach(Moore and McCabe , 2003) to obtain the5

fit coefficients. We refer to each such set of five fit coefficients as a tuple; recall that this fit is applied at each grid point and for

each available RCM simulation.

An example of a fit of Eq. (2) to daily maximum surface temperature anomalies is shown in Figure 4 for a location in the

South Island of New Zealand.
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Figure 4. An example of the fit of Eq. (2) (red line) to daily maximum surface temperature anomalies (blue) obtained from the NorESM1-M
RCM simulation under the RCP8.5 GHG emissions scenario at Alexandra, New Zealand (45.249◦S, 169.396◦E). Solid line represents the
zero line (no change).

The small annual cycle in the fit, with growing amplitude, results from summer-time and winter-time daily maximum surface

temperatures exhibiting different correlations against T′global. The inter-annual variation arises from changes in Tglobal as α

does not change from year to year. In addition to the long-term forced change, there is significant day-to-day variability. The

use of the residuals from such fits in the stochastic weather generator is described in Section 3.3.

The unitless α coefficient describes a location’s sensitivity to changes in annual mean global mean surface temperature.5

The magnitude of α indicates whether Tmax or Tmin are changing faster (α>1) or slower (α<1) than the global mean surface

temperature. Example maps of the α coefficient, over New Zealand, for four selected days throughout the year, are shown in

Figure 5. This analysis shows that daily maximum surface temperatures over most of New Zealand are warming slower than

Tglobal. However, high altitude regions, such as the Southern Alps, indicate Tmax increasing faster than Tglobal for southern

hemisphere spring, summer and autumn.10
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Figure 5. Maps of α coefficients (unitless) which represent the sensitivity of changes in daily maximum surface temperature to changes
in annual mean global mean surface temperatures for locations throughout New Zealand. The α coefficients were derived from fits of Eq.
(2) to daily time series of daily maximum temperatures at each grid point of the NorESM1-M RCM simulation. The annual mean global
mean surface temperature anomalies were taken from the AGCM simulation that provided the boundary conditions for this particular RCM
simulation. Black lines indicates α values of 1.0.

There is, of course, some uncertainty in α. To account for that uncertainty, a large set of α tuples is derived through a Monte

Carlo bootstrapping approach (Efron and Tibshirani , 1994), whereby residuals from the Eq. (2) fit are randomly sampled

and added to the regression model fit to generate multiple statistically equivalent time series which are then refitted to obtain

equally probable α fit coefficients (Bodeker and Kremser, 2015). This approach allows for the incorporation of the uncertainty

in the fit of Eq. (2) into the final ensemble of projections.5
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3.2.2 Implementation Phase

Once the Monte Carlo derived sets (just one set if method (2) is used) of α tuples have been obtained, they are used in the

implementation phase of EPIC. As described in Section 2.2, 190 simulations of T′global can be generated using a SCM. A

randomly selected T′global time series from the 190 member set is used together with a randomly selected tuple of α values to

generate a series of maps of X ′forced using Eq. (2), where the forced subscript denotes these are changes which correlate with5

T′global
There might be some concern that the random selection of an α tuple from the available set of tuples for a location could

cause the spatial coherence in the forced signal across New Zealand to be lost, as at a nearby location a different tuple could be

randomly selected. This was tested for and was found not to be the case as the multiple instances of tuples (multiple instances

of Figure 5) are very similar and consistent (not shown here).10

3.3 Indirect response to T′
global and weather noise

In addition to the change in X that correlates directly with T′global, higher order components of variability, as well as realistic

weather noise, must be present in the projections comprising the ensemble. One potential use of the ensemble of projections

generated by EPIC is assessment of the impacts and implications of climate change on a regional scale. These impacts seldom

happen at a single site, i.e. the impact is felt over a large area. For this reason it is important that any specific member of an15

ensemble is appropriately spatially coherent over multiple sites. This is not achieved if the method considers each site in isola-

tion since any purely stochastically determined weather noise added to a site would not be spatially coherent at neighbouring

sites. For this reason, an empirical orthogonal function (EOF) approach, described by Lorenz (1956), is used to describe the

spatial weather patterns and how they change over time. EOF analysis is a statistical method which reveals the spatial patterns,

or modes of variability in a data set, and how these patterns evolve over time as given by the resulting principal component20

(PC) time series. Hereafter we refer to these modes of variability as ‘weather modes’. The EOF analysis is applied to X ′

after the dependence on T′global has been removed. These weather modes, and PC time series, are then used to construct a

weather generator which produces realistic weather noise by stochastically generating PC time series (PCsyn). The following

is recognised in the construction of the stochastic weather generator:

1. That VCSN data will provide the most realistic representation of weather noise.25

2. That RCM simulations will simulate how that weather noise is likely to evolve in response to climate change (represented

by T′global).

