
1 Author General Response

We thank the reviewers once again for their valuable feedback and contribution
to this study. Our specific responses to reviewer comments are shown further
below in blue.

Through this review process we have noticed some additional points we consider
worth correcting.

• We have added a small clarification that we saw was necessary in the meth-
ods section ”Uncertainty in Observations and Model Forcing Variables”.

• We have made some minor grammatical changes.

• We have made some additional changes (not mentioned further below) in
the discussion section to improve readability.
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2 Anonymous Referee # 1

Note: Author comments are shown in blue.

First, regarding the observation error, which includes data, model (and repre-
sentation) errors. I agree the �

2
r test is a good way to assess the observational

error is well defined. However, for the optimisation problem at hand, I have
three comments:

1. this test is chi-squared per degrees of freedom: �
2
r= �

2
/N , where N is the

number of degrees of freedom, i.e., number of observations minus number of pa-
rameters (e.g., Taylor, 1997). By including only the formed, the authors might
thus underestimated the value of �2

r. Thank you for the comment. The com-
ment is accurate except that the prior parameters are also independent pieces
of information (i.e. degrees of freedom) (see introduction section of Michalak et
al., 2005, doi: 10.1029/2005JD005970, and; see Tarantola and Vallette, 1982).
Therefore we must add the number of observations with the number of prior
parameters, then minus the number of estimated variables as you point out (i.e.
posterior parameters). The result is that the prior and posterior parameters
cancel and the number of degrees of freedom is equal to the number of observa-
tions. In any case, the number of observations at a high-resolution (in our case
2x2 degrees) is exceptionally large (about 31,000), so a few dozen parameters
carry very little weight. We have clarified this in the text by adding to the
methods section: ”where N is the number of degrees of freedom (equal to the
number of observations in this case)” and including the Michalak et al. (2005)
reference if readers want more information.

2. the authors state that ”Because representation errors will be large at low-
resolution this analysis cannot be performed using the low-resolution model used
elsewhere in this analysis.” (P7, L7-8). I wonder then what is the informative
value of a test performed on a di↵erent configuration than that used for the rest
of the study? All the more that this ”representation error” directly influence
the value of �2

r, as it is included in the observational covariance error matrix
Cd. We thank the reviewer for the comment. The reviewer is correct in that
the analysis can be performed at low-resolution, we have corrected this point
in the text. However, we note that it is not recommended to assess the chi-
squared at a low resolution considering that an actual assimilation of the data
(which is future work) would not be performed at such a low resolution as
representation errors can be large (i.e. not representing the heterogeneity of
the land surface). The value of using this test under a di↵erent configuration is
an attempt to assess the model/structural uncertainty as recommended during
the review i.e. can the model reproduce the measurements? In order to assess
whether the model is capable of simulating the measurements (which is what
the chi-squared analysis tests), it is more informative to do so at a high spatial
resolution as would be used for an assimilation of the data. To clarify this, we
have amended the manuscript to explain why we apply a low-spatial resolution
for the error propagation but high-resolution for the chi-squared test. We added
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a better description of this in the methods and added extra clarification in the
discussion section.

3. More generally, it seems to me that the value of �2
r should anyway expected

to be larger than one. Indeed, no optimization is performed in this study, so
that model-data wont likely be excellent, and the �

2
r value precisely translates

a goodness-of-fit given the trust put in the observations. Contrarily to what
is stated in that paragraph (P7, L5-11), my understanding is that having a
value of �2

r lower than one should not be a target as it translates overfitting
and underestimation of observational error (too much trust in the observations,
i.e. model outputs and/or data), all the more if the prior model-data fit is not
expected to be great. Note that in (Kuppel et al., 2013), �

2
r was estimated

using the optimised model (Eq. 6) -albeit with a slightly di↵erent formulation
following (Tarantola, 2005). Thanks for the comment. There are two alternative
forms for the chi-squared test: one with the prior and one with the posterior.
Both are used in Kuppel et al. (2013). Under the linear assumption the value
of the chi-squared test in the prior case and posterior case are mathematically
identical - although their formulation is di↵erent. Therefore the issue of using
the prior or posterior does not arise. One way of thinking about this is that
(i) in the prior case the model-data mismatch may be large, but the parameter
uncertainties are also large which results in a larger spread of model realisations,
and (ii) in the posterior the model-data mismatch will be smaller, but the pa-
rameter uncertainties are also smaller which results in a smaller spread of model
realisations. They therefore give a similar value (exactly the same in the linear
case). We think that perhaps the reviewer has confused the �

2
r test with the

average model-data mismatch (which should be greater than one for the prior),
but which ignores the spread of model realisations; i.e. the HCx0H

T term. We
have modified the methods section to better explain what the chi-squared test
means. Also, Michalak et al., 2005 gives a good description of this and we have
added this reference for the readers.

I would thus recommend the authors to assess the reduced chi-squared statistics
at the same resolution as that used for the rest of the analysis, and discuss on
this basis. The advantage is that the impacts of both neglected structural and
representation errors are included here. Thank you for the suggestion. This
seems to be similar to point 2 above, please refer to that response. If the value
of �2

r is significantly larger than one, it can arise from underestimated structural
error, underestimated representation error, and/or model-data misfit. Acknowl-
edging this from the start and for the discussion of the presented parametric
uncertainty reduction would give more depth to the paper. That is a good point
and we agree with this. Please refer to the response to point 3 above. To make
this clearer to readers we modified the methods to better describe what the
chi-squared test means.

Second is the systematic error. I have a hard time understanding how the author
can propagate a ”systematic error of unknown sign”, for two reasons:

1. the very basis of error propagation used in this study assumes Gaussian error
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that can be propagated linearly, i.e., using matrices (P3, L14-22). The fact
that the sign of the systematic error is not known does not necessarily make it
suitable for statistical analysis, let alone be characterized as Gaussian. Thanks
for the comment. This shows that we need a better definition of what we call
systematic error. The term ”systematic” here refers to the fact that the error
applies to multiple observations (e.g. all data points for the summer season).
It does mean it is a known bias. Additionally, with our analysis of SIF over
non-vegetated surfaces for January and June we are sampling the distribution
of the error in the zero-level o↵set. We are not including the zero-level o↵set
itself (which is a bias correction), but rather the random error associated with
calculating the zero-level o↵set. We have clarified this in the methods section as
well as providing more detailed caption note for Fig. in the Appendix to describe
what it means. How are the authors including this systematic random error of
± 0.1 W.m-2.um-1.sr-1 in their propagation framework? What ”seasonality” is
applied to it? We thank the reviewer for this comment. Indeed we need to make
it clearer in the methods how we include this error term. We have added text
to the methods section explaining what the seasonality is, and how the error is
added into the terms Cx and H. Note that the sign of a bias is indeed generally
known and its magnitude rarely is, but that is not enough for statistical analysis
(Richardson et al., 2012, pp. 175-177). This point is similar to the first two
sentences of this paragraph, please refer to the response above.

2. The author claim (P9, L21-22) to perform ”a sensitivity test of incorporating
this systematic uncertainty into the error propagation system to indicate how
an error in the zero-level o↵set may propagate through to uncertainty in GPP.”
Following my previous comment, I was curious to see how the authors applied
their methodology. Thanks for this comment. As was mentioned above in
response to a similar comment, we have added text to the methods section
explaining what the seasonality is, and how the error is added into the terms
Cx and H. However, I could not find where the results are reported. What is
then the basis for asserting that ”We also find that the e↵ect of incorporating the
error from the zero-level o↵set in the SIF observations is negligible on posterior
parametric uncertainties” in the Discussion (P19, L19-20)? Thanks for the
comment. There is a paragraph at the end of the results section ”Parameter
Uncertainties” reporting the results. We do not add any additional figures or
tables for this considering the result is not significant (i.e. max of about 1%
change in parameter uncertainties) and it does not form a major part of the
study.

3. Later in the Discussion, the authors state that ”A known systematic error
in forcing variables (e.g. Boilley and Wald, 2015) cannot be considered in the
present error propagation system, however, in such a case a correction to the
data should be performed as it will bias carbon flux estimates”. Why not
apply the same framework for measurement error? As it is formulated, the
methodology is imprecise and the result not reported, so it is hard to assess
what the authors have e↵ectively done. As discussed with point one, we have
better defined what we mean by ”systematic error” and bias. The systematic
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error (i.e. bias) from Boilley and Wald (2015) di↵ers from the one we describe
for the zero-level o↵set.

Other comments:

• This is more of personal preference, but I think Eq. (6) should read
di = d

t
i + ✏i + z In my view, this translates more clearly the fact that

retrieved measurements derive from a true value a↵ected by random and
systematic errors, and not the other way around. Yes, fair point, that
does seem more logical. We have amended this as suggested. We have
also added that z is of the same of probabilistic form as ✏i, but it applies
to more than a single index point. To make this a little clearer we have
also changed z to be "z.

• Some questions marks are present in the revised manuscript where refer-
ences should be, presumably from missing LateX bibliography pointers.
Ah yes, it seems it did not compile fully. This is now fixed.

References:

Kuppel, S., Chevallier, F. and Peylin, P.: Quantifying the model structural
error in carbon cycle data assimilation systems, Geosci. Model Dev., 6(1),
4555, doi:10.5194/gmd-6-45-2013, 2013.

Richardson, A. D., Aubinet, M., Barr, A. G., Hollinger, D. Y., Ibrom, A.,
Lasslop, G. and Reichstein, M.: Uncertainty quantification, in Eddy Covariance,
pp. 173209, Springer., 2012.

Tarantola, A.: Inverse problem theory and methods for model parameter es-
timation, Society for Industrial and Applied Mathematics, Philadelphia, PA.,
2005.

Taylor, J.: Introduction to error analysis, the study of uncertainties in physical
measurements., 1997.
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Abstract. The synthesis of model and observational information using data assimilation can improve our understanding of the

terrestrial carbon cycle, a key component of the Earth’s climate-carbon system. Here we provide a data assimilation framework

for combining observations of solar-induced chlorophyll fluorescence (SIF) and a process-based model to improve estimates

of terrestrial carbon uptake, or gross primary production (GPP). We then quantify and assess the constraint SIF provides

on the uncertainty of global GPP through model process parameters in an error propagation study. By incorporating one5

year of satellite SIF observations from the GOSAT satellite, we find that the parametric uncertainty in global annual GPP is

reduced by 73%, from ± 19.0 PgCyr
�1 to ± 5.2 PgCyr

�1. This improvement is achieved through strong constraint of leaf

growth processes and weak to moderate constraint of physiological parameters. We also find that the inclusion of uncertainty

in shortwave down radiation forcing has a net-zero effect on uncertainty in GPP when incorporated in the SIF assimilation

framework. This study demonstrates the powerful capacity of SIF to reduce uncertainties in process-based model estimates of10

GPP and the potential for improving our predictive capability of this uncertain carbon flux.

1 Introduction

The productivity of the terrestrial biosphere forms a key component of Earth’s climate-carbon system. Estimates show that

the terrestrial biosphere has removed about one quarter of all anthropogenic CO2 emissions thus preventing additional climate

warming (?). Much of the interannual variability in atmospheric CO2 concentration is also driven by terrestrial productivity.15

Despite this significance, understanding of the underlying mechanisms of terrestrial productivity is still lacking. This manifests

in a
::::::
results

::
in large uncertainties in the predictive capability of terrestrial productivityand thus,

:
,
:::
and

::::
thus future predictions of

atmospheric CO2 and temperature (?).

A key challenge is disaggregating the observable net CO2 flux into its component fluxes, gross primary production and

ecosystem respiration. Gross primary production (GPP) is the rate of CO2 uptake through plant photosynthesis and the largest20

natural surface to atmosphere flux of carbon on Earth (?). Estimating spatiotemporal patterns of GPP at the scales required

for global change and modeling studies has , however, proven difficult. This is primarily due to two reasons, the complexity
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of the processes involved and the difficulty in observing those processes (??). Remote sensing observations of solar-induced

chlorophyll fluorescence (SIF) offer a novel constraint on GPP and the potential to partly address these two issues (?).

At the leaf scale chlorophyll fluorescence is emitted from photosystems I and II during the light reactions of photosynthesis.

These photosystems are pigment-protein complexes that form the reaction centers for converting light energy into chemical

energy. It is in photosystem II (PSII) where photochemistry, the process initiating photosynthetic electron transport and leading5

to CO2 fixation, is initiated. The link between chlorophyll fluorescence and photochemistry is confounded by a third key pro-

cess however, heat dissipation, also termed non-photochemical quenching (NPQ). Both photochemistry and NPQ are regulated

processes, responding to changing physiological and environmental conditions (?). Changes in the rates of photochemistry and

NPQ, and electron sinks other than CO2 fixation, lead to a non-trivial, but direct link between chlorophyll fluorescence and

photosynthetic rate (??). Because chlorophyll fluorescence is tied in with these physiological processes it has become a highly10

useful indicator of leaf physiological state
:::
the

:::::::::::
physiological

::::
state

::
of

::::::
leaves (see reviews by ??).

At the canopy scale and beyond the link appears simpler, exhibiting ecosystem-dependent linear relationships (?). The slope

of this linear relationship can change as the light-use efficiency of either SIF or GPP changes, for example due to water stress

(?) or changing light conditions (?). SIF also seems to outperform traditional remote sensing methods, such as Normalized

Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) that use reflectance to derive vegetation indices,15

in tracking changes in GPP at this scale (??). This is in part because the SIF emission originates exclusively from plants, thus

the retrieval is not contaminated by background materials like soil or snow. It is expected, however, that complicating factors

such as the retrieval wavelength, temporal scaling, chlorophyll content, 3-dimensional canopy structure, and stress will also

play a role in the GPP-SIF link (????). Using high-resolution spectrometers onboard satellites global maps of SIF have been

produced. A number of existing (GOME-2, GOSAT, OCO-2, TROPOMI, SCHIAMACHY) and planned (FLEX, GEOCARB)20

satellite missions are capable of measuring SIF. Utilizing these remotely-sensed SIF observations directly to track changes in

GPP have already proven useful even without the addition of ancillary data or model information (????).

Data assimilation enables the use of observations and model information together to produce a best estimate of the state

and function of the system. In the case of mechanistic models this is done by constraining the simulated processes and their

parameters. Such an approach has been applied to terrestrial biosphere models to optimize model parameters and constrain25

uncertainty of
::
the

::::::::::
uncertainty

::
in carbon flux estimates in a number of studies (see ????). The Carbon Cycle Data Assimilation

System (CCDAS) is one such system and
:
it has ingested observations such as atmospheric CO2 concentration and/or the frac-

tion of absorbed photosynthetically active radiation (FAPAR), demonstrating the benefit of combining model and observations

in a regularized approach (??). The use of SIF observations within a data assimilation framework may provide a highly useful,

complementary constraint on GPP. While one study by ? utilized SIF in a data assimilation system to redistribute multiple30

model estimates of GPP, no optimization of model process parameters was performed. ? incorporated a mechanistic model for

SIF into the CCDAS system and
::::
then conducted sensitivity tests and a comparison of the model

::::::::
compared

:::::
model

:::::::::
simulated

SIF and observed SIF from GOSAT demonstrating the model is capable of ingesting the data. However, SIF has not yet been

used on a global scale in a data assimilation system . A key first step toward this is to quantify the potential constraint that SIF

provides on the underlying processes that drive GPP and, hence, on GPP
::
to

:::::::
optimize

:::::::
process

:::::::::
parameters.35
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In this paper, we assess the ability of satellite SIF observations to constrain the parametric uncertainty of simulated GPP in a

terrestrial biosphere model within a data assimilation system. This is termed an error propagation study and is similar in concept

to an observing system simulation experiment or quantitative network design study (???). Parameters and simulated GPP are

therefore optimized only for their uncertainty and not for their absolute quantities. Considering SIF is a novel observational

constraint, this is an important first step toward a full assimilation of the data allowing us to evaluate the level of constraint SIF5

will impose on GPP and how that constraint is propagated through the model.

2 Methods

We formulate this error propagation study into two key stages; (i) optimization of parameter uncertainties and; (ii) projection

of parametric uncertainties onto uncertainty in diagnostic
::
as

::
it

::::::
allows

::
us

::
to

::::
test

:::::::
whether

::
an

:::::::::::
assimilation

::
of

:::
SIF

::::
data

::::
will

:::
be

::::::::
beneficial

:::
for

:::::::
reducing

::::::::::
uncertainty

::
in GPP. This allows us to conduct a thorough assessment of how effective SIF observations10

are at constraining
::
is

::::::::
performed

:::
by

:::::::::
estimating

:::
the

::::::::
constraint

::::
that

:::
SIF

:::::::
provides

:::
on the uncertainty of model parameters and the

parametric uncertainty of model simulated GPP.

2
:::::::
Methods

Under the linear Gaussian assumption, the uncertainty of a target quantity
:::::
(here,

:::::
GPP) following assimilation of the data (i.e.

the posterior
::::
here,

::::
SIF) is conditional only on the prior uncertainty, the uncertainty of the observations and the sensitivity of15

simulated observations to changes in the parameter (?). Thus, this is a linear problem that
:::::::::
parameters

:::
(?).

::::::
Given

:::
we

:::::
apply

:::
this

::::::::::
assumption

::
to

:::::::
estimate

::::::::
posterior

:::::::::::
uncertainties,

::::
this

:::::
linear

::::::::
problem can be performed independently of the optimization

of actual
::
the

:
parameter values.

:::
The

::::::
model

::::
used

:::
for

::::::::::
determining

::::
the

::::::::
sensitivity

:::
of

::::::::
simulated

:::::::::::
observations

::
to

:::::::
changes

:::
in

:::
the

:::::::::
parameters

::
is

:::
run

::
at

:
a
::::::::
relatively

::::
low

:::::
spatial

:::::::::
resolution

:::::
which

::::::::
provides

::::
high

::::::::::::
computational

:::::::::
efficiency.

:::
We

::::
note

:::
that

::::::::::
subsequent

::::
work

::
to

:::::::::
assimilate

:::
the

::::
data

:::::
should

:::
be

:::::::::
performed

::
at

:
a
::::::
higher

::::::
spatial

::::::::
resolution

::
in

:::::
order

::
to

:::::
better

::::::::
represent

:::
the

::::::::::::
heterogeneity

::
of20

::
the

::::
land

:::::::
surface.

:

:::
We

::::::::
formulate

:::
this

:::::
error

::::::::::
propagation

:::::
study

:::
into

::::
two

::::::
stages:

::
(i)

:::::::::::
optimization

::
of

::::::::
parameter

::::::::::::
uncertainties,

:::
and

:::
(ii)

:::::::::
projection

::
of

::
the

:::::::::
parameter

:::::::::::
uncertainties

::::
onto

::::::::::
uncertainty

::
in

:::::::::
diagnostic

::::
GPP.

:
Here, we outline the model used to simulate the observation

(SIF) and the target quantity (GPP). We also outline the model parameter set describing these processes, the uncertainty in the

observations and model forcing, and general experimental setup.25

2.1 Model Description

In order to ingest an observation into a data assimilation system, we require a model or ’‘observation operator’ that can sim-

ulate SIF, ideally providing a process-based relationship between SIF and GPP. There are a few ways one might formulate

the observation operator. Evidence shows a strong linear relationship between SIF and GPP at large spatial scales and rela-

tively long temporal scales (??)
:::
(??), suggesting relatively simple scaling between GPP and SIF. However, it is known that30
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the link is more complex than this, and it is expected to differ at finer spatial and temporal scales due to, for example, land

surface heterogeneity or the time of day of the measurements. To ensure the model has these capabilities we have opted for a

mechanistic-based
:::::::::::
process-based

:
observation operator.

In this section we describe the newly developed terrestrial biosphere model for simulating and assimilating SIF. The model

is an integration of the existing models BETHY (Biosphere Energy Transfer Hydrology) (??) and SCOPE (Soil Canopy Ob-

servation, Photosynthesis and Energy fluxes) (?) and builds upon the developments of ?. The coupling of BETHY and SCOPE

enables spatially explicit, plant-type dependent, global simulations of GPP and SIF. This model may be run on a computation-5

ally efficient, low-resolution spatial
:::
low

:::::
spatial

:::::::::
resolution grid of 7.5° ⇥ 10° or a high-resolution spatial

::::
high

:::::
spatial

:::::::::
resolution

grid of 2° ⇥ 2°.

BETHY is a process based terrestrial biosphere model at the core of the Carbon Cycle Data Assimilation System (CCDAS)

(??). Full model description details can be found elsewhere (e.g. ???). Briefly, BETHY simulates carbon assimilation and plant

and soil respiration within a full energy and water balance. The version used here also incorporates a leaf area dynamics module10

for prognostic leaf area index (LAI) as described in ?. This module includes parameters for leaf development, phenology and

senescence processes (hereby collectively termed leaf growth) to determine LAI in a scheme that incorporates temperature,

water and light limitations on growth and is capable of representing the major global phenology types (?). This scheme also

enables the representation of subgrid variability in leaf growth, representing the likely variability in growth triggers across

a grid cell and necessary
:::
the

::::::::
necessary

:::::
form

:
for differentiability between process parameters and state variables. The full15

BETHY model consists of four key modules: (i) energy and water balance; (ii) photosynthesis; (iii) leaf growth and; (iv)

carbon balance. It represents variability in physiology and leaf growth of plant classes by 13 plant functional types (PFTs) (see

Table 1) originally based on classifications by ?. Each model grid cell may consist of up to three PFTs as defined by their grid

cell fractional coverage.

SCOPE is a vertical (1-D) integrated radiative transfer and energy balance model with modules for photosynthesis and

chlorophyll fluorescence (?). At present it is the only process-based model capable of simulating canopy-scale chlorophyll

fluorescence. SCOPE incorporates current understanding of chlorophyll fluorescence processes including canopy radiative

transfer, re-absorption of fluorescence within the canopy, and the non-linear relationship between chlorophyll fluorescence5

quantum yield and other quenching processes (??)
:::
(??). Leaf level chlorophyll fluorescence is coupled to the commonly used

Farquhar and Collatz models for C3 and C4 photosynthesis, respectively (?). A current limitation of SCOPE is that there is no

link between leaf level biochemistry and soil moisture. This is
::::
partly

:
compensated by changes in LAI as provided

:::
due

::
to

::::
soil

:::::::
moisture

::
as

::::::::
simulated

:
by BETHY.

The canopy radiative transfer and photosynthesis schemes of BETHY have been replaced by the corresponding schemes in10

SCOPE, including the components required for calculation of chlorophyll fluorescence at leaf and canopy scales. The spatial

resolution, vegetation (PFT) characteristics, leaf growth, and carbon balance are handled by BETHY. SCOPE therefore takes

in climate forcing (meteorological and radiation data) and LAI from BETHY, and returns GPP. BETHY calculates the canopy

water balance, leaf growth, and net carbon fluxes, which will prove useful in future when assimilating other data streams

(e.g. atmospheric CO2 concentration). Importantly, SCOPE provides a process-based link between SIF and GPP allowing the15
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Table 1. PFTs defined in BETHY and their abbreviations.

PFT # PFT Name Abbreviation

1 Tropical broadleaved evergreen tree TrEv

2 Tropical broadleaved deciduous tree TrDec

3 Temperate broadleaved evergreen tree TmpEv

4 Temperate broadleaved deciduous tree TmpDec

5 Evergreen coniferous tree EvCn

6 Deciduous coniferous tree DecCn

7 Evergreen shrub EvShr

8 Deciduous shrub DecShr

9 C3 grass C3Gr

10 C4 grass C4Gr

11 Tundra vegetation Tund

12 Swamp vegetation Wetl

13 Crops Crop

transfer of information from observations of SIF to simulated GPP. Subsequently, information from SIF may also be transferred

to carbon fluxes resulting from GPP such as net ecosystem productivity.

2.2 Model Process Parameters

In this error propagation system, information from the SIF observations is used to constrain the uncertainty of the model process

parameters. Parameters can either be global or differentiated by PFT. Global parameters apply to plants or soils everywhere20

while PFT-dependent parameters enable differentiation between physiological and leaf growth traits. Some key parameters

for this study such as the maximum carboxylation capacity (Vcmax) and chlorophyll a/b content (Cab) are considered PFT-

dependent. From an ecophysiological perspective, there are other parameters specific to SCOPE that may be considered PFT-

dependent such as the vegetation height and leaf angle distribution parameters. However, we have assumed them to be global

to simplify the problem. GPP is relatively insensitive to these parameters, so this is not expected to impact the GPP uncertainty25

reduction results. Despite this, in a full assimilation with the SIF data it may be necessary to make these PFT-dependent to

improve the model-observed fit.

We expose 53 parameters from BETHY-SCOPE to the error propagation system (see Table A1). As stated above, each

of these is represented by its PDF, assumed to be Gaussian. The mean and standard deviation for the prior parameters is

shown Table A1. Choice of the prior mean and uncertainty for parameters follow those used in previous studies (???). For30

new parameters that are not well characterized (e.g. SCOPE parameters) we assign relatively large prior uncertainties, and

mean values in line with the default SCOPE parameters and with ?. The choice of the prior may be considered important
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here considering we are using a linear approximation of the model around x0 and that the model is known to be non-linear.

Therefore, sensitivities can differ depending upon the choice of x0 (?).

There are twelve SCOPE parameters exposed, one of which is PFT-dependent. These parameters were chosen due to their

importance in simulating SIF or GPP, and to sensitivity tests such as those performed by ?. They include Cab, leaf dry matter

content (Cdm), leaf senescent material fraction (Cs), two leaf distribution function parameters (LIDFa, LIDFb), vegetation

height (hc) and leaf width. Leaf physiological parameters include Vcmax, Michaelis-Menten kinetic coefficients for CO2 (KC)5

and O2 (KO), the ratio of the Rubisco oxygenation rate to Vcmax (↵Vo,Vc ), and the ratio of day respiration to Vcmax (↵Rd,Vc ).

2.3 Uncertainty Calculations

To calculate the uncertainty in parameter values following the constraint provided by the observational information of SIF

(i.e. the posterior uncertainty) we propagate uncertainty from the observations onto the parameters. In order to perform this,

we utilize a probabilistic framework where the state of information on parameters and observations is expressed by their10

corresponding probability density functions (PDF) (see ?). The probability density of the errors in these quantities is assumed

to be Gaussian, thus they are describable by their mean and uncertainty. The prior information on parameters is quantified

by a PDF in parameter space and the observational information by a PDF in observational space. The mean values for the

parameters and observations are denoted by x and d, respectively. The uncertainty covariance matrices in parameter space and

observational space are denoted by Cx and Cd, respectively.15

For linear and weakly non-linear problems we can assume that Gaussian probability densities propagate forward through

to Gaussian distributed simulated quantities (?). This permits linear error propagation from the input parameters to the model

outputs. Estimating posterior uncertainties of the parameters for these types of problems can therefore be performed indepen-

dently of the parameter estimation, in other words without the need to constrain the mean values of the parameters (??). This

requires a matrix of partial derivatives of a target quantity with respect to its variables, also called a Jacobian matrix (H). This20

matrix represents the sensitivity of a simulated quantity (e.g. SIF, GPP) to the parameters. With the linear approximation, H is

calculated around the prior parameter values (x0). This simplification of the model sensitivity brings limitations to the accuracy

of the method. However, with the aggregation of subgrid variability across a model grid cell, sudden shifts in model sensitiv-

ity (e.g. step functions) are less likely or realistic; the present model incorporates these effects (?). Additionally, because the

parameter space can be very large, the use of prior knowledge on x0 helps to limit the effect of this problem as H at x0 likely25

provides a decent approximation of the true H that would occur at the global optimum (?). The simplification is also useful

considering the high computational cost of calculating H .

To calculate the posterior parameter covariance matrix (Cxpost ) following constraint by observational information, Cd, we

use Eq. 1 (?).

C
�1
xpost

= C
�1
x0

+H
T
C

�1
d

H (1)30
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Where H expresses the Jacobian for SIF and H
T the Jacobian transposed. Comparing parameter uncertainties in the prior

(Cx0 ) and the posterior (Cxpost ) allows us to quantify the improvement in parameter precision following the observational

constraint. The parameter uncertainties in Cx0 and Cxpost may be expressed as standard deviations (�) by calculating the

square root of their diagonal elements. We can therefore assess the relative uncertainty reduction in parameter following SIF

constraint, or ’effective constraint’, with 1 - (�posterior/�prior). This quantifies the effective constraint of the prior uncertainty

and may be represented as a percentage decrease in � uncertainty.

Formally, Cd represents the errors in the measurements and in the model simulated counterpart (i.e. model error) (?). We

::
As

:::::::::
described

::::::
further

::::::
below

::
in

::::::
section

::::
2.4,

:::
we

:
only consider the contribution of measurement errors to Cd in calculating5

posterior probabilities. However, to see if the assumptions that we have made about uncertainties are consistent with the model-

data mismatch, we assess the reduced �
2 statistic (�2

r
) similar to one of the methods

:
a

::::::
method

:
employed by ?. While more

formal approaches to
:::::::
optimally

:
estimate covariance parameters exist (?), this metric can highlight whether we are neglecting

a significant source of error
:
in
:::
Cd, for example, model structural error.

:
It

::::
also

:::::::
provides

::
an

:::::::::
indication

::
of

:::::::
whether

:::
the

::::::
model

::
is

::::::
capable

::
of

::::::::::
reproducing

:::
the

:::::::::::::
measurements,

:::::
given

:::
the

:::::::
assumed

:::::::::::
uncertainties.

:
This is calculated by10

�
2
r
=

1

N

�
M(x0)� d

��
HCx0H

T
+Cd

��1�
M(x0)� d

�
(2)

where N is the number of observations
:::::::
degrees

::
of

:::::::
freedom

:::::
(equal

:::
to

:::
the

::::::
number

::
of

:::::::::::
observations

::
in

:::
this

:::::
case), M(x0) is the

forward model simulated SIF for the prior case, and d is the SIF observations. A �
2
r

value greater than one would indicate

that our assumptions around uncertainties may not be valid given the model-data mismatch and that the model cannot simulate

the measurements
::
(?). Conversely, a �

2
r

value
::
of

:
less than one would suggest these assumptions

:::::::
indicates

::::::::::::::
over-confidence

::
in15

::
the

::::::::
assumed

:::::::::::
uncertainties.

