
Answers to comments by Anonymous Referee #1

We thank the reviewer for his/her careful reading and his/her comments on our manuscript.
The point-by-point replies to the comments are provided below:

1. General comments:

Comment #1: section 1: It should be better motivated why the non-conservation in a specific time
interval  is  problematic.  An  interesting  example  could  be  the  spatio-temporal  pattern  of  wet
scavenging, something the authors have on mind here anyway.

Answer: Being  a  numerical  error  (which  is  often  not  small  as  we  are  showing),  it  is  always
negative. Also in the course of the paper the importance for wet scavenging should become very
clear for the readers. Nevertheless, we have added additional text as proposed so that this becomes
more clear from the beginning on.

Changes in manuscript: Added the following sentence after the first paragraph in Section 1.1: This
is obviously undesirable as it will affect wet scavenging, a very efficient removal process for many
atmospheric trace species. Wet deposition may be produced in grid cells where none should occur,
or too little in others.

Comment #2: section 3: There are plenty of very short sections and the overall structure does not
become very clear. I would suggest remove sections 3.2 and 3.7 as these paragraphs have only a
few lines, which would fit well within preceding paragraphs (3.2) or are probably not needed (3.7).
Also, the numbering of section 3.4 to 3.6 is misleading, as 3.5 and 3.6 should be subsections of
section 3.4 (general case).

Answer: We admit that the structuring of section 3 can be improved. However, we prefer shorter
sections as we think that they support comprehension by the reader. Thus, we have restructured the
subsections as follows. Following the referee’s suggestion, 3.1 is merged with 3.2 and 3.5, 3.6, 3.6.1
and 3.6.2 are integrated into subsection 3.4. Furthermore, we eliminated the old 3.6 and merged the
short paragraph from there into 3.1 (the part of the previous 3.6.1). Considering comment 4 of
referee #2, we rephrased some subsection headings.  However, we want to keep subsection 3.7, the
outcome of  the  derivation.   With  Fig.  9  and Table  1,  an  easy-to-comprehend overview of  the
algorithms derived is provided which forms the base for the remainder of the paper, and possible
implementations in other contexts. Without this, the single components would have to be pulled
together from various pages..

Changes in manuscript: We changed the structure and headings of section 3 as follows:
3 Derivation of the interpolation algorithm
3.1 Notation and basic requirements
3.2 Isolated precipitation in a single time interval
3.3 General case
3.3.1 Boundary conditions
3.3.2 Prescribing the central slope
3.3.3 Using the equal-area condition
3.3.4 Closing the algorithm under the condition of non-negativity
3.3.5 Monotonicity filter as a post-processing step
3.3.6 Alternative monotonicity filter yielding a single-sweep algorithm
3.4 Summary of the interpolation algorithms IA1 and IA2
3.5 The two-dimensional case



Additionally, we moved the short paragraph of the old 3.6 section right at the beginning of the new
section 3.3.1.

Comment #3: section 3.1: It should be made clear that the physical interpretation of g is the mean
precipitation rate. If this is not the case, eq. (4) is not physically meaningful in the context of the
discussion in the reminder of the paper.

Answer: Yes, this was a sloppy wording.

Changes in manuscript: Precipitation can then be represented replaced by The precipitation rate is
then represented

Comment  #4: section  3.1  and  3.2:  I  think  you  should  at  f(t)  ≥  0  as  third  condition  for  the
construction of the algorithm. Also, it would be good to reference Tab. 2 in this section already.

Answer: Thank you for this suggestion. You are right. This is necessary to be consistent and precise
throughout the paper.

Changes in manuscript: We added the non-negativity condition f ≥ 0 as the second condition in the
list of requirements in section 3.1. We also reference Table 2 in this context.
Our aim is to find a piecewise linear function f: [0, T] → R to serve as interpolation. We require it
1. to be continuous,
2. to preserve the non-negativity such that f satisfies

f ≥ 0 , and
3. to conserve the precipitation amount within each single time interval I_i , i. e.

Int_I_i f dt = g_i ∆t
In particular,
… Eq(7) …
These  conditions  are  also  listed  in  Table  2  as  the  three  strict  and  main  requirements  of  the
algorithm.
In accordance with this change we modified the sentence in Section 3.1 (old Section 3.2) right
before Eq. (12) as follows: In order to fulfil Eq. (5) (non-negativity) we need a solution satisfying
…

Comment #5: section 4.2.3: Instead of comparing the global maximum (which is only one data
point), it would be interesting to investigate the statistics of the maximum value during all events.

Answer: We agree. The global maximum is indeed not very significant statistically. Therefore, from
the R3h time series we derived precipitation events consisting of consecutive precipitation intervals
with a  minimum of  0.2 mm/h.  The mean of the maxima of  all  these event  is  not  used as  the
statistical parameter.

Changes in manuscript: We exchanged the maximum with the mean of the event maxima in Table 3.
Additionally we removed the description of the maxima from the second paragraph in section 4.2.3
and added:  Instead of the global maximum, we use the mean value over all precipitation event
maxima. The precipitation events are derived from R3h and defined as consecutive intervