
1 Author General Response

Please find below our response to the referee comments. We appreciate the
referees highly useful and constructive feedback, and have taken each comment
on board to help improve this work.

Each of the referee comments are responded to by the author in blue text,
including any actions taken. We also provide a general response section to
address recurring comments. We would also like to add that, following on
from the reviewers comments, we found one of our minor points of analysis was
incorrect and has therefore been made redundant. This pertains to the analysis
of scaled high-resolution observational uncertainties. This has had no effect on
our conclusions.

Key changes include:

• Clarification for the calculations of the observational uncertainties.

• An additional section in the appendix showing figures as an example of
how we calculated our observational uncertainties; as suggested by Referee
# 1.

• Made the parameter table in the appendix much clearer and included
descriptions of each one.

• Added additional figures to show the contribution of different parameter
classes to uncertainty in GPP across the defined regions; as suggested by
Referee # 2.

• Included an analysis of the effect of systematic errors in the observations;
as suggested by Referee # 2. This includes additional figures in the ap-
pendix.

• Clarified and simplified, where possible, the explanation of aims and method
of this study. Referee # 1 seemed to partly misinterpret what we were
aiming to do and how we were doing it. In particular that we are not
estimating parameter values, we are only assessing information content.
We have therefore amended the text in the introduction and methods to
make this clearer for readers.

Finally, can the editor please advise on how we put together supplementary
material. We think that the Appendix sections A2 and A3 would be better
suited in Supplementary material, but we are not sure how to do this. Thank
you.

1.1 Observational Uncertainty Calculations

As pointed out by both reviewers the calculation of the observational uncertainty
requires clarification. To address these recurring comments we have done the
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following:

• Re-written the section in the methods on the calculation of observational
uncertainties. We have gone through the calculation and justified it step
by step to help readers follow what is being done and why.

• Provided a simplified equation in that section that approximates the (seem-
ingly confusing) area-weighted uncertainty.

• Attached an additional section in supplementary material giving further
details of this calculation and the exact formula. As part of this we include
an example calculation for a grid cell over the Amazon with accompanying
figures showing the original data and the final calculated uncertainty (for
the whole 12 months).

We also clarify here. In calculating the observational uncertainties we make the
assumption that the observations are independent, i.e. have uncorrelated errors.
This is the same assumption made in Parazoo et al. (2013,2014).

This means, effectively, that with the aggregation of GOSAT grid cells into
a larger region (i.e. the course model grid cells) there is a larger number of
observations therefore the uncertainty goes down by the 1/

√
n law (the same

occurs when calculating the standard error). This is a well-known occurrence
in dealing with satellite observations and it can be surprising to see the effect
of going from single sounding precision (relatively large uncertainty) to aggre-
gated regions (relatively low uncertainty). Another way to describe this is that
if you aggregate a region you’re taking many independent observations (from
each sub-region) and getting out just one independent observation, so to pre-
serve the information content of those sub-regions independent observations the
uncertainty goes down; this is called the Jacobian rule of probabilities.

Characterizing correlations in errors is a known problem with satellite measure-
ments. For SIF correlated errors may be due to, for example, error in the re-
trieval zero-level offset. We are currently looking into the effect of the zero-level
offset and will add a additional sensitivity test in the results and discussion
accounting for this. If measurements have correlated errors the information
content is less than without. To be on the more conservative side we scale our
uncertainties by

√
2 which increases the uncertainty.

One reviewer also noted that the observational uncertainties over the tropics
(and in particular the Amazon) in Figure 3 appear much smaller than expected.
We recognise that this needs explaining. Amendments have been made to the
methods section clarifying this, but we also clarify here. Again, the two main
points above are relevant. Another element of the small uncertainty over the
tropics in Figure 3 is that this is an ”annual” uncertainty, so this accounts for
the fact that during parts of the year the high-latitudes have no data, while the
tropics almost always have data, therefore the tropics have more observations
which leads to lower uncertainty.
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1.1.1 Inclusion of Structural Uncertainties

This point relates to the calculation of the covariance matrix Cd. Formally,
this is the uncertainty covariance matrix representing observational and model
uncertainty. We agree that we must specify this in the methods and have thus
changed it.

There are two general types of structural uncertainties.

• First, is a structural uncertainty in the model (i.e. model structural error).
This may be due to incomplete process formulation in the model equations.
One can address this error by looking at statistics in the model-observation
mismatch following an assimilation of the data (Kuppel et al., 2013). This
is therefore only feasible following an assimilation of the data to estimate
posterior SIF, posterior parameters, and posterior GPP. In the present
study, we are only interested in error propagation so we do not perform
an assimilation of the data.

• Second, is a structural uncertainty in the observations. This may be due to
certain unknown errors in space and/or time due to (for example) system-
atic errors in the instrument or retrieval algorithm. One example of this
for SIF is an error in the zero-level offset (Frankenberg et al., 2011;2014).

We address this issue by conducting a sensitivity test. We introduce a structural
uncertainty into the error propagation system to assess the effect on the calcu-
lated posterior uncertainties. We incorporate this sensitivity test into the results
and discussion to approximate the effect this extra uncertainty may produce on
uncertainty in GPP.
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2 Anonymous Referee # 1

2.1 Summary

This paper uses satellite observations of Solar-Induced Fluorescence (SIF) in
an inversion scheme (CCDAS) to reduce uncertainty in a posteriori estimates
of model parameters and outputs, specifically GPP. Interestingly, no attention
is given to actual parameter values or GPP estimates; the focus is entirely on
how much reduction in uncertainty can be expected due to the inclusion of
SIF.

The paper is reasonably well written, and uses a novel approach to attempt to
reduce uncertainty in a posteriori estimates of model parameters and output.
However, I feel that the paper needs clarification and perhaps some reorga-
nization to help readers to follow the story. Furthermore, I believe that the
critical issue of observational uncertainty is given too little attention and must
be clarified.

The authors provide reasonably comprehensive citations for CCDAS, but the
paper reads is if it were written (as it probably was) by someone who is a Data
Assimilation (DA) expert. To this reviewer it seems that some details are either
implied or ’skipped over’. It is likely that many readers will be DA experts
themselves, but the inclusion of SIF will probably draw in readership that may
not possess the DA expertise to easily understand what is going on. I may
be a member of that part of the audience, so some clarification is warranted.
Specifically, the relationship between covariance matrices (Cx, Cd) and standard
deviation () is not entirely clear. Good point. We want readers from different
audiences to be able to follow what was done easily. We have added and clarified
text in the methods section to help non-DA readers relate covariance matrices
to standard deviation uncertainty simplified other points where possible. We
have also modified the last paragraph of the introduction to make it clearer
what the specific aims are.

The description of grids used and observation area (”GOSAT grid cell”; section
2.4) needs clarification. Two grid sizes are mentioned in Section 2.4, but we
don’t learn much more about them until Section 2.5. Good point. We have
amended this as suggested by shifting the grid resolution information to the
beginning of section 2. I would like to see a more deliberate explanation of
”here is what we are going to do, and here is how we are going to do it”. That
might fit better in Section 2.1. Some specific Issues:

• Figure 3, showing observational uncertainty, is not referred to in the sec-
tion describing observational uncertainty. It needs to be. Amended.
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2.2 Observational Uncertainty

Eqn 4: I see two ways that this value can be small: 1) there are many observa-
tions, and σ2 is small. 2) There are very few observations, and Area is small.
Parazoo et al. (2013) estimated uncertainty as the standard error. This has the
effect of allowing a large error in regions with very few observations, like the
tropics. Figure 3 in the manuscript under review shows some of the smallest
observational uncertainty in the tropics, and that makes absolutely no sense to
me. I’ve worked with the GOSAT data, and over the deepest tropics there are
very few observations, which makes me suspicious that your uncertainty is small
because of reason 2). Parazoo et al. did not extend their analysis to the wetter
parts of Amazonia because they just didn’t have enough data to justify it. Now
the authors claim that this region has some of the smallest observational un-
certainty on the globe! A detailed justification of how uncertainty can be very
small over a region with few or no datapoints is an absolute necessity. Please
refer to general response section above.

I do not think multiplying by square-root-2 is sufficient to remedy what might be
unrealistically low uncertainty values. Please refer to general response section
above.

When GOSAT 2010 data is aggregated onto the 1.25x1.0 degree MERRA grid,
I see that the maximum number of retrievals for a given month, anywhere on
the globe, is between 30-35 or so. Looking at South America, I see that very
few MERRA gridcells have more than 10 retrievals in a given month during
2010, and many gridcells have 5 or fewer. Aggregating up to 7x10 (or 2x2)
you are not going to get very much increase in sample size. Id like to see the
authors address the sparseness of the GOSAT data and explain how this will or
will not effect their method. In the amended manuscript we show an example
calculation over a 7.5x10 degree grid cell including the GOSAT sub-grid cells to
show how this scales across 2010. We see that aggregating from 3x3 to 7.5x10
you get actually see a big increase in sample size. For example in Jan 2010 any
GOSAT sub-grid cell may have between 0-20 soundings, but aggregating to the
7.5x10 there is almost 80.

The number of GOSAT observations is invariant and does not change with grid
size. The aggregation of GOSAT observations changes with grid size (Section
2.4). This should be clarified. In fact, the number of GOSAT observations
does vary with grid size. With a larger grid size you capture more GOSAT
soundings. You may refer to the general response section for further details.
We have clarified this in the methods section.

An individual GOSAT retrieval has pixel size of around 10 km2, I believe. OCO-
2 will have a pixel size of ∼ 5 km2, and GOME-2 is a 40-80 pixel, or 3200 km2.
This will have a large impact on your inversion scheme and the calculation
of observational uncertainty. Since this paper only uses GOSAT, the other
products probably dont need too much (or any?) explanation, but I do have
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questions about GOSAT and the grids used:

1. There is the possibility for (possibly) many 10km2 GOSAT retrievals to
be included in a 7.5x10 degree gridcell. For that matter there can be many
of them in a 2x2 gridcell too. BETHY-SCOPE tiles in 3 PFTs; how are
GOSAT retrievals registered to these PFTs? This is a good point. The
observations are not separated per PFT, doing so would effectively triple
the information content as there would be three times more observations,
which would in fact improve the results. We compare observations at the
grid cell scale. Thus information is transferred/split to PFTs through the
Jacobian sensitivities, which account for PFT fractions. E.g. if a grid cell
is 90% C3Gr, then the SIF sensitivity over that grid cell will be dominated
by parameters relating to C3Gr, with smaller contributions from the PFTs
that make up the remaining 10%. Thus, the information content of the
observations is split accordingly. Are GOSAT retrievals marked with
a specific land cover type, and accumulated on a per-PFT basis? What
about GOSAT retrievals that are not associated with one of the 3 PFTs
tiled into the BETHY-SCOPE gridcell? Are they discarded? Why or
why not? We do not attempt to disaggregate observations in this way.
We assume there is roughly even coverage across the PFTs, even though
the absolute footprint of a GOSAT sounding is about 10km2, it has a
wide swath of around 750 km2 with 5 footprints. Thus we assume decent
coverage. This will be more important to consider in a full assimilation of
the data i.e. for estimating parameter values and fluxes.

2. If all GOSAT retrievals within a gridcell are utilized, is the mean taken
and used for DA with all 3 PFTs? In this case arent you ’smearing out’ the
information that SIF provides? Guanter et al. (2012) demonstrate that
the linear relationship between SIF and individual PFTs is heterogeneous.
Do you take this into account? If so, how? If not, why not? This is true
for a full assimilation and parameter estimation but in this study, we do
not consider the mean values of the observations, only their uncertainties
as we’re only interested in information content. Thus these issues are not
present.

3. In August 2010 the GOSAT scan strategy was changed; the area observed
was decreased, but the number of retrievals over a given region was in-
creased. How does this effect the two questions above? Yes, good point.
The observational uncertainties used in section 2.4 are standard errors (al-
though slightly adjusted to increase the uncertainty as described in section
2.4), thus they account for the number of observations per grid cell.

The reduction in uncertainty for global GPP is dramatic (79%). However, this
reduction is critically dependent upon Cd (observation uncertainty) according
to equation 1. Therefore, I think it is absolutely essential that the questions
surrounding the determination of this observation uncertainty are answered in a
clear and categorical manner. Agreed. We have clarified our calculation of the
observational uncertainties in the manuscript. Please refer to general response
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above.

Im not a DA expert, but I do collaborate with quite a few people who are, and
I think I understand the basics. The covariance matrices are absolutely funda-
mental to the outcomes of a DA experiment: If the observational uncertainty is
small and the model uncertainty large, the a posteriori outcome can be pulled
strongly towards the observations. If the opposite is true, then it will be hard to
budge the inversion away from the model prior. Is this correct? Essentially, yes
this is true. However, we note that this question primarily applies to a an as-
similation with real data. In this paper we assess the information content of SIF
observations, i.e. only uncertainties of model parameters and GPP, not their
values. We can do this because this is a linear problem, whereas the full assim-
ilation is a non-linear problem and the subject of subsequent study. The point
regarding observational uncertainty vs model uncertainty is pertinent however,
and we address this in the general response section.

In this paper the first case is presented: the observational uncertainty is, to my
eye extremely small and therefore results in an amazing reduction in uncertainty
in the a posteriori result.

The absence of evaluation of actual posterior values of either parameter or flux
values may actually hinder the analysis. If the result of the study is an out-
landish value for global GPP, then that might indicate a problem. Of course,
estimates of global GPP vary by about a factor of two (Huntzinger et al., 2012),
so maybe this wouldnt help as much as one might hope. However, posterior pa-
rameter and flux values might offer insight, and a comprehensive evaluation of
method and results (values of parameters and flux) could provide more support
for the authors’ conclusions. Was this considered? Why or why not? Im sus-
picious that posterior flux and parameter values were outlandish, and a choice
was made to focus on method even though results may be untrustworthy. I sus-
pect many readers will have this suspicion too. Assessing information content
of the observations is a linear problem which can be performed independently of
comparing actual values of model and observed data. This is convenient as an
assessment of the information content tells us whether SIF is going to be a use-
ful constraint on GPP before we have to go through the challenging process of
fully assimilating the data. We also believe that the information content study
here is substantial enough. Adding in a full assimilation to estimate parame-
ter and GPP values is a complicated non-linear problem and adding this into
the current manuscript would make for too large a study. An assimilation of
the data where one actually estimates global GPP is the subject of subsequent
study.

A detailed description of the construction of the observation uncertainty may
detract from the papers readability, but including it in an appendix would be
appropriate. Additionally, I would like to see, perhaps in supplemental mate-
rial, a step-by-step description of the calculation of the observation uncertainty,
perhaps in the 7x10 gridcell that contains Manaus, Brazil. Agreed. Refer to
general response section.
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To see such a large reduction in error sent warning bells ringing with me; I
dont think it is an overstatement to say that the entire paper depends on the
observation uncertainty. If the authors can demonstrate that the values shown
in Figure 3 are justifiable, then the paper has merit. If not, I think the whole
endeavor falls apart, as the structural underpinning would have disintegrated.
In that case the paper is not worthy of publication.

2.3 Specific Comments

• Figure 2: The information here is too dense (small labels, tiny resolution
on the plot) to follow. If the only pertinent information is in the lower-
right- hand of the plot, why not omit the rest and enlarge this sector of
the graph? Good point. We have edited this figure to make it clearer. We
have removed any rows/columns that have no correlations and increased
the font size.

• Figure 2: There is very little description of the graph and what it means.
Again, this may be another case where the authors are assuming that their
readers look at graphs like this every day and know what it is showing.
Yep fair enough. We’ve provided a better description in the text and
caption.

• Figure 3: What are the units? Amended.

• Figure 4: Absolute uncertainty annual GPP will of course correlate di-
rectly with productivity. If you standardize the time series and look at
relative uncertainty I imagine that map will look very different. Have
you done this? If you have, do Figures 4-6 look similar or different? We
need some clarification here from the reviewer. We can do the following:
prior uncertainty divided by prior GPP and posterior uncertainty divided
by prior GPP. But we cannot do the following: posterior uncertainty di-
vided posterior GPP. As this is an error propagation study we have not
estimated posterior GPP.

• Table 1A: There is no description of what these parameters are and what
they do. There are sporadic mentions in the text, but for the most part
the reader is left to ones self to figure out what these parameters are for.
I would like to see a column added (there appears to be room, as the
uncertainty reduction columns could be re-formatted) with a couple of
words or a phrase describing each variable. Section 3.2: line 14 on page
11 mentions that τW makes up 82% of the global annual uncertainty in
posterior global GPP. The reader does not know what W is. At the end of
Section 3.1 there are several other parameters listed, and again the reader
is not told what they are. It might be helpful to have a short description
in parentheses following the listing of each parameter, but I would prefer
to see that information in table 1A. Good point. We will amend Table A1
and make it clear what the parameters mean if referring to them in text.
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• Boilley and Wald (2015) discuss a high bias in the radiation from re-
analyses. Im not sure this is the same as the uncertainty mentioned in
sections 2.4 and 3.4. Can you elaborate? We were not aware of the Bi-
olley and Wald (2015) study, so we thank the reviewer for the citation
and we have included it in the manuscript. A known bias in the radiation
such as this should be removed from the reanalyses data before it is dis-
tributed. We consider an uncertainty of unknown sign, as shown in Kato
et al. (2012), which can be accounted for in the prior uncertainty and
constrained through the error propagation system as we demonstrated.
We clarify this in the manuscript.

