
1 Author General Response

We thank the reviewers once again for their valuable feedback and contribution
to this study. Our specific responses to reviewer comments are shown further
below in blue.

Through this review process we have noticed some additional points we consider
worth correcting.

First, is that calculation of the observational uncertainties for the high-resolution
case (2 x 2 degrees) are not valid. This is because we e↵ectively preserve the
information content in the GOSAT observations (3 x 3 degrees) when calculating
the error reduction in the main experiment. Therefore, the additional test case
experiment where we scaled the observational uncertainties by 1/

p
19 has been

omitted.

Second, is a follow up on the issue we already flagged with the editor and ed-
itorial support. As flagged, we found some inconsistencies in the model that
required some additional investigation. These were found to relate to the bio-
chemistry of the model code. The inconsistencies have now been reconciled,
the analysis has been run again, and the manuscript has been updated with
the new calculated values. Overall, the main conclusions of the paper have not
changed and the e↵ective constraint from SIF on global GPP has changed little
(from 79% to 73%). The predicted global GPP, however, increased following this
correction and therefore the reported prior and posterior uncertainties (in PgC
yr-1) increased. The corrections made meant that some biochemical parameters
were also omitted from the analysis. The total number of parameters has gone
from 72 to 53. This correction is more consistent with the theory underlying
the Collatz biochemical models of C3 and C4 photosynthesis and specific for
the SCOPE calculation of GPP.
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2 Anonymous Referee # 1

Note: Author comments are shown in blue.

First of all, I thank the authors for their e↵ort in addressing the referee’s com-
ments, and indeed the manuscript is now much clearer. However, I am still not
convinced by the way the authors circumvented the issue of estimating the total
observational error. This is why I suggest to revise it before being considered
for publication, and below is a more detailed account.

The authors claim in section 1.1.1 of their response, and as a reason for leaving
aside the structural/model uncertainty in posterior error propagation, that this
uncertainty cannot be estimated prior to performing a full assimilation. This
is simply not true. One of the diagnostics provided by Desroziers et al. (2005)
calculates the observational uncertainty (model + measurements) as the di↵er-
ence between prior model-data mismatch and propagated prior parameters error
(Eq. 1 therein), which is one of the method put into application by Kuppel et al.
(2013) (see Eq. 1 therein). Therefore, nothing prevents the authors from using
this method. All the more because neglecting the model error in the covariance
matrix C

D

could significant impact the large uncertainty reduction estimates
currently presented in the manuscript. All the more that this study presents a
novel couplings of model components where the structural uncertainty is essen-
tially unknown. Ignoring this central aspect seriously undermines the impact of
this paper.

Thank you for your feedback and indeed your are correct. We have performed
this analysis as described below and included it in the manuscript. We have
added the equation given below in the methods section of the manuscript, and
added this analysis into the results and discussion.

We calculated the so-called Bayes’ factor, or a reduced �2 metric (�2
r

). We do
not believe it is appropriate to perform this using the low-resolution version
of the model as is done throughout the rest of the manuscript considering the
large contribution of representation errors. Therefore, we conducted a forward
run at a higher resolution (2x2 degrees), more credible for this purpose. This
simulation has been brought forward from some analyses from unpublished work
at this higher resolution using SIF from the OCO-2 satellite for the year 2015.
While there is a slightly di↵erent discretization of the parameters in this version,
it provides an insight into whether our uncertainties are consistent with the
model-data mismatch. The formulation is follows:

�2
r

=
1

N
(M

x

o

� d)(HC
x

o

HT + C
d

)�1(M
x0 � y) (1)

where N is the number of observations, M
x

o

is the model simulated SIF using
prior parameter set, and d is the SIF observations. From this we get a �2

r

equal
to 0.97, which gives evidence that our assumptions around uncertainties fit with
the model-data mismatch.
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On page 8, lines 21-24, it seems to me that there is a confusion between struc-
tural and systematic errors; a probabilistic framework (such as that used by
Kuppel et al. (2013)) can only characterize random errors (as opposed to sys-
tematic ones). Thus nothing really can be stated about systematic errors in the
model, and it cannot be opposed to the systematic errors of measurements. Note
that, as stated in the original report, using ’observations’ on line 23 is rather
confusing, data/measurements would be more appropriate. In addition, I don’t
understand what kind of ’structural uncertainty’ the authors are talking about
on line 24, since just before they talk about systematic error in observations;
did you mean ’systematic error’? As stated above, I think this section requires
further analysis.

Thank you for the comment. First, our terminology is perhaps not clear enough
here, thank you for bringing that to our attention. We have modified the
manuscript such that there is clear distinction between ”measurement/data er-
ror” and ”observation error”. Additionally we provide a clear description of
what we mean by a ”systematic error”. Second, as you point out, a probabilis-
tic framework can only characterize random errors. A distinction can be made
between a systematic error and a bias. We consider a systematic error to be
a randomly distributed error of unknown sign that applies to a subset of the
measurements. The zero-level o↵set is this type of error. A bias is a systematic
error with a known sign hence it cannot be included in this framework. This
can be denoted as follows, where the true value (yt

i

) of a quantity (e.g. SIF) can
be given by

yt
i

= y
i

+ "
i

+ z (2)

where y
i

is the measured value at index point i, "
i

is a random variable of which
the variance is equal to �2, and z is a random variable that has some variance
and is constant for a subset of the measurements (e.g. of a particular region or
time). In this sense z is a systematic error. In the case of the zero-level o↵set
in the GOSAT SIF measurements, z is a systematic error of unknown sign and
applies to the whole globe each month. We can approximate the magnitude of
this error, but in reality we do not know it’s sign. This means we can assess the
e↵ect of z on the error propagation analysis from SIF to GPP. We clarify this
in the methods section of the manuscript.
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Abstract. The synthesis of model and observational information using data assimilation can improve our understanding of the

terrestrial carbon cycle, a key component of the Earth’s climate-carbon system. Here we provide a data assimilation framework

for combining observations of solar-induced chlorophyll fluorescence (SIF) and a process-based model to improve estimates

of terrestrial carbon uptake, or gross primary production (GPP). We then quantify and assess the constraint SIF provides on

the uncertainty of global GPP through model process parameters in an error propagation study. By incorporating one year of5

satellite SIF observations from the GOSAT satellite, we find that the parametric uncertainty in global annual GPP is reduced

by 79
::
73%, from ± 13.0

:::
19.0 PgCyr�1 to ± 2.8

::
5.2

:
PgCyr�1. This improvement is achieved through strong constraint of leaf

growth processes and weak to moderate constraint of physiological parameters. We also find that the inclusion of uncertainty

in shortwave down radiation forcing has a net-zero effect on uncertainty in GPP when incorporated in the SIF assimilation

framework. This study demonstrates the powerful capacity of SIF to reduce uncertainties in process-based model estimates of10

GPP and the potential for improving our predictive capability of this uncertain carbon flux.

1 Introduction

The productivity of the terrestrial biosphere forms a key component of Earth’s climate-carbon system. Estimates show that

the terrestrial biosphere has removed about one quarter of all anthropogenic CO2 emissions thus preventing additional climate

warming (?). Much of the interannual variability in atmospheric CO2 concentration is also driven by terrestrial productivity.15

Despite this significance, understanding of the underlying mechanisms of terrestrial productivity is still lacking. This manifests

in a large uncertainties in the predictive capability of terrestrial productivity and thus, future predictions of atmospheric CO2

and temperature (?).

A key challenge is disaggregating the observable net CO2 flux into its component fluxes, gross primary production and

ecosystem respiration. Gross primary production (GPP) is the rate of CO2 uptake through plant photosynthesis and the largest20

natural surface to atmosphere flux of carbon on Earth (?). Estimating spatiotemporal patterns of GPP at the scales required

for global change and modeling studies has, however, proven difficult. This is primarily due to two reasons, the complexity
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of the processes involved and the difficulty in observing those processes (??). Remote sensing observations of solar-induced

chlorophyll fluorescence (SIF) offer a novel constraint on GPP and the potential to partly address these two issues (?).

At the leaf scale chlorophyll fluorescence is emitted from photosystems I and II during the light reactions of photosynthesis.

These photosystems are pigment-protein complexes that form the reaction centers for converting light energy into chemical

energy. It is in photosystem II (PSII) where photochemistry, the process initiating photosynthetic electron transport and leading5

to CO2 fixation, is initiated. The link between chlorophyll fluorescence and photochemistry is confounded by a third key pro-

cess however, heat dissipation, also termed non-photochemical quenching (NPQ). Both photochemistry and NPQ are regulated

processes, responding to changing physiological and environmental conditions (?). Changes in the rates of photochemistry and

NPQ, and electron sinks other than CO2 fixation, lead to a non-trivial, but direct link between chlorophyll fluorescence and

photosynthetic rate (??). Because chlorophyll fluorescence is tied in with these physiological processes it has become a highly10

useful indicator of leaf physiological state (see reviews by ??).

At the canopy scale and beyond the link appears simpler, exhibiting ecosystem-dependent linear relationships (?). The slope

of this linear relationship can change as the light-use efficiency of either SIF or GPP changes, for example due to water stress

(?) or changing light conditions (?). SIF also seems to outperform traditional remote sensing methods, such as Normalized

Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) that use reflectance to derive vegetation indices,15

in tracking changes in GPP at this scale (??). This is in part because the SIF emission originates exclusively from plants, thus

the retrieval is not contaminated by background materials like soil or snow. It is expected, however, that complicating factors

such as the retrieval wavelength, temporal scaling, chlorophyll content, 3-dimensional canopy structure, and stress will also

play a role in the GPP-SIF link (????). Using high-resolution spectrometers onboard satellites global maps of SIF have been

produced. A number of existing (GOME-2, GOSAT, OCO-2, TROPOMI, SCHIAMACHY) and planned (FLEX, GEOCARB)20

satellite missions are capable of measuring SIF. Utilizing these remotely-sensed SIF observations directly to track changes in

GPP have already proven useful even without the addition of ancillary data or model information (????).

Data assimilation enables the use of observations and model information together to produce a best estimate of the state

and function of the system. In the case of mechanistic models this is done by constraining the simulated processes and their

parameters. Such an approach has been applied to terrestrial biosphere models to optimize model parameters and constrain25

uncertainty of carbon flux estimates in a number of studies (see ????). The Carbon Cycle Data Assimilation System (CCDAS)

is one such system and has ingested observations such as atmospheric CO2 concentration and/or the fraction of absorbed

photosynthetically active radiation (FAPAR), demonstrating the benefit of combining model and observations in a regularized

approach (??). The use of SIF observations within a data assimilation framework may provide a highly useful, complementary

constraint on GPP. While one study by ? utilized SIF in a data assimilation system to redistribute multiple model estimates of30

GPP, no optimization of model process parameters was performed. ? incorporated a mechanistic model for SIF into the CCDAS

system and conducted sensitivity tests and a comparison of the model SIF and observed SIF from GOSAT demonstrating the

model is capable of ingesting the data. However, SIF has not yet been used on a global scale in a data assimilation system. A

key first step toward this is to quantify the potential constraint that SIF provides on the underlying processes that drive GPP

and, hence, on GPP.35
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In this paper, we assess the ability of satellite SIF observations to constrain the parametric uncertainty of simulated GPP in a

terrestrial biosphere model within a data assimilation system. This is termed an error propagation study and is similar in concept

to an observing system simulation experiment or quantitative network design study (???). Parameters and simulated GPP are

therefore optimized only for their uncertainty and not for their absolute quantities. Considering SIF is a novel observational

constraint, this is an important first step toward a full assimilation of the data allowing us to evaluate the level of constraint SIF5

will impose on GPP and how that constraint is propagated through the model.

2 Methods

We formulate this error propagation study into two key stages; (i) optimization of parameter uncertainties and; (ii) projec-

tion of parametric uncertainties onto uncertainty in diagnostic GPP. This allows us to conduct a thorough assessment of how

effective SIF observations are at constraining the uncertainty of model parameters and the parametric uncertainty of model10

simulated GPP. Under the linear Gaussian assumption, the uncertainty of a target quantity following assimilation of the data

(i.e. the posterior) is conditional only on the prior uncertainty, the uncertainty of the observations and the sensitivity of sim-

ulated observations to changes in the parameter (?). Thus, this is a linear problem that can be performed independently of

the optimization of actual parameter values. Here, we outline the model used to simulate the observation (SIF) and the target

quantity (GPP). We also outline the model parameter set describing these processes, the uncertainty in the observations and15

model forcing, and general experimental setup.

2.1 Model Description

In order to ingest an observation into a data assimilation system, we require a model or ’observation operator’ that can simulate

SIF, ideally providing a process-based relationship between SIF and GPP. There are a few ways one might formulate the

observation operator. Evidence shows a strong linear relationship between SIF and GPP at large spatial scales and relatively20

long temporal scales (??), suggesting relatively simple scaling between GPP and SIF. However, it is known that the link is more

complex than this, and it is expected to differ at finer spatial and temporal scales due to, for example, land surface heterogeneity

or the time of day of the measurements. To ensure the model has these capabilities we have opted for a mechanistic-based

observation operator.

In this section we describe the newly developed terrestrial biosphere model for simulating and assimilating SIF. The model25

is an integration of the existing models BETHY (Biosphere Energy Transfer Hydrology) (??) and SCOPE (Soil Canopy Ob-

servation, Photosynthesis and Energy fluxes) (?) and builds upon the developments of ?. The coupling of BETHY and SCOPE

enables spatially explicit, plant-type dependent, global simulations of GPP and SIF. This model may be run on a computation-

ally efficient, low-resolution spatial grid of 7.5° ⇥ 10° or a high-resolution spatial grid of 2° ⇥ 2°.

BETHY is a process based terrestrial biosphere model at the core of the Carbon Cycle Data Assimilation System (CCDAS)30

(??). Full model description details can be found elsewhere (e.g. ???). Briefly, BETHY simulates carbon assimilation and plant

and soil respiration within a full energy and water balance. The version used here also incorporates a leaf area dynamics module
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for prognostic leaf area index (LAI) as described in ?. This module includes parameters for leaf development, phenology and

senescence processes (hereby collectively termed leaf growth) to determine LAI in a scheme that incorporates temperature,

water and light limitations on growth and is capable of representing the major global phenology types (?). This scheme also

enables the representation of subgrid variability in leaf growth, representing the likely variability in growth triggers across a

grid cell and necessary for differentiability between process parameters and state variables. The full BETHY model consists5

of four key modules: (i) energy and water balance; (ii) photosynthesis; (iii) leaf growth and; (iv) carbon balance. It represents

variability in physiology and leaf growth of plant classes by 13 plant functional types (PFTs) (see Table 1) originally based on

classifications by ?. Each model grid cell may consist of up to three PFTs as defined by their grid cell fractional coverage.

Table 1. PFTs defined in BETHY and their abbreviations.

PFT # PFT Name Abbreviation

1 Tropical broadleaved evergreen tree TrEv

2 Tropical broadleaved deciduous tree TrDec

3 Temperate broadleaved evergreen tree TmpEv

4 Temperate broadleaved deciduous tree TmpDec

5 Evergreen coniferous tree EvCn

6 Deciduous coniferous tree DecCn

7 Evergreen shrub EvShr

8 Deciduous shrub DecShr

9 C3 grass C3Gr

10 C4 grass C4Gr

11 Tundra vegetation Tund

12 Swamp vegetation Wetl

13 Crops Crop

SCOPE is a vertical (1-D) integrated radiative transfer and energy balance model with modules for photosynthesis and

chlorophyll fluorescence (?). At present it is the only process-based model capable of simulating canopy-scale chlorophyll10

fluorescence. SCOPE incorporates current understanding of chlorophyll fluorescence processes including canopy radiative

transfer, re-absorption of fluorescence within the canopy, and the non-linear relationship between chlorophyll fluorescence

quantum yield and other quenching processes (??). Leaf level chlorophyll fluorescence is coupled to the commonly used

Farquhar and Collatz models for C3 and C4 photosynthesis, respectively (?). A current limitation of SCOPE is that there is no

link between leaf level biochemistry and soil moisture. This is compensated by changes in LAI as provided by BETHY.15

The canopy radiative transfer and photosynthesis schemes of BETHY have been replaced by the corresponding schemes in

SCOPE, including the components required for calculation of chlorophyll fluorescence at leaf and canopy scales. The spatial

resolution, vegetation (PFT) characteristics, leaf growth, and carbon balance are handled by BETHY. SCOPE therefore takes
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in climate forcing (meteorological and radiation data) and LAI from BETHY, and returns GPP. BETHY calculates the canopy

water balance, leaf growth, and net carbon fluxes, which will prove useful in future when assimilating other data streams

(e.g. atmospheric CO2 concentration). Importantly, SCOPE provides a process-based link between SIF and GPP allowing the

transfer of information from observations of SIF to simulated GPP. Subsequently, information from SIF may also be transferred

to carbon fluxes resulting from GPP such as net ecosystem productivity.5

2.2 Model Process Parameters

In this error propagation system, information content from SIF observations are
::::
from

:::
the

:::
SIF

:::::::::::
observations

::
is used to constrain

the uncertainty in
:
of

:::
the

:
model process parameters. Parameters can be either

::::
either

:::
be global or differentiated by PFT. Global

parameters apply to plants or soils everywhere while PFT-dependent parameters enable differentiation between physiological

and leaf growth traits. Some key parameters for this study such as the maximum carboxylation capacity (Vcmax) and chlorophyll10

a/b content (Cab) are considered PFT-dependent. From an ecophysiological perspective, there are other parameters specific to

SCOPE that may be considered PFT-dependent such as the vegetation height and leaf angle distribution parameters. However,

we have assumed them to be global to simplify the problem. GPP is relatively insensitive to these parameters, so this is not

expected to impact the GPP uncertainty reduction results. Despite this, in a full assimilation with the SIF data it may be

necessary to make these PFT-dependent to improve the model-observed fit.15

We expose 72
::
53 parameters from BETHY-SCOPE to the error propagation system (see Table A1). As stated above, each

of these is represented by its PDF, assumed to be Gaussian. The mean and standard deviation for the prior parameters is

shown Table A1. Choice of the prior mean and uncertainty for parameters follow those used in previous studies (???). For

new parameters that are not well characterized (e.g. SCOPE parameters) we assign relatively large prior uncertainties, and

mean values in line with the default SCOPE parameters and with ?. The choice of the prior may be considered important20

here considering we are using a linear approximation of the model around x0 and that the model is known to be non-linear.

Therefore, sensitivities can differ depending upon the choice of x0 (?).

There are seven
:::::
twelve

:
SCOPE parameters exposed, one of which is PFT-dependent. These parameters were chosen due

to their importance in simulating SIF or GPP, and to sensitivity tests such as those performed by ?. They include Cab, leaf

dry matter content (Cdm), leaf senescent material fraction (Cs), two leaf distribution function parameters (LIDFa, LIDFb),25

vegetation height (hc) and leaf width.
::::
Leaf

:::::::::::
physiological

::::::::::
parameters

::::::
include

:
Vcmaxis a parameter shared by BETHY and

SCOPE
:
,
:::::::::::::::
Michaelis-Menten

::::::
kinetic

::::::::::
coefficients

:::
for

:
CO2 ::::

(KC)
::::
and O2 :::::

(KO),
:::
the

::::
ratio

:::
of

:::
the

:::::::
Rubisco

:::::::::::
oxygenation

:::
rate

:::
to

:::::
Vcmax::::::::

(↵Vo,Vc
),

:::
and

:::
the

::::
ratio

::
of
::::
day

:::::::::
respiration

::
to

::::::
Vcmax :::::::

(↵Rd,Vc
).