::
A
:::::
value

:::
of

::::::::::::
approximately

:::
one

::
is
:::::
most

::::::::
desirable

::
as

::
it

:::::
would

:::::::
indicate

::::
that

:::
our

::::::
overall

:::::::::::
assumptions

::
of

::::::::::
uncertainties

:
are valid. Because

::
At

:::
the

::::::::::::
low-resolution

::::::
applied

::
in
:::
the

::::::::::
information

:::::::
content

:::::::
analysis,

:
representation errors will

be large at low-resolution this analysis cannot be performed using the low-resolution model used elsewhere in this analysis.

We therefore use
::::::::
relatively

::::
large

:::
and

::::
may

::::::::
dominate

:::::
other

::::::
sources

:::
of

::::
error

::
in

:::
Eq.

::
2
:::
and

::::::::
therefore

:::::
mask

:::
the

:::::
actual

::::::
ability

::
of

:::
the

:::::
model

::
to

:::::::
simulate

:::
the

::::::::::::
measurements.

:::
For

:::
an

::::::::::
assimilation

::
of

:::
the

::::
data,

:::
the

:::::
model

::::::
would

:::
not

::
be

::::
used

::
at

::::
such

:
a
::::
low

::::::::
resolution

:::::
given20

::
the

::::::::::::
heterogeneity

::
of

:::
the

::::
land

::::::
surface

::::
and

:::::
would

::::::
instead

:::
be

:::
run

::
at

:
a
::::::
higher

::::::
spatial

:::::::::
resolution.

::
To

::::
help

::::::
reduce

:::
the

::::::::::::
representation

::::
error

:::
we

:::::
utilise

:
unpublished work that compares the forward model at a higher resolution (2° ⇥ 2°) and with SIF observations

from the OCO-2 satellite for 2015. While this uses a slightly different parameterization, it is more credible and helps minimise

the effects of representation error in determining whether the model can simulate the measurements. Additionally, we perform

a sensitivity test to investigate the effect of incorporating a possible source of structural uncertainty in the measurements25

described further below
:::
The

:::::
error

::::::::::
propagation

:::::::
analysis,

::::::::
however,

:::::::
benefits

::::
from

:::::
using

:::
the

::::::::::::
low-resolution

::
as

::
it

::::::
greatly

::::::::
improves

:::::::::::
computational

:::::::::
efficiency

::::::::::
considering

:::
the

:::::::::::
computational

:::::::
demand

::
of
:::
the

::::::
model

::::::::::
simulations

:::
and

:::::::::
subsequent

::::::::::
calculations.

The observational constraint introduces correlations into the posterior parameter distributions, thus posterior parameter un-

certainties are not wholly independent. Strong correlations in Cxpost indicate parameters that cannot be resolved independently
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in an assimilation, however their linear combinations can be. We calculate correlations in parameters by expressing the covari-30

ances as correlations as in Eq. 3 (see ?, p.71) by

Ri,j =
Ci,jp

Ci,i

p
Cj,j

(3)

where diagonal elements have a correlation equal to one while off-diagonals elements can range between -1 and 1. If large

enough, these correlations can contribute significantly to the overall constraint of the target quantity (?).

Using the parameter covariance matrix we can assess how parameter uncertainties propagate forward through the model onto

uncertainty in GPP using the Jacobian rule of probabilities, the same method outlined in ?. This is the second stage of our error5

propagation study. Using Cx0 we estimate the prior uncertainty in a vector of simulated target quantities (i.e. GPP). Similarly,

using Cxpost we estimate the posterior uncertainty in a vector of simulated target quantities. We calculate the uncertainty

covariance of GPP (CGPP ) using Eq. 4.

CGPP =HGPPCxH
T

GPP
(4)

Where HGPP is the Jacobian matrix of GPP with respect to the parameters. With this we can quantify the improvement in10

precision of simulated GPP by using either Cx0 or Cxpost in Eq. 4. Therefore, using the forward model, a statistical estimation

scheme and a set of observational uncertainties we can assess the information content of the SIF observations in the context of

the model, its parameter set, and simulated GPP taking explicit consideration of uncertainties.

2.4 Uncertainty in Observations and Model Forcing Variables

The uncertainty of the measured data (hereafter, data) is a critical component in assessing the potential impact of an observ-15

ing system on the estimation of carbon fluxes. Data uncertainties in SIF used here are calculated from the GOSAT satellite

observations for 2010. This data is obtained from the ACOS (Atmospheric CO2 Observations from Space) project at a grid

resolution of 3° ⇥ 3°. As the model simulations are performed on a low-resolution grid (7.5° ⇥ 10°), we aggregate these

uncertainties to this resolution using Eq. 5 as described below
::
in

:
a
::::
way

:::
that

:::::::::
conserves

:::
the

::::::::::
information

::::::
content

::::
from

:::
the

:::::::
original

::
3°

::
⇥

::::::::::::
3°observations.20

We assume the observations are independent and have uncorrelated errors, that is, they are distributed randomly. Assuming

uncorrelated errors is, however, likely to overestimate the information content particularly if using the standard error as the

uncertainty. Although it has been used in recent studies with satellite SIF (e.g. ?), the standard error
::::
under

:::
an

::::::::::
assumption

::
of

::::::::::
uncorrelated

:::::
errors

:
is likely to be an overly optimistic approximation of the information content. For this study, we take a

slightly conservative approach, scaling the calculated standard error by the square root of two as shown in Eq. 5. This effectively25

doubles the variance in an independent dimension and reduces the information content to compensate for the assumption of

uncorrelated errors.
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Through aggregation of GOSAT grid cells to the model grid resolution the number of independent measurements is reduced.

To account for this and preserve the information content of the original GOSAT observations the uncertainty in a given model

grid cell is, approximately, divided by the square root of the number of GOSAT grid cells with SIF data that fall within that

model grid cell (N ). More precisely, we apply an area-weighting term in the equation (see Supplementary material Eq. A1).

This has the effect of scaling the uncertainty by the 1/
p
N law, but takes into account the fact that SIF is in physical units per

units area (i.e. W m
�2

µm
�1

sr
�1) and that grid cells have different areas over different latitudes. A full description of this

calculation and detailed example is shown in supplementary material.5

Therefore, the calculation of the SIF data uncertainties used here is approximated by Eq. 5 (for further details see Supple-

mentary material Section A2). For a given model grid cell, the variance (�2) is approximately equal to the sum of the standard

error of each individual GOSAT grid cell (�i) squared, then scaled by the number of individual GOSAT grid cells with data

and the square root of two.

�
2
=
p
2

h
1p
N

X

i

�
2
i

i
(5)10

The resulting annual observational uncertainties, shown in Figure 3, appear to be much smaller than the uncertainties of

individual GOSAT grid cells. In part this is due to the aggregation of multiple independent observations. Regions with more

soundings across the year (e.g. the tropics) will also have smaller annual uncertainties.

Uncertainty of SIF observations may also have a systematic component. A known, potential systematic error in SIF stems

from the zero-level offset within
::::::::
calculated

::::::
during the retrieval. The

:::
Any

:::::
error

::
in

:::
the

:::::::::
calculated zero-level offset

:::
will

::::
add

::
to15

::
the

::::::::::::
measurement

::::
error.

:::::
This

:::::::::
radiometric

:
correction is done to prevent biases in the SIF retrieval (?)

:::::::
(??) and

:::
this

::
is

:::::::::
performed

:::::::
monthly

::
in

:::
the

::::::
present

:::::::
GOSAT

:::::::
retrieval

::
of

::::
SIF. In this case, the systematic error is a random variable of unknown sign which

means it can be incorporated into the current probabilistic framework. This
:
it
:::

is
:::::::::
systematic

::
in

:::
the

:::::
sense

::::
that

::
it
::::::
applies

:::
to

:::::::
multiple

::::::::::::
measurements.

::::
This

::::
type

:::
of

::::
error

:
is distinguished from a bias which is a systematic error of known sign that

:::
with

::
a

:::::::
precisely

::::::
known

:::::::::
magnitude

:::
and

::::
sign

:::
that

::::::
should

::
be

::::::::
corrected

:::
for.

::
A

::::
bias cannot be incorporated into the present framework

::::
error20

::::::::
progation

:::::::::
framework

:::::::
whereas

::
an

:::::
error

::
in

:::
the

::::::::
zero-level

:::::
offset

:::
can

:::
be

:::::::
provided

::
it
::
is

::::::::
Guassian. To clarifythis, the true value (dt

i:
,

:
a
:::::::
retrieved

::::::::::::
measurement

::
(d) of a quantity (e.g. SIF)

:
at

:::::
index

:::::
point

:
i can be given by

d
t
i = d

t
i + "i + z"z

:
(6)

where di is the measured
:
d
t

i::
is
:::
the

::::
true

:
value at index point i, "i is a random variable with a variance of �2 , and z

::
at

:::::
index

::::
point

::
i,

::::
and

::
"z:

is a random variable that has some variance and is constant for a subset of the measurements (e.g. across a25

particular region or time). Based on previous analyses of the instruments, the error in zero-level offset in the SIF retrieval may

be considered small (??). Here, we provide a more detailed assessment and characterization of the in-orbit systematic error.

This is performed by assessing zero-level offset corrected GOSAT SIF soundings over the non-fluorescent regions of Antarctica

and central Greenland during January and July, respectively . Systematic
:::
(see

::::::::
Appendix

::::::
Figure

::::
10),

::
in

::::
order

::
to
:::::::
sample

::
the

:::::
error

9



:::::::::
distribution

::
of

:::
"z .

:::::
These

:::::::::
systematic

:
errors appear quite small (± 0.06 W m

�2
µm

�1
sr

�1) (see Appendix Figure 10) and may30

vary seasonally
:::
due

::
to

:::::
factors

:::::
such

::
as

::::::::::
atmospheric

:::::::::
conditions

::
or

:::::::::::::::
instrument-related

:::::
causes

:::
(?). We therefore assess the effect of

a conservative systematic random error of size ± 0.1 W m
�2

µm
�1

sr
�1 in the zero-level offset seasonally. This

:::::::::
Practically,

:::
this

::::::
means

::::::
adding

:::
four

:::::
(one

::
for

:::::
each

::::::
season)

:::::
extra

:::::::::
uncertainty

:::::
terms

:::
to

:::
Cx ::::::::::::

corresponding
:::
the

:::
the

::::::::
estimated

::::
error

::::
and

::::::
adding

:::
four

:::::
extra

:::::
terms

:::
in

::
H

::::::
which

:::
are

:::::::
scaling

:::::
terms

::::::
(equal

::
to

::::
one)

:::::::
applied

::
to

:::
the

:::::::::::::
corresponding

::::::
season.