• Page 17, lines 7-8: ”...we can predict and quantify how SIF wil constrain
the uncertainty of process parameters and GPP, but we cannot predict
how their values will change”. Why not? Can’t you back the posterior
values out of the a posteriori covariance matrices and the Jacobian? Isn’t
the whole point of DA to obtain these posterior values? The process of
getting posterior parameter values and obtaining posterior fluxes is a non-
linear problem that is therefore arduous and challenging. So, before one
goes down this path they can actually assess whether it is worthwhile
doing by first assessing the information content, this is linear problem and
therefore simpler. However, as SIF has not been used in a full DA system
with a process-based model like this before it is valuable to show, in detail,
what SIF may constrain, how it does it, and any caveats to this. It seems
we have not made it clear enough exactly what this study is and exactly
why we are doing it. We have therefore added in some extra points to the
introduction and methods section to clarify this.
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3 Anonymous Referee # 2

3.1 Summary

This study evaluates the benefit of assimilating satellite-retrieved chlorophyll
fluorescence into a mechanistic land surface model, to reduce the uncertainty in
model parameters and simulated gross primary production (GPP). This study
indeed tackles a critical issue in the current efforts towards making the most
of diverse data infromation content when building efficient carbon cycle data
assimilation systems.

There are, however, a few important issues in this manuscript, some of them
critical. They are listed in the general comments below, followed by specific
remarks/corrections.

3.2 General Comments

First, while the manuscript is often fairly written, on numerous occasions sen-
tences are redundant, strangely formulated, thus logical progression of argu-
ments is hard to follow. Frankly, it sometimes feels as if the authors did not
read themselves again before submitting the manuscript. It could be just be a
matter of style, but in some occasions it simply results in a lack of clarity. While
I tried to list specific parts in the Specific comments and Technical comments
section, I suggest a strong effort of rewriting in general. That will also make the
manuscript much more accessible to modellers/data experts outside the field of
CCDAS or even data assimilation at large.

Second, and perhaps more importantly, the way the observation uncertainty
used in Eq. 1 is defined is quite vague. Judging from the elements presented
in Sect. 2.4, it seems that only the measurements uncertainty of GOSAT re-
trievals of SIF is accounted for in CD, neglecting the structural uncertainty
(CT , using the notation of Tarantola (1987)) of the BETHY-SCOPE model.
If structural uncertainty is considered, that should be detailed in Sect. 2.4. If
CT is not taken into account, this would bear important consequences. While
CT is hard to estimate explicitly (although some diagnostic methods exist, e.g.
see Desroziers et al. (2005), applied to land surface models by Kuppel et al.
(2013)), its magnitude and structure might be comensurate or even dominant
over measurement uncertainties when building CD. Not including it in Eq. 1
would then largely underestimate the posterior uncertainty of parameters and,
by propagation that of modelled GPP. As noted for another reviewer, this would
constitutes a serious theoretical flaw in the scope of this study and make it un-
suitable for publication. Please refer to general response section.
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3.3 Specific Comments

P2, L11-12: This sentence is rather vague, can the authors be more precise and
add references to support this assertion? We have re-worded this and provided
references.

P2, L27-28: Data assimilation is not only used with mechanistic models nor
for ter- restrial carbon cycle modeling. I suggest to reformulated, for example:
In the case of mechanistic models, this is done by constraining the simulated
underlying processes.. Good point, we have amended this as suggested.

P2, L28-32: In this review of the state of the art, efforts from other groups to
build mechanistic CCDAS might deserve to be cited as well, e.g. (Peylin et al.,
2016) and the discussion/review by MacBean et al. (2016). Absolutely. We
have amended this in the manuscript.

P3, L4-6: Some references would be necessary to back these assertions. We have
added references to these points.

P5, L8: The last sentence of this paragraph feels rather clumsy, it should refor-
mulated. We have re-written this last sentence.

P5, L9: Table A1 is rather long and that is fair game given the number of
parameters, yet to make it more reader-friendly I would suggest to:

• include a description column for each type of parameter,

• add the corresponding PFT between brackets for all PFT-dependent pa-
rameters, as is done for Vcmax,

• add subsection rows with parameter categories (leaf growth, ecophysi-
ology etc.).

Good point. We have updated the table as suggested.

P6, L2-3: It is because the PDFs of parameters and observations is treated
as Gaussian that it can be described by their first two moments, mean and
standard deviation (taken here as the metric of uncertainty, that might need to
be specified here already well), not the other way around. Yes that is correct,
we have amended this.

P6, L1-4: The definition of observations here should be more precise; the reader
(especially if not familiar with the data assimilation vocabulary) would assume
it relates to measured observations (as the previous paragraph uses SIF obser-
vations to designate measurements), while in a rigorous probabilistic framework
it should refer to quantities in the observation space (including measurements
and model outputs, see General comments). We thank the reviewer for the
clarification. This section has been more explicit here to make it clear what
observational information is, in particular reference to Cd.

P6, L12-13: I guess that the authors meant with this sentence that a) in a linear
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world H is independent from x, but b) this is an oversimplication, therefore c)
bringing limitation in accuracy to a method relying on H(x0) to approximate
H(xpost). It is not clear at all from the current formulation, which even al-
most suggest that because of linearity the choice of x0 can influence the results
(through a changing H)... We thank the reviewer for pointing out this possible
misinterpretation. This has been re-formulated to ensure it is clear.

P6, L13-21: I am not sure how the use of prior knowledge limits the effect of this
problem: is it because we assume that the posterior parameters values will be
close enough to the prior set, so that H(x0) is anyway similar to H(xpost) even if
the model is not linear? In addition, the authors should give a reference for Eq.
1 (e.g., Tarantola, 1987) and explictly state that because linearity is assumed
it takes the formed expressed in this manuscript (while the general equation is
C1

xpost
= C1

x0
+H(xpost)

TC1
dH(xpost)). Yes, in part it is because we assume x0

is close the the global optimum that would be obtained in a full assimilation
i.e. xposterior. Considering the parameter space is vary large, the use of prior
knowledge places the parameters into a reasonable physical range. Subsequently
the sensitivities calculated in H are more reasonable. We also assume that these
functions are smooth. The BETHY-SCOPE model also has no step functions,
(which would cause large differences in H even for a slightly different x0). In
fact, even if there were step functions, Knorr et al. (2010) points out that a
population of plants that, individually, have step functions, average up to a
smooth function across a grid cell. We thank the reviewer for the clarification,
we have amended the methods section to reflect this point.

P7, L6: those observations is at best vague and at worst confusing, since it
seems to relate to observational uncertainty (rather than uncertainties) but
again, observational uncertainties normally also includes the model component.
We have re-written this sentence to be more precise.

P7, L27 - P8, L8: In this whole paragraph (and the derived results and discus-
sion), it would be important to mention which uncertainty is dealt with (random
or systematic). Since only the random error can be studied this kind of frame-
work, the potential impact of a systematic error (a bias) should be discussed
as well, or at least mentioned. Agreed. The error we can consider is a random
error of unknown sign, which would still in fact be systematic as we apply a
scaling factor to all of the forcing data. As another reviewer pointed out, we do
not consider a known bias (i.e. systematic error of known sign) as this should
be corrected for in the data already. We have now clarified this section.

P8, L10-11: Any proof/reference this it is sufficient? Even if it is expert knowl-
edge, the authors should at least state it. Perhaps sufficient is the wrong word
here. In using a low-resolution grid, this model equations are the same as a high
resolution grid such that H relates SIF and GPP to parameters in effectively
the same way. And considering Gaussian uncertainties propagate linearly in
this study (i.e. with associated assumptions), the model grid resolution does
not matter so much. We have re-worded this.
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P8, L22: Effective constraint rather than constraint, might be more ac- curate.
Yes, this might be more accurate. We have changed constraint to effective
constraint where ever necessary.

P9, L9: Which global physiological parameters are the authors referring to?
Rows 37-68 in Table A1? See earlier comment on making Table A1 clearer. We
have amended table A1 as suggested so this should be more clear now.

P9, L10-17: The values of constraints in the text do not correspond to those
shown in Table A1. Please update. Good catch! Thanks. We have updated
these values.

P10, L3: Maybe add between brackets than the chlorophyll parameters are Cab

components. Yep, thanks. This should be shown as Cab rather than worded
chlorophyll, so we have amended this.

P10, L3-4: During the assimilation comes a bit abruptly. I guess the authors
are talking about prospective data assimilation efforts with BETHY-SCOPE
and SIF, please expand to make easier for the reader to understand. We have
amended this to say Thus, during a full assimilation with the SIF data only
the sum... as is done in other parts of the paper.

P10, L9: This is a somewhat confusing formulation to say that uncertainty
(and its subsequent reduction) is quantified as one standard deviation. Maybe
giving this reference metric already in the methods would be helpful. Okay. We
have added in this reference metric to the methods section under Uncertainty
Calculations.

P10, L10-15: I suggest to have Fig. 3 (not mentioned in the text, maybe already
in Sect. 2.4.?) on the color same scale as Figs. 4 and 5. We have now referred to
it in the text. Figures 3 and Figures 4/5 are different quantities (SIF and GPP,
respectively) so we dont think they need to be on the same scale. However, we
note that better labeling is required for these figures to make it clear theyre
different quantities, so we have done this.

P11, L3: A figure showing the uncertainty reduction Could the authors briefly
detail how they assessed the relative contribution of covariances to the total un-
certainty in GPP? By summing the non-diagonal terms in H GPP Cx HT

? GPP Using equation 3 we assess the constraint with the full covariance
matrix Cx (i.e. including off-diagonal terms). Then we assess the constraint
with off-diagonal terms set to zero in Cx. The difference between these two
cases is the contribution of correlations. We have now outlined this in the
manuscript.

P11, L7: Could the authors briefly detail how they assessed the relative contri-
bution of covariances to the total uncertainty in GPP? By summing the non-
diagonal terms in H GPP Cx H

T ? Yes, we have added in an extra sentence
GPP explaining what we did as follows we can assess the contribution of these
correlations to the constraint of GPP by setting all off-diagonal elements in Cx-
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post to zero in Equation ??, the difference between this and the standard case
that uses the full Cxpost equates to the contribution of correlations.

P11, L17: As the authors state in the discussion, the fact that GPP is relatively
insensitive to Cab derives from the lack of a mechanistic link in the model be-
tween chlorophyll content and carboxylation rate. I suggest therefore to remove
the discussive end of this sentence here and leave for the discussion where it is
explained. Okay, good point.

P11, L23-24: I disagree with the last part of this sentence: it seems to me that
the increase in relative uncertainty contribution of physiological processes only
says that they are less constrained than other processes, therefore the stated lim-
itations is just relative to other well-constrained parameters. Without looking
at the absolute value of uncertainty in GPP arising from each group of parame-
ters (from which is then calculated the relative contribution), no statement can
be made about how really limited is the constraint of SIF in ultimately reduc-
ing the uncertainty of a given parameter to simulate GPP. That is correct and
a good point to make. We have amended this statement to say Uncertainties
in physiological parameters are constrained less than the leaf growth parame-
ters which results in them contributing more in relative terms to the posterior
uncertainty of GPP.

P11, L27 to P12: I feel that an additional figure would be needed here, to
show how the constraints in GPP from given parameters groups changes across
the year in Temperate and Boreal regions. It could be for example a monthly-
binned boxplot, each box corresponding to the range of constraint GPP for
a given group of parameters, using colors or panels to separate regions. That
would help the reader to support all the description given in the main text. Okay,
good suggestion. We have added another figure here to show the contributions
of parameter groups to uncertainty across the year for each region.

P12, L4: exaggerated seems quite subjective. Okay, we have re-phrased this to
say Similar differences between seasonal constraint is seen for the Temperate
North, although with a smaller seasonal variation in SIF constraint that ranges
between 74% and 87% across the year.

P12, L8: The parameter Vcmax is mentioned, then these parameters, I guess re-
ferring to the different PFT components Vcmax? Please specify. In fact were re-
ferring to the τW parameters, so we have now specified in the manuscript.

P14, L10-14: This might be suited for the discussion section. Agreed. Amended.

P15, L10: How did the authors get this number? As its effectively treated
as a parameter, we can assess the relative uncertainty reduction by the same
equation used for parameters (i.e. 1-σpost/σprior). We have specified how this
is done in the manuscript now.

P16, L810: I would move this sentence to the next paragraph, where diurnal
dynamics are discussed. Amended.
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P16, L31-35: And additional figure showing the relative contribution of each
parameters to modelled GPP uncertainty would make the results clearer. Per-
haps using the same barplot setup as Fig. 1, except that y-axis would relative
contribution to GPP uncertainty, and prior and posterior results could be shown
using mirroring bars (2 y-axis would be needed then, one going upwards and
the other downards). This is a good point, an additional figure will help readers
follow results+discussion. We have created a figure similar to described: with
classes of PFTs and their contribution to uncertainty in GPP (in Pg C yr-1)
across the year. We thank the reviewer for this suggestion.

P16, L33: Free sounds a bit odd here, what do the authors want to say? Just
that it is the only process parameter that is optimizable (i.e. not a fixed param-
eter). We have removed free and changed this to be process parameter.

P16, L34-35: I assumes that by [. . . ] only other free parameter controlling
leaf area index other [. . . ] the authors mean that the model is highly sensitive
to this parameter (i.e., large values in H), so adding to little prior parame-
ter knowledge results indeed in large propagated uncertainty. The first aspect
is however not quite clear from the current formulation. Since this separate
consideration of sensitivity and parameter knowledge is essential when consid-
ering output uncertainty, here in the discussion I suggest detailing a bit more
these aspects. Useful supporting references are, e.g., discussions in Dietze et al.
(2014) and Kuppel et al. (2014). This is helpful. We have clarified this in the
manuscript.

P17, L1-2: This sentence (The prevalence [. . . ] global scale) is rather general
and does not add much to the following one (which gives numbers). I suggest
removing the former. Agreed. Amended.

3.4 Technical Comments

P2, L16: Definition of NDVI and EVI acronyms, first introduced here. Amended.

P2, L23: has instead of have. has doesnt sound right to me.

P2, L35: It is not the process that provides the constraints, rather the latter
being constrained! Amended.

P6, L9: Replaces equation 1 by Eq. 1. It also applies to L17, to equation [2,3,4]
on [P6;L26], [P7;L2-L4-L14] and [P10;L8]. Amended.

P6, L10-11: Strange formulation, I would suggest: [. . . ] a Jacobian matrix
(H ), which is calculated around [. . . ] Amended.

P6, L26: p. 71 instead of pg. 71. Amended

P7, L6: its instead of its. Amended.

P7, L10: described would be more accurate than demonstrated. This section
has been re-written, demonstrated is no longer present.
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P7, L27-29: As might be expected is quite subjective. I suggest to connect
the two sentences: [. . . ] while uncertainty in forcing such as incoming
radiation is not considered in the curret CCDAS setup, it is considered to be
an important variable driving SIF (Verrelst et al., 2015) and GPP (rference
needed). Amended.

P9, L2: Table A1 instead of Table 1. Amended.

P10, L7: If as refers only to the posterior uncertainty in GPP, it should then be
replaced by the latter being. It refers to both prior and posterior, so we have
left this as it is.

P11, L12: stems instead of stem. Amended.

P12: made up by (L2) and make up (L8) are somewhat colloquial/vague here, it
could be respctively replace by arises from and contribute to. Amended.

P14, L4: Changing with Second, we also increase [. . . ] might help the reader
understand you are describing the other experiment. Good point, amended.

P15, L7: I suggest [. . . ]SWRad, in both cases resulting in a relative reduction
in the GPP uncertainty by about 78.6%. Amended as suggested.

P15, L17-18: constraints is repeated a lot here, I suggest: [. . . ] ultimately
yields a global annual GPP estimate within 2.8 PgC.yr1.. We have altered this
sentence already to specify that it is parametric uncertainty that is reported. It
reads: ..and ultimately yields a parametric uncertainty in global annual GPP
of 2.8 PgCyr1

P16, L18: however seems somewhat redundant. Agreed. Amended.

P16, L18: PSII should be defined on L11. Amended.

P17, L9: feasible with feels odd. Maybe acheviable using? Amended.

P17, L23-24: I suggest rephrasing as follows: This in line with Koffi et al. (2015)
who found limited sensitivity of simulated SIF to Vcmax. Amended.

P18, L7-8: The meaning is not clear, I assumed the authors meant While in-
cluding this forcing uncertainty increases the prior GPP uncertainty, incorpo-
rating the former within SIF uncertainty itself mitigates the downstream ef-
fect on GPP. Yes, this sentence is a little confusing. We have re-worded in the
manuscript similarly to suggested.

P18, L16: Maybe replace can also be by will also be. Amended.
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Abstract. The synthesis of model and observational information using data assimilation can improve our understanding of the

terrestrial carbon cycle, a key component of the Earth’s climate-carbon system. Here we provide a data assimilation framework

for combining observations of solar-induced chlorophyll fluorescence (SIF) and a process-based model to improve estimates

of terrestrial carbon uptake, or gross primary production (GPP). We then quantify and assess the constraint SIF provides

on the uncertainty of global GPP through model process parameters in an error propagation study. By incorporating one5

year of satellite SIF observations from the GOSAT satellite, we find that the
::::::::
parametric

:
uncertainty in global annual GPP is

reduced by 79%, from ± 13.0 PgCyr−1 to ± 2.8 PgCyr−1. This improvement is achieved through strong constraint of leaf

growth processes and weak to moderate constraint of physiological parameters. We also find that the inclusion of uncertainty

in shortwave down radiation forcing has a net-zero effect on uncertainty in GPP when incorporated in the SIF assimilation

framework. This study demonstrates the powerful capacity of SIF to reduce uncertainties in process-based model estimates of10

GPP and the potential for improving our predictive capability of this uncertain carbon flux.

1 Introduction

The productivity of the terrestrial biosphere forms a key component of Earth’s climate-carbon system. Estimates show that

the terrestrial biosphere has removed about one quarter of all anthropogenic CO2 emissions thus preventing additional climate

warming (Ciais et al., 2013). Much of the interannual variability in atmospheric CO2 concentration is also driven by terrestrial15

productivity. Despite this significance, understanding of
:::
the underlying mechanisms of terrestrial productivity is still lacking.

This manifests in a large uncertainties in the predictive capability of terrestrial productivity and thus, future predictions of

::::::::::
atmospheric CO2 and temperature projections (Friedlingstein et al., 2006).

A key challenge is disaggregating the observable net CO2 flux into its component fluxes, gross primary production and

ecosystem respiration. Gross primary production (GPP) is the rate of CO2 uptake through plant photosynthesis and the largest20

natural surface to atmosphere flux of carbon on Earth (Ciais et al., 2013). Estimating spatiotemporal patterns of GPP at the

scales required for global change and modeling studies has, however, proven difficult. This is primarily due to two reasons,
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the complexity of the processes involved and the difficulty in observing those processes (Baldocchi et al., 2016; Schimel et al.,

2015). Remote sensing observations of solar-induced chlorophyll fluorescence (SIF) offer a novel constraint on GPP and the

potential to partly address these two issues (Schimel et al., 2015).

At the leaf scale chlorophyll fluorescence is emitted from photosystems I and II during the light reactions of photosyn-

thesis. These photosystems are pigment-protein complexes that form the reaction centers for converting light energy into5

chemical energy. It is in photosystem II
:::::
(PSII) where photochemistry, the process initiating photosynthetic electron trans-

port and leading to CO2 fixation, is initiated. The link between chlorophyll fluorescence and photochemistry is confounded

by a third key process however, heat dissipation, also termed non-photochemical quenching (NPQ). Both photochemistry and

NPQ are regulated processes, responding to changing physiological and environmental conditions
::::::::::::::::::::::
(Porcar-Castell et al., 2014) .

Changes in the rates of photochemistry and NPQ, and electron sinks other than CO2 fixation, lead to a non-trivial
:
,
:::
but

:::::
direct10

link between chlorophyll fluorescence and photosynthetic rate . However, it is because chlorophyll fluorescence emission

::::::::::::::::::::::::::::::::::
(Flexas et al., 1999; Magney et al., 2017) .

:::::::
Because

::::::::::
chlorophyll

::::::::::
fluorescence

:
is tied in with these physiological processes that

it has become such a
:
a
::::::
highly

:
useful indicator of the actual physiological state at the leaf scale

:::
leaf

:::::::::::
physiological

:::::
state

::::::::::::::::::::::::::::::::::::::::::::::
(see reviews by Baker, 2008; Porcar-Castell et al., 2014) .

At the canopy scale and beyond the link appears simpler, exhibiting ecosystem-dependent linear relationships (Guanter et al.,15

2013). The slope of this linear relationship can change as the light-use efficiency of either SIF or GPP changes, for example due

to water stress (Daumard et al., 2010) or changing light conditions (Yang et al., 2015). SIF also seems to outperform traditional

remote sensing methods
:
,
::::
such

::
as

::::::::::
Normalized

:::::::::
Difference

::::::::::
Vegetation

:::::
Index

::::::
(NDVI)

::::
and

:::
the

::::::::
Enhanced

:::::::::
Vegetation

::::::
Index

:::::
(EVI)

that use reflectance to derive vegetation indices(e.g. NDVI, EVI) when
:
,
::
in

:
tracking changes in GPP at this scale (Yang et al.,

2015; Walther et al., 2016). This is in part because the SIF emission originates exclusively from plants, thus the retrieval is20

not contaminated by background materials like soil or snow. It is expected, however, that complicating factors such as the

retrieval wavelength, temporal scaling, chlorophyll content, 3-dimensional canopy structure, and stress will also play a role in

the GPP-SIF link (Damm et al., 2015; Guanter et al., 2012; Rossini et al., 2015; Zhang et al., 2016). Using high-resolution

spectrometers onboard satellites , global maps of SIF have been produced. A number of existing (GOME-2, GOSAT, OCO-

2, TROPOMI, SCHIAMACHY) and planned (FLEX, GEOCARB) satellite missions are capable of measuring SIF. Utilizing25

these remotely-sensed SIF observations directly to track changes in GPP have already proven useful even without the addition

of ancillary data or model information (Lee et al., 2013; Parazoo et al., 2013; Walther et al., 2016; Yang et al., 2015).

Data assimilation enables the use of observations and model information together to produce a best estimate of the state and

function of the system. This
::
In

:::
the

::::
case

::
of

::::::::::
mechanistic

::::::
models

:::
this is done by providing a mechanistic model constraint based on

underlying processes of terrestrial carbon cycling
::::::::::
constraining

:::
the

:::::::::
simulated

::::::::
processes

:::
and

::::
their

::::::::::
parameters. Such an approach30

has been used in the Carbon Cycle Data Assimilation System (CCDAS) to
::::::
applied

::
to

:::::::::
terrestrial

::::::::
biosphere

::::::
models

::
to

:
optimize

model parameters and constrain uncertainty in terrestrial
::
of carbon flux estimates (see Kaminski et al., 2013; Koffi et al., 2013) .

The CCDAS
::
in

:
a
:::::::
number

::
of

:::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Kaminski et al., 2013; Koffi et al., 2013; Macbean et al., 2016; Peylin et al., 2016) .

:::
The

::::::
Carbon

::::::
Cycle

::::
Data

:::::::::::
Assimilation

::::::
System

::::::::
(CCDAS)

::
is
::::
one

::::
such

::::::
system

:::
and

:
has ingested observations such as atmospheric

CO2 concentration and/or the fraction of absorbed photosynthetically active radiation (FAPAR), demonstrating the benefit of35
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combining model and observations in a regularized approach (Rayner et al., 2005; Kaminski et al., 2012). The use of SIF obser-

vations in such a system
:::::
within

:
a
::::
data

::::::::::
assimilation

:::::::::
framework

:
may provide a highly useful, complementary constraint on GPP.

This may enable estimates of the spatiotemporal patterns of GPP to be improved and the parametric uncertainty of models to

be reduced.
:::::
While

:::
one

:::::
study

:::
by

:::::::::::::::::::::::
Parazoo et al. (2014) utilized

::::
SIF

::
in

:
a
::::
data

::::::::::
assimilation

::::::
system

::
to
::::::::::
redistribute

:::::::
multiple

::::::
model

:::::::
estimates

:::
of

::::
GPP,

:::
no

::::::::::
optimization

::
of

::::::
model

:::::::
process

:::::::::
parameters

:::
was

::::::::::
performed.

:::::::::::::::::::::::::
Koffi et al. (2015) incorporated

::
a

::::::::::
mechanistic5

:::::
model

:::
for

:::
SIF

::::
into

:::
the

:::::::
CCDAS

::::::
system

::::
and

:::::::::
conducted

:::::::::
sensitivity

::::
tests

:::
and

::
a

::::::::::
comparison

::
of

:::
the

:::::
model

::::
SIF

:::
and

::::::::
observed

::::
SIF

::::
from

:::::::
GOSAT

::::::::::::
demonstrating

:::
the

:::::
model

::
is
:::::::
capable

::
of

::::::::
ingesting

:::
the

::::
data.

::::::::
However,

::::
SIF

:::
has

:::
not

:::
yet

::::
been

:::::
used

::
on

::
a

:::::
global

:::::
scale

::
in

:
a
::::
data

::::::::::
assimilation

:::::::
system. A key first step toward this is to quantify the potential constraint that SIF provides on GPP and

assess which underlying processes provide the constraint, termed here
::
the

:::::::::
underlying

::::::::
processes

::::
that

::::
drive

:::::
GPP

::::
and,

:::::
hence,

:::
on

::::
GPP.10

::
In

:::
this

:::::
paper,

:::
we

:::::
assess

:::
the

::::::
ability

::
of

:::::::
satellite

:::
SIF

:::::::::::
observations

::
to

:::::::
constrain

:::
the

:::::::::
parametric

::::::::::
uncertainty

::
of

::::::::
simulated

::::
GPP

::
in
::
a

::::::::
terrestrial

::::::::
biosphere

:::::
model

::::::
within

:
a
::::
data

::::::::::
assimilation

::::::
system.

::::
This

::
is

::::::
termed an error propagation study

::
and

::
is
::::::
similar

::
in

:::::::
concept

::
to

::
an

::::::::
observing

::::::
system

:::::::::
simulation

:::::::::
experiment

::
or

::::::::::
quantitative

:::::::
network

::::::
design

::::
study

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hungershoefer et al., 2010; Kaminski et al., 2010; Koffi et al., 2013) .

:::::::::
Parameters

:::
and

::::::::
simulated

::::
GPP

:::
are

::::::::
therefore

::::::::
optimized

::::
only

:::
for

::::
their

:::::::::
uncertainty

:::
and

:::
not

:::
for

::::
their

:::::::
absolute

:::::::::
quantities.

::::::::::
Considering

:::
SIF

::
is

:
a
:::::
novel

:::::::::::
observational

:::::::::
constraint,

:::
this

::
is

::
an

::::::::
important

::::
first

:::
step

::::::
toward

:
a
::::
full

::::::::::
assimilation

::
of

:::
the

:::
data

::::::::
allowing

::
us

::
to

:::::::
evaluate15

::
the

:::::
level

::
of

::::::::
constraint

::::
SIF

:::
will

::::::
impose

:::
on

::::
GPP

:::
and

::::
how

::::
that

::::::::
constraint

::
is

:::::::::
propagated

:::::::
through

:::
the

:::::
model. Here, we utilize a new

modeland satellite SIF observations to determine how effectively SIF constrains model process parameter uncertainties and the

uncertainty of GPP globally.

2 Methods

There is a growing literature around the problem of optimizing parameters in terrestrial biosphere models using various20

observational data streams.In particular, the CCDAS has provided a systematic framework for which to optimize parameters

and subsequently constrain simulated quantities, namely carbon fluxes, using data such as concentration and/or FAPAR

:::
We

::::::::
formulate

:::
this

::::
error

::::::::::
propagation

:::::
study

::::
into

:::
two

:::
key

::::::
stages;

:::
(i)

::::::::::
optimization

::
of

:::::::::
parameter

::::::::::
uncertainties

::::
and;

:::
(ii)

:::::::::
projection

::
of

:::::::::
parametric

:::::::::::
uncertainties

::::
onto

::::::::::
uncertainty

:::
in

:::::::::
diagnostic

::::
GPP.

:::::
This

::::::
allows

::
us

:::
to

:::::::
conduct

:
a
::::::::

thorough
::::::::::

assessment
:::
of

::::
how

:::::::
effective

:::
SIF

:::::::::::
observations

:::
are

::
at
:::::::::::

constraining
:::
the

::::::::::
uncertainty

::
of

::::::
model

:::::::::
parameters

::::
and

:::
the

:::::::::
parametric

::::::::::
uncertainty

::
of

::::::
model25

::::::::
simulated

::::
GPP.

:::::
Under

:::
the

:::::
linear

::::::::
Gaussian

::::::::::
assumption,

:::
the

::::::::::
uncertainty

::
of

::
a
:::::
target

:::::::
quantity

::::::::
following

:::::::::::
assimilation

::
of

:::
the

::::
data

:::
(i.e.

:::
the

::::::::
posterior)

::
is

:::::::::
conditional

::::
only

:::
on

::
the

:::::
prior

:::::::::
uncertainty,

:::
the

::::::::::
uncertainty

::
of

::
the

:::::::::::
observations

:::
and

:::
the

:::::::::
sensitivity

::
of

::::::::
simulated

::::::::::
observations

::
to

:::::::
changes

::
in

:::
the

::::::::
parameter

::::::::::::::::
(Tarantola, 2005) .

:::::
Thus,

:::
this

::
is

:
a
:::::
linear

:::::::
problem

::::
that

:::
can

::
be

:::::::::
performed

::::::::::::
independently

::
of

:::
the

::::::::::
optimization

:::
of

:::::
actual

:::::::::
parameter

::::::
values. Here, the quantity of interest is GPP and the observation is satellite-retrieved

SIF.
::
we

::::::
outline

::::
the

:::::
model

:::::
used

::
to

:::::::
simulate

:::
the

::::::::::
observation

:::::
(SIF)

::::
and

:::
the

:::::
target

:::::::
quantity

:::::::
(GPP).

:::
We

::::
also

::::::
outline

:::
the

::::::
model30

::::::::
parameter

:::
set

:::::::::
describing

:::::
these

:::::::::
processes,

:::
the

::::::::::
uncertainty

::
in

:::
the

:::::::::::
observations

::::
and

:::::
model

:::::::
forcing,

::::
and

:::::::
general

:::::::::::
experimental

:::::
setup.
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2.1
:::::

Model
::::::::::
Description

In order to assimilate such an observation
:::::
ingest

:::
an

::::::::::
observation

:::
into

::
a
::::
data

::::::::::
assimilation

:::::::
system, we require an

:
a

:::::
model

:::
or

’observation operator’ that can simulate SIF, ideally providing a process-based relationship between SIF and GPP. There are a

few ways one might formulate the observation operator. Evidence shows a strong linear relationship between SIF and GPP at

large spatial scales and relatively long temporal scales (Frankenberg et al., 2011b; Guanter et al., 2012), suggesting relatively5

simple scaling between GPP and SIF. However, it is known that the link is more complex than this, and it is expected to differ

at finer spatial and temporal scales due to, for example, land surface heterogeneity or the time of day of the measurements. To

ensure the model has these capabilities we have opted for a more complex
::::::::::::::
mechanistic-based

:
observation operator.

2.2 Model Description

In this section we describe the newly developed terrestrial biosphere model for simulating and assimilating SIF. The model10

is an integration of the existing models BETHY (Biosphere Energy Transfer Hydrology) (Rayner et al., 2005; Knorr et al.,

2010) and SCOPE (Soil Canopy Observation, Photosynthesis and Energy fluxes) (Van der Tol et al., 2009) and builds upon the

developments by
::
of Koffi et al. (2015). The coupling of BETHY and SCOPE enables spatially explicit, plant-type dependent,

global simulations of GPP and SIF.
::::
This

:::::
model

::::
may

:::
be

:::
run

::
on

::
a
:::::::::::::
computationally

::::::::
efficient,

::::::::::::
low-resolution

::::::
spatial

::::
grid

::
of

::::
7.5°

::
×

:::
10°

::
or

:
a
:::::::::::::
high-resolution

:::::
spatial

::::
grid

::
of

:::
2°

::
×

::
2°.

:
15

BETHY is a process based terrestrial biosphere model at the core of the Carbon Cycle Data Assimilation System (CCDAS)

(Rayner et al., 2005; Scholze et al., 2007). Full model description details can be found elsewhere (e.g. Rayner et al., 2005;

Scholze et al., 2007; Knorr et al., 2010). Briefly, BETHY simulates carbon assimilation and plant and soil respiration within

a full energy and water balance. The version used here also incorporates a leaf area dynamics module for prognostic leaf

area index (LAI) as described in Knorr et al. (2010). This module includes parameters for leaf development, phenology and20

senescence processes to determine LAI (hereby collectively termed leaf growth)
:
to

:::::::::
determine

:::
LAI

:
in a scheme that incorporates

temperature, water and light limitations on growth and is capable of representing the major global phenology types (Knorr et al.,

2010). This scheme also enables the representation of subgrid variability in leaf growth, representing the likely variability in

growth triggers across a grid cell and necessary for differentiability between process parameters and state variables. The full

BETHY model consists of four key modules: (i) energy and water balance; (ii) photosynthesis; (iii) leaf growth and; (iv) carbon25

balance. It represents variability in physiology and leaf growth of plant classes by 13 plant functional types (PFTs) (see Table

1) originally based on classifications by Wilson and Henderson-Sellers (1985). Each model grid cell may consist of up to three

PFTs as defined by their grid cell fractional coverage.

SCOPE is a vertical (1-D) integrated radiative transfer and energy balance model with modules for photosynthesis and

chlorophyll fluorescence (Van der Tol et al., 2009). At present it is the only process-based model capable of simulating canopy-30

scale chlorophyll fluorescence. SCOPE incorporates current understanding of chlorophyll fluorescence processes including

canopy radiative transfer, re-absorption of fluorescence within the canopy, and the non-linear relationship between chlorophyll

fluorescence quantum yield and other quenching processes (Van der Tol et al., 2009, 2014). Leaf level chlorophyll fluorescence

4



Table 1. PFTs defined in BETHY and their abbreviations.

PFT # PFT Name Abbreviation

1 Tropical broadleaved evergreen tree TrEv

2 Tropical broadleaved deciduous tree TrDec

3 Temperate broadleaved evergreen tree TmpEv

4 Temperate broadleaved deciduous tree TmpDec

5 Evergreen coniferous tree EvCn

6 Deciduous coniferous tree DecCn

7 Evergreen shrub EvShr

8 Deciduous shrub DecShr

9 C3 grass C3Gr

10 C4 grass C4Gr

11 Tundra vegetation Tund

12 Swamp vegetation Wetl

13 Crops Crop

is coupled to the commonly used Farquhar and Collatz models for C3 and C4 photosynthesis, respectively (Van der Tol et al.,

2009). A current limitation of SCOPE is that there is no link between leaf level biochemistry and soil moisture. This is

compensated by changes in LAI as provided by BETHY.

The canopy radiative transfer and photosynthesis schemes of BETHY have been replaced by the corresponding schemes in

SCOPE, including the components required for calculation of chlorophyll fluorescence at leaf and canopy scales. The spatial5

resolution, vegetation (PFT) characteristics, leaf growth, and carbon balance are handled by BETHY. SCOPE therefore takes

in climate forcing (meteorological and radiation data) and LAI from BETHY, and returns GPP. BETHY calculates the canopy

water balance, leaf growth, and net carbon fluxes, which will prove useful in future when assimilating other data streams

(e.g. atmospheric CO2 concentration). Importantly, SCOPE provides a process-based link between SIF and GPP allowing the

transfer of information from observations of SIF to simulated GPP. Subsequently, information from SIF may also be transferred10

to carbon fluxes resulting from GPP such as net ecosystem productivity.

2.2 Model Process Parameters

In this error propagation system, model process parameter uncertainties are the quantities which SIF constrains
::::::::::
information

::::::
content

::::
from

::::
SIF

:::::::::::
observations

:::
are

::::
used

:::
to

::::::::
constrain

:::
the

:::::::::
uncertainty

:::
in

:::::
model

:::::::
process

:::::::::
parameters. Parameters can be either

global or differentiated by PFT.
::::::
Global

:::::::::
parameters

:::::
apply

::
to

:::::
plants

::
or

:::::
soils

:::::::::
everywhere

:::::
while

:
PFT-dependent parameters enable15

differentiation between physiological and leaf growth traits. Some key parameters for this study such as the maximum car-

boxylation capacity (Vcmax) and chlorophyll a/b
::
a/b

:
content (Cab) are considered PFT-dependent. From an ecophysiological

5



perspective, there are other parameters from
::::::
specific

::
to

:
SCOPE that may be considered PFT-dependent such as

:::
the vegetation

height and leaf angle distribution parameters. However, we have assumed them to be global to simplify the problem. GPP is

relatively insensitive to these parameters, so this is not expected to impact results. In future
::
the

:::::
GPP

:::::::::
uncertainty

:::::::::
reduction

::::::
results.

::::::
Despite

::::
this,

:::
in

:
a
:::
full

:::::::::::
assimilation

::::
with

:::
the

:::
SIF

::::
data

:
it may be worthwhile considering them

::::::::
necessary

::
to

:::::
make

:::::
these

PFT-dependent anyhow
:
to
::::::::
improve

:::
the

:::::::::::::
model-observed

::
fit.5

We expose 72 parameters from BETHY-SCOPE to the error propagation system (see Table A1). As stated above, each of

these is represented by its PDF, assumed to be Gaussian. The mean and standard deviation for the prior parameters is shown

Table A1. Choice of the prior mean and uncertainty for parameters follow those used in previous studies (Kaminski et al., 2012;

Knorr et al., 2010; Koffi et al., 2015). For new parameters that are not well characterized (e.g. SCOPE parameters) we assign

relatively large prior uncertainties, and mean values in line with the default SCOPE parameters and with Koffi et al. (2015).10

The choice of the prior may be considered important here considering we are using a linear approximation of the model around

x0 and that the model is known to be non-linear. Therefore, sensitivities can differ depending upon the choice of x0 (Koffi

et al., 2015).

There are seven SCOPE parameters exposed, one of which is PFT-dependent. These parameters were chosen due to their

importance in simulating SIF or GPP, and to sensitivity tests such as those performed by Verrelst et al. (2015). They include15

chlorophyll a/b content (Cab), leaf dry matter content (Cdm), leaf senescent material fraction (Cs), two leaf distribution

function parameters (LIDFa, LIDFb), vegetation height (hc) and leaf width. Vcmax is a parameter shared by BETHY and

SCOPE.

2.3 Uncertainty Calculations

Past studies utilizing the CCDAS framework have typically formulated the assimilation problem into two stages: model20

calibration and diagnostic or prognostic simulations (Kaminski et al., 2013) . Diagnostic refers to simulations over the calibration

period (e.g. Rayner et al., 2005) , and prognostic outside of the calibration period (e.g. Scholze et al., 2007) . As we are investigating

the usefulness of a relatively new observation with a newly coupled model we conduct an investigation into the potential

level of calibration and constraint SIF can provide. We therefore formulate the problem into two slightly different stages; (i)

optimization of parameter uncertainties and; (ii) projection of uncertainties onto uncertainty in diagnostic GPP.This means that25

we optimize model parameters and simulated GPP only for their uncertainty and not the absolute quantities. This process of

assessing the information content of the SIF observations in uncertainty space is a useful first step towards a full assimilation of

the data, allowing us to evaluate the level of constraint SIF is expected to impose on GPP and how that constraint is propagated

through the model.

::
To

::::::::
calculate

:::
the

:::::::::
uncertainty

::
in
:::::::::

parameter
::::::
values

::::::::
following

:::
the

::::::::
constraint

::::::::
provided

:::
by

:::
the

:::::::::::
observational

::::::::::
information

::
of

::::
SIF30

:::
(i.e.

:::
the

::::::::
posterior

::::::::::
uncertainty)

:::
we

:::::::::
propagate

:::::::::
uncertainty

:::::
from

:::
the

::::::::::
observations

:::::
onto

:::
the

:::::::::
parameters.

:
In order to perform this,

we utilize a probabilistic framework where the state of information on parameters and observations is expressed by their

corresponding probability density functions (PDF) . Parameters and observations are therefore described
::::::::::::::::::
(see Tarantola, 2005) .

:::
The

:::::::::
probability

:::::::
density

::
of

:::
the

:::::
errors

::
in

::::
these

:::::::::
quantities

::
is

:::::::
assumed

::
to

::
be

:::::::::
Gaussian,

:::
thus

::::
they

:::
are

::::::::::
describable by their mean and

6



uncertainty, and treated as Gaussian. Their respective means
:
.
::::
The

::::
prior

::::::::::
information

:::
on

:::::::::
parameters

::
is
:::::::::

quantified
:::
by

:
a
:::::

PDF

::
in

::::::::
parameter

:::::
space

::::
and

:::
the

:::::::::::
observational

::::::::::
information

:::
by

:
a
:::::

PDF
::
in

:::::::::::
observational

::::::
space.

::::
The

:::::
mean

:::::
values

:::
for

:::
the

::::::::::
parameters

:::
and

:::::::::::
observations are denoted by x and d, and their respective covariance matrices

::::::::::
respectively.

::::
The

:::::::::
uncertainty

::::::::::
covariance

:::::::
matrices

::
in

:::::::::
parameter

:::::
space

:::
and

::::::::::::
observational

:::::
space

:::
are

:::::::
denoted

:
by Cx and Cd.

:
,
::::::::::
respectively.

:::::::::
Formally,

:::
Cd:::::::::

represents
:::
the

:::::
errors

::
in

:::
the

::::::::::
observations

:::
and

::
in

:::
the

::::::
model

::::::::
simulated

:::::::::
counterpart

::::
(i.e.

:::::
model

:::::
error)

:::::::::::::::::::
(Scholze et al., 2016) .

:::
We

::::
only

:::::::
consider

:::
the5

::::::::::
contribution

::
of

:::::::::::
observational

:::::
errors

::
to
::::
Cd,

:::::::
however

:::
we

::::
also

:::::::
perform

:
a
:::::::::
sensitivity

:::
test

::
to

:::::::::
investigate

:::
the

:::::
effect

::
of

::::::::::::
incorporating

::::::
similar

::::::::
structural

::::::::::
uncertainties

::::::::
described

::::::
further

::::::
below.

:

For linear and weakly non-linear problems we can assume that Gaussian probability densities propagate forward through

to Gaussian distributed simulated quantities (Tarantola, 2005). This allows
::::::
permits

:
linear error propagation from the input

parameters to the model outputs. Estimating posterior uncertainties
::
of

::
the

::::::::::
parameters for these types of problems can

:::::::
therefore10

be performed independently of the parameter estimation. Therefore, we can calculate the expected posterior covariance matrix

following constraint by observations using equation 1 ,
::
in

:::::
other

:::::
words

:
without the need to constrain parameters mean values .

This approximation
:::
the

:::::
mean

:::::
values

::
of

:::
the

::::::::::
parameters

:::::::::::::::::::::::::
(Kaminski et al., 2010, 2012) .

::::
This requires a matrix of partial deriva-

tives of a target quantity with respect to its variables, also called a Jacobian matrix (H), for which we calculate around our prior

parameter values (x0). This matrix represents the sensitivity of a simulated quantity (e.g. SIFor
:
, GPP) to

:::
the parameters. With15

this assumption of linearity the choice of x0 can influence the results considering it determines the point in model space where

::
the

::::::
linear

::::::::::::
approximation,

:
H is calculated.Use

::
is

:::::::::
calculated

::::::
around

:::
the

::::
prior

:::::::::
parameter

:::::
values

:::::
(x0).

::::
This

:::::::::::
simplification

:::
of

:::
the

:::::
model

:::::::::
sensitivity

:::::
brings

:::::::::
limitations

::
to

:::
the

:::::::
accuracy

::
of

:::
the

:::::::
method.

::::::::
However,

::::
with

:::
the

::::::::::
aggregation

::
of

::::::
subgrid

:::::::::
variability

:::::
across

::
a

:::::
model

::::
grid

:::
cell,

:::::::
sudden

::::
shifts

::
in

::::::
model

::::::::
sensitivity

::::
(e.g.

::::
step

::::::::
functions)

:::
are

::::
less

:::::
likely

::
or

:::::::
realistic;

:::
the

::::::
present

:::::
model

:::::::::::
incorporates

::::
these

::::::
effects

:::::::::::::::::
(Knorr et al., 2010) .

:::::::::::
Additionally,

:::::::
because

:::
the

::::::::
parameter

:::::
space

::::
can

::
be

::::
very

:::::
large,

:::
the

:::
use

:
of prior knowledge on20

process parameter values helps
:::
x0 ::::

helps
::
to
:
limit the effect of this problem

::
as

::
H

::
at

:::
x0:::::

likely
:::::::
provides

::
a
::::::
decent

::::::::::::
approximation

::
of

:::
the

:::
true

:::
H

:::
that

::::::
would

::::
occur

::
at
:::
the

::::::
global

::::::::
optimum

:::::::::::::::
(Tarantola, 2005) .

:::
The

::::::::::::
simplification

::
is

::::
also

:::::
useful

::::::::::
considering

:::
the

::::
high

:::::::::::
computational

::::
cost

::
of

::::::::::
calculating

::
H .

The first step is to utilize uncertainty in the observations to constrain the uncertainty in the process parameters. The

information content of the observations and the parameters can be expressed by their respective inverse covariance matrices,25

C−1
d and C−1

x0
. Constraint of C−1

x0
using the observations and the Jacobian matrix allows us to

::
To

:
calculate the posterior

parameter covariance matrix (Cxpost
) as in equation 1

::::::::
following

::::::::
constraint

:::
by

:::::::::::
observational

:::::::::::
information,

:::
Cd,

:::
we

::::
use

:::
Eq.

::
1

::::::::::::::
(Tarantola, 2005) .

C−1
xpost

= C−1
x0

+HTC−1
d H (1)

Where Cxpost
expresses the posterior parameter covariance in matrix form, while H expresses the Jacobian for SIF and HT30

the Jacobian transposed. Comparing parameter uncertainties in the prior (Cx0 ) and the posterior (Cxpost ) allows us to quantify

the improvement in parameter precision following the observational constraint.
:::
The

::::::::
parameter

:::::::::::
uncertainties

::
in

::::
Cx0 :::

and
::::::
Cxpost

:::
may

:::
be

::::::::
expressed

::
as

::::::::
standard

::::::::
deviations

:::
(σ)

:::
by

:::::::::
calculating

:::
the

::::::
square

:::
root

:::
of

::::
their

:::::::
diagonal

::::::::
elements.

:::
We

::::
can

:::::::
therefore

::::::
assess

7



::
the

:::::::
relative

:::::::::
uncertainty

:::::::::
reduction

::
in

::::::::
parameter

:::::::::
following

:::
SIF

:::::::::
constraint,

::
or

::::::::
’effective

::::::::::
constraint’,

::::
with

::
1

:
-
::::::::::::::::
(σposterior/σprior).

::::
This

::::::::
quantifies

:::
the

:::::::
effective

::::::::
constraint

::
of

:::
the

::::
prior

::::::::::
uncertainty

:::
and

::::
may

::
be

::::::::::
represented

::
as

:
a
:::::::::
percentage

:::::::
decrease

::
in

::
σ

::::::::::
uncertainty.

5

The observational constraint introduces some correlations into the posterior parameter distributions, thus posterior parameter

uncertainties are not wholly independent. Strong correlations in Cxpost
indicate parameters that cannot be resolved indepen-

dently in an assimilationwhile
:
,
:::::::
however

:
their linear combinations can be. If large enough, these correlations can contribute

significantly to the overall constraint of the target quantity (Bodman, 2013). We calculate correlations in parameters by ex-

pressing the covariances as correlations as in equation 2 (see Tarantola, 2005, pg.71)
:::
Eq.

:
2
:::::::::::::::::::::::

(see Tarantola, 2005, p.71) . As a10

result, diagonal elements have a correlation equal to one while off-diagonals elements can range between -1 and 1.

Ri,j =
Ci,j√

Ci,i
√
Cj,j

(2)

Using the parameter covariance matrix we can assess how parameter uncertainties project
::::::::
propagate forward through the

model onto uncertainty in GPP using the Jacobian rule for
::
of

:
probabilities, the same method outlined in Rayner et al. (2005).

This is the second stage of our error propagation problem
:::::
study. Using Cx0 we estimate the prior uncertainty in a vector of15

simulated target quantities (i.e. GPP). Similarly, using Cxpost we estimate the posterior uncertainty in a vector of simulated

target quantities. We calculate the uncertainty covariance of GPP using equation
::::::
(CGPP )

:::::
using

:::
Eq.

:
3.

CGPP =HGPPCxH
T
GPP (3)

:::::
Where

::::::
HGPP::

is
:::
the

::::::::
Jacobian

::::::
matrix

::
of

::::
GPP

::::
with

::::::
respect

::
to
:::
the

::::::::::
parameters.

:
With this we can quantify the improvement in

precision of simulated GPP by using either Cx0
or Cxpost

in equation
::
Eq.

:
3. Therefore, using the forward model, a statistical20

estimation scheme and a set of observational uncertainties we can assess the information content of those
:::
the

:::
SIF

:
observations

in the context of the model, it’s
::
its

:
parameter set, and the quantity of interest

::::::::
simulated

::::
GPP

:
taking explicit consideration of

uncertainties.

2.4 Uncertainty in Observations and Model Forcing Variables

Observational uncertainties in SIF
:::
The

::::::::::::
observational

:::::::::
uncertainty

::
is
::
a
::::::
critical

:::::::::
component

:::
in

::::::::
assessing

:::
the

:::::::
potential

::::::
impact

:::
of25

::
an

::::::::
observing

::::::
system

:::
on

:::
the

:::::::::
estimation

::
of

::::::
carbon

::::::
fluxes.

::::::::::::
Observational

:::::::::::
uncertainties

::
of

:::
SIF

:::::
used

::::
here are calculated from

:::
the

GOSAT satellite observations for 2010. These are interpolated to the model grid resolution as demonstrated below. To get

the variance of a target grid cell at the model grid resolution (ylat,xlon)we first determine the area-weighted variance of each

GOSAT grid cell (ilat, jlon) within that target grid cell. The area-weighting per GOSAT grid cell ( ˆAreailat,jlon) iscalculated

as the area divided by the total area of the target grid cell. This enables us to account for different grid cell sizes considering30

SIF is in physical units per unit area. We then sum the area-weighted variances and scale this uncertainty
::::
This

::::
data

:
is
::::::::
obtained

::::
from

:::
the

:::::
ACOS

::::::::::::
(Atmospheric CO2 ::::::::::

Observations
:::::
from

:::::
Space)

:::::::
project

:
at
::
a
:::
grid

:::::::::
resolution

::
of

::
3°

::
×

:::
3°.

:::
As

:::
the

:::::
model

::::::::::
simulations
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::
are

:::::::::
performed

:::
on

:
a
::::::::::::
low-resolution

::::
grid

:::::
(7.5°

::
×

::::
10°),

:::
we

::::::::
aggregate

:::
the

::::::::::::
observational

:::::::::::
uncertainties

::
to

:::
this

:::::::::
resolution

::::
using

::::
Eq.

:
4
::
as

::::::::
described

::::::
below.

:

:::
We

::::::
assume

:::
the

:::::::::::
observations

:::
are

::::::::::
independent

:::
and

::::
have

:::::::::::
uncorrelated

::::::
errors,

:::
that

:::
is,

::::
they

::
are

::::::::::
distributed

::::::::
randomly.

:::::::::
Assuming5

::::::::::
uncorrelated

:::::
errors

:::
is,

::::::::
however,

:::::
likely

::
to

:::::::::::
overestimate

:::
the

::::::::::
information

:::::::
content

:::::::::
particularly

::
if
:::::
using

:::
the

::::::::
standard

::::
error

:::
as

:::
the

:::::::::
uncertainty.

::::::::
Although

::
it

:::
has

::::
been

::::
used

::
in

::::::
recent

::::::
studies

::::
with

::::::
satellite

::::
SIF

::::::::::::::::::::::
(e.g. Parazoo et al., 2014) ,

::
the

::::::::
standard

::::
error

::
is

:::::
likely

::
to

::
be

::
an

::::::
overly

:::::::::
optimistic

::::::::::::
approximation

::
of

:::
the

::::::::::
information

:::::::
content.

:::
For

::::
this

:::::
study,

:::
we

::::
take

:
a
:::::::
slightly

::::::::::
conservative

:::::::::
approach,

::::::
scaling

:::
the

::::::::
calculated

:::::::
standard

:::::
error by the square root of two (see equation 4). Scaling the uncertainty in this way

::
as

::::::
shown

::
in

:::
Eq.

::
4.

::::
This

:
effectively doubles the variance in an independent dimension

:::
and

:::::::
reduces

:::
the

::::::::::
information

:::::::
content

::
to

::::::::::
compensate10

::
for

:::
the

::::::::::
assumption

::
of

:::::::::::
uncorrelated

:::::
errors.

σ2
ylat,xlon =

√
2
∑

( ˆArea2ilat,jlon ·σ2
ilat,jlon)

We assume uncorrelated uncertainties in the observations. To ensure our results are not sensitive to the method of calculating

the observational uncertainty we conduct some simple sensitivity tests with varied observational uncertainties within
:::::::
Through

:::::::::
aggregation

:::
of

:::::::
GOSAT

:::
grid

:::::
cells

::
to

:::
the

:::::
model

::::
grid

::::::::
resolution

:::
the

:::::::
number

::
of

:::::::::::
independent

::::::::::
observations

::
is

:::::::
reduced.

:::
To

:::::::
account15

::
for

::::
this

:::
the

:::::::::
uncertainty

::
in
::
a
:::::
given

:::::
model

::::
grid

:::
cell

:::
is,

::::::::::::
approximately,

:::::::
divided

::
by

:::
the

::::::
square

::::
root

::
of

:
the range expected.

::::::
number

::
of

:::::::
GOSAT

:::
grid

:::::
cells

::::
with

:::
SIF

::::
data

::::
that

:::
fall

:::::
within

::::
that

:::::
model

::::
grid

::::
cell

::::
(N ).

:::::
More

::::::::
precisely,

:::
we

:::::
apply

::
an

:::::::::::::
area-weighting

::::
term

::
in

::
the

::::::::
equation

::::
(see

::::::::::::
Supplementary

:::::::
material

:::
Eq.

:::::
A1).

::::
This

:::
has

:::
the

:::::
effect

::
of

::::::
scaling

:::
the

:::::::::
uncertainty

:::
by

:::
the

:::::
1/
√
N

::::
law,

:::
but

:::::
takes

:::
into

:::::::
account

:::
the

::::
fact

:::
that

::::
SIF

::
is

::
in

:::::::
physical

:::::
units

:::
per

::::
units

::::
area

::::
(i.e.

:::
W

:::::
m−2

:::::
µm−1

::::::
sr−1)

:::
and

::::
that

::::
grid

::::
cells

::::
have

::::::::
different

::::
areas

::::
over

:::::::
different

::::::::
latitudes.

::
A

:::
full

::::::::::
description

::
of

:::
this

::::::::::
calculation

:::
and

:::::::
detailed

:::::::
example

::
is

::::::
shown

::
in

::::::::::::
supplementary

::::::::
material.20

With the use of low-resolution observations the constraint of parameter uncertainties is actually underestimated. This is

expected as with a high-resolution setup the number of observations will increase while the number of parameters will

remain constant, resulting in stronger uncertainty reductions. Considering this , we also approximate the expected parameter

uncertainty reductions from higher resolution observations(2°x 2°). Compared with
:::::::::
Therefore,

::
the

:::::::::
calculation

:::
of

::
the

:::::::::::
observational

::::::::::
uncertainties

::
of

::::
SIF

::::
used

::::
here

:
is
::::::::::::
approximated

::
by

:::
Eq.

::
4

:::
(for

::::::
further

::::::
details

:::
see

::::::::::::
Supplementary

:::::::
material

::::::
Section

::::
A2).

::::
For

:
a
:::::
given25

:::::
model

::::
grid

::::
cell,

:::
the

:::::::
variance

::::
(σ2)

::
is
::::::::::::
approximately

:::::
equal

::
to
:::

the
::::

sum
:::

of the low-resolution grid used here (7.5°x 10°) , a 2°x

2°grid has approximately 19-times more observations
:::::::
standard

:::::
error

::
of

::::
each

:::::::::
individual

:::::::
GOSAT

::::
grid

:::
cell

::::
(σi)::::::::

squared,
::::
then

:::::
scaled

::
by

:::
the

:::::::
number

::
of

:::::::::
individual

:::::::
GOSAT

:::
grid

:::::
cells

::::
with

:::
data

::::
and

:::
the

::::::
square

:::
root

::
of

::::
two.

:

σ2 =
√

2
[ 1√

N

∑
i

σ2
i

]
:::::::::::::::::::

(4)

:::
The

::::::::
resulting

::::::
annual

:::::::::::
observational

::::::::::::
uncertainties,

:::::
shown

:::
in

::::::
Figure

::
3,

::::::
appear

::
to

:::
be

:::::
much

::::::
smaller

::::
than

:::
the

:::::::::::
uncertainties

:::
of30

::::::::
individual

:::::::
GOSAT

::::
grid

::::
cells.

::
In

::::
part

:::
this

::
is

:::
due

::
to
:::
the

::::::::::
aggregation

::
of

:::::::
multiple

:::::::::::
independent

::::::::::
observations. Therefore, to estimate

the high-resolution observational uncertainty we divide the low-resolution GOSAT observational uncertaintiesby
√

19. Using
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this scaled observational uncertainty estimate, parameter uncertainty and uncertainty in GPP is estimated.
:::::::
Regions

::::
with

:::::
more

::::::::
soundings

::::::
across

:::
the

:::
year

:::::
(e.g.

::
the

:::::::
tropics)

::::
will

:::
also

:::::
have

::::::
smaller

::::::
annual

:::::::::::
uncertainties.

:

:::::
Where

::::::::
feasible,

:::::::::
systematic

:::::::::::
uncertainties

::
in

:::
the

:::
SIF

:::::::::::
observations

::::::
should

::::
also

:::
be

:::::::::
considered

::
in

:::::
error

::::::::::
propagation

::::::::
analyses.

:::::
While

:::::::::
systematic

:::::
errors

::
in

:::
the

:::::
model

::::::
cannot

::
be

:::::::
assessed

:::::
prior

::
to

:
a
:::
full

::::::::::
assimilation

::
of

:::
the

::::
data

::::::::::::::::::
(Kuppel et al., 2013) ,

:::::::::
systematic

:::::
errors

::
in

:::
the

:::::::::::
observations

:::
can

:::
be.

:::
To

::::::::::
incorporate

::::
this

:::
into

::::
our

::::::::
analysis,

:::
we

:::::::::
investigate

:::
one

::::::
source

:::
of

::::::::
structural

::::::::::
uncertainty

:::
due

::
to

::::::::
potential

:::::
errors

::
in

:::
the

:::::::::
zero-level

::::::
offset.

:::
The

:::::::::
zero-level

:::::
offset

:::::::::
correction

::
is

::::
done

:::
to

::::::
prevent

::::::
biases

::
in

:::
the

::::
SIF

:::::::
retrieval5

:::::::::::::::::::::::
(Frankenberg et al., 2011a) .

:::::
Based

::
on

::::::::
previous

::::::::
analyses,

::::::::
systematic

:::::::::::
uncertainties

::
in

:::
the

:::
SIF

::::::::
retrieval

:::
may

:::
be

:::::::::
considered

:::::
small

::::::::::::::::::::::::::::
(Frankenberg et al., 2011a, 2014) .

::::
Here,

:::
we

:::::::
provide

:
a
:::::
more

::::::
detailed

::::::::::
assessment

:::
and

:::::::::::::
characterization

::
of
:::
the

:::::::
in-orbit

:::::::::
systematic

:::::::::::
uncertainties.

::::
This

::
is
:::::::::

performed
:::

by
:::::::::

assessing
::::::::
zero-level

::::::
offset

::::::::
corrected

:::::::
GOSAT

::::
SIF

:::::::::
soundings

::::
over

:::
the

::::::::::::::
non-fluorescent

::::::
regions

::
of

:::::::::
Antarctica

::::
and

::::::
central

:::::::::
Greenland

::::::
during

:::::::
January

:::
and

:::::
July,

::::::::::
respectively.

::::::::::
Systematic

:::::
errors

::::::
appear

:::::
quite

:::::
small

:::
(±

::::
0.06

::
W

:::::
m−2

:::::
µm−1

:::::
sr−1)

::::
(see

::::::::
Appendix

::::::
Figure

:::
10)

::::
and

::::
may

::::
vary

:::::::::
seasonally.

:::
We

:::::::
therefore

::::::
assess

:::
the

:::::
effect

::
of

:
a
:::::::::::
conservative10

::::::::
systematic

:::::::
random

:::::
error

::
of

:::
size

::
±
::::

0.1
::
W

:::::
m−2

:::::
µm−1

:::::
sr−1

::
in

:::
the

::::::::
zero-level

::::::
offset

:::::::::
seasonally.

::::
This

:::::::
provides

::
a

::::::::
sensitivity

::::
test

::
of

:::::::::::
incorporating

:::
this

:::::::::
systematic

::::::::::
uncertainty

:::
into

:::
the

:::::
error

::::::::::
propagation

::::::
system.

:

An additional source of uncertainty in model estimates of GPP is climate forcing. As mentioned by Koffi et al. (2015),

::::
while

:
uncertainty in forcing such as incoming radiation is not considered in the current CCDAS setup. As might be expected

however, it is considered to be an important variable in driving SIF (Verrelst et al., 2015) and GPP
::::::::::::::::::
(Farquhar et al., 1980) .15

Without consideration of uncertainties in forcing variables the uncertainty in GPP may be underestimated. Studies that use

process-based models or empirically-derived relationships do not explicitly consider such uncertainties (e.g. Beer et al., 2010).

One such forcing variable is downward shortwave radiation (SWRad). Monthly means of SWRad are suggested to have an

uncertainty
:
a

::::::
random

:::::
error of 12 Wm−2 due mostly to uncertainty in clouds and aerosols (Kato et al., 2012). We therefore

investigate SWRad uncertainty may be considered in GPP estimates. Furthermore, as SIF responds strongly to SWRad, there20

is the potential to utilize SIF observations as a constraint on the uncertainty of the forcing. We therefore conduct an additional

experiment that incorporates the uncertainty in SWRad in the error propagation system. For this experiment an additional

parameter representing SWRad is added to the inversion, which acts as a scaling factor for SWRad globally. We investigate

the level of constraint SIF provides on this scaling factor, and the subsequent effects of incorporating uncertainty in SWRad in

this inversion on uncertainty in GPP.25

2.5 Model and Data Setup

In this study BETHY-SCOPE is run for the year 2010 on a computationally fast
::
the

::::::::::::::
computationally

:::::::
efficient, low-resolution

grid scale
::::::
spatial

::::
grid (7.5° × 10°), sufficient for investigating error propagation

:
.
::
As

::::
the

:::::::::
dynamical

::::::::
equations

:::
are

:::
the

:::::
same

::
for

:::::
either

::::::::::::
low-resolution

:::
or

::::::::::::
high-resolution

::::::
scales,

:::
use

::
of

:::
the

::::::::::::
low-resolution

:::::
setup

::
is

:::::::::
appropriate

:::
for

:::
an

::::
error

::::::::::
propagation

:::::
study

::
as

::::
long

::
as

::::::
careful

:::::::::::
consideration

::
is
:::::
taken

::::
with

:::::::::::
observational

:::::::::::
uncertainties. Climate forcing in the form of daily meteorological30

input fields for running the model (precipitation, minimum and maximum temperatures, and incoming solar radiation) were

obtained from the WATCH/ERA Interim data set (WFDEI Weedon et al., 2014). Photosynthesis and fluorescence are simulated

at an hourly time step but forced by the respective monthly mean diurnal cycle. Leaf growth and hydrology are simulated daily.

10



:::
SIF

::
is

::::::::
simulated

::
at

:::
755

::::
nm,

:::
the

:::::::::
wavelength

::::::::::::
corresponding

::
to

:::
the

:::::::
GOSAT

:::::::
retrieval

::::::::
frequency

::::
and

:::
near

::
to
:::
the

:::::::
OCO-2

:::::::
retrieval

::::::::
frequency

::::
(757

:::::
nm). We focus upon the constraint by SIF measurements at 1:00 p.m. local time as it closely corresponds to

the local overpass time of the SIF-observing satellites GOSAT and OCO-2. However, we also investigate the effect of using5

alternative SIF-observing times (e.g. the GOME-2 satellite overpass time) and multiple observing times simultaneously on the

constraint of GPP. SIF is simulated at 755 nm, the wavelength corresponding to the GOSAT retrieval frequency and near to the

OCO-2 retrieval frequency (757 nm).

3 Results

3.1 Parameter Uncertainties10

A key metric for assessing the relative uncertainty reduction, or ’
:::::::
effective constraint’, is defined as 1-

:
(σposterior/σprior. The

:
).

:::
The

:::::::
effective

:
constraint for all 72 parameters following constraint by SIF is shown in Figure 1 and in Table A1. We define weak,

moderate and strong
:::::::
effective constraint as the relative uncertainty reduction from 1-10%, 10-50%, and >50%, respectively.

Parameters describing leaf composition (Cab, Cdm, Csm) generally achieve strong
:::::::
effective

:
constraint from SIF. For eleven

of the thirteen Cab parameters the uncertainty is strongly constrained, between about 50% and 85%. SIF is highly sensitive15

to Cab and we assign a relatively large prior uncertainty on these parameters, so a considerable constraint is expected. For

the tropical broadleaved evergreen tree PFT however, the
:::::::
effective

:
constraint on Cab is much lower at 8%. For other leaf

composition parameters Cdm and Csm SIF
::::::::
effectively

:
constrains the uncertainty by 2% and <1% respectively.

Varied
:::::::
effective constraint is seen for the leaf growth parameters (parameters 37-53 in Table A1) that control phenology

and leaf area. Four out of the seventeen leaf growth parameters exhibit strong uncertainty reductions. These parameters pertain20

to a variety of processes including the temperature at leaf onset, day length at leaf shedding, leaf longevity, and the expected

length of dry spell before leaf shedding (τW ) (see Table 1
::
A1). The parameter τW is important in controlling leaf area and it

sees strong
:::::::
effective

:
constraint from SIF, from 44-69% depending upon which class of PFT it pertains to. For the parameters

that are PFT-specific, there is generally a larger constraint seen when they relate to the C3Gr, C4Gr and crops. For example
:
,

:::::::::
uncertainty

::
in

:
τW for grasses and crops (τGrW ) is

::::::::
effectively

:
constrained by 70%.25

Leaf physiological parameters (parameters 1-36 in Table A1) see a weak to moderate level of
:::::::
effective

:
constraint. Of par-

ticular importance for simulating GPP is the PFT-specific parameter Vcmax. Constraint
:::::::
Effective

:::::::::
constraint

:
on Vcmax varies

from <1% up to 30% depending upon the PFT of interest. Six PFTs that, combined, represent about 70% of the land surface

have their Vcmax parameters constrained by >10%. Some global physiological parameters receive a weak constraint from SIF.

However, for most of these (ERd
,EKO

,Ek,KO, aJ,V ) there is only a minor reduction of uncertainty as SIF is weakly sensitive30

to them. The parameters that do see a weak
:::::::
effective

:
constraint include the Michaelis-Menton enzyme kinetics constant for

carboxylation (KC ; 2.3%), the corresponding activation energy for carboxylation (EKC
; 2.5%) and for Vcmax (EVmax

; 7.6%),

and quantum efficiency parameters (αq; 5.2% and αi; 1.1%).

Global canopy structure parameters (parameters 69-72 in Table A1) also see a weak to moderate constraint from SIF. In

particular the structural parameters LIDFa and LIDFb see
:::
their

:
uncertainty reduced by 23% and 16%, respectively. The35

11



Figure 1. Relative reduction in uncertainty (1σ) for
:::::::
Effective

:::::::
constraint

::
of

:
BETHY-SCOPE model process parameters following

::::
from SIF

constraint
:::::::::
observations. The parameters

:::
Only

:::
the

::::::::
parameter

::::::
numbers

:
are defined in

::::
given,

:::
for

::
the

:::::::::::
corresponding

:::::::::
descriptions

:::
see

:
Table A1.

parameters for vegetation height and leaf width, which are used to calculate the fluorescence "hot-spot" variable (see Van der

Tol et al., 2009), are
::::::::
effectively

:
constrained by 9% and <1%, respectively.

Parameters that pertain to more dominant PFTs in terms of land surface coverage (e.g. C3 grass) tend to see stronger

uncertainty reductions. This is due to them being exposed to more SIF observations.

As expected, with high-resolution observations there is stronger constraint of parameter uncertainties (see Table A1). Strong5

constraint is seen for 27 parameters compared to 16 in the low-resolution tests. This includes strong constraint of five Vcmax

parameters, and moderate constraint of seven other physiological parameters.

With the observational constraint correlations are introduced into the posterior parameter distributions. We assess these

correlations using 2, shown in Figure 2. We find strong (R ≥ 0.5) positive correlations between nine of the PFT-specific

chlorophyll
:::
Cab parameters. These are also negatively correlated the leaf angle distribution parameter LIDFa. Thusduring the10

assimilation
:
,
::::::
during

:
a
:::
full

:::::::::::
assimilation

::::
with

:::
SIF

::::
data

:
only the sum of Cab and LIDFa can be resolved, not their individual

values. Some
::::
Two leaf growth parameters are also significantly correlated, including

::::::
strongly

:::::::::
correlated,

:
Tφ with Trand ξ with

Λ̃.
:
.
:::::::
Smaller

::::::::::
correlations

::
are

::::
also

::::::
present

::::::::
between

:::
the

:::::
subset

::
of

::::::::::
parameters

:::::
shown

::
in

::::::
Figure

::
2.

::
To

::::::
assess

:::
the

:::::
effect

:::
of

::::::::::::
incorporating

:
a
::::::::::

systematic
::::
error

:::::
from

:::
the

:::::::::::
observations

::::
into

::::
this

:::::::
analysis

::::
we

:::::
apply

::
a

::::::::
seasonal,

::::::::
systematic

:::::::
random

::
σ

::::
error

::
of

:::
0.1

:::
W

::::
m−2

::::::
µm−1

:::::
sr−1.

::::
This

:
is
:::::::::::
incorporated

::
as

::::
four

::::::::
additional

::::::::::
parameters,

::::
one

::
for

::::
each

:::::::
season,15

:::
that

::::
scale

:::
the

::::
SIF

:::::
signal

::::::
across

::
the

::::::
globe.

:::
We

::::
find

:::
that

:::
the

::::::::
inclusion

::
of

:::
this

:::::::::
systematic

:::::
error

:::
has

:
a
:::::::::
negligible

:::::
effect

::
on

::::::::
posterior

::::::::::
uncertainties

::
of
::::

the
:::::::::
parameters.

::::
The

:::::::::
difference

::
in

:::::::
effective

:::::::::
constraint

:::::::
between

::::
this

::::::::
sensitivity

::::
test

::::
case

:::
and

:::
the

::::::::
standard

::::
case

:::::
above

::
is

::::
<1%

:::
for

:::
any

:::::
given

:::::::::
parameter.
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Figure 2. Correlations
::::::::
Correlation

:::::::::
coefficients

:::::::
(r-value) in

:::
the posterior parameter covariance matrix (Cxpost ).

:::
This

:::::
shows

:::
the

::::::::
magnitude

:::
and

:::
sign

::
of

:::::::::
correlations

::
in
:::::::

posterior
::::::::

parameter
::::::::::
uncertainties

:::::::
following

::::::::
constraint

::::
with

:::
SIF

::::
data.

:
Only values

::::::::
parameters

:
with an absolute

correlation coefficient >0.1
:::
0.25

::::
with

:::
one

::
or

::::
more

::::
other

:::::::::
parameters are shown.

:::::
Values

:::::
above

:::
and

:::::
below

::
the

:::::::
diagonal

:::
are

:::::::
identical,

:::::::
therefore

::::
those

::::
above

:::
are

:::::::
coloured

::::
grey.

:::
The

::::
axes

::::
labels

:::::
show

::
the

::::::::
parameter

::::::
symbol

:::
and

::::::
number

::
as

:::::
defined

::
in

:::::
Table

:::
A1.

3.2 Uncertainty in GPP

To assess the constraint imposed by SIF on simulated GPP we compare the prior and posterior uncertainty in GPP as calculated20

using equation
:::
Eq. 3. Similar to the assessment of parameter uncertainty reductions, to assess the

::::::
effective

:
constraint of SIF on

GPP we use a metric that measures the relative uncertainty reduction in 1σ from the prior to the posterior.

Utilizing SIF observations at 1:00 p.m. results in the uncertainty in global annual GPP to decrease from 13.0 PgCyr−1 to 2.8

PgCyr−1, constituting a 79% reduction of the prior uncertainty. Spatially, the prior uncertainty in GPP varies across the globe,

with particularly large uncertainties in regions with high productivity as might be expected (Figure 4). In the posterior, it is clear5

that uncertainty in GPP is strongly reduced across the globe (Figure 5). The relative uncertainty reduction (Figure 6) appears

to show smaller constraint of uncertainty in the boreal regions, however this is because prior uncertainty is already relatively

low (Figure 4). As with the parameter uncertainty reductions, we expect that with the use of higher resolution observations

there will be stronger constraint of the uncertainty. When utilizing the high-resolution (2°x 2°) observational uncertainties,

uncertainty in global GPP is reduced to 1.3 PgCyr−1, constituting a 90% reduction in uncertainty relative to the prior.10
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To assess which parameters contribute to the uncertainty in GPP for the prior and posterior, we can conduct linear analysis of

the uncertainty contributions. Typically this technique can only be used for the prior as the correlations in posterior parameter

uncertainties, excluded from the linear analysis, also contribute toward the overall constraint. However, we
:::
can

::::::
assess

:::
the

::::::::::
contribution

::
of

::::
these

::::::::::
correlations

::
to
:::
the

:::::::::
constraint

::
of

::::
GPP

:::
by

:::::
setting

:::
the

:::::::::::
off-diagonal

:::::::
elements

::
in

::::::
Cxpost::

to
::::
zero

:::
and

:::::
using

::
it

::
in

:::
Eq.

::
3;

:::
the

::::::::
difference

:::::::
between

::::
this

:::
and

:::
the

:::::::
standard

::::
case

::::
that

::::
uses

::
the

::::
full

:::::
Cxpost:::::::

equates
::
to

:::
the

::::::::::
contribution

::
of

:::::::::::
correlations.

:::
We

find that the contribution of these correlations to the constraint of GPP is small (0.12 PgCyr−1 or <1%), thus we can assume

the linear analysis technique holds for the posterior as well. This finding is supported by the correlation analysis in posterior

parameter uncertainties which showed few significant correlations in parameters relevant for GPP. This result is encouraging5

as it indicates that the parameters in a SIF assimilation system contributing most to the constraint of GPP are capable of being

resolved independently.

Using linear analysis of the uncertainty we find that uncertainty in global annual GPP in the prior and posterior stem
:::::
stems

from different processes. For the prior we see that the uncertainty in GPP is dominated, at 91%, by parameters describing leaf

growth processes. Of these, a single parameter, τW for C3 grass, C4 grass and crops (τGrW ) makes up 82% of the uncertainty in

global annual GPP. Parameters representing physiological processes account for about 6% of prior uncertainty, most of which

stem from the Vcmax parameters. Parameters for Cab only account for 2.5% of the uncertainty, as may be expected considering5

GPP is relatively insensitive to Cab.

For the posterior, following an overall reduction of the
:::::
which

:::
has

:
a
:::::
lower

::::::
overall uncertainty in GPP, uncertainty is dominated

by parameters representing physiological processes. Physiological parameters account for 53% of the uncertainty in posterior

annual GPP, with Vcmax parameters alone accounting for 40%. The relative contribution by leaf growth parameters is reduced

to 45%, and for τGrW to 25%. For Cab the relative contribution is smaller than the prior at 1.3%. This shift in which parameters

contribute to
::
the

:::::::
relative uncertainty in GPP between the prior and the posterior demonstrates how effectively SIF constrains

leaf growth processes. Although there are uncertainty reductions
::::::::::
Uncertainties

:
in physiological parameters , the increase in the

relative uncertainty contribution of these processes in the posterior GPP demonstrates the limitations in SIF constraining leaf5

physiology
::
are

::::::::::
constrained

:::
less

::::
than

:::
the

::::
leaf

::::::
growth

:::::::::
parameters

:::::
which

::::::
results

::
in

:::::
them

::::::::::
contributing

::::
more

::
in
:::::::
relative

:::::
terms

::
to

:::
the

:::::::
posterior

::::::::::
uncertainty

::
of

::::
GPP.

Regionally, we split the land into three regions, the Boreal region (above 45◦ North), the Temperate North (30◦ to 45◦

North) and the Tropics (30◦ South to 30◦ North). SIF constraint on
::::::
annual GPP varies substantially across different regions

of the globe, with relative uncertainty reductions
:::::::
reduction

::
in

:
of 48%, 82%, and 79% for the Boreal, Temperate North and10

Tropics regions, respectively. For the
::
In

::::::
Figure

:
7
:::
we

:::::
show

:::
the

::::::::::
contribution

::
of

:::::::::
parameter

::::::
classes

::::
(leaf

::::::::::
physiology,

:::
leaf

:::::::
growth,

:::
leaf

::::::::::
composition

::::
and

::::::
canopy

::::::::
structure;

:::
see

:::::
Table

:::
A1

:::
for

::::::
details)

::
to
:::
the

:::::::::
parametric

::::::::::
uncertainty

::
of

::::
GPP

::::::
across

:::
the

::::
year

:::
for

::::
each

::
of

::::
these

:::::::
regions.

:::::
From

::::::
Figure

::
7
::
it

:::
can

:::
be

::::
seen

::::
that

:::
the

:
Boreal and Temperate North regions there are also

:::::
exhibit

:
seasonal

differences in
::::
total

:::::::::
uncertainty

::::
and

::
in the constraint SIF provides. This is caused by seasonal dependencies in the sensitivity of

SIF and GPP to certain processes (e.g. leaf development versus leaf senescence) as well as seasonal differences in the density15

of observations in this region
::::
these

::::::
regions. There are far fewer GOSAT satellite observations during Boreal autumn and winter,

thus there are fewer observations to constrain processes controlling GPP during this time.
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Figure 3. SIF
::::::
Annual observational uncertainty (1σ)

::
of

:::
SIF interpolated from GOSAT SIF observations for 2010.

Figure 4. Prior
::::::::
parametric

:
uncertainty in annual GPP(1σ).

During the start of the growing season
:::
leaf

::::::::::
physiology,

::
in
:::::::::

particular photosynthetic rate constants (Vcmax)
:
, play a larger

role whereas later in the growing season during the warmest months
:::
leaf

:::::::
growth,

:::
via

:
water limitation on leaf area (via τGrW )

of grasses,
:

plays a larger role. Therefore in the Boreal region, where the strongest seasonality in constraint is seen, from July20

through to January SIF constrains GPP by >60%. Uncertainty in GPP during these months is dominated by the leaf growth

parameters τGrW and kL along with Cab (for EvCn) all of which receive considerable constraint from SIF. From February to

June however, SIF constrains GPP by less than 50%, as a large proportion of the uncertainty is made up by the less constrained

:::::
arises

::::
from

:::
the

::::::::::::::
less-constrained Vcmax parameters. Following SIF constraint, uncertainty in Boreal GPP stems mostly from

uncertainty in Vcmax:::
leaf

:::::::::
physiology, particularly for the EvCn PFT. Similar differences between seasonal constraint is seen25

15



Figure 5. Posterior
::::::::
parametric uncertainty in annual GPP(1σ).

Figure 6. Relative uncertainty reduction
:::
(i.e.

:::::::
effective

::::::::
constraint)

::
of

::::::::
parametric

:::::::::
uncertainty in annual GPP from prior to posterior.

for the Temperate North, albeit not as exaggerated with SIF-constraint ranging
:::::::
although

:::::
with

:
a
:::::::
smaller

:::::::
seasonal

::::::::
variation

::
in

:::
SIF

::::::::
constraint

::::
that

:::::
ranges

:
between 74% and 87%

:::::
across

:::
the

::::
year.

For the Tropics uncertainty reduction in GPP is about 80% across the year. Uncertainty in the prior is dominated by the

:::
leaf

::::::
growth

::::::::::
parameters

:::
and

:::
in

::::::::
particular

:::
the

:
τW parameters controlling water-limited leaf area. SIF constraint is primarily

propagated through these
::
the

::::
τW parameters onto GPP resulting in a well-constrained posterior with a 1σ

:::::::::
uncertainty

:
of 1.630

PgC yr-1 on the Tropics annual GPP
::
in

::::::
annual

::::
GPP

::
of
::::

the
::::::
Tropics. Although moderate constraint is seen in the key PFT-

specific parameter Vcmax for the dominant Tropical PFTs
::::::
tropical

::::
PFTs

::::
(see

::::::
Figure

::
1), in the posterior these parameters make

up
::::::::

contribute
::
to roughly 35% of the uncertainty in annual GPP.
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Figure 7.
::::::::::
Contribution

::
of

:::::::
parameter

::::::
classes

::
to

::::::::
parametric

:::::::::
uncertainty

::
in

::::::
monthly

::::
GPP

:::
for

::::
three

::::::
regions

:::
(see

:::::
Table

::
A1

:::
for

:::::
details

::
on

:::::
these

:::::::
parameter

:::::::
classes).

:::
For

::::
each

:::::
month,

:::
the

:::
bar

::
on

:::
the

:::
left

:
is
:::
the

::::
prior

:::
and

:::
the

:::
bar

::
on

:::
the

:::
right

::
is
:::
the

:::::::
posterior.

::::::::::
Uncertainties

:::
are

:::::::::
represented

::
as

:::::::
variances,

::::
thus

::
the

::::
units

:::
are

::
in PgCyr−1

:::::
squared

::::
and,

:::
for

:::::
clarity,

:::
the

:
y
::::
axes

::
are

::
on

::
a
::::::::::::::::
quadratic-transformed

:::::
scale.
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Figure 8. Relative uncertainty reduction in global annual GPP for different observing times and the two diurnal cycle configurations. Values

at the top of the bars correspond to the posterior uncertainty (1σ
:
σ) in global annual GPP.

3.3 Diurnal SIF Constraint

With this setup it is possible to test how the SIF-constraint on GPP might change with alternative observational times. Con-

sidering this, we test how the constraint on GPP changes when assimilating observations of SIF from alternative times of the

day, assuming the same number of observations and the same observational uncertainty as used above. From this we see that

different observing times yield differences in the posterior uncertainty and the relative constraint of GPP (see Figure 8). The5

constraint on global annual GPP when using SIF-observing times between 9:00 a.m. and 3:00 p.m. is quite similar, with the

posterior uncertainty in global annual GPP ranging from 2.7 PgCyr−1 (constraint of 79%) to 3.4 PgCyr−1 (constraint of

74%). The most significant constraint on GPP is obtained when using SIF observations at between 11:00 or 13:00, nearest to

the peak in the diurnal cycle of both GPP and SIF.

We also test the effect of utilizing SIF measurements at multiple times of the day simultaneously. We select the times 8:0010

a.m., 12 noon, and 4:00 p.m., replicating a theoretical geostationary satellite. For this experiment we first test the effect of

increasing the number of observations by a factor of three, assuming the same uncertainty for the three observation times.

Second, we
:::
also

:
increase the number of observations by a factor of three, but scale the variance of these observations by one

third. Using this second test we can assess whether differences in parameter sensitivities of SIF and GPP at the different times

of the day adds value in the overall constraint.15

Using a diurnal cycle of observations results in a posterior uncertainty of 2.4 PgCyr−1, or a relative reduction of 81%

as in Figure 8. This is an extra 2% constraint on the uncertainty in GPP compared with observations at 12:00 noon alone.

If we use a diurnal cycle of observations with scaled uncertainties, we see a slightly reduced constraint on GPP where the

posterior uncertainty is 3.3 PgCyr−1 equivalent to a 74% reduction in uncertainty (Figure 8). Therefore the difference in model
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sensitivities across the diurnal cycle is not sufficient to outweigh having additional observations at midday. The constraint is

worse with these scaled observational uncertainties as we are effectively removing some useful observational information at

midday, which is the most sensitive time of day, and getting extra observational information at the lower-sensitivity times of

8:00 a.m. and 4:00 p.m..