3. That the RCM simulations will be imperfect in simulating the patterns of variability derived from the VCSN data.

4. That there will be patterns of variability (weather) whose amplitude and variability will respond to climate change as

well as others which do not change with increases in T′global.30
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3.3.1 Identifying the modes of variability responding to climate change

We begin by conducting an EOF analysis on VCSN data that have been detrended by removing the first order trend and on

residuals from the fit of Eq. 2 to RCM data in the training phase. Where the patterns of variability obtained from EOF analyses

of VCSN and RCM diverge is considered to be the cut-off point for where the RCM simulation can be taken to have any

integrity with regard to simulating forced changes in weather noise. Visual inspection of the EOF maps derived from VCSN5

and RCM data suggested that the first four modes of variability are well represented by the RCM simulations (see Figure 6).
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Figure 6. The first five EOF patterns of weather noise in daily maximum surface temperatures obtained from VCSN data from 1972 to 2013
(left column) and obtained from RCP8.5 NorESM1-M RCM output from 1972 to 2100. The colour bar shows the amplitude of the pattern in
◦C. The percentage values in each panel show the fraction of the total variability explained by each mode.
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It is clear from Figure 6 that the RCM EOFs exhibit the same modes of weather variability as seen in the VCSN data up

until EOF pattern 4. Together, the first four patterns of variability explain 83.3% of the total weather variability in the VCSN

data and 64.7% of the variability in the RCM data. It is these four modes of weather variability that evolve with T′global in our

stochastic weather generator.

3.3.2 Modelling forced changes in the amplitude and variability of weather modes5

To compare statistics from the PC time series calculated from VCSN and RCM data, they must share the same underlying

weather modes. This is done by projecting the VCSN weather modes (EOFV CSN ) onto the RCM data to calculate a pseudo-

PC time series. A pseudo-PC time series is calculated in the same way that a standard PC time series is calculated, except that

the weather modes are prescribed instead of being calculated from the data. A pseudo-PC time series describes the magnitude

of a particular pattern of variability from VCSN, which is present in the RCM data. The VCSN weather modes, rather than the10

RCM weather modes, were prescribed because the observational data set is more likely representative of patterns of variability

seen in New Zealand. The pseudo-PC and VCSNPC time series can be compared as they both describe the same patterns of

variability.

In the stochastic weather generator, we consider changes in:

1. The amplitude of the weather mode: this is quantified by correlating the associated pseudo-PC time series with T′global15

and then using that correlation coefficient (β) to drive a trend in the PC time series obtained from the VCSN-based EOF

analysis.

2. The variability of the weather mode: this is quantified by correlating the variability in the associated pseudo-PC time

series with T′global and then using that correlation coefficient (βvar) to drive a trend in the variability of the PC time series

obtained from the VCSN-based EOF analysis. The mean variability of the weather mode is obtained from the VCSN PC20

time series rather than the pseudo-PC time series, so that the weather mode emulates the magnitude of variability seen

in the VCSN data.

We also recognize that the PC time series will exhibit temporal auto-correlation and therefore that correlation is quantified

and removed before correlating the PC signal, and its variability, against T′global. The resulting time series (PCsyn_n) captures

both long-term shifts and/or changes in spread of the nth weather mode. We note, however, that by considering only lag-one25

autocorrelation in these PC time series, we neglect longer term auto-correlation, e.g. that resulting from El Niño and La Niña

events. As a result, our ensemble time series exhibit smaller inter-annual variability than is observed in VCSN time series.

The ability of the method to generate a set of PDFs of the PCsyn_1 to PCsyn_4 time series is demonstrated in Figure 7.
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Figure 7. PDFs of the first four synthetic (PCsyn) and RCM (PCRCM ) PC time series for the first decade of the 21st century are shown
in solid lines and PDFs for the last decade of the 21st century are shown in dashed lines. PCRCM and PCsyn were both derived from the
NorESM1-M RCM output as an example. The PDF from the PC time series (2000-2010) obtained from VCSN is also shown (PCV CSN ). The
disagreement between the PCRCM and PCV CSN validates the use of VCSN weather noise as the basis for our stochastic weather generator
and the good agreement between the ensemble of PCsyn and PCV CSN demonstrates that the EPIC method generates synthetic PC time
series with a degree of variability that matches reality.

The EPIC method corrects for any shortcomings in the ability of the RCM to correctly simulate expected magnitudes of

weather variability for these four primary modes and then accommodates these corrections when generating PC time series

that evolve into the future.

3.3.3 Modelling higher order modes of variability in weather

The stochastic weather generator includes the effects of EOF patterns five and higher but assumes that these modes show no5

dependence on T′global as the RCM simulations do not accurately simulate these higher modes of weather variability. The

variability of the PC time series often has a strong seasonal cycle. Therefore, for EOF pattern five and higher, synthetic PC

time series (PCsyn) are generated using a standard Monte Carlo approach, i.e. randomly selecting values from N(0,σ(d)),
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that is, a normal distribution with a mean of 0 and a standard deviation which depends on the day of the year which is being

modelled. σ(d) is determined by a linear least squares fit of two Fourier pairs (Eq. 1) to the VCSN PC time series. The Fourier

pairs model the seasonal cycle in the PC time series. This approach allows selection of extreme PC values that are outside of

the range of PC values experienced in the 1972-2013 period, but noting that the PDFs of these PCs do not evolve with time.