2.3 Uncertainty Calculations

To calculate the uncertainty in parameter values following the constraint provided by the observational information of SIF30

(i.e. the posterior uncertainty) we propagate uncertainty from the observations onto the parameters. In order to perform this,

we utilize a probabilistic framework where the state of information on parameters and observations is expressed by their

corresponding probability density functions (PDF) (see ?). The probability density of the errors in these quantities is assumed
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to be Gaussian, thus they are describable by their mean and uncertainty. The prior information on parameters is quantified

by a PDF in parameter space and the observational information by a PDF in observational space. The mean values for the

parameters and observations are denoted by x and d, respectively. The uncertainty covariance matrices in parameter space and

observational space are denoted by Cx and Cd, respectively. Formally, Cd represents the errors in the observations and in the

model simulated counterpart (i.e. model error) (?) . We only consider the contribution of observational errors to Cd, however5

we also perform a sensitivity test to investigate the effect of incorporating similar structural uncertainties described further

below.

For linear and weakly non-linear problems we can assume that Gaussian probability densities propagate forward through

to Gaussian distributed simulated quantities (?). This permits linear error propagation from the input parameters to the model

outputs. Estimating posterior uncertainties of the parameters for these types of problems can therefore be performed indepen-10

dently of the parameter estimation, in other words without the need to constrain the mean values of the parameters (??). This

requires a matrix of partial derivatives of a target quantity with respect to its variables, also called a Jacobian matrix (H). This

matrix represents the sensitivity of a simulated quantity (e.g. SIF, GPP) to the parameters. With the linear approximation, H is

calculated around the prior parameter values (x0). This simplification of the model sensitivity brings limitations to the accuracy

of the method. However, with the aggregation of subgrid variability across a model grid cell, sudden shifts in model sensitiv-15

ity (e.g. step functions) are less likely or realistic; the present model incorporates these effects (?). Additionally, because the

parameter space can be very large, the use of prior knowledge on x0 helps to limit the effect of this problem as H at x0 likely

provides a decent approximation of the true H that would occur at the global optimum (?). The simplification is also useful

considering the high computational cost of calculating H .

To calculate the posterior parameter covariance matrix (Cxpost
) following constraint by observational information, Cd, we20

use Eq. 1 (?).

C�1
xpost

= C�1
x0

+HTC�1
d H (1)

Where H expresses the Jacobian for SIF and HT the Jacobian transposed. Comparing parameter uncertainties in the prior

(Cx0 ) and the posterior (Cxpost
) allows us to quantify the improvement in parameter precision following the observational

constraint. The parameter uncertainties in Cx0 and Cxpost may be expressed as standard deviations (�) by calculating the25

square root of their diagonal elements. We can therefore assess the relative uncertainty reduction in parameter following SIF

constraint, or ’effective constraint’, with 1 - (�posterior/�prior). This quantifies the effective constraint of the prior uncertainty

and may be represented as a percentage decrease in � uncertainty.

::::::::
Formally,

:::
Cd:::::::::

represents
:::
the

:::::
errors

:::
in

:::
the

::::::::::::
measurements

::::
and

::
in

:::
the

::::::
model

:::::::::
simulated

::::::::::
counterpart

:::
(i.e.

::::::
model

::::::
error)

::::
(?) .

:::
We

::::
only

:::::::
consider

:::
the

:::::::::::
contribution

::
of

:::::::::::
measurement

::::::
errors

::
to

:::
Cd ::

in
:::::::::
calculating

::::::::
posterior

:::::::::::
probabilities.

::::::::
However,

:::
to

:::
see

::
if

:::
the30

::::::::::
assumptions

::::
that

:::
we

::::
have

:::::
made

:::::
about

:::::::::::
uncertainties

:::
are

:::::::::
consistent

::::
with

:::
the

:::::::::
model-data

:::::::::
mismatch,

:::
we

::::::
assess

:::
the

:::::::
reduced

:::
�2

::::::
statistic

::::
(�2

r)
::::::
similar

::
to

::::
one

::
of

:::
the

:::::::
methods

:::::::::
employed

::
by

:::
? .

:::::
While

:::::
more

::::::
formal

:::::::::
approaches

::
to

:::::::
estimate

:::::::::
covariance

::::::::::
parameters
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::::
exist

::::
(?) ,

:::
this

::::::
metric

:::
can

::::::::
highlight

::::::
whether

:::
we

:::
are

:::::::::
neglecting

:
a
:::::::::
significant

::::::
source

::
of

:::::
error,

:::
for

:::::::
example,

::::::
model

::::::::
structural

:::::
error.

::::
This

:
is
:::::::::
calculated

::
by

:

�2
r =

1

N

�
M(x0)� d

��
HCx0H

T +Cd

��1�
M(x0)� d

�

:::::::::::::::::::::::::::::::::::::::::::::

(2)

:::::
where

::
N

::
is
::::

the
::::::
number

:::
of

:::::::::::
observations,

::::::
M(x0)::

is
::::

the
:::::::
forward

:::::
model

:::::::::
simulated

:::
SIF

:::
for

:::
the

:::::
prior

:::::
case,

:::
and

::
d
::
is

:::
the

::::
SIF

:::::::::::
observations.

:
A
:::
�2
r:::::

value
::::::
greater

::::
than

:::
one

::::::
would

::::::
indicate

::::
that

:::
our

::::::::::
assumptions

::::::
around

:::::::::::
uncertainties

::::
may

:::
not

:::
be

::::
valid

:::::
given

:::
the5

:::::::::
model-data

::::::::
mismatch

:::
and

::::
that

:::
the

:::::
model

::::::
cannot

:::::::
simulate

:::
the

::::::::::::
measurements.

::::::::::
Conversely,

:
a
:::
�2
r ::::

value
::::
less

::::
than

:::
one

:::::
would

:::::::
suggest

::::
these

:::::::::::
assumptions

:::
are

:::::
valid.

:::::::
Because

::::::::::::
representation

:::::
errors

::::
will

:::
be

::::
large

::
at
:::::::::::::

low-resolution
:::
this

:::::::
analysis

::::::
cannot

:::
be

:::::::::
performed

::::
using

:::
the

::::::::::::
low-resolution

::::::
model

::::
used

:::::::::
elsewhere

::
in

:::
this

:::::::
analysis.

::::
We

:::::::
therefore

:::
use

:::::::::::
unpublished

::::
work

::::
that

::::::::
compares

:::
the

:::::::
forward

:::::
model

::
at

:
a
::::::
higher

::::::::
resolution

:::
(2°

::
⇥
:::
2°)

::::
and

::::
with

:::
SIF

:::::::::::
observations

::::
from

:::
the

:::::::
OCO-2

::::::
satellite

:::
for

:::::
2015.

:::::
While

::::
this

::::
uses

:
a
:::::::
slightly

:::::::
different

::::::::::::::
parameterization,

::
it

::
is

::::
more

:::::::
credible

:::
and

:::::
helps

::::::::
minimise

:::
the

::::::
effects

::
of

:::::::::::
representation

:::::
error

::
in

::::::::::
determining

:::::::
whether

:::
the10

:::::
model

:::
can

::::::::
simulate

:::
the

::::::::::::
measurements.

:::::::::::
Additionally,

:::
we

:::::::
perform

::
a
:::::::::
sensitivity

:::
test

::
to

:::::::::
investigate

:::
the

::::::
effect

::
of

:::::::::::
incorporating

::
a

:::::::
possible

:::::
source

::
of

::::::::
structural

::::::::::
uncertainty

::
in

:::
the

::::::::::::
measurements

::::::::
described

::::::
further

::::::
below.

The observational constraint introduces correlations into the posterior parameter distributions, thus posterior parameter un-

certainties are not wholly independent. Strong correlations in Cxpost
indicate parameters that cannot be resolved independently

in an assimilation, however their linear combinations can be. If large enough, these correlations can contribute significantly15

to the overall constraint of the target quantity (?) . We calculate correlations in parameters by expressing the covariances as

correlations as in Eq. 3 (see ?, p.71) . As a result,
::
by

Ri,j =
Ci,jp

Ci,i

p
Cj,j

:::::::::::::::::

(3)

:::::
where diagonal elements have a correlation equal to one while off-diagonals elements can range between -1 and 1.

:
If
:::::
large

::::::
enough,

:::::
these

::::::::::
correlations

:::
can

:::::::::
contribute

::::::::::
significantly

::
to

:::
the

::::::
overall

:::::::::
constraint

::
of

:::
the

:::::
target

:::::::
quantity

::::
(?) .20

Ri,j =
Ci,jp

Ci,i

p
Cj,j

Using the parameter covariance matrix we can assess how parameter uncertainties propagate forward through the model onto

uncertainty in GPP using the Jacobian rule of probabilities, the same method outlined in ?. This is the second stage of our error

propagation study. Using Cx0 we estimate the prior uncertainty in a vector of simulated target quantities (i.e. GPP). Similarly,

using Cxpost we estimate the posterior uncertainty in a vector of simulated target quantities. We calculate the uncertainty25

covariance of GPP (CGPP ) using Eq. 4.

CGPP =HGPPCxH
T
GPP (4)
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Where HGPP is the Jacobian matrix of GPP with respect to the parameters. With this we can quantify the improvement in

precision of simulated GPP by using either Cx0 or Cxpost
in Eq. 4. Therefore, using the forward model, a statistical estimation

scheme and a set of observational uncertainties we can assess the information content of the SIF observations in the context of

the model, its parameter set, and simulated GPP taking explicit consideration of uncertainties.

2.4 Uncertainty in Observations and Model Forcing Variables5

The observational uncertainty
:::::::::
uncertainty

::
of

:::
the

::::::::
measured

::::
data

::::::::
(hereafter,

:::::
data) is a critical component in assessing the potential

impact of an observing system on the estimation of carbon fluxes. Observational uncertainties of
::::
Data

::::::::::
uncertainties

::
in

:
SIF used

here are calculated from the GOSAT satellite observations for 2010. This data is obtained from the ACOS (Atmospheric CO2

Observations from Space) project at a grid resolution of 3° ⇥ 3°. As the model simulations are performed on a low-resolution

grid (7.5° ⇥ 10°), we aggregate the observational
::::
these

:
uncertainties to this resolution using Eq. 5 as described below.10

We assume the observations are independent and have uncorrelated errors, that is, they are distributed randomly. Assuming

uncorrelated errors is, however, likely to overestimate the information content particularly if using the standard error as the

uncertainty. Although it has been used in recent studies with satellite SIF (e.g. ?), the standard error is likely to be an overly

optimistic approximation of the information content. For this study, we take a slightly conservative approach, scaling the

calculated standard error by the square root of two as shown in Eq. 5. This effectively doubles the variance in an independent15

dimension and reduces the information content to compensate for the assumption of uncorrelated errors.

Through aggregation of GOSAT grid cells to the model grid resolution the number of independent observations
:::::::::::
measurements

is reduced. To account for this the
::
and

::::::::
preserve

:::
the

::::::::::
information

::::::
content

::
of

:::
the

:::::::
original

:::::::
GOSAT

::::::::::
observations

:::
the

:
uncertainty in

a given model grid cell is, approximately, divided by the square root of the number of GOSAT grid cells with SIF data that fall

within that model grid cell (N ). More precisely, we apply an area-weighting term in the equation (see Supplementary material20

Eq. A1). This has the effect of scaling the uncertainty by the 1/
p
N law, but takes into account the fact that SIF is in physical

units per units area (i.e. W m�2 µm�1 sr�1) and that grid cells have different areas over different latitudes. A full description

of this calculation and detailed example is shown in supplementary material.

Therefore, the calculation of the observational uncertainties of SIF
:::
SIF

::::
data

::::::::::
uncertainties

:
used here is approximated by Eq.

5 (for further details see Supplementary material Section A2). For a given model grid cell, the variance (�2) is approximately25

equal to the sum of the standard error of each individual GOSAT grid cell (�i) squared, then scaled by the number of individual

GOSAT grid cells with data and the square root of two.

�2 =
p
2
h 1p

N

X

i

�2
i

i
(5)

The resulting annual observational uncertainties, shown in Figure 3, appear to be much smaller than the uncertainties of

individual GOSAT grid cells. In part this is due to the aggregation of multiple independent observations. Regions with more30

soundings across the year (e.g. the tropics) will also have smaller annual uncertainties.
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Where feasible, systematic uncertainties in the SIF observations should also be considered in error propagation analyses.

While systematic errors in the model cannot be assessed prior to a full assimilation of the data (?) , systematic errors in the

observations can be. To incorporate this into our analysis, we investigate one source of structural uncertainty due to potential

errors in
::::::::::
Uncertainty

::
of

:::
SIF

:::::::::::
observations

::::
may

::::
also

::::
have

::
a

:::::::::
systematic

::::::::::
component.

::
A

::::::
known,

::::::::
potential

:::::::::
systematic

::::
error

::
in

::::
SIF

:::::
stems

::::
from the zero-level offset

:::::
within

:::
the

:::::::
retrieval. The zero-level offset correction is done to prevent biases in the SIF retrieval5

(?).
::
In

:::
this

:::::
case,

:::
the

:::::::::
systematic

::::
error

::
is

:
a
:::::::
random

:::::::
variable

::
of

::::::::
unknown

:::
sign

::::::
which

:::::
means

::
it

:::
can

:::
be

::::::::::
incorporated

::::
into

:::
the

::::::
current

::::::::::
probabilistic

::::::::::
framework.

::::
This

:
is
:::::::::::
distinguished

:::::
from

:
a
::::
bias

:::::
which

::
is

:
a
:::::::::
systematic

::::
error

::
of

::::::
known

::::
sign

:::
that

::::::
cannot

::
be

:::::::::::
incorporated

:::
into

:::
the

::::::
present

::::::::::
framework.

:::
To

:::::
clarify

::::
this,

:::
the

::::
true

:::::
value

:::
(dti)::

of
::
a

:::::::
quantity

::::
(e.g.

::::
SIF)

:::
can

:::
be

::::
given

:::
by

dti = di + "i + z
:::::::::::::

(6)

:::::
where

::
di::

is
:::
the

::::::::
measured

:::::
value

:
at
:::::
index

:::::
point

::
i,

::
"i :

is
::
a
::::::
random

:::::::
variable

::::
with

::
a

:::::::
variance

::
of

:::
�2,

:::
and

::
z

::
is

:
a
::::::
random

:::::::
variable

::::
that10

:::
has

::::
some

::::::::
variance

:::
and

::
is

:::::::
constant

:::
for

:
a
::::::
subset

::
of

:::
the

::::::::::::
measurements

::::
(e.g.

:::::
across

:
a
:::::::::
particular

:::::
region

::
or

::::::
time). Based on previous

analyses , systematic uncertainties in
:
of

:::
the

:::::::::::
instruments,

:::
the

::::
error

::
in
:::::::::
zero-level

:::::
offset

::
in

:
the SIF retrieval may be considered

small (??). Here, we provide a more detailed assessment and characterization of the in-orbit systematic uncertainties
::::
error. This

is performed by assessing zero-level offset corrected GOSAT SIF soundings over the non-fluorescent regions of Antarctica and

central Greenland during January and July, respectively. Systematic errors appear quite small (± 0.06 W m�2 µm�1 sr�1)15

(see Appendix Figure 10) and may vary seasonally. We therefore assess the effect of a conservative systematic random error

of size ± 0.1 W m�2 µm�1 sr�1 in the zero-level offset seasonally. This provides a sensitivity test of incorporating this

systematic uncertainty into the error propagation system
:
to

:::::::
indicate

::::
how

::
an

:::::
error

::
in

::
the

:::::::::
zero-level

:::::
offset

::::
may

::::::::
propagate

:::::::
through

::
to

:::::::::
uncertainty

::
in

::::
GPP.

An additional source of uncertainty in model estimates of GPP is climate forcing. As mentioned by ?, while uncertainty in20

forcing such as incoming radiation is not considered in the current CCDAS setup, it is considered to be an important variable

in driving SIF (?) and GPP (?). Without consideration of uncertainties in forcing variables the uncertainty in GPP may be

underestimated. Studies that use process-based models or empirically-derived relationships do not explicitly consider such

uncertainties (e.g. ?). One such forcing variable is downward shortwave radiation (SWRad). Monthly means of SWRad are

suggested to have a random error of 12 Wm�2
::::
(6%

::
of

:::
the

::::::
mean) due mostly to uncertainty in clouds and aerosols (?). We25

therefore investigate SWRad uncertainty
:::
how

::::
this

::::::
random

:::::
error

::
in

:::::::
SWRad may be considered in GPP estimates. Furthermore,

as SIF responds strongly to SWRad, there is the potential to utilize SIF observations as a constraint on the uncertainty of the

forcing. We therefore conduct an additional experiment that incorporates the uncertainty in SWRad in the error propagation

system. For this experiment an additional parameter representing SWRad is added to the inversion, which acts as a scaling

factor for SWRad globally. We investigate the level of constraint SIF provides on this scaling factor, and the subsequent effects30

of incorporating uncertainty in SWRad in this inversion on uncertainty in GPP.
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2.5 Model and Data Setup

In this study BETHY-SCOPE is run for the year 2010 on the computationally efficient, low-resolution spatial grid (7.5° ⇥
10°). As the dynamical equations are the same for either low-resolution or high-resolution scales, use of the low-resolution

setup is appropriate for an error propagation study as long as careful consideration is taken with observational uncertainties.

Climate forcing in the form of daily meteorological input fields for running the model (precipitation, minimum and maximum5

temperatures, and incoming solar radiation) were obtained from the WATCH/ERA Interim data set (WFDEI ?). Photosynthesis

and fluorescence are simulated at an hourly time step but forced by the respective monthly mean diurnal cycle. Leaf growth

and hydrology are simulated daily.

SIF is simulated at 755 nm, the wavelength corresponding to the GOSAT retrieval frequency and near to the OCO-2 retrieval

frequency (757 nm). We focus upon the constraint by SIF measurements at 1:00 p.m. local time as it closely corresponds to10

the local overpass time of the SIF-observing satellites GOSAT and OCO-2. However, we also investigate the effect of using

alternative SIF-observing times (e.g. the GOME-2 satellite overpass time) and multiple observing times simultaneously on the

constraint of GPP.

3 Results

3.1
::::
Prior

:::::::::
Mismatch15

::::
First,

:::
we

:::::::
present

:::
the

::::::
results

::::
from

::::
Eq.

:
2
::::

that
::::::::::
determines

:::::::
whether

:::
the

::::::::
assumed

::::::::::
uncertainties

::::::
allow

:::
for

:::::::
coverage

:::
of

::::::::
observed

:::
SIF.

:::
As

::::::::
described

::
in

:::
the

::::::::
methods,

::
in

::::
this

::::
case

::
we

::::
use

:
a
::::::
model

::::::
forward

::::
run

::::
using

:::
the

:::::::::::::
high-resolution

:::::::
version

::
of

:::
the

:::::
model

::::
and

:::::::
compare

:::
this

::::
with

::
a

:::
SIF

:::::::::::
observations

::::
from

:::
the

::::::
OCO-2

:::::::
satellite.

:::
We

::::
find

::::
that

::
�2
r::

=
::::
0.97

::
in

:::
this

:::::::::::::
high-resolution

::::
case,

:::::
close

::
to

:::
the

::::::
optimal

:::::
value

::
of

::::
one.

3.2 Parameter Uncertainties20

A key metric for assessing the relative uncertainty reduction, or ’effective constraint’, is defined as 1-(�posterior/�prior). The

effective constraint for all 72
::
53

:
parameters following constraint by SIF is shown in Figure 1 and in Table A1. We define weak,

moderate and strong effective constraint as the relative uncertainty reduction from 1-10%, 10-50%, and >50%, respectively.

Parameters describing leaf composition (Cab, Cdm, Csm) generally achieve strong effective constraint from SIF. For eleven

of the thirteen Cab parameters the uncertainty is strongly constrained, between about 50% and 85%. SIF is highly sensitive25

to Cab and we assign a relatively large prior uncertainty on these parameters, so considerable constraint is expected. For

the tropical broadleaved evergreen tree PFT however, the effective constraint on Cab is much lower at 8
:
7%. For other leaf

composition parameters Cdm and Csm SIF effectively constrains the uncertainty by 2
:
1% and <1% respectively.

Varied effective constraint is seen for the leaf growth parameters (parameters 37-53
:::::
18-34 in Table A1) that control phenol-

ogy and leaf area. Four out of the seventeen leaf growth parameters exhibit strong uncertainty reductions. These parameters30

pertain to a variety of processes including the temperature at leaf onset, day length at leaf shedding, leaf longevity, and the

10



Figure 1. Effective constraint of BETHY-SCOPE model process parameters from SIF observations. Only the parameter numbers are given,

for the corresponding descriptions see Table A1.

expected length of dry spell before leaf shedding (⌧W ) (see Table A1). The parameter ⌧W is important in controlling leaf area

and it sees strong effective constraint from SIF, from 44-69
::::
38-65% depending upon which class of PFT it pertains to. For the

parameters that are PFT-specific, there is generally a larger constraint seen when they relate to the C3Gr, C4Gr and crops. For

example, uncertainty in ⌧W for grasses and crops (⌧Gr
W ) is effectively constrained by 70

::
65%.

Leaf physiological parameters (parameters 1-36
::::
1-17 in Table A1) see a weak to moderate level of effective constraint. Of5

particular importance for simulating GPP is the PFT-specific parameter Vcmax. Effective constraint on Vcmax varies from <1%

up to 30% depending upon the PFT of interest. Six
::::
Five PFTs that, combined, represent about 70

::
65% of the land surface have

their Vcmax parameters constrained by >10%. Some
::::
The global physiological parameters receive a weak constraint from SIF.

However, for most of these (ERd
, EKO

, Ek, KO, aJ,V ) there is only a minor reduction of uncertainty as SIF is weakly sensitive

to them. The parameters that do see a weak effective constraint include the Michaelis-Menton enzyme kinetics constant for10

carboxylation (KC ; 2.3%
::::::
include

:::
the

:::::
ratio

::
of

:::
the

::::::::
maximum

::::
rate

::
of

::::::::::
oxygenation

::::::::
(Vomax)

::
to

:::::
Vcmax:::::::

(aVo,Vc
), the corresponding

activation energy for carboxylation (EKC
; 2.5%) and for

::::
ratio

::
of

::::
dark

:::::::::
respiration

:::::
(Rd)

::
to Vcmax (EVmax

; 7.6%
:::::
aRd,Vc

), and

quantum efficiency parameters (↵q; 5.2% and ↵i; 1.1
::
the

:::::::::::::::
Michaelis-Menten

:::::::
enzyme

::::::
kinetic

::::::::
constants

::
of

:::::::
Rubisco

:::
for CO2:::::

(KC)

:::
and O2:::::

(KO).
::::::
These

::
all

:::
see

::::
very

:::::
weak

:::::::
effective

:::::::::
constraint

::::
from

:::
SIF

::::
(<1%).

Global canopy structure parameters (parameters 69-72
:::::
50-53

:
in Table A1) also see a weak to moderate constraint from15

SIF. In particular the structural parameters LIDFa and LIDFb see their uncertainty reduced by 23% and 16
:::
22%

::::
and

::
9%,

respectively. The parameters for vegetation height and leaf width, which are used to calculate the fluorescence "hot-spot"

variable (see ?), are effectively constrained by 9
:
7% and <1%, respectively.

Parameters that pertain to more dominant PFTs in terms of land surface coverage (e.g. C3 grass) tend to see stronger

uncertainty reductions. This is due to them being exposed to more SIF observations.20
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Figure 2. Correlation coefficients (r-value) in the posterior parameter covariance matrix (Cxpost ). This shows the magnitude and sign of

correlations in posterior parameter uncertainties following constraint with SIF data. Only parameters with an absolute correlation coefficient

>0.25 with one or more other parameters are shown. Values above and below the diagonal are identical, therefore those above are coloured

grey. The axes labels show the parameter symbol and number as defined in Table A1.

With the observational constraint correlations are introduced into the posterior parameter distributions. We assess these

correlations using 3, shown in Figure 2. We find strong (R � 0.5) positive correlations between nine of the PFT-specific Cab

parameters. These are also negatively correlated the leaf angle distribution parameter LIDFa. Thus, during a full assimilation

with SIF data only the sum of Cab and LIDFa can be resolved, not their individual values. Two leaf growth parameters are

also strongly correlated, T� with Tr. Smaller correlations are also present between the subset of parameters shown in Figure 2.5

To assess the effect of incorporating a systematic error from the observations into this analysis we apply a seasonal, sys-

tematic random � error of 0.1 W m�2 µm�1 sr�1. This is incorporated as four additional parameters, one for each season,

that scale the SIF signal across the globe. We find that the inclusion of this systematic error has a negligible effect on posterior

uncertainties of the parameters. The difference in effective constraint between this sensitivity test case and the standard case

above is <1% for any given parameter.10
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3.3 Uncertainty in GPP

To assess the constraint imposed by SIF on simulated GPP we compare the prior and posterior uncertainty in GPP as calculated

using Eq. 4. Similar to the assessment of parameter uncertainty reductions, to assess the effective constraint of SIF on GPP we

use a metric that measures the relative uncertainty reduction in � from the prior to the posterior.

:::::
Global

:::::
GPP

::::
from

:::
the

:::::
prior

:::::
model

::
is

::::::::::::
approximately

::::
164 PgCyr�1

:::
with

::
a

::::
prior

::::::::::
uncertainty

::
of

::::
19.0 PgCyr�1

:
. Utilizing SIF5

observations at 1:00 p.m. results in the uncertainty in global annual GPP to decrease from 13.0 to 2.8 , constituting a 79
:
a

::
73%

reduction of the prior uncertainty
:::::
giving

::
a
:::::::
posterior

:::
of

:::
5.2 PgCyr�1. Spatially, the prior uncertainty in GPP varies across the

globe, with particularly large uncertainties in regions with high productivity as might be expected (Figure 4).
::::
This

::
is

::
to

:::
be

:::::::
expected

::::::::::
considering

::::
GPP

::::::::::
uncertainty

::::
will

:::::::
typically

::::::::
correlate

::::
with

:::::::
absolute

:::::
GPP. In the posterior, it is clear that uncertainty

in GPP is strongly reduced across the globe (Figure 5). The relative uncertainty reduction (Figure 6) appears to show smaller10

constraint of uncertainty in the boreal regions, however this is because prior uncertainty is already relatively low (Figure 4). As

with the parameter uncertainty reductions, we expect that with the use of higher resolution observations there will be stronger

constraint of the uncertainty. When utilizing the high-resolution (2°x 2°) observational uncertainties, uncertainty in global GPP

is reduced to 1.3 , constituting a 90% reduction in uncertainty relative to the prior.

To assess which parameters contribute to the uncertainty in GPP for the prior and posterior, we can conduct linear analysis of15

the uncertainty contributions. Typically this technique can only be used for the prior as the correlations in posterior parameter

uncertainties, excluded from the linear analysis, also contribute toward the overall constraint. However, we can assess the

contribution of these correlations to the constraint of GPP by setting the off-diagonal elements in Cxpost to zero and using it

in Eq. 4; the difference between this and the standard case that uses the full Cxpost equates to the contribution of correlations.

We find that the contribution of these correlations to the constraint of GPP is small (0.12
:::
0.16

:
PgCyr�1 or <1%), thus we20

can assume the linear analysis technique holds for the posterior as well. This finding is supported by the correlation analysis

in posterior parameter uncertainties which showed few significant correlations in parameters relevant for GPP. This result is

encouraging as it indicates that the parameters in a SIF assimilation system contributing most to the constraint of GPP are

capable of being resolved independently.

Using linear analysis of the uncertainty we find that uncertainty in global annual GPP in the prior and posterior stems from25

different processes. For the prior we see that the uncertainty in GPP is dominated, at 91
::
89%, by parameters describing leaf

growth processes. Of these, a single parameter, ⌧W for C3 grass, C4 grass and crops (⌧Gr
W ) makes up 82

::
74% of the uncertainty

in global annual GPP. Parameters representing physiological processes account for about 6
:
9% of prior uncertainty, most of

which stem from the Vcmax parameters. Parameters for Cab only account for 2.5% of the uncertainty.

For the posterior, which has a lower overall uncertainty in GPP, uncertainty is dominated by parameters representing physio-30

logical processes. Physiological parameters account for 53
::
67% of the uncertainty in posterior annual GPP, with Vcmax param-

eters alone accounting for 40%
:::::::::
accounting

:::
for

::::
32%

::::
and

:::
the

:::::::::::::::
Michaelis-Menten

:::::::
constant

::
of

:::::::
Rubisco

:::
for

:
CO2 ::::

(KC)
::::::::::
accounting

::
for

::::
30%. The relative contribution by leaf growth parameters is reduced to 45

::
33%, and for ⌧Gr

W to 25
::
15%. For Cab the relative

contribution is smaller than the prior at 1.3
::
<1%. This shift in which parameters contribute to the relative uncertainty in GPP
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Figure 3. Annual observational uncertainty of SIF interpolated from GOSAT observations for 2010.

Figure 4. Prior parametric uncertainty in annual GPP.

between the prior and the posterior demonstrates how effectively SIF constrains leaf growth processes. Uncertainties in phys-

iological parameters are constrained less than the leaf growth parameters which results in them contributing more in relative

terms to the posterior uncertainty of GPP.

Regionally, we split the land into three regions, the Boreal region (above 45� North), the Temperate North (30� to 45�

North) and the Tropics (30� South to 30� North). SIF constraint on annual GPP varies substantially across different regions of5

the globe, with relative uncertainty reduction in of 48%, 82%, and 79% for the Boreal, Temperate North and Tropics regions,

respectively. In Figure 7 we show the contribution of parameter classes (leaf physiology, leaf growth, leaf composition and

canopy structure; see Table A1 for details) to the parametric uncertainty of GPP across the year for each of these regions. From
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Figure 5. Posterior parametric uncertainty in annual GPP.

Figure 6. Relative uncertainty reduction (i.e. effective constraint) of parametric uncertainty in annual GPP from prior to posterior.