3.4 Incorporating Uncertainty in Radiation5

In order to assess the effects of incorporating uncertainty in SWRad we conduct three experiments. First is a control run,

equivalent to using SIF at 1:00 p.m. as before. Second includes uncertainty in SWRad by adding it into the posterior uncertainty

calculation, what might be done normally when accounting for uncertainty in forcing. Third is incorporating uncertainty in

SWRad into the error propagation system with SIF, effectively treating it as a model parameter such that its
::::
such

::::
that

:::
it’s

uncertainty may be constrained.
::::
This

::::
third

::::::::::
experiment

::::::::
effectively

:::::
treats

:::::::
SWRad

::
as

::
a

:::::
model

:::::::::
parameter

::
by

::::::
adding

:::
an

::::
extra

::::
row10

:::
and

::::::
column

::
to
::::
Cx.

Including the uncertainty in SWRad in the calculation of posterior uncertainty in GPP results in an additional 0.02 PgCyr−1

to the prior uncertainty in global annual GPP. This is a small effect relative to the parametric uncertainties. Moreover, if we

incorporate SWRad uncertainty into the error propagation system we see that this additional uncertainty is mitigated by the

SIF constraint. With SWRad uncertainty included, the posterior uncertainty in GPP remains at 2.8 PgCyr−1, equivalent to the15

case without accounting for uncertainty in SWRad, with both providing about a
:
in

::::
both

:::::
cases

::::::::
resulting

::
in

:
a
:::::::
relative

::::::::
reduction

::
of

:::
the

::::
GPP

:::::::::
uncertainty

:::
by 78.6% relative reduction in uncertainty of GPP

::
%. This mitigation of the additional uncertainty from

SWRad is possible because both SIF and GPP are strongly sensitive to it, thus any constraint on SWRad from SIF is also

propagated through to GPP.

Table 2. Experiments with
:::::::
Parametric

:::::::::
uncertainty

:::
and

:::::::
effective

::::::::
constraint

:::
for

::::
each

::
of

:::
the

:
SWDown Uncertainty

:::::::::
experiments.

:::
Prior

::::
and

::::::
posterior

:::::
values

::::::
shown

::
are

:::
the

:::
one

::::::
standard

::::::::
deviation

::
(σ)

:::::::::
uncertainty

::
in

:::::
global

:::::
annual

::::
GPP.

Experiment Prior

GPP 1σ

:
(PgCyr−1)

Posterior

GPP 1σ

:
(PgCyr−1)

Relative

Uncertainty

Reduction

::::::
Effective

::::::::
Constraint

Control 13.04 2.79 78.59%

Control+SWRad 13.05 2.87 78.01%

With SIF Constraint 13.05 2.80 78.57%

::
By

::::::::
assessing

:::
the

:::::
prior

:::
and

::::::::
posterior

::::::::::
uncertainty

::
in

:::::::
SWRad

::
in

::::::
Cxprior::::

and
::::::
Cxpost

,
:::::::::::
respectively,

::
we

::::
can

:::::
assess

:::
the

::::::::
effective20

::::::::
constraint

::::::::
following

:::
use

:::
of

:::
SIF

::
in

:::
the

:::::
error

::::::::::
propagation

::::::
system.

:
We find that SIF constrains the SWRad uncertainty by about
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28%. This gain in information on SWRad naturally results in less information being available for other parameters. The relative

uncertainty reduction for most parameters decreases by just a few percent. For example most Cab parameters see a decrease

in constraint of around 1%, and five of the Vcmax parameters between 0.5-3%. With GPP exhibiting low sensitivity to Cab

parameters and strong sensitivity to SWRad, the transfer of information from Cab to SWRad results in an overall mitigated5

effect of SWRad uncertainty on GPP.

4 Discussion

The results presented show that with one year of satellite SIF data observed at the GOSAT and OCO-2 satellite overpass time

and SIF retrieval wavelength we can constrain a large portion of the BETHY-SCOPE parameter space and ultimately constrain

:::::
yields

:
a
:::::::::
parametric

::::::::::
uncertainty

::
in

:
global annual GPP to

::
of

:
± 2.8 PgCyr−1. This constitutes an uncertainty reduction of 79%10

in global annual GPP relative to the prior. Although this data-driven constraint is model dependent, it is much improved on the

often-reported uncertainty of ± 8 PgCyr−1 from the empirical-model-based upscaled product of Beer et al. (2010).

We note that our analysis is an underestimate of the constraint, as it is performed with
::::::::
relatively low-resolution observations.

We demonstrated, however, that with
::::
With

:
the use of higher resolution observations the constraint gets

::::
such

::
as

:::::
those

:::::
from

::::::
OCO-2

:::
the

:::::::::
constraint

::::
will

:::
get stronger. Similarly, with a longer time-series of data there will be stronger constraint. This15

occurs because the number of observations increases while the number of parameters remain constant. With an approximation

of observational uncertainty in higher resolution observations(2°x 2°) we see that uncertainty in global annual GPP is reduced

by 90% to 1.3 .
:::
We

:::
also

::::
find

::::
that

:::
the

:::::
effect

:::
of

:::::::::::
incorporating

::
a
:::::::::
systematic

:::::
error

::
in

:::
the

::::::::::::
observations,

:::
for

:::::::
example

::::
due

::
to

::
a

:::::::
seasonal

::::
error

::
in

:::
the

:::::::::
zero-level

:::::
offset,

::
is
:::::::::
negligible

::
on

::::::::
posterior

:::::::::
parametric

:::::::::::
uncertainties.

::::
This

::::
may

:::
be

::::::::
negligible

::::::::
because,

:::
for

:
a
:::::
given

::::::
season,

::::
this

:::::::::
systematic

:::::::::
uncertainty

::::::
applies

::::::
across

:::
all

:::
data

::::::
points

:::
and

::::
may

:::
act

::
to

:::::
scale

::
all

::::
SIF

::::::
values

:::
and

::::::::
therefore

:::
the20

:::::::::
sensitivities

:::
as

::::
well.

::
In
::::

any
::::
case,

::::
any

:::::::::
systematic

::::
error

:::
in

:::
the

::::::::
zero-level

:::::
offset

::::::::
corrected

::::
data

::::::::
assessed

::::
here

:::::::::
(Appendix

::::::
Figure

:::
10)

::::::
appears

::::::
small.

The constraint on global GPP is similar when assimilating SIF at any time between 9:00 a.m. and 3:00 p.m.. Assimilating

observations at the daily maximum of SIF and GPP provides the strongest constraint as both quantities exhibit the strongest

parameter sensitivities at these times. Depending upon the state of the vegetation and the environmental stress conditions,25

maximum SIF and GPP may occur anywhere between mid-morning and early afternoon. Therefore, we expect that effective

use of different satellite-retrieved SIF observations for assimilation studies will depend not so much on their observing time

but more on the spatiotemporal resolution, measurement precision, and subsequent uncertainty.

A confounding factor to this expectation is the uncertain role of physiological stress on the diurnal cycle of SIF and GPP

and subsequent modeling capabilities of these processes.30

Multiple studies have shown that various forms of environmental stress result in downregulation of photosystem II
::::
PSII

and changes in the fluorescence yield, particularly evident across the diurnal cycle (Carter et al., 2004; Daumard et al., 2010;

Flexas et al., 1999, 2000, 2002; Freedman et al., 2002). By ingesting SIF observations at multiple times of the day we hypoth-

esized that there could be improvements in the overall constraint on GPP as the SIF observations would capture the vegetation
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in different states of stress. However, we
:::
We

:
saw only minor improvements in the constraint and less constraint if we as-35

sumed no additional information in the observations (i.e. with scaled uncertainty). Thus,
:

the difference in model parameter

sensitivities of SIF and GPP at other times during
:::::
across

:
the diurnal cycle were not sufficient to add value to the constraint.

::::::::::
Additionally,

:::
the

:::::::::
constraint

::
is

:::::
worse

::::
with

:::::
these

:::::
scaled

::::::::::::
observational

::::::::::
uncertainties

:::
as

::
we

:::
are

:::::::::
effectively

:::::::::
removing

::::
some

::::::
useful

:::::::::::
observational

::::::::::
information

::
at

::::::
midday,

::::::
which

::
is

::
the

:::::
most

:::::::
sensitive

::::
time

::
of

::::
day,

:::
and

::::::
getting

:::::
extra

:::::::::::
observational

::::::::::
information

::
at

:::
the

:::::::::::::
lower-sensitivity

:::::
times

::
of
:::::

8:00
::::
a.m.

:::
and

::::
4:00

:::::
p.m.. This is likely due to limitations of the modelhowever. Although BETHY-5

SCOPE simulates light-induced downregulation of PSII, there is no mechanism present to simulate other forms of stress that

might be expected to emerge across the diurnal cycle. However, even with a perfect model, the spatial footprint and spatiotem-

poral averaging of satellite observations may smooth over stress signals. Considering these factors, there is no technical reason,

other than computational requirements, why a data assimilation system such as this could not ingest individual soundings of

SIF observations to remedy the problem.10

The constraint of SIF on GPP occurs via multiple processes including leaf growth, leaf composition, physiology, and canopy

structure. For the prior, uncertainty in global GPP is dominated by leaf growth processes. There is a clear and direct link

between leaf growth processes and GPP (Baldocchi, 2008) as the dynamics of leaf area influences canopy APAR which in turn

strongly influences GPP. Leaf growth parameter uncertainties are relatively large in the prior, with coefficients of variation up

to 50%. It is perhaps no surprise then that these parameters project a large uncertainty onto GPP. Regardless, both GPP and SIF15

respond similarly to the leaf growth parameters so information from observations of SIF can provide direct constraint on GPP

in this way. Many leaf growth parameters, particularly for grasses, crops, and deciduous trees and shrubs, receive constraint of

>40% from SIF thus the overall contribution of leaf growth parameters in the posterior is considerably reduced.

Of particular importance is the parameter describing water limitation on leaf growth (τW ), which accounts for about 80%

of the prior uncertainty in global GPP. While
:::::
Model

::::
SIF

:::
and

::::
GPP

:::
are

::::::
highly

:::::::
sensitive

::
to
::::
this

::::::::
parameter

::::::
hence

::::
there

:::
are

:::::
large20

:::::
values

::
in

::
H

::::
and

:::::
HGPP:::::::::

pertaining
::
to

:::
τW .

::::
This

::::::
relates

::
to

:::
the

:::::
model

::::::::::
formulation

::
as many of the leaf growth parameters determine

phenological processes such as temperature or light dependent growth triggers (i.e. temporal evolution of leaf area),
:::::
while τW

is the only free
::::::
process

:
parameter controlling leaf area other than intrinsic maximum LAI (Λ̃) (Knorr et al., 2010). Considering

this, and that
::::::::::
Additionally,

::
as

:
we assume little prior knowledge on

::
for

:
τW (i.e. it is highly uncertain) , it projects a considerable

:::::::
relatively

:::::
large uncertainty onto GPP.25

At the global scale, τW for crops, C3 grasses and C4 grasses (τGrW ) is particularly important. The prevalence of these three

PFTs across all biomes means they can have strong effect at the global scale. Combined, these
::::
three PFTs cover about 47% of

the land surface and account for 58% of global annual GPP in the present model setup. Although this contribution to global

GPP may seem high, it is based on the prior estimate. In a recent study by Scholze et al. (2016) where atmospheric CO2

concentration and SMOS soil moisture were assimilated into BETHY, the posterior value for τGrW shifted approximately three30

standard deviations away from the prior, the result of which would have been a large change in the GPP of these PFTs. This

exposes a limitation to the present study as we can predict and quantify how SIF will constrain the uncertainty of process

parameters and GPP, but we cannot predict how their values will change.
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The constraint SIF provides on leaf growth processes is also perhaps feasible
::::::::
achievable from other remote sensing products

such as FAPAR (e.g. Kaminski et al., 2012). A direct comparative study would be required to assess the advantages and35

disadvantages of each observational constraint. Nevertheless, issues arise with these alternative observations when observing

dense canopies (Yang et al., 2015) or vegetation with high photosynthetic rates such as crops as they are near saturation

(Guanter et al., 2014). Information on maximum potential LAI (Λ̃) and parameters pertaining to understorey shrubs and grasses

are therefore also limited (Knorr et al., 2010). A strong benefit of SIF is that it shows minimal saturation effects (e.g. Yang

et al., 2015), especially beyond 700 nm where most current satellite SIF measurements are made.5

The strong constraint SIF provides on leaf growth processes indicates that it is likely to provide improved monitoring of

key phenological processes such as the timing of leaf onset, leaf sensescence and growing season length. This will be highly

useful in interpreting results from a full assimilation with SIF as the posterior process parameter values can be compared with

independent ecophysiological data, taking consideration of spatial scale issues.

Beyond observing LAI dynamics SIF can also provide critical insights into physiological processes (e.g. Walther et al.,10

2016). We see here that SIF provides weak to moderate constraint on a range of physiological parameters, including up to

30% constraint on Vcmax parameters. The limited constraint on these parameters results in the posterior being dominated by

uncertainty in the parameters representing physiological processes. This is in line with Koffi et al. (2015) considering they

:::
who

:
found limited sensitivity of

::::::::
simulated

:
SIF to Vcmax. We note that under certain conditions, where other key variables are

well known, SIF can be used to retrieve Vcmax (Zhang et al., 2014). The ability of SIF to inform on physiological processes at15

all will provide researchers with a powerful new insight into spatiotemporal patterns of GPP. As was shown by Walther et al.

(2016) and Yang et al. (2015) this is particularly important for evergreen vegetation as changes in photosynthetic activity are

not always reflected by changes in traditional vegetation indices.

Chlorophyll content here constitutes a classic nuisance variable. A nuisance variable is one that is not perfectly known, im-

pacts the observations we wish to use but not the target variable (Rayner et al., 2005). However, exploiting the well-documented20

correlation between leaf nitrogen content, Vcmax, and Cab may help curtail this problem (Evans, 1989; Kattge et al., 2009).

Houborg et al. (2013) demonstrated that by including a semi-mechanistic relationship between these variables in the Com-

munity Land Model and using satellite-based estimates of chlorophyll to derive Vcmax, there is significant improvement in

predictions of carbon fluxes over a field site. Implementing such a semi-mechanistic link in a data assimilation system would

enable the strong constraint that SIF provides on Cab to feed more directly onto GPP. However, in this study it is assumed Cab25

and Vcmax can be resolved independently which may not be the case considering ecophysiological studies have shown the two

parameters are commonly correlated.

Almost all terrestrial carbon cycle models use down-welling radiation at the Earth’s surface as an input variable. Any un-

certainty in this forcing will translate into uncertainty in carbon fluxes including GPP, and few studies consider such uncer-

tainties.
:
A

::::::
known

:::::::::
systematic

::::
error

:::
in

::::::
forcing

:::::::
variables

::::::::::::::::::::::::::::::
(e.g. Boilley and Wald, 2015) cannot

:::
be

:::::::::
considered

::
in

:::
the

::::::
present

:::::
error30

::::::::::
propagation

::::::
system,

::::::::
however,

::
in

::::
such

:
a
::::

case
::
a
::::::::
correction

:::
to

:::
the

:::
data

::::::
should

:::
be

::::::::
performed

:::
as

:
it
::::
will

::::
bias

::::::
carbon

:::
flux

:::::::::
estimates.

:::
For

::::::
random

::::::
errors

:::
that

::::::
cannot

::
be

::::::::
removed

::::::::
however,

::::
they

::::
may

::
be

:::::::::
considered

::
in
:::
the

::::::::::
uncertainty

::
of

::::::
carbon

::::
flux

::::::::
estimates

:::::
using

::::
error

::::::::::
propagation.

:
At the global scale, Kato et al. (2012) used a perturbation study, along with modeled irradiance and remotely

22



sensed measurements to compute an uncertainty (1
:
a

::::::
random

:::::
error

:
(σ) of 12 Wm−2 for monthly gridded downward shortwave

radiation over the land. We considered this uncertainty by incorporating it into the error propagation system with SIF. By35

including this uncertainty as the prior uncertainty in GPPincreases, however, when incorporating it in with SIF the effect is

mitigated
::::
While

:::::::::
including

:::
this

::::::
forcing

::::::::::
uncertainty

::
in

:::
the

::::
prior

::::::::
increases

:::
the

::::
prior

::::::::::
uncertainty

::
of

:::::
GPP,

:::::::::::
incorporating

:::
the

::::::
former

::
in

::::
error

::::::::::
propagation

:::::::
analysis

::::
with

:::
the

:::
SIF

:::::::::
constraint

:::::::
mitigates

:::
the

::::::::::
downstream

:::::
effect

:::
on

::::
GPP. SIF can therefore provide useful

information on the SWRad forcing via a data assimilation system. The consideration of uncertainties in forcing variables such

as SWRad on terrestrial carbon fluxes is important when estimating the uncertainty in GPP. However, the effect on uncertainty5

in GPP may be strongly reduced by using SIF observations.

The results presented here demonstrate how SIF observations may be utilized to optimize a process-based terrestrial bio-

sphere model and constrain uncertainty of simulated GPP. These results are, however, model dependent. The assumption is that

the model simulates the most important processes driving SIF and GPP. Some key, remaining unknowns include how processes

such as environmental stress, 3-dimensional canopy structure effects, or nitrogen cycling may affect the SIF signal. As better10

understanding is developed on the role that these processes play, modeling capabilities can
:::
will

:
also be improved. Additionally,

a different set of prior parameter values will alter the results due to changes in the Jacobian. Use of prior knowledge, based

on ecophysiological data and its probable range, is critical to curtail this problem. The choice of how to spatially differentiate

the parameters will also affect results (Ziehn et al., 2011). Selecting an optimal parameter set that has the fewest degrees of

freedom, yet provides the best fit to the observational data is outside the scope of this study however. Implementation of a15

parameter estimation scheme in a full data assimilation system with SIF and other observational data will help address these

challenges. Earlier work by Koffi et al. (2015) demonstrated that the model can simulate the patterns of observed satellite SIF

quite well, indicating the model can ingest the data. Further work will be needed to assess how well the model can simulate

patterns of SIF with an optimized, realistic parameter set.