As with the forced changes in the amplitude and variability of weather modes, the auto-correlation in the PC time series is also5

quantified and captured in the statistically modelled PC time series.

For a given ensemble member, once synthetic PC time series at daily resolution have been generated, they are used to

produce a reconstructed weather field, W , according to:

W (i, j, t) =

50∑
n=1

EOFV CSN_n(i, j)PCsyn_n(t)

where i, j and t represent the latitude, longitude and time dimensions respectively and n is the nth weather mode.10

SinceW has been constructed from a linear combination of spatial patterns of variability, each of which is spatially coherent,

it retains the property of spatial coherence. The variability evolves as expected under changes in T′global for the first four modes

of variability, as simulated by the RCM, and where extreme conditions, outside the range of the training period, do occur with

a statistically reasonable frequency due to the stochasticity in the construction of the pseudo PC time series.

Tmin is modelled identically to Tmax with one small change: days with anomalously low Tmax would be more likely to15

have anomalously low Tmin. Not accounting for this correlation could result in stochastically modelled Tmin values being

higher than the modelled Tmax value for that day. To avoid that, and to capture the correlation between Tmax and Tmin on any

given day, the same set of random numbers used to generate the values in the synthetic PCn time series for Tmax for a given

day is used to generate the values in the synthetic PCn time series for Tmin. This forces the selection of PCsyn values from the

same region of the PDF for both Tmax and Tmin.20

4 Results

Examples of the Tmax and Tmin time series generated by the EPIC method are shown in Figure 8 for four population centres

in New Zealand together with the associated VCSN time series.
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Figure 8. Example output from 1900 EPIC-generated time series for Auckland, Wellington, Christchurch and Dunedin from 1960 to 2100
under the RCP8.5 GHG emissions scenario. Grey shaded areas show the 1, 10, 25, 75, 90 and 99 percentiles while the blue line shows the
median value on each day. T′max (left column) and T′min (right column) anomalies with respect to the 2000-2010 mean annual cycle. VCSN
time series are overlaid in each panel (red lines).
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Actual EPIC ensemble time series add these anomaly time series to the 2001-2010 VCSN-derived annual cycle climatology

and therefore show no systematic bias with respect to the VCSN data. The EPIC-generated time series also show a long-term

evolution consistent with expectations from RCM simulations, including the effects of the spread in those simulations. While it

cannot be directly seen from the time series plotted in Figure 8, the EPIC-generated time series also exhibit changes in weather

variability consistent with RCM projections of expected changes in the first four modes of weather variability. The apparent5

annual cycle in the anomaly time series reflects the annual cycle in the variance and not an annual cycle in the anomalies;

towards the end of the period there is a true annual cycle in the anomalies from differential seasonal changes in Tmax and

Tmin. The inter-annual variability of the EPIC ensemble members is lower than that of the observational data set. This is due

to EPIC not including any terms which describe patterns of variability which occur at time scales of longer than 1 year.

5 Discussion and Conclusions10

The EPIC (Ensemble Projections Incorporating Climate model uncertainty) method, is able to generate large ensembles of

daily time series of daily maximum and minimum temperatures that exhibit the following characteristics:

– No bias with respect to VCSN data.

– Long-term evolution consistent with projections from a suite of RCM simulations, incorporating the uncertainties in-

herent in those simulations as well as additional structural uncertainties that may arise from the use of a wider suite of15

RCMs as captured by the use of projections of T′global. T′global time series were generated by a SCM tuned to 19 different

AOGCMS and 10 different carbon cycle models and used as a predictor for the long-term change in Tmax and Tmin.

– Weather variability with extremes that extend beyond that observed in the VCSN record and that evolve in a way consis-

tent with RCM projections of changes in the four primary modes of weather variability.

– Spatial coherence in weather variability in any single ensemble member is preserved.20

As such, EPIC-generated projections are suitable for generating robust PDFs of projections of Tmax and Tmin.

The number of members in each ensemble is essentially limited only by the computing resources available. The stochasticity

introduced by the Monte Carlo analysis and modeling of the weather noise allows for many ensemble members to be generated

for a given Tglobal. For calculating the PDFs that are delivered to users, we currently generate 19,000 member ensembles (10

ensemble members for each Tglobal) for a given RCP scenario at each 0.05◦ × 0.05◦ grid point across New Zealand.25

A web-based tool has been developed to deliver PDFs of Tmax and Tmin for the period 2001-2010 and 2091-2100 to users

along with statistics regarding the change in frequency of extreme events, i.e. days per year with Tmax above 25◦C and 30◦C

and Tmin below 0◦C and 2◦C. The tool is available at http://futureextremes.ccii.org.nz/.

The next steps for the development of EPIC include extending the range of climate variables to daily surface broadband

radiation, surface humidity and precipitation, and incorporating longer term sources of variability, e.g. those generated by El30

Niño and La Niña events, into the stochastic weather model. The implementation of a model weighting scheme, such as Knutti

et al. (2017), for the training data could increase the applicability of the model.
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6 Code and data availability

The source code and data used is available upon request to the corresponding author. The VCSN data set employed is available

from NIWA (https://www.niwa.co.nz/climate/our-services/virtual-climate-stations).
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