:::::::::
Including

:::::
these

:::::
terms

provides a sensitivity test to indicate how an error in the zero-level offset may propagate
::::::::
propagates

:
through to uncertainty in

GPP.5

An additional source of uncertainty in model estimates of GPP is climate forcing. As mentioned by ?, while uncertainty in

forcing such as incoming radiation is not considered in the current CCDAS setup, it is considered to be an important variable

in driving SIF (?) and GPP (?). Without consideration of uncertainties in forcing variables the uncertainty in GPP may be

underestimated. Studies that use process-based models or empirically-derived relationships do not explicitly consider such

uncertainties (e.g. ?)
::::::
(e.g. ?). One such forcing variable is downward shortwave radiation (SWRad). Monthly means of SWRad10

are suggested to have a random error of 12 Wm
�2 (6% of the mean) due mostly to uncertainty in clouds and aerosols (?).

We therefore investigate how this random error in SWRad may be considered in GPP estimates. Furthermore, as SIF responds

strongly to SWRad, there is the potential to utilize SIF observations as a constraint on the uncertainty of the forcing. We

therefore conduct an additional experiment that incorporates the uncertainty in SWRad in the error propagation system. For

this experiment an additional parameter representing SWRad is added to the inversion, which acts as a scaling factor for SWRad15

globally. We investigate the level of constraint SIF provides on this scaling factor, and the subsequent effects of incorporating

uncertainty in SWRad in this inversion on uncertainty in GPP.

2.5 Model and Data Setup

In this study BETHY-SCOPE is run for the year 2010 on the computationally efficient, low-resolution spatial grid (7.5° ⇥
10°). As the dynamical equations are the same for either low-resolution or high-resolution scales, use of the low-resolution20

setup is appropriate for an error propagation study as long as careful consideration is taken with observational uncertainties.

Climate forcing in the form of daily meteorological input fields for running the model (precipitation, minimum and maximum

temperatures, and incoming solar radiation) were obtained from the WATCH/ERA Interim data set (WFDEI ?). Photosynthesis

and fluorescence are simulated at an hourly time step but forced by the respective monthly mean diurnal cycle. Leaf growth

and hydrology are simulated daily.25

SIF is simulated at 755 nm, the wavelength corresponding to the GOSAT retrieval frequency and near to the OCO-2 retrieval

frequency (757 nm). We focus upon the constraint by SIF measurements at 1:00 p.m. local time as it closely corresponds to

the local overpass time of the SIF-observing satellites GOSAT and OCO-2. However, we also investigate the effect of using

alternative SIF-observing times (e.g. the GOME-2 satellite overpass time) and multiple observing times simultaneously on the

constraint of GPP.
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3 Results

3.1 Prior Mismatch

First, we present the results from Eq. 2 that determines whether the assumed uncertainties allow for coverage of observed5

SIF. As described in the methods, in this case we use a model forward run using the high-resolution version of the model and

compare this with a SIF observations from the OCO-2 satellite. We find that �2
r

= 0.97 in this high-resolution case, close to the

optimal value of one.

3.2 Parameter Uncertainties

A key metric for assessing the relative uncertainty reduction, or ’effective constraint’, is defined as 1-(�posterior/�prior). The10

effective constraint for all 53 parameters following constraint by SIF is shown in Figure 1 and in Table A1. We define weak,

moderate and strong effective constraint as the relative uncertainty reduction from 1-10%, 10-50%, and >50%, respectively.

Parameters describing leaf composition (Cab, Cdm, Csm) generally achieve strong effective constraint from SIF. For eleven

of the thirteen Cab parameters the uncertainty is strongly constrained, between about 50% and 85%. SIF is highly sensitive

to Cab and we assign a relatively large prior uncertainty on these parameters, so considerable constraint is expected. For15

the tropical broadleaved evergreen tree PFT however, the effective constraint on Cab is much lower at 7%. For other leaf

composition parameters Cdm and Csm SIF effectively constrains the uncertainty by 1% and <1% respectively.

Varied effective constraint is seen for the leaf growth parameters (parameters 18-34 in Table A1) that control phenology

and leaf area. Four out of the seventeen leaf growth parameters exhibit strong uncertainty reductions. These parameters pertain

to a variety of processes including the temperature at leaf onset, day length at leaf shedding, leaf longevity, and the expected20

length of dry spell before leaf shedding (⌧W ) (see Table A1). The parameter ⌧W is important in controlling leaf area and it

sees strong effective constraint from SIF, from 38-65% depending upon which class of PFT it pertains to. For the parameters

that are PFT-specific, there is generally a larger constraint seen when they relate to the C3Gr, C4Gr and crops. For example,

uncertainty in ⌧W for grasses and crops (⌧Gr

W
) is effectively constrained by 65%.

Leaf physiological parameters (parameters 1-17 in Table A1) see a weak to moderate level of effective constraint. Of partic-25

ular importance for simulating GPP is the PFT-specific parameter Vcmax. Effective constraint on Vcmax varies from <1% up to

30% depending upon the PFT of interest. Five PFTs that, combined, represent about 65% of the land surface have their Vcmax

parameters constrained by >10%. The global physiological parameters include the ratio of the maximum rate of oxygenation

(Vomax) to Vcmax (aVo,Vc ), the ratio of dark respiration (Rd) to Vcmax (aRd,Vc ), and the Michaelis-Menten enzyme kinetic

constants of Rubisco for CO2 (KC) and O2 (KO). These all see very weak effective constraint from SIF (<1%).30

Global canopy structure parameters (parameters 50-53 in Table A1) also see a weak to moderate constraint from SIF. In

particular the structural parameters LIDFa and LIDFb see their uncertainty reduced by 22% and 9%, respectively. The

parameters for vegetation height and leaf width, which are used to calculate the fluorescence "hot-spot" variable (see ?), are

effectively constrained by 7% and <1%, respectively.
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Figure 1. Effective constraint of BETHY-SCOPE model process parameters from SIF observations. Only the parameter numbers are given,

for the corresponding descriptions see Table A1.

Parameters that pertain to more dominant PFTs in terms of land surface coverage (e.g. C3 grass) tend to see stronger

uncertainty reductions. This is due to them being exposed to more SIF observations.

With the observational constraint correlations are introduced into the posterior parameter distributions. We assess these

correlations using 3, shown in Figure 2. We find strong (R � 0.5) positive correlations between nine of the PFT-specific Cab

parameters. These are also negatively correlated the leaf angle distribution parameter LIDFa. Thus, during a full assimilation5

with SIF data only the sum of Cab and LIDFa can be resolved, not their individual values. Two leaf growth parameters are

also strongly correlated, T� with Tr. Smaller correlations are also present between the subset of parameters shown in Figure 2.

To assess the effect of incorporating a systematic error from the observations into this analysis we apply a seasonal ,

systematic random � error of 0.1 W m
�2

µm
�1

sr
�1 .

:::::::::
(equivalent

::
to

::
"z:::

in
:::
Eq.

:::
6). This is incorporated as four additional

parameters, one for each season, that scale the SIF signal across the globe. We find that the inclusion of this systematic error10

has a negligible effect on posterior uncertainties of the parameters. The difference in effective constraint between this sensitivity

test case and the standard case above is <1% for any given parameter.

3.3 Uncertainty in GPP

To assess the constraint imposed by SIF on simulated GPP we compare the prior and posterior uncertainty in GPP as calculated

using Eq. 4. Similar to the assessment of parameter uncertainty reductions, to assess the effective constraint of SIF on GPP we15

use a metric that measures the relative uncertainty reduction in � from the prior to the posterior.

Global GPP from the prior model is approximately 164 PgCyr
�1 with a prior uncertainty of 19.0 PgCyr

�1. Utilizing SIF

observations at 1:00 p.m. results in a 73% reduction of the prior uncertainty giving a posterior of 5.2 PgCyr
�1. Spatially, the

prior uncertainty in GPP varies across the globe, with particularly large uncertainties in regions with high productivity (Figure

4). This is to be expected considering GPP uncertainty will typically correlate with absolute GPP. In the posterior, it is clear20
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Figure 2. Correlation coefficients (r-value) in the posterior parameter covariance matrix (Cxpost ). This shows the magnitude and sign of

correlations in posterior parameter uncertainties following constraint with SIF data. Only parameters with an absolute correlation coefficient

>0.25 with one or more other parameters are shown. Values above and below the diagonal are identical, therefore those above are coloured

grey. The axes labels show the parameter symbol and number as defined in Table A1.

that uncertainty in GPP is strongly reduced across the globe (Figure 5). The relative uncertainty reduction (Figure 6) appears

to show smaller constraint of uncertainty in the boreal regions, however this is because prior uncertainty is already relatively

low (Figure 4).

To assess which parameters contribute to the uncertainty in GPP for the prior and posterior, we can conduct linear analysis of

the uncertainty contributions. Typically this technique can only be used for the prior as the correlations in posterior parameter5

uncertainties, excluded from the linear analysis, also contribute toward the overall constraint. However, we can assess the

contribution of these correlations to the constraint of GPP by setting the off-diagonal elements in Cxpost to zero and using it in

Eq. 4; the difference between this and the standard case that uses the full Cxpost equates to the contribution of correlations. We

find that the contribution of these correlations to the constraint of GPP is small (0.16 PgCyr
�1 or <1%), thus we can assume

the linear analysis technique holds for the posterior as well. This finding is supported by the correlation analysis in posterior10

parameter uncertainties which showed few significant correlations in parameters relevant for GPP. This result is encouraging

as it indicates that the parameters in a SIF assimilation system contributing most to the constraint of GPP are capable of being

resolved independently.
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Figure 3. Annual observational uncertainty of SIF interpolated from GOSAT observations for 2010.