5 Conclusions

We assessed the ability of satellite SIF observations to constrain uncertainty in model parameters and uncertainty in spa-

tiotemporal patterns of simulated GPP using a process-based terrestrial biosphere model. The results show that there is strong

constraint of parametric uncertainties across a wide range of processes including leaf growth dynamics and leaf physiology

when assimilating just one year of SIF observations. Combined, the SIF constraint on parametric uncertainties propagates

through to a strong reduction of uncertainty in GPP. The prior uncertainty in global annual GPP is reduced by 79% from 13.05

PgCyr−1 to 2.8 PgCyr−1. Although model dependent, this result demonstrates the potential of SIF observations to improve

our understanding of GPP. We also showed that a data assimilation framework with error propagation such as this allows us to

account for uncertainty in model forcing such as SWRad. Surprisingly, by including it into this framework with SIF observa-

tions there is a net-zero effect on uncertainty in GPP due to the sensitivity of both SIF and GPP to radiation. This study is a

crucial first step toward assimilating satellite SIF data to estimate spatiotemporal patterns of GPP. With the addition of other

observational constraints such as atmospheric CO2 concentration or soil moisture there is also the possibility of accurately
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disaggregating the net
:::::
carbon

:
flux into its component fluxes, GPP and ecosystem respiration. Indeed, with these additional,

complementary observations of the terrestrial biosphere further constraint could be gained as other regions of parameter space

may
:::
can be resolved (Scholze et al., 2016).

6 Code availability

The BETHY-SCOPE model code is available in the repository at https://github.com/NortonAlex/BETHY-SCOPE-Interactive-Phenology.

The GOSAT satellite SIF data used in this paper is from the ACOS project (version b35).5

24

https://github.com/NortonAlex/BETHY-SCOPE-Interactive-Phenology


25



Appendix A

A1
::::::
Model

:::::::
Process

::::::::::
Parameters

Table A1. BETHY-SCOPE process parameters along with their prior and optimized uncertainties following SIF constraint
:
,
:::::::::
represented

::
as

:::
one

::::::
standard

:::::::
deviation. Uncertainty

::::::
Relative

:::::::::
uncertainty reduction

:::
(i.e.

::::::
effective

:::::::::
constraint) is reported for the error propagation with low-

resolution and high-resolution SIF observations.
::::
Units

:::
are:

::::::
Vcmax, µmol(CO2) m−2 s−1;

:::::
aJ,V ,

::::::::::
dimensionless

::::
ratio;

::::::::
activation

::::::
energies

:::
E,

J mol−1
:
;
::
Λ̃, m2 m−2;

:::
Tφ,

:

◦C;
:::
Tr ,

:

◦C;
:::
tc, :::::

hours;
::
tr ,

:::::
hours;

::
ξ, d−1

:
;
:::
kL, d−1

:
;
:::
τW ,

::::
days;

::::
Cab,:µg cm−2

:
;
::::
Cdm,

:
g cm−2

:
;
::::
Csm,

:::::::::::
dimensionless

::::::
fraction;

:::
hc,

::
m;

:::
leaf

:::::
width,

::
m.

:

::::
Class

#

::::::::
Description

:

Parameter Prior

Mean

Prior

Uncertainty Uncertainty

Reduction

::::::
Effective

::::::::
Constraint

(%)Low-Res.

Uncertainty

Reduction

(%)

High-Res.

L
E

A
F

PH
Y

SI
O

L
O

G
Y

1

Maximum

carboxylation rate

at 25◦C

Vcmax (TrEv) 60 12 29.3 53.5

2 Vcmax (TrDec) 90 18
25.0

52.6
:::
22.3

:

3 Vcmax (TmpEv) 41 8.2
0.8

10.8
:::
17.8

:

4 Vcmax (TmpDec) 35 7
<0.1 0.5

::
0.4

:

5 Vcmax (EvCn) 29 5.8
0.2 3.4

:::
<0.1

:

6 Vcmax (DecCn) 53 10.6
<0.1 0.2

7 Vcmax (EvShr) 52 10.4
32.8

54.3
:::
25.1

:

8 Vcmax (DecShr) 160 32 <0.10.6

9 Vcmax (C3Gr) 42 8.4
38.4

57.1
:::
31.5

:

10 Vcmax (C4Gr) 8 1.6
36.3

62.9
:::
28.3

:

11 Vcmax (Tund) 20 4
0.2 3.8

::
0.1

:

12 Vcmax (Wetl) 20 4 <0.10.1

13 Vcmax (Crop) 117 23.4
17.0

49.5
:::
10.7

:

14

Ratio of Jmax to Vcmax

aJ,V :::::
(TrEv) 1.96 0.098

0.2 2.5
::
0.1

:

15 aJ,V ::::::
(TrDec) 1.99 0.0995 0.1 1.0

16 aJ,V :::::::
(TmpEv) 2.00 0.1 <0.1 <0.1

17 aJ,V :::::::
(TmpDec)

:
2.00 0.1 <0.1<0.1

18 aJ,V :::::
(EvCn)

:
1.79 0.0895 <0.1 <0.1

19 aJ,V ::::::
(DecCn)

:
1.79 0.0895 <0.1 <0.1

20 aJ,V ::::::
(EvShr) 1.96 0.098 0.1 2.1

21 aJ,V :::::::
(DecShr) 1.66 0.083 <0.1 <0.1

22 aJ,V :::::
(C3Gr)

:
1.90 0.095 0.1 1.8

23 aJ,V :::::
(C4Gr)

:
140e-6 28e-6 <0.1<0.1

24 aJ,V :::::
(Tund) 1.85 0.0925 <0.1 <0.1

25 aJ,V :::::
(Wetl) 1.85 0.0925 <0.1<0.1

26 aJ,V :::::
(Crop) 1.88 0.094

0.2 1.9
::
0.1

26



L
E

A
F

PH
Y

SI
O

L
O

G
Y

27

::::::::
Activation

::::::
energy

:::
for

:::::
dark

::::::::
respiration

ERd 45000 2250 <0.1 0.3

28

::::::::
Activation

:::::
energy

::
for

::::::
Vcmax

EVmax 58520 2926
11.5

32.1
::
7.6

:

29

::::::::
Activation

:::::
energy

::
for

::::
KO

EKO 35948 1797
0.3 1.1

::
0.2

:

30

::::::::
Activation

:::::
energy

::
for

::::
KC

EKC 59356 2967
3.7 12.9

::
2.5

:

31

::::::::
Activation

::::::
energy

:::::
for

:::
k

:::::::
(PEPcase

:
CO2 ::::::::

specificity;

:::
C4)

Ek 50967 2548 <0.1<0.1

32

:::::::
Quantum

:::::::
efficiency

::::
(C3)

αq 0.28 0.014
8.4 25.7

::
5.2

:

33

:::::::
Quantum

:::::::
efficiency

::::
(C4)

αi 0.04 0.002
1.9 17.4

::
1.1

:

34

:::::::::::::
Michaelis-Menten

:::::::
constant

::
of

::::::
Rubisco

::
for

:
CO2

KC 460e-6 23e-6
2.8 7.6

::
2.3

:

35

:::::::::::::
Michaelis-Menten

:::::::
constant

::
of

::::::
Rubisco

::
for

:
O2

KO 0.33 0.0165 0.4 1.1

36

:::::
Temp.

:::::::::
dependency

:::
of

:
CO2

::::::::::
compensation

::::
point

:

gt 1.7e-6 8.5e-8
3.6 10.2

::
2.4

:

L
E

A
F

G
R

O
W

T
H

37

::::
Max.

:::
leaf

:::
area

:::::
index

Λ̃ 5 0.25
10.8

36.6
::
7.6

:

38

Temperature at leaf

onset

Tφ ::
(4) 10 0.5

15.0

47.2
::
9.3

:

39 Tφ :::::
(5,6,11)

:
10 0.5

24.4

48.4
:::
17.5

:

40 Tφ ::
(8) 8 0.5

4.7 31.8
::
2.5

:

41 Tφ ::::::
(9,10,12)

:
2 0.5

52.0

71.9
:::
47.6

:

42 Tφ :::
(13) 15 1

55.9

70.5
:::
50.9

:

43

Spatial range (1σ) of Tφ

Tr::::::
(4,8,13)

:
2 0.1

3.6 25.1
::
2.2

:

44 Tr::::::
(5,6,11)

:
2 0.1

1.2 5.1
::
0.9

:

45 Tr:::::::
(9,10,12) 0.5 0.1

15.8

50.6
:::
10.2

:

46

:::
Day

:::::
length

::
at

:::
leaf

:::::::
shedding

tc :::::::
(4-6,8,11)

:
10.5 0.5

40.3

59.2
:::
33.3

:

47

:::::
Spatial

::::
range

::::
(1σ)

::
of

::
tc

tr :::::::
(4-6,8,11)

:
0.5 0.1

2.1 15.8
::
1.5

:

48

::::
Initial

:::::
linear

:::
leaf

::::::
growth

ξ 0.5 0.1
25.9

51.1
:::
20.1

:

49
Inverse of leaf longevity

kL :::::::::
(2,4,6,8,9,10,

:::::
12,13)

0.1 0.05
66.0

82.8
:::
60.2

:

50 kL ::::
(5,11) 3e-3 0.5e-3

18.4

52.1
:::
12.0

:

51
Length of dry spell

before leaf shedding

τW :::::
(1,3,7) 180 60

62.6

81.2
:::
56.4

:

52 τW ::
(2) 90 30

43.4

70.5
:::
35.8

:

53 τW :::::::::
(9,10,12,13) 30 15

69.5

83.8
:::
64.8

:
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F
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O
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SI
T

IO
N

54

Chlorophyll ab content

Cab:::::
(TrEv)

:
40 20

9.1 24.3
::
7.4

:

55 Cab::::::
(TrDec)

:
15 20

64.6

74.5
:::
61.2

:

56 Cab:::::::
(TmpEv) 15 20

41.4

67.3
:::
32.8

:

57 Cab::::::::
(TmpDec) 10 20

73.4

80.7
:::
70.5

:

58 Cab::::::
(EvCn) 10 20

75.9

81.1
:::
74.3

:

59 Cab:::::::
(DecCn) 10 20

71.2

79.8
:::
67.6

:

60 Cab::::::
(EvShr) 10 20

74.9

81.3
:::
72.7

:

61 Cab:::::::
(DecShr) 10 20

70.1

79.1
:::
66.3

:

62 Cab::::::
(C3Gr) 10 20

76.0

81.5
:::
74.3

:

63 Cab::::::
(C4Gr) 5 20

85.2

88.5
:::
84.2

:

64 Cab:::::
(Tund)

:
10 20

75.1

80.9
:::
73.3

:

65 Cab:::::
(Wetl) 10 20

57.9

77.0
:::
50.7

:

66 Cab:::::
(Crop)

:
20 20

58.4

68.4
:::
55.4

:

67

:::
Dry

:::::
matter

::::::
content

Cdm 0.012 0.002 <0.1 0.1

68

:::::::
Senescent

:::::::
material

:::::
content

:

Csm 0 0.01
0.3 2.1

::
0.2

:

C
A

N
O

PY

ST
R

U
C

T
U

R
E 69 Leaf inclination distribution

function parameters

LIDFa -0.35 0.1
24.1

42.2
:::
20.7

:

70 LIDFb -0.15 0.1
16.0

46.8
:::
10.3

:

71

::::::::
Vegetation

:::::
height

hc 1 0.5
9.8 34.5

::
6.6

:

72
leafwidth

:::
leaf

::::
width

:

0.1 0.01
0.3 0.8

::
0.2

:
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Figure 9.
:::
An

::::::
example

::
of

:::
the

::::::
GOSAT

:::
SIF

:::
data

::::
and

::::::::
uncertainty

:::::::::
calculations

::::
over

:
a
:::::::::::
low-resolution

:::::
model

:::
grid

:::
cell

:::::::
centered

::::
over

::
the

:::::::
Amazon

::::
forest

::
at

::::::
3.75◦S

:::
and

:::::
65◦W.

::::
Grey

:::::
lines

::::
show

::::::::
individual

::
3°

::
×

::::::::
3°GOSAT

::::
grid

::::
cells.

:::::
Black

::::
lines

::::
show

:::
the

:::::::::
aggregated

:::
data

:::
for

:::
the

::::
7.5°

::
×

:::::::
10°model

:::
grid

::::
cell.

::::::
Bottom

::::
right

::::
shows

:::
the

::::::::
calculated

::::::::
uncertainty

::::::::
(standard

:::::::
deviation)

::
at

:::
the

:::::
model

:::
grid

::::::::
resolution

:
in
:::::
black,

::::
blue

:::
and

:::::
green.

:::
The

::::
black

:::
line

::
is
:::
the

:::::::
standard

::::
error

:::::::
calculated

:::::
using

:::
Eq.

::
4;

::
the

::::
blue

:::
line

::
is

:::
the

::::::
standard

::::
error

::::::::
calculated

:::::
using

:::
Eq.

:::
A1;

:::
the

::::
green

:::
line

::
is

:::
the

::::
same

::
as

::
the

::::
blue

:::
but

:::::
scaled

::
by

:::

√
2

::
to

::::::
account

::
for

::::::::
correlated

::::
errors

:::::
which

::
is

::::
used

::
in

:::
this

::::
study.

:

A2
:::::::
GOSAT

::::
SIF

:::::::::::
Uncertainty

:::::::::::
Calculations

::
To

:::
get

:::
the

:::::::
variance

:::
of

:
a
:::::
target

::::
grid

:::
cell

::
at
:::

the
::::::

model
::::
grid

::::::::
resolution

:::::::::
(ylat,xlon)

:::
we

::::
first

:::::::::
determine

:::
the

:::::::::::
area-weighted

::::::::
variance

::
of

::::
each

:::::::
GOSAT

::::
grid

::::
cell

::::::::
(ilat,jlon)

::::::
within

:::
that

::::::
target

::::
grid

::::
cell.

:::
The

:::::::::::::
area-weighting

:::
per

::::::::
GOSAT

:::
grid

::::
cell

:::::::::::::
( ˆAreailat,jlon)

::
is10

::::::::
calculated

::
as

:::
the

::::
area

:::::::
divided

:::
by

:::
the

::::
total

::::
area

::
of

:::
the

:::::
target

::::
grid

::::
cell.

::::
This

:::::::
enables

::
us

:::
to

::::::
account

:::
for

::::::::
different

::::
grid

:::
cell

:::::
sizes

:::::::::
considering

::::
SIF

::
is

::
in

:::::::
physical

:::::
units

:::
per

:::
unit

:::::
area.

:::
We

::::
then

::::
sum

:::
the

::::::::::::
area-weighted

::::::::
variances

:::
and

:::::
scale

::::
this

:::::::::
uncertainty

:::
by

:::
the

:::::
square

::::
root

::
of
::::

two
::::
(see

::::::::
equation

:::
4).

::::::
Scaling

:::
the

::::::::::
uncertainty

::
in

::::
this

::::
way

:::::::::
effectively

:::::::
doubles

:::
the

:::::::
variance

:::
in

::
an

:::::::::::
independent

:::::::::
dimension.

σ2
ylat,xlon =

√
2
∑

( ˆArea2ilat,jlon ·σ2
ilat,jlon)

:::::::::::::::::::::::::::::::::::::

(A1)15
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Figure 10.
:::::::
Analysis

::
of

::::::::
systematic

::::
errors

::
in
:::

the
::::::
GOSAT

::::
SIF

::::::::::
observations.

::
We

:::::
assess

:::
the

::::::::
zero-level

::::
offset

:::::::
corrected

:::::::
GOSAT

:::
SIF

::::::::
soundings

:::
over

:::
two

:::::::::
ice-covered

:::
and

:::::::
therefore

::::::::::::
non-fluorescent

::::::
regions.

:::
The

:::
first

::
is

::::::::
Antarctica

::
in

::::::
January,

::::::
between

:::::::
latitudes

::::
70◦S

::
to

::::
80◦S

:::
and

::::::::
longitudes

::::
75◦W

::
to

::::::
155◦E.

:::
The

:::::
second

::
is

:::::
central

::::::::
Greenland

::
in

::::
July,

::::::
between

:::::::
latitudes

::::
73◦N

::
to

::::
80◦N

:::
and

::::::::
longitudes

:::::
30◦W

::
to

:::::
52◦W.

::::
With

::
no

::::::::
systematic

:::
error

:::
the

::::
mean

:::
(µ)

:::::
value

::
of

::
the

:::::::::
distribution

:::::
should

::
be

:::
on

::::
zero.

A3
::::::::::
Systematic

:::::
Error

::
in

::::::::
GOSAT

:::
SIF

::::::::::::
Observations
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