Figure 7 it can be seen that the Boreal and Temperate North regions exhibit seasonal differences in total uncertainty and in the

constraint SIF provides. This is caused by seasonal dependencies in the sensitivity of SIF and GPP to certain processes (e.g.

leaf development versus leaf senescence) as well as seasonal differences in the density of observations in these regions. There

are far fewer GOSAT satellite observations during Boreal autumn and winter, thus there are fewer observations to constrain

processes controlling GPP during this time.5

During the start of the growing season leaf physiology, in particular photosynthetic rate constants (Vcmax), play a larger role

whereas later in the growing season during the warmest months leaf growth, via water limitation on leaf area (⌧Gr
W ) of grasses,

plays a larger role. Therefore in the Boreal region, where the strongest seasonality in constraint is seen, from July through to

15



January SIF constrains GPP by >60%. Uncertainty in GPP during these months is dominated by the leaf growth parameters ⌧Gr
W

and kL along with Cab (for EvCn) all of which receive considerable constraint from SIF. From February to June however, SIF

constrains GPP by less than 50%, as a large proportion of the uncertainty arises from the less-constrained Vcmax parameters.

Following SIF constraint, uncertainty in Boreal GPP stems mostly from uncertainty in leaf physiology, particularly for the

EvCn PFT. Similar differences between seasonal constraint is seen for the Temperate North, although with a smaller seasonal5

variation in SIF constraint that ranges between 74% and 87% across the year.

For the Tropics uncertainty reduction in GPP is about 80% across the year. Uncertainty in the prior is dominated by the

leaf growth parameters and in particular the ⌧W parameters controlling water-limited leaf area. SIF constraint is primarily

propagated through the ⌧W parameters onto GPP resulting in a well-constrained posterior with a � uncertainty of 1.6 PgC yr-1

in annual GPP of the Tropics. Although moderate constraint is seen in the key PFT-specific parameter Vcmax for the dominant10

tropical PFTs (see Figure 1), in the posterior these parameters contribute to roughly 35% of the uncertainty in annual GPP.

3.4 Diurnal SIF Constraint

With this setup it is possible to test how the SIF-constraint on GPP might change with alternative observational times. Con-

sidering this, we test how the constraint on GPP changes when assimilating observations of SIF from alternative times of the

day, assuming the same number of observations and the same observational uncertainty as used above. From this we see that15

different observing times yield differences in the posterior uncertainty and the relative
::::::
effective

:
constraint of GPP (see Figure

8). The constraint on global annual GPP when using SIF-observing times between 9:00 a.m. and 3:00 p.m. is quite similar, with

the posterior uncertainty in global annual GPP ranging from 2.7
::
5.0

:
PgCyr�1 (constraint of 79

:::::::
effective

:::::::::
constraint

::
of

::
74%) to

3.4
::
6.0

:
PgCyr�1 (constraint of 74

:::::::
effective

:::::::::
constraint

::
of

::
68%). The most significant constraint on GPP is obtained when using

SIF observations at between 11:00 or 13:00, nearest to the peak in the diurnal cycle of both GPP and SIF.20

We also test the effect of utilizing SIF measurements at multiple times of the day simultaneously. We select the times 8:00

a.m., 12 noon, and 4:00 p.m., replicating a theoretical geostationary satellite. For this experiment we first test the effect of

increasing the number of observations by a factor of three, assuming the same uncertainty for the three observation times.

Second, we also increase the number of observations by a factor of three, but scale the variance of these observations by one

third. Using this second test we can assess whether differences in parameter sensitivities of SIF and GPP at the different times25

of the day adds value in the overall constraint.

Using a diurnal cycle of observations results in a posterior uncertainty of 2.4
:::
4.6

:
PgCyr�1, or a relative reduction of 81

::
an

:::::::
effective

::::::::
constraint

::
of

:::
76% as in Figure 8. This is an extra 2% constraint on the uncertainty in GPP compared with observations

at 12:00 noon alone. If we use a diurnal cycle of observations with scaled uncertainties, we see a slightly reduced constraint on

GPP where the posterior uncertainty is 3.3
::
5.9

:
PgCyr�1 equivalent to a 74% reduction in uncertainty

::
an

:::::::
effective

:::::::::
constraint30

::
of

::::
69% (Figure 8).
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Figure 7. Contribution of parameter classes to parametric uncertainty in monthly GPP for three regions (see Table A1 for details on these

parameter classes). For each month, the bar on the left is the prior and the bar on the right is the posterior. Uncertainties are represented as

variances, thus the units are in PgCyr�1 squared and, for clarity, the y axes are on a quadratic-transformed scale.
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Figure 8. Relative uncertainty reduction in
:::::::
Effective

:::::::
constraint

::
on

:
global annual GPP for different observing times and the two diurnal cycle

configurations. Values at the top of the bars correspond to the posterior uncertainty (�) in global annual GPP.

3.5 Incorporating Uncertainty in Radiation

In order to assess the effects of incorporating uncertainty in SWRad we conduct three experiments. First is a control run,

equivalent to using SIF at 1:00 p.m. as before. Second includes uncertainty in SWRad by adding it into the posterior uncer-

tainty calculation, what might be done normally when accounting for uncertainty in forcing. Third is incorporating uncertainty

in SWRad into the error propagation system with SIF, such that it’s uncertainty may be constrained. This third experiment5

effectively treats SWRad as a model parameter by adding an extra row and column to Cx.

Including the uncertainty in SWRad in the calculation of posterior uncertainty in GPP results in an additional 0.02
::::
0.03

PgCyr�1 to the prior uncertainty in global annual GPP. This is a small effect relative to the parametric uncertainties. Moreover,

if we incorporate SWRad uncertainty into the error propagation system we see that this additional uncertainty is mitigated

by the SIF constraint. With SWRad uncertainty included, the posterior uncertainty in GPP remains at 2.8
::::
5.15 PgCyr�1,10

equivalent to the case without accounting for uncertainty in SWRad, in both cases resulting in a relative reduction of the GPP

uncertainty by 78.6
:::
72.9%. This mitigation of the additional uncertainty from SWRad is possible because both SIF and GPP

are strongly sensitive to it, thus any constraint on SWRad from SIF is also propagated through to GPP.

By assessing the prior and posterior uncertainty in SWRad in Cxprior
and Cxpost

, respectively, we can assess the effective

constraint following use of SIF in the error propagation system. We find that SIF constrains the SWRad uncertainty by about15

28
::
29%. This gain in information on SWRad naturally results in less information being available for other parameters. The

relative uncertainty reduction for most parameters decreases by just a few percent. For example most Cab parameters see

a decrease in
:::::::
effective

:
constraint of around 1% , and five of the

:::
and

:
Vcmax parameters between 0.5-3

::
up

::
to

::
3%. With GPP

exhibiting low sensitivity to Cab parameters and strong sensitivity to SWRad, the transfer of information from Cab to SWRad

results in an overall mitigated effect of SWRad uncertainty on GPP.20
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Table 2. Parametric uncertainty and effective constraint for each of the SWDown experiments. Prior and posterior values shown are the one

standard deviation (�) uncertainty in global annual GPP.

Experiment Prior GPP

(PgCyr�1)

Posterior

GPP

(PgCyr�1)

Effective Con-

straint

Control
13.04

::::
19.01

:

2.79
:::
5.15 78.59

:::
72.9%

Control+SWRad
13.05

::::
19.04

:

2.87
:::
5.29 78.01

:::
72.2%

With SIF Constraint
13.05

::::
19.04

:

2.80
:::
5.15 78.57

:::
72.9%

4 Discussion

The results presented show that with one year of satellite SIF data observed at the GOSAT and OCO-2 satellite overpass

time and SIF retrieval wavelength we can constrain a large portion of the BETHY-SCOPE parameter space and ultimately

yields
::::
yield

:
a parametric uncertainty in global annual GPP of ± 2.8

::
5.2

:
PgCyr�1.

:::
The

:::::::::
parametric

::::::::::
uncertainty

::
in

:::
the

:::::
prior

:
is
:::::::::::::
approximately

::::
12%

::
of

:::
the

::::::
global

::::::
annual

::::
GPP

::::
and

::::::::
following

:::
the

::::::::
addition

::
of

:::
SIF

:::::::::::
information

:::
this

::
is

:::::::
reduced

::
to

:::::
about

::::
3%5

::
of

:::::
global

::::::
annual

:::::
GPP. This constitutes an

:::::::::
parametric uncertainty reduction of 79% in global annual GPP

::::
73%

:
relative to the

prior. Although this data-driven constraint is model dependent, it is much improved on the often-reported uncertainty of ± 8

PgCyr�1 from the empirical-model-based upscaled product of ?.

We note that our analysis is an underestimate of the constraint, as it is performed with relatively low-resolution observations.

With the use of higher resolution observations such as those from OCO-2 the constraint will get stronger. Similarly, with a10

longer time-series of data there will be stronger constraint. This occurs because the number of observations increases while the

number of parameters remain constant. We

:::
We

:::
find

::::
that

:::
the

:::
�2
r ::

in
:::
the

::::
prior

::::
case

::
is

:::::
close

::
to

:::
the

:::::::
optimal

::::
value

:::
of

::::
one.

::::
This

:::::::
provides

::::::::
evidence

:::
that

:::
the

:::::
range

:::
of

:::::::
possible

:::::
model

::::
SIF

::::::::::
realizations,

:::::
given

::::
our

::::::::::
assumptions

:::
on

:::::::::
parameter

:::
and

::::
data

::::::::::::
uncertainties,

:::
can

:::::::
provide

::::::::
coverage

:::
of

:::
the

::::::::
observed

:::
SIF.

:::
We

:
also find that the effect of incorporating a systematic error in the observations, for example due to a seasonal error15

in the
::::
error

:::::
from

:::
the zero-level offset ,

::
in

:::
the

:::
SIF

:::::::::::
observations

:
is negligible on posterior parametric uncertainties. This may

be negligible because, for a given season, this systematic uncertainty applies across all data points and may act to scale all

SIF values and therefore the sensitivities as well. In any case, any
::
the

:
systematic error in the zero-level offset corrected data

assessed here (Appendix Figure 10) appears small.
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The constraint on global GPP is similar when assimilating SIF at any time between 9:00 a.m. and 3:00 p.m.. Assimilating

observations at the daily maximum of SIF and GPP provides the strongest constraint as both quantities exhibit the strongest

parameter sensitivities at these times. Depending upon the state of the vegetation and the environmental stress conditions,

maximum SIF and GPP may occur anywhere between mid-morning and early afternoon. Therefore, we expect that effective

use of different satellite-retrieved SIF observations for assimilation studies will depend not so much on their observing time5

but more on the spatiotemporal resolution, measurement precision, and subsequent uncertainty.

