Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream-aquifer land interactions (PFLOTRAN_CLM v1.0)

4

5	Gautam Bisht ¹ , Maoyi Huang ^{2,*} , Tian Zhou ² , Xingyuan Chen ² , Heng Dai ² , Glenn Hammond ³ ,
6	William Riley ¹ , Janelle Downs ² , Ying Liu ² , John Zachara ²

7

- 8 ¹Lawrence Berkeley National Laboratory, Berkeley, CA
- 9 ²Pacific Northwest National Laboratory, Richland, WA
- ³Sandia National Laboratories, Albuquerque, NM

11

12 Correspondence to: Maoyi Huang (maoyi.huang@pnnl.gov)

13

16 Figure S1. Plant function types at 10-m resolution as inputs for CLM4.5

22 Figure S3. Topography at (a) 2-m; (b) 10-m; (c) 20-m resolutions over the study domain

June of each year in study period from PFCLM_{2m} (left panels) and PFCLM_{E2m} (right panels)

30 Figure S5. Mole fraction of river-water tracer at elevation 107 m on 30 June of each year in the study

31 period from PFCLM_{2m} (upper panels) and PFCLM_{E2m} (lower panels)

Figure S6. Simulated daily domain-averaged surface energy fluxes from PFCLM_{2m} (red) and PFCLM_{E2m}
(blue)

39 Figure S7. Total water mass, tracer amount, and exchange rates of water and tracer at four boundaries

40 simulated by $PFCLM_{20m}$.