Using linear analysis of the uncertainty we find that uncertainty in global annual GPP in the prior and posterior stems from

different processes. For the prior we see that the uncertainty in GPP is dominated, at 89%, by parameters describing leaf growth

processes. Of these, a single parameter, ⌧W for C3 grass, C4 grass and crops (⌧Gr

W
) makes up 74% of the uncertainty in global

annual GPP. Parameters representing physiological processes account for about 9% of prior uncertainty, most of which stem

from the Vcmax parameters. Parameters for Cab only account for 2.5% of the uncertainty.5

For the posterior, which has a lower overall uncertainty in GPP, uncertainty is dominated by parameters representing physio-

logical processes. Physiological parameters account for 67% of the uncertainty in posterior annual GPP, with Vcmax parameters

accounting for 32% and the Michaelis-Menten constant of Rubisco for CO2 (KC) accounting for 30%. The relative contribu-

tion by leaf growth parameters is reduced to 33%, and for ⌧Gr

W
to 15%. For Cab the relative contribution is smaller than the

prior at <1%. This shift in which parameters contribute to the relative uncertainty in GPP between the prior and the posterior

demonstrates how effectively SIF constrains leaf growth processes. Uncertainties in physiological parameters are constrained

less than the leaf growth parameters which results in them contributing more in relative terms to the posterior uncertainty of

GPP.5

Regionally, we split the land into three regions, the Boreal region (above 45� North), the Temperate North (30� to 45�

North) and the Tropics (30� South to 30� North). SIF constraint on annual GPP varies substantially across different regions of

the globe, with relative uncertainty reduction in of 48%, 82%, and 79% for the Boreal, Temperate North and Tropics regions,

respectively. In Figure 7 we show the contribution of parameter classes (leaf physiology, leaf growth, leaf composition and

canopy structure; see Table A1 for details) to the parametric uncertainty of GPP across the year for each of these regions. From

Figure 7 it can be seen that the Boreal and Temperate North regions exhibit seasonal differences in total uncertainty and in the

constraint SIF provides. This is caused by seasonal dependencies in the sensitivity of SIF and GPP to certain processes (e.g.

leaf development versus leaf senescence) as well as seasonal differences in the density of observations in these regions. There5
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Figure 4. Prior parametric uncertainty in annual GPP.

Figure 5. Posterior parametric uncertainty in annual GPP.

are far fewer GOSAT satellite observations during Boreal autumn and winter, thus there are fewer observations to constrain

processes controlling GPP during this time.

During the start of the growing season leaf physiology, in particular photosynthetic rate constants (Vcmax), play a larger role

whereas later in the growing season during the warmest months leaf growth, via water limitation on leaf area (⌧Gr

W
) of grasses,

plays a larger role. Therefore in the Boreal region, where the strongest seasonality in constraint is seen, from July through to10

January SIF constrains GPP by >60%. Uncertainty in GPP during these months is dominated by the leaf growth parameters ⌧Gr

W

and kL along with Cab (for EvCn) all of which receive considerable constraint from SIF. From February to June however, SIF

constrains GPP by less than 50%, as a large proportion of the uncertainty arises from the less-constrained Vcmax parameters.
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Figure 6. Relative uncertainty reduction (i.e. effective constraint) of parametric uncertainty in annual GPP from prior to posterior.

Following SIF constraint, uncertainty in Boreal GPP stems mostly from uncertainty in leaf physiology, particularly for the

EvCn PFT. Similar differences between seasonal constraint is seen for the Temperate North, although with a smaller seasonal15

variation in SIF constraint that ranges between 74% and 87% across the year.

For the Tropics uncertainty reduction in GPP is about 80% across the year. Uncertainty in the prior is dominated by the

leaf growth parameters and in particular the ⌧W parameters controlling water-limited leaf area. SIF constraint is primarily

propagated through the ⌧W parameters onto GPP resulting in a well-constrained posterior with a � uncertainty of 1.6 PgC yr-1

in annual GPP of the Tropics. Although moderate constraint is seen in the key PFT-specific parameter Vcmax for the dominant20

tropical PFTs (see Figure 1), in the posterior these parameters contribute to roughly 35% of the uncertainty in annual GPP.

3.4 Diurnal SIF Constraint

With this setup it is possible to test how the SIF-constraint on GPP might change with alternative observational times. Con-

sidering this, we test how the constraint on GPP changes when assimilating observations of SIF from alternative times of the

day, assuming the same number of observations and the same observational uncertainty as used above. From this we see that25

different observing times yield differences in the posterior uncertainty and the effective constraint of GPP (see Figure 8). The

constraint on global annual GPP when using SIF-observing times between 9:00 a.m. and 3:00 p.m. is quite similar, with the

posterior uncertainty in global annual GPP ranging from 5.0 PgCyr
�1 (effective constraint of 74%) to 6.0 PgCyr

�1 (effective

constraint of 68%). The most significant constraint on GPP is obtained when using SIF observations at between 11:00 or 13:00,

nearest to the peak in the diurnal cycle of both GPP and SIF.30

We also test the effect of utilizing SIF measurements at multiple times of the day simultaneously. We select the times 8:00

a.m., 12 noon, and 4:00 p.m., replicating a theoretical geostationary satellite. For this experiment we first test the effect of

increasing the number of observations by a factor of three, assuming the same uncertainty for the three observation times.
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Figure 7. Contribution of parameter classes to parametric uncertainty in monthly GPP for three regions (see Table A1 for details on these

parameter classes). For each month, the bar on the left is the prior and the bar on the right is the posterior. Uncertainties are represented as

variances, thus the units are in PgCyr
�1 squared and, for clarity, the y axes are on a quadratic-transformed scale.
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Figure 8. Effective constraint on global annual GPP for different observing times and the two diurnal cycle configurations. Values at the top

of the bars correspond to the posterior uncertainty (�) in global annual GPP.

Second, we also increase the number of observations by a factor of three, but scale the variance of these observations by one

third. Using this second test we can assess whether differences in parameter sensitivities of SIF and GPP at the different times

of the day adds value in the overall constraint.

Using a diurnal cycle of observations results in a posterior uncertainty of 4.6 PgCyr
�1, or an effective constraint of 76% as

in Figure 8. This is an extra 2% constraint on the uncertainty in GPP compared with observations at 12:00 noon alone. If we5

use a diurnal cycle of observations with scaled uncertainties, we see a slightly reduced constraint on GPP where the posterior

uncertainty is 5.9 PgCyr
�1 equivalent to an effective constraint of 69% (Figure 8).

3.5 Incorporating Uncertainty in Radiation

In order to assess the effects of incorporating uncertainty in SWRad we conduct three experiments. First is a control run,

equivalent to using SIF at 1:00 p.m. as before. Second includes uncertainty in SWRad by adding it into the posterior uncer-10

tainty calculation, what might be done normally when accounting for uncertainty in forcing. Third is incorporating uncertainty

in SWRad into the error propagation system with SIF, such that it’s uncertainty may be constrained. This third experiment

effectively treats SWRad as a model parameter by adding an extra row and column to Cx.

Including the uncertainty in SWRad in the calculation of posterior uncertainty in GPP results in an additional 0.03 PgCyr
�1

to the prior uncertainty in global annual GPP. This is a small effect relative to the parametric uncertainties. Moreover, if we15

incorporate SWRad uncertainty into the error propagation system we see that this additional uncertainty is mitigated by the

SIF constraint. With SWRad uncertainty included, the posterior uncertainty in GPP remains at 5.15 PgCyr
�1, equivalent to

the case without accounting for uncertainty in SWRad, in both cases resulting in a relative reduction of the GPP uncertainty by
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72.9%. This mitigation of the additional uncertainty from SWRad is possible because both SIF and GPP are strongly sensitive

to it, thus any constraint on SWRad from SIF is also propagated through to GPP.20

Table 2. Parametric uncertainty and effective constraint for each of the SWDown experiments. Prior and posterior values shown are the one

standard deviation (�) uncertainty in global annual GPP.

Experiment Prior GPP

(PgCyr�1)

Posterior

GPP

(PgCyr�1)

Effective Con-

straint

Control 19.01 5.15 72.9%

Control+SWRad 19.04 5.29 72.2%

With SIF Constraint 19.04 5.15 72.9%

By assessing the prior and posterior uncertainty in SWRad in Cxprior and Cxpost , respectively, we can assess the effective

constraint following use of SIF in the error propagation system. We find that SIF constrains the SWRad uncertainty by about

29%. This gain in information on SWRad naturally results in less information being available for other parameters. The relative

uncertainty reduction for most parameters decreases by a few percent. For example most Cab parameters see a decrease in

effective constraint of around 1% and Vcmax parameters up to 3%. With GPP exhibiting low sensitivity to Cab parameters and5

strong sensitivity to SWRad, the transfer of information from Cab to SWRad results in an overall mitigated effect of SWRad

uncertainty on GPP.

4 Discussion

The results presented show that with one year of satellite SIF data observed at the GOSAT and OCO-2 satellite overpass time

and SIF retrieval wavelength we can constrain a large portion of the BETHY-SCOPE parameter space and ultimately yield a10

parametric uncertainty in global annual GPP of ± 5.2 PgCyr
�1. The parametric uncertainty in the prior is approximately 12%

of the global annual GPP and following the addition of SIF information this is reduced to about 3% of global annual GPP.

This constitutes an parametric uncertainty reduction
::::::::
reduction

::
in

:::::::::
parametric

:::::::::
uncertainty

:
of 73% relative to the prior. Although

this data-driven constraint is model dependent, it is improved on the often-reported uncertainty of ± 8 PgCyr
�1 from the

empirical-model-based upscaled product of ?
:
?.15

We note that our analysis is an underestimate of the constraint, as it is performed with relatively low-resolution
::::::::::
uncertainties

::::::::
calculated

::::
from

:::
the

:::::::
GOSAT

::::
SIF

::
3°

::
⇥

::::::::
3°spatial

::::::::
resolution

:
observations. With the use of higher resolution observations such as

those from OCO-2 the constraint will get stronger. Similarly, with a longer time-series of data there will be stronger constraint.

This occurs because the number of
::::::::::
independent

:
observations increases while the number of parameters remain constant.

We find
:::
This

:::::
error

::::::::::
propagation

:::::::
analysis

::::
does

:::
not

::::::
assess

:::
how

::::::
model

:::
SIF

:::::::::
compares

::::
with

:::::::
observed

::::
SIF.