A confounding factor to this expectation is the uncertain role of physiological stress on the diurnal cycle of SIF and GPP

and subsequent modeling capabilities of these processes. Multiple studies have shown that various forms of environmental

stress result in downregulation of PSII and changes in the fluorescence yield, particularly evident across the diurnal cycle

(??????). By ingesting SIF observations at multiple times of the day we hypothesized that there could be improvements in10

the overall constraint on GPP as the SIF observations would capture the vegetation in different states of stress. We saw only

minor improvements in the constraint and less constraint if we assumed no additional information in the observations (i.e.

with scaled uncertainty). Thus, the difference in model parameter sensitivities of SIF and GPP at other times across the diurnal

cycle were not sufficient to add value to the constraint. Additionally, the constraint is worse with these scaled observational

uncertainties as we are effectively removing some useful observational information at midday, which is the most sensitive time15

of day, and getting extra observational information at the lower-sensitivity times of 8:00 a.m. and 4:00 p.m.. This is likely due

to limitations of the model. Although BETHY-SCOPE simulates light-induced downregulation of PSII, there is no mechanism

present to simulate other forms of stress that might be expected to emerge across the diurnal cycle. However, even with a perfect

model, the spatial footprint and spatiotemporal averaging of satellite observations may smooth over stress signals. Considering

these factors, there is no technical reason, other than computational requirements, why a data assimilation system such as this20

could not ingest individual soundings of SIF observations to remedy the problem.

The constraint of SIF on GPP occurs via multiple processes including leaf growth, leaf composition, physiology, and canopy

structure. For the prior, uncertainty in global GPP is dominated by leaf growth processes. There is a clear and direct link

between leaf growth processes and GPP (?) as the dynamics of leaf area influences canopy APAR which in turn strongly

influences GPP. Leaf growth parameter uncertainties are relatively large in the prior, with coefficients of variation up to 50%. It25

is perhaps no surprise then that these parameters project a large uncertainty onto GPP. Regardless, both GPP and SIF respond

similarly to the leaf growth parameters so information from observations of SIF can provide direct constraint on GPP in this

way. Many leaf growth parameters, particularly for grasses, crops, and deciduous trees and shrubs, receive constraint of >40%

from SIF thus the overall contribution of leaf growth parameters in the posterior is considerably reduced.

Of particular importance is the parameter describing water limitation on leaf growth (⌧W ), which accounts for about 80%30

of the prior uncertainty in global GPP. Model SIF and GPP are highly sensitive to this parameter hence there are large values

in H and HGPP pertaining to ⌧W . This relates to the model formulation as many of the leaf growth parameters determine

phenological processes such as temperature or light dependent growth triggers (i.e. temporal evolution of leaf area), while ⌧W

is the only process parameter controlling leaf area other than intrinsic maximum LAI (⇤̃) (?). Additionally, as we assume little

prior knowledge for ⌧W (i.e. it is highly uncertain) it projects a relatively large uncertainty onto GPP.35
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At the global scale, ⌧W for crops, C3 grasses and C4 grasses (⌧Gr
W ) is particularly important. Combined, these three PFTs

cover about 47% of the land surface and account for 58
:::
just

::::
over

::
50% of global annual GPP in the present model setup. Although

this contribution to global GPP may seem high, it is based on the prior estimate. In a recent study by ? where atmospheric CO2

concentration and SMOS soil moisture were assimilated into BETHY, the posterior value for ⌧Gr
W shifted approximately three

standard deviations away from the prior, the result of which would have been a large change in the GPP of these PFTs. This5

exposes a limitation to the present study as we can predict and quantify how SIF will constrain the uncertainty of process

parameters and GPP, but we cannot predict how their values will change.

The constraint SIF provides on leaf growth processes is also perhaps achievable from other remote sensing products such as

FAPAR (e.g. ?). A direct comparative study would be required to assess the advantages and disadvantages of each observational

constraint. Nevertheless, issues arise with these alternative observations when observing dense canopies (?) or vegetation10

with high photosynthetic rates such as crops as they are near saturation (?). Information on maximum potential LAI (⇤̃) and

parameters pertaining to understorey shrubs and grasses are therefore also limited (?). A strong benefit of SIF is that it shows

minimal saturation effects (e.g. ?), especially beyond 700 nm where most current satellite SIF measurements are made.

The strong constraint SIF provides on leaf growth processes indicates that it is likely to provide improved monitoring of

key phenological processes such as the timing of leaf onset, leaf sensescence and growing season length. This will be highly15

useful in interpreting results from a full assimilation with SIF as the posterior process parameter values can be compared with

independent ecophysiological data, taking consideration of spatial scale issues.

Beyond observing LAI dynamics SIF can also provide critical insights into physiological processes (e.g. ?). We see here that

SIF provides weak to moderate constraint on a range of physiological parameters, including up to 30% constraint on Vcmax

parameters. The limited constraint on these parameters results in the posterior being dominated by uncertainty in the parameters20

representing physiological processes. This is in line with ? who found limited sensitivity of simulated SIF to Vcmax. We note

that under certain conditions, where other key variables are well known, SIF can be used to retrieve Vcmax (?). The ability

of SIF to inform on physiological processes at all will provide researchers with a powerful new insight into spatiotemporal

patterns of GPP. As was shown by ? and ? this is particularly important for evergreen vegetation as changes in photosynthetic

activity are not always reflected by changes in traditional vegetation indices.25

Chlorophyll content here constitutes a classic nuisance variable. A nuisance variable is one that is not perfectly known,

impacts the observations we wish to use but not the target variable (?). However, exploiting the well-documented correla-

tion between leaf nitrogen content, Vcmax, and Cab may help curtail this problem (??). ? demonstrated that by including a

semi-mechanistic relationship between these variables in the Community Land Model and using satellite-based estimates of

chlorophyll to derive Vcmax, there is significant improvement in predictions of carbon fluxes over a field site. Implementing30

such a semi-mechanistic link in a data assimilation system would enable the strong constraint that SIF provides on Cab to feed

more directly onto GPP. However, in this study it is assumed Cab and Vcmax can be resolved independently which may not be

the case considering ecophysiological studies have shown the two parameters are commonly correlated.

Almost all terrestrial carbon cycle models use down-welling radiation at the Earth’s surface as an input variable. Any uncer-

tainty in this forcing will translate into uncertainty in carbon fluxes including GPP, and few studies consider such uncertainties.35
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A known systematic error in forcing variables (e.g. ?) cannot be considered in the present error propagation system, however,

in such a case a correction to the data should be performed as it will bias carbon flux estimates. For random errors that cannot

be removed however, they may be considered in the uncertainty of carbon flux estimates using error propagation. At the global

scale, ? used a perturbation study, along with modeled irradiance and remotely sensed measurements to compute a random

error (�) of 12 Wm�2 for monthly gridded downward shortwave radiation over the land. We considered this uncertainty by5

incorporating it into the error propagation system with SIF. While including this forcing uncertainty in the prior increases the

prior uncertainty of GPP, incorporating the former in
:::
into

:::
the

:
error propagation analysis with the SIF constraint

::::::::::
observations

mitigates the downstream effect on GPP. SIF can therefore provide useful information on the SWRad forcing via a data assim-

ilation system. The consideration of uncertainties in forcing variables such as SWRad on terrestrial carbon fluxes is important

when estimating the uncertainty in GPP. However, the effect on uncertainty in GPP may be strongly reduced by using SIF10

observations.

The results presented here demonstrate how SIF observations may be utilized to optimize a process-based terrestrial bio-

sphere model and constrain uncertainty of simulated GPP. These results are, however, model dependent. The assumption is that

the model simulates the most important processes driving SIF and GPP. Some key, remaining unknowns include how processes

such as environmental stress, 3-dimensional canopy structure effects, or nitrogen cycling may affect the SIF signal. As better15

understanding is developed on the role that these processes play, modeling capabilities will also be improved. Additionally,

a different set of prior parameter values will alter the results due to changes in the Jacobian. Use of prior knowledge, based

on ecophysiological data and its probable range, is critical to curtail this problem. The choice of how to spatially differentiate

the parameters will also affect results (?). Selecting an optimal parameter set that has the fewest degrees of freedom, yet pro-

vides the best fit to the observational data is outside the scope of this study however. Implementation of a parameter estimation20

scheme in a full data assimilation system with SIF and other observational data will help address these challenges. Earlier work

by ? demonstrated that the model can simulate the patterns of observed satellite SIF quite well, indicating the model can ingest

the data. Further work will be needed to assess how well the model can simulate patterns of SIF with an optimized, realistic

parameter set.

5 Conclusions25

We assessed the ability of satellite SIF observations to constrain uncertainty in model parameters and uncertainty in spa-

tiotemporal patterns of simulated GPP using a process-based terrestrial biosphere model. The results show that there is strong

constraint of parametric uncertainties across a wide range of processes including leaf growth dynamics and leaf physiology

when assimilating just one year of SIF observations. Combined, the SIF constraint on parametric uncertainties propagates

through to a strong reduction of uncertainty in GPP. The prior uncertainty in global annual GPP is reduced by 79% from 13.030

::::
73%

::::
from

::::
19.0

:
PgCyr�1 to 2.8

::
5.2

:
PgCyr�1. Although model dependent, this result demonstrates the potential of SIF obser-

vations to improve our understanding of GPP. We also showed that a data assimilation framework with error propagation such

as this allows us to account for uncertainty in model forcing such as SWRad. Surprisingly, by including it into this framework

22



with SIF observations there is a net-zero effect on uncertainty in GPP due to the sensitivity of both SIF and GPP to radiation.

This study is a crucial first step toward assimilating satellite SIF data to estimate spatiotemporal patterns of GPP. With the

addition of other observational constraints such as atmospheric CO2 concentration or soil moisture there is also the possibil-

ity of accurately disaggregating the net carbon flux into its component fluxes, GPP and ecosystem respiration. Indeed, with

these additional, complementary observations of the terrestrial biosphere further constraint could be gained as other regions of5

parameter space can be resolved (?).

6 Code availability

The BETHY-SCOPE model code is available in the repository at https://github.com/NortonAlex/BETHY-SCOPE-Interactive-Phenology.

The GOSAT satellite SIF data used in this paper is from the ACOS project (version b35).
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Appendix A

A1 Model Process Parameters

Table A1. BETHY-SCOPE process parameters along with their prior and optimized uncertainties following SIF constraint, represented as

one standard deviation. Relative uncertainty reduction (i.e. effective constraint) is reported for the error propagation with low-resolution and

high-resolution SIF observations. Units are: Vcmax, µmol(CO2) m
�2 s�1; aJ,V ::::

aVo,Vc::::
and

:::::
aRd,Vc , dimensionless ratio

::::
ratios; activation

energies E
:::
KC :::

and
:::
KO , bar; ⇤̃, m2 m�2; T�, �C; Tr , �C; tc, hours; tr , hours; ⇠, d�1; kL, d�1; ⌧W , days; Cab, µg cm�2; Cdm, g cm�2;

Csm, dimensionless fraction; hc, m; leaf width, m.

Class # Description Parameter Prior

Mean

Prior

Uncertainty

Effective

Constraint

(%)

LE
A

F
PH

Y
SI

O
LO

G
Y

1

Maximum

carboxylation rate

at 25�C

Vcmax (TrEv) 60 12
29.3

:::
19.4

2 Vcmax (TrDec) 90 18
22.3

:::
12.4

3 Vcmax (TmpEv) 41 8.2
17.8

::
0.3

4 Vcmax (TmpDec) 35 7
0.4

:::
<0.1

5 Vcmax (EvCn) 29 5.8
<0.1

::
0.3

6 Vcmax (DecCn) 53 10.6

:
<0.1

7 Vcmax (EvShr) 52 10.4
25.1

:::
21.3

8 Vcmax (DecShr) 160 32
<0.1

:::
0.2

9 Vcmax (C3Gr) 42 8.4
31.5

:::
30.7

10 Vcmax (C4Gr) 8 1.6
28.3

:::
28.5

11 Vcmax (Tund) 20 4
0.1

::
0.5

12 Vcmax (Wetl) 20 4 <0.1

13 Vcmax (Crop) 117 23.4
10.7

::
6.0

14

::::
Ratio

::
of

:::::
Vomax::

to
:::::
Vcmax:

aJ,V (TrEv)
:::::
aVo,Vc 1.96

:::
0.22 0.098

:::::
0.0022

:
<0.1

15
aJ,V (TrDec) 1.99 0.0995

0.1 16 aJ,V (TmpEv) 2.00

0.1 <0.1 17 aJ,V (TmpDec)

2.00 0.1 <0.118 aJ,V (EvCn)

1.79 0.0895 <0.1 19 aJ,V

(DecCn) 1.79 0.0895 <0.1

20 aJ,V (EvShr) 1.96 0.098

0.1 21 aJ,V (DecShr) 1.66

0.083 <0.1 22 aJ,V (C3Gr)

1.90 0.095 0.1 23 aJ,V

(C4Gr) 140e-6 28e-6 <0.124

aJ,V (Tund) 1.85 0.0925

<0.1 25 aJ,V (Wetl) 1.85

0.0925 <0.126 aJ,V (Crop)

1.88 0.094 0.127 Activation

energy for dark respiration

ERd 45000 2250 <0.1 28

Activation energy for
::::
Ratio

::
of

::
Rd::

to
:
Vcmax

EVmax :::::
aRd,Vc 58520

::::
0.015

:

2926

:::::
0.0015

7.6 29

Activation

energy for

KO EKO

35948 1797

0.2 30

Activation

energy for

KC EKC

59356 2967

2.5 31

Activation

energy for

k (PEPcase

specificity;

C4) Ek

50967 2548

<0.1

32

::
16

Quantum efficiency (C3) ↵q

0.28 0.014 5.2 33 Quantum

efficiency (C4) ↵i 0.04 0.002

1.1 34 Michaelis-Menten con-

stant of Rubisco for CO2

KC

460e-6

:::::
350e-6

23e-6
2.3

::
0.9

35

::
17

Michaelis-Menten constant of

Rubisco for O2

KO

0.33
:::
0.45

0.0165
0.4

:::
<0.1

36

Temp.

dependency

of

compensation

point

gt

1.7e-6

8.5e-8

2.4

LE
A

F
G

RO
W

TH

37

::
18

Max. leaf area index ⇤̃ 5 0.25
7.6

::
7.0

38

::
19 Temperature at leaf

onset

T� (4) 10 0.5
9.3

::
8.9

39

::
20

T� (5,6,11) 10 0.5
17.5

:::
16.6

40

::
21

T� (8) 8 0.5
2.5

::
2.3

41

::
22

T� (9,10,12) 2 0.5
47.6

:::
46.8

42

::
23

T� (13) 15 1
50.9

:::
49.6
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LE
A

F
G

RO
W

TH

43

::
24

Spatial range (1�) of T�

Tr (4,8,13) 2 0.1
2.2

::
1.9

44

::
25

Tr (5,6,11) 2 0.1
0.9

::
0.8

45

::
26

Tr (9,10,12) 0.5 0.1
10.2

::
9.6

46

::
27

Day length at leaf shedding tc (4-6,8,11) 10.5 0.5
33.3

:::
32.1

47

::
28

Spatial range (1�) of tc tr (4-6,8,11) 0.5 0.1
1.5

::
1.4

48

::
29

Initial linear leaf growth ⇠ 0.5 0.1
20.1

:::
20.0

49

::
30

Inverse of leaf longevity
kL (2,4,6,8,9,10,

12,13)

0.1 0.05
60.2

:::
58.5

50

::
31

kL (5,11) 3e-3 0.5e-3
12.0

:::
11.2

51

::
32

Length of dry spell

before leaf shedding

⌧W (1,3,7) 180 60
56.4

:::
56.9

52

::
33

⌧W (2) 90 30
35.8

:::
37.9

53

::
34

⌧W (9,10,12,13) 30 15
64.8

:::
64.6

LE
A

F
C

O
M

PO
SI

TI
O

N

54

::
35

Chlorophyll ab content

Cab (TrEv) 40 20 7.4

55

::
36

Cab (TrDec) 15 20
61.2

:::
60.7

56

::
37

Cab (TmpEv) 15 20
32.8

:::
31.3

57

::
38

Cab (TmpDec) 10 20
70.5

:::
69.7

58

::
39

Cab (EvCn) 10 20
74.3

:::
73.8

59

::
40

Cab (DecCn) 10 20
67.6

:::
66.9

60

::
41

Cab (EvShr) 10 20
72.7

:::
72.5

61

::
42

Cab (DecShr) 10 20 66.3

62

::
43

Cab (C3Gr) 10 20
74.3

:::
73.9

63

::
44

Cab (C4Gr) 5 20
84.2

:::
83.6

64

::
45

Cab (Tund) 10 20
73.3

:::
72.9

65

::
46

Cab (Wetl) 10 20
50.7

:::
49.6

66

::
47

Cab (Crop) 20 20
55.4

:::
54.6

67

::
48

Dry matter content Cdm 0.012 0.002
<0.1

::
1.3

68

::
49

Senescent material content Csm 0 0.01 0.2

C
A

N
O

PY

ST
RU

C
TU

R
E

69

::
50

Leaf inclination distribution

function parameters

LIDFa -0.35 0.1
20.7

:::
21.5

70

::
51

LIDFb -0.15 0.1
10.3

::
9.0

71

::
52

Vegetation height hc 1 0.5
6.6

::
6.8

72

::
53

leaf width 0.1 0.01
0.2

::
0.3
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Figure 9. An example of the GOSAT SIF data and uncertainty calculations over a low-resolution model grid cell centered over the Amazon

forest at 3.75�S and 65�W. Grey lines show individual 3° ⇥ 3°GOSAT grid cells. Black lines show the aggregated data for the 7.5° ⇥
10°model grid cell. Bottom right shows the calculated uncertainty (standard deviation) at the model grid resolution in black, blue and green.

The black line is the standard error calculated using Eq. 5; the blue line is the standard error calculated using Eq. A1; the green line is the

same as the blue but scaled by
p
2 to account for correlated errors which is used in this study.

A2 GOSAT SIF Uncertainty Calculations

To get the variance of a target grid cell at the model grid resolution (ylat,xlon) we first determine the area-weighted variance

of each GOSAT grid cell (ilat,jlon) within that target grid cell. The area-weighting per GOSAT grid cell ( ˆAreailat,jlon) is

calculated as the area divided by the total area of the target grid cell. This enables us to account for different grid cell sizes

considering SIF is in physical units per unit area. We then sum the area-weighted variances and scale this uncertainty by the5

square root of two (see equation 5). Scaling the uncertainty in this way effectively doubles the variance in an independent

dimension.

�2
ylat,xlon =

p
2
X

( ˆArea2ilat,jlon ·�2
ilat,jlon) (A1)
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Figure 10. Analysis of systematic errors in the GOSAT SIF observations. We assess the zero-level offset corrected GOSAT SIF soundings

over two ice-covered and therefore non-fluorescent regions. The first is Antarctica in January, between latitudes 70�S to 80�S and longitudes

75�W to 155�E. The second is central Greenland in July, between latitudes 73�N to 80�N and longitudes 30�W to 52�W. With no systematic

error the mean (µ) value of the distribution should be on zero.

A3 Systematic Error in GOSAT SIF Observations

Acknowledgements. A. Norton was partly supported by an Australian Postgraduate Award provided by the Australian Government and

a CSIRO OCE Scholarship. The research was funded, in part, by the ARC Center of Excellence for Climate System Science (grant

CE110001028).

28