::::::::
However,

::::
our

::::::
finding20

that the �2
r

in the prior case is close
::
is

::::
near to the optimal value of one . This provides evidence that the range of possible model
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SIF realizations, given our assumptions on
:
of

:
parameter and data uncertainties, can provide coverage of the observed SIF.

:::::
While

:::
this

::
is
:::
not

::::::::
evidence

::::
that

::::
each

::::::
specific

::::::::::
uncertainty

::::
(e.g.

::::::::::
parameters,

::::::
model,

::::::::::::
measurement)

::
is

::::::
optimal

:::::
(?) it

::::
does

:::::::
suggest

:::
that

::::::
overall

:::
the

:::::::::::
assumptions

:::
are

::::
valid

::::
and

:::
that

:::
we

:::
are

:::
not

::::::::::::
overconfident

:::
in,

::
or

:::::::::::::
underestimating

:::::::::::
covariances.

:::
We

:::::::
reiterate

::::
that

::
the

:::
�
2
r:::

test
::

is
:::::::::
performed

:::::
using

::::::
higher

::::::
spatial

::::::::
resolution

::::::
model

:::
and

::::::::
measured

::::
data

:::::::
because

::::
this

::
is

:::
the

::::::::
resolution

::::
that

:::::
would

:::
be

::::::
applied

::
in

::
an

::::::::::
assimilation

::
of

:::
the

:::::
data,

:::
and

:::
this

:::::::
reduces

:::::
effects

:::
of

:::::::::::
representation

::::::
errors.

:::
The

:::::
error

::::::::::
propagation

:::::::
analysis,

::::::::
however,

::::::
benefits

:::::
from

::::
using

::::::::::::
low-resolution

:::
as

:
it
::::::
greatly

::::::::
improves

::::::::::::
computational

::::::::
efficiency

::::::::::
considering

:::
the

:::::::::
simulations

::::
and

::::::::::
calculations

::
are

::::::::::::::
computationally

::::::::::
demanding.5

We also find that the effect of incorporating the error from
::
an

::::
error

::
in the zero-level offset

::::::::
correction

:
in the SIF observations is

negligible on posterior parametric uncertainties. This may be negligible because, for a given season, this systematic uncertainty

applies across all data pointsand may act to scale all
:
,
::::
thus

:
it
:::::
scales

:::
all

::
of

:::
the

:
SIF values and therefore the sensitivities as well.

In any case, the systematic error in the zero-level offset corrected data assessed here (Appendix Figure 10) appears small.

The constraint on global GPP is similar when assimilating SIF at any time between 9:00 a.m. and 3:00 p.m.. Assimilating10

observations at the daily maximum of SIF and GPP provides the strongest constraint as both quantities exhibit the strongest

parameter sensitivities at these times. Depending upon the state of the vegetation and the environmental stress conditions,

maximum SIF and GPP may occur anywhere between mid-morning and early afternoon. Therefore, we expect that effective

use of different satellite-retrieved SIF observations for assimilation studies will depend not so much on their observing time

but more on the spatiotemporal resolution, measurement precision, and subsequent uncertainty.15

A confounding factor to this expectation is the uncertain role of physiological stress on the diurnal cycle of SIF and GPP

and subsequent
::
on modeling capabilities of these processes. Multiple studies have shown that various forms of environmental

stress result in downregulation of PSII and changes in the fluorescence yield, particularly evident across the diurnal cycle

(??????). By ingesting SIF observations at multiple times of the day we hypothesized that there could be improvements in

the overall constraint on GPP as the SIF observations would capture the vegetation in different states of stress. We saw only20

minor improvements in the constraint and less constraint if we assumed no additional information in the observations (i.e.

with scaled uncertainty). Thus, the difference in model parameter sensitivities of SIF and GPP at other times across the diurnal

cycle were not sufficient to add value to the constraint. Additionally, the constraint is worse with these scaled observational

uncertainties as we are effectively removing some useful observational information at midday, which is the most sensitive

time of day
:::
the

::::
time

:::
that

::::::::
provides

:::
the

::::::
highest

::::::::::
sensitivities, and getting extra observational information at the lower-sensitivity25

times of 8:00 a.m. and 4:00 p.m.. This is likely
:::
may

:::
be due to limitations of the model. Although BETHY-SCOPE simulates

light-induced downregulation of PSII, there is no mechanism present to simulate other forms of stress that might be expected

to emerge across the diurnal cycle. However, even with a perfect model, the spatial footprint and spatiotemporal averaging of

satellite observations may smooth over stress signals. Considering these factors,
:::::::::::
confounding

::::::
factors,

::::::::
ingesting

::::::::
individual

::::
SIF

::::::::
soundings

:::::
could

::::
help

::::::
remedy

::::
this

:::::::
problem,

::::
and there is no technical reason , other than computational requirements, why

::::
other30

:::
than

:::
the

::::
high

::::::::::::
computational

:::::::::::
requirements

::::
that

:::::
would

::::::
prevent

:
a data assimilation system such as this could not ingest individual

soundings of SIF observations to remedy the problem
::::
from

:::::
doing

::
so.
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The constraint of SIF on GPP occurs via multiple processes including leaf growth, leaf composition, physiology, and canopy

structure. For the prior, uncertainty in global GPP is dominated by leaf growth processes. There is a clear and direct link

between leaf growth processes and GPP (?) as the dynamics of leaf area influences canopy APAR which in turn strongly35

influences GPP. Leaf growth parameter uncertainties are relatively large in the prior, with coefficients of variation up to 50%. It

is perhaps no surprise then that these parameters project a large uncertainty onto GPP. Regardless, both GPP and SIF respond

similarly to the leaf growth parameters so information from observations of SIF can provide direct constraint on GPP in this

way. Many leaf growth parameters, particularly for grasses, crops, and deciduous trees and shrubs, receive constraint of >40%

from SIF thus the overall contribution of leaf growth parameters in the posterior is considerably reduced.5

Of particular importance is the parameter describing water limitation on leaf growth (⌧W ), which accounts for about 80%

of the prior uncertainty in global GPP. Model SIF and GPP are highly sensitive to this parameter hence there are large values

in H and HGPP pertaining to ⌧W . This relates to the model formulation as many of the leaf growth parameters determine

phenological processes such as temperature or light dependent growth triggers (i.e. temporal evolution of leaf area), while ⌧W

is the only process parameter controlling leaf area other than intrinsic maximum LAI (⇤̃) (?). Additionally, as we assume little10

prior knowledge for ⌧W (i.e. it is highly uncertain) it projects a relatively large uncertainty onto GPP.

At the global scale, ⌧W for crops, C3 grasses and C4 grasses (⌧Gr

W
) is particularly important. Combined, these three PFTs

cover about 47% of the land surface and account for just over 50% of global annual GPP in the present model setup. Although

this contribution to global GPP may seem high, it is based on the prior estimate. In a recent study by ? where atmospheric

CO2 concentration and SMOS soil moisture were assimilated into BETHY, the posterior value for ⌧Gr

W
shifted approximately15

three standard deviations away from the prior, the result of which would have been a large change in the GPP of these PFTs.

This exposes a limitation to the present study as we can predict and quantify how SIF will constrain the uncertainty of process

parameters and GPP, but we cannot predict how their values will change.

The constraint SIF provides on leaf growth processes is also perhaps achievable from other remote sensing products such as

FAPAR (e.g. ?). A direct comparative study would be required to assess the advantages and disadvantages of each observational20

constraint. Nevertheless, issues arise with these alternative observations when observing dense canopies (?) or vegetation

with high photosynthetic rates such as crops as they are near saturation (?). Information on maximum potential LAI (⇤̃) and

parameters pertaining to understorey shrubs and grasses are therefore also limited (?). A strong benefit of SIF is that it shows

minimal saturation effects (e.g. ?), especially beyond 700 nm where most current satellite SIF measurements are made.

The strong constraint SIF provides on leaf growth processes indicates that it is likely to provide improved monitoring of25

key phenological processes such as the timing of leaf onset, leaf sensescence and growing season length. This will be highly

useful in interpreting results from a full assimilation with SIF as the posterior process parameter values can be compared with

independent ecophysiological data, taking consideration of spatial scale issues.

Beyond observing LAI dynamics SIF can also provide critical insights into physiological processes (e.g. ?). We see here that

SIF provides weak to moderate constraint on a range of physiological parameters, including up to 30% constraint on Vcmax30

parameters. The limited constraint on these parameters results in the posterior being dominated by uncertainty in the parameters

representing physiological processes. This is in line with ? who found limited sensitivity of simulated SIF to Vcmax. We note
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that under certain conditions, where other key variables are well known, SIF can be used to retrieve Vcmax (?). The ability

of SIF to inform on physiological processes at all will provide researchers with a powerful new insight into spatiotemporal

patterns of GPP. As was shown by ? and ? this is particularly important for evergreen vegetation as changes in photosynthetic35

activity are not always reflected by changes in traditional vegetation indices.

Chlorophyll content here constitutes a classic nuisance variable. A nuisance variable is one that is not perfectly known,

impacts the observations we wish to use but not the target variable (?). However, exploiting the well-documented correla-

tion between leaf nitrogen content, Vcmax, and Cab may help curtail this problem (??). ? demonstrated that by including a

semi-mechanistic relationship between these variables in the Community Land Model and using satellite-based estimates of5

chlorophyll to derive Vcmax, there is significant improvement in predictions of carbon fluxes over a field site. Implementing

such a semi-mechanistic link in a data assimilation system would enable the strong constraint that SIF provides on Cab to feed

more directly onto GPP. However, in this study it is assumed Cab and Vcmax can be resolved independently which may not be

the case considering ecophysiological studies have shown the two parameters are commonly correlated.

Almost all terrestrial carbon cycle models use down-welling radiation at the Earth’s surface as an input variable. Any uncer-10

tainty in this forcing will translate into uncertainty in carbon fluxes including GPP, and few studies consider such uncertainties.

A known systematic error
:::
(i.e.

:::::
bias) in forcing variables (e.g. ?) cannot be considered in the present error propagation system,

however, in such a case a correction to the data should be performed as it will bias carbon flux estimates. For random errors

that cannot be removed however, they may be considered in the uncertainty of carbon flux estimates using error propagation.

At the global scale, ? used a perturbation study, along with modeled irradiance and remotely sensed measurements to compute15

a random error (�) of 12 Wm
�2 for monthly gridded downward shortwave radiation over the land. We considered this un-

certainty by incorporating it into the error propagation system with SIF. While including this forcing uncertainty in the prior

increases the prior uncertainty of GPP, incorporating the former into the error propagation analysis with the SIF observations

mitigates the downstream effect on GPP. SIF can therefore provide useful information on the SWRad forcing via a data assim-

ilation system. The consideration of uncertainties in forcing variables such as SWRad on terrestrial carbon fluxes is important20

when estimating the uncertainty in GPP. However, the effect on uncertainty in GPP may be strongly reduced by using SIF

observations.

The results presented here demonstrate how SIF observations may be utilized to optimize a process-based terrestrial bio-

sphere model and constrain uncertainty of simulated GPP. These results are, however, model dependent. The assumption is that

the model simulates the most important processes driving SIF and GPP. Some key, remaining unknowns include how processes25

such as environmental stress, 3-dimensional canopy structure effects, or nitrogen cycling may affect the SIF signal. As better

understanding is developed on the role that these processes play, modeling capabilities will also be improved. Additionally,

a different set of prior parameter values will alter the results due to changes in the Jacobian. Use of prior knowledge, based

on ecophysiological data and its probable range, is critical to curtail this problem. The choice of how to spatially differentiate

the parameters will also affect results (?). Selecting an optimal parameter set that has the fewest degrees of freedom, yet pro-30

vides the best fit to the observational data is outside the scope of this study however. Implementation of a parameter estimation

scheme in a full data assimilation system with SIF and other observational data will help address these challenges. Earlier work
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by ? demonstrated that the model can simulate the patterns of observed satellite SIF quite well, indicating the model can ingest

the data. Further work will be needed to assess how well the model can simulate patterns of SIF with an optimized, realistic

parameter set.

5 Conclusions

We assessed the ability of satellite SIF observations to constrain uncertainty in model parameters and uncertainty in spa-

tiotemporal patterns of simulated GPP using a process-based terrestrial biosphere model. The results show that there is strong5

constraint of parametric uncertainties across a wide range of processes including leaf growth dynamics and leaf physiology

when assimilating just one year of SIF observations. Combined, the SIF constraint on parametric uncertainties propagates

through to a strong reduction of uncertainty in GPP. The prior uncertainty in global annual GPP is reduced by 73% from 19.0

PgCyr
�1 to 5.2 PgCyr

�1. Although model dependent, this result demonstrates the potential of SIF observations to improve

our understanding of GPP. We also showed that a data assimilation framework with error propagation such as this allows us to10

account for uncertainty in model forcing such as SWRad. Surprisingly, by including it into this framework with SIF observa-

tions there is a net-zero effect on uncertainty in GPP due to the sensitivity of both SIF and GPP to radiation. This study is a

crucial first step toward assimilating satellite SIF data to estimate spatiotemporal patterns of GPP. With the addition of other

observational constraints such as atmospheric CO2 concentration or soil moisture there is also the possibility of accurately

disaggregating the net carbon flux into its component fluxes, GPP and ecosystem respiration. Indeed, with these additional,

complementary observations of the terrestrial biosphere further constraint could be gained as other regions of parameter space

can be resolved (?).

6 Code availability

The BETHY-SCOPE model code is available in the repository at https://github.com/NortonAlex/BETHY-SCOPE-Interactive-Phenology.

The GOSAT satellite SIF data used in this paper is from the ACOS project (version b35).
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Appendix A

A1 Model Process Parameters5

Table A1. BETHY-SCOPE process parameters along with their prior and optimized uncertainties following SIF constraint, represented as

one standard deviation. Relative uncertainty reduction (i.e. effective constraint) is reported for the error propagation with low-resolution and

high-resolution SIF observations. Units are: Vcmax, µmol(CO2) m
�2

s
�1; aVo,Vc and aRd,Vc , dimensionless ratios; KC and KO , bar; ⇤̃,

m
2
m

�2; T�, �
C; Tr , �

C; tc, hours; tr , hours; ⇠, d�1; kL, d�1; ⌧W , days; Cab, µg cm
�2; Cdm, g cm

�2; Csm, dimensionless fraction; hc,

m; leaf width, m.

Class # Description Parameter Prior

Mean

Prior

Uncertainty

Effective

Constraint

(%)

LE
A

F
PH

Y
SI

O
LO

G
Y

1

Maximum

carboxylation rate

at 25�
C

Vcmax (TrEv) 60 12 19.4

2 Vcmax (TrDec) 90 18 12.4

3 Vcmax (TmpEv) 41 8.2 0.3

4 Vcmax (TmpDec) 35 7 <0.1

5 Vcmax (EvCn) 29 5.8 0.3

6 Vcmax (DecCn) 53 10.6 <0.1

7 Vcmax (EvShr) 52 10.4 21.3

8 Vcmax (DecShr) 160 32 0.2

9 Vcmax (C3Gr) 42 8.4 30.7

10 Vcmax (C4Gr) 8 1.6 28.5

11 Vcmax (Tund) 20 4 0.5

12 Vcmax (Wetl) 20 4 <0.1

13 Vcmax (Crop) 117 23.4 6.0

14 Ratio of Vomax to Vcmax aVo,Vc 0.22 0.0022 <0.1

15 Ratio of Rd to Vcmax aRd,Vc 0.015 0.0015 <0.1

16 Michaelis-Menten constant of

Rubisco for CO2

KC 350e-6 23e-6 0.9

17 Michaelis-Menten constant of

Rubisco for O2

KO 0.45 0.0165 <0.1

LE
A

F
G

RO
W

TH

18 Max. leaf area index ⇤̃ 5 0.25 7.0

19

Temperature at leaf

onset

T� (4) 10 0.5 8.9

20 T� (5,6,11) 10 0.5 16.6

21 T� (8) 8 0.5 2.3

22 T� (9,10,12) 2 0.5 46.8

23 T� (13) 15 1 49.6
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LE
A

F
G

RO
W

TH

24

Spatial range (1�) of T�

Tr (4,8,13) 2 0.1 1.9

25 Tr (5,6,11) 2 0.1 0.8

26 Tr (9,10,12) 0.5 0.1 9.6

27 Day length at leaf shedding tc (4-6,8,11) 10.5 0.5 32.1

28 Spatial range (1�) of tc tr (4-6,8,11) 0.5 0.1 1.4

29 Initial linear leaf growth ⇠ 0.5 0.1 20.0

30
Inverse of leaf longevity

kL (2,4,6,8,9,10,

12,13)

0.1 0.05 58.5

31 kL (5,11) 3e-3 0.5e-3 11.2

32
Length of dry spell

before leaf shedding

⌧W (1,3,7) 180 60 56.9

33 ⌧W (2) 90 30 37.9

34 ⌧W (9,10,12,13) 30 15 64.6

LE
A

F
C

O
M

PO
SI

TI
O

N

35

Chlorophyll ab content

Cab (TrEv) 40 20 7.4

36 Cab (TrDec) 15 20 60.7

37 Cab (TmpEv) 15 20 31.3

38 Cab (TmpDec) 10 20 69.7

39 Cab (EvCn) 10 20 73.8

40 Cab (DecCn) 10 20 66.9

41 Cab (EvShr) 10 20 72.5

42 Cab (DecShr) 10 20 66.3

43 Cab (C3Gr) 10 20 73.9

44 Cab (C4Gr) 5 20 83.6

45 Cab (Tund) 10 20 72.9

46 Cab (Wetl) 10 20 49.6

47 Cab (Crop) 20 20 54.6

48 Dry matter content Cdm 0.012 0.002 1.3

49 Senescent material content Csm 0 0.01 0.2

C
A

N
O

PY

ST
RU

C
TU

R
E 50 Leaf inclination distribution

function parameters

LIDFa -0.35 0.1 21.5

51 LIDFb -0.15 0.1 9.0

52 Vegetation height hc 1 0.5 6.8

53 leaf width 0.1 0.01 0.3

A2 GOSAT SIF Uncertainty Calculations

To get the variance of a target grid cell at the model grid resolution (ylat,xlon) we first determine the area-weighted variance

of each GOSAT grid cell (ilat,jlon) within that target grid cell. The area-weighting per GOSAT grid cell ( ˆAreailat,jlon) is

calculated as the area divided by the total area of the target grid cell. This enables us to account for different grid cell sizes580
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Figure 9. An example of the GOSAT SIF data and uncertainty calculations over a low-resolution model grid cell centered over the Amazon

forest at 3.75�S and 65�W. Grey lines show individual 3° ⇥ 3°GOSAT grid cells. Black lines show the aggregated data for the 7.5° ⇥
10°model grid cell. Bottom right shows the calculated uncertainty (standard deviation) at the model grid resolution in black, blue and green.

The black line is the standard error calculated using Eq. 5; the blue line is the standard error calculated using Eq. A1; the green line is the

same as the blue but scaled by
p
2 to account for correlated errors which is used in this study.

considering SIF is in physical units per unit area. We then sum the area-weighted variances and scale this uncertainty by the

square root of two (see equation 5). Scaling the uncertainty in this way effectively doubles the variance in an independent

dimension.

�
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ylat,xlon

=
p
2

X
( ˆArea

2
ilat,jlon

·�2
ilat,jlon

) (A1)
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Figure 10. Analysis of systematic errors in the GOSAT SIF observations. We assess the zero-level offset corrected GOSAT SIF soundings

over two ice-covered and therefore non-fluorescent regions. The first is Antarctica in January, between latitudes 70�S to 80�S and longitudes

75�W to 155�E. The second is central Greenland in July, between latitudes 73�N to 80�N and longitudes 30�W to 52�W. With no systematic

error the mean (µ) value of the distribution should be on zero.
::
As

::
is

:::::
shown,

::
µ

:
is
:::::::
non-zero

:::
and

:::::
varies

::
in

:::
sign

:::
and

::::::::
magnitude

:::::::
between

::::::
January

:::
and

:::
July.

::::
This

:::
test

::::::
samples

:::
the

::::
error

:::::::::
distribution

:
in
:::
the

::::::::
zero-level

::::
offset

:::
(i.e.

:::
"z :

in
:::
Eq.

:::
6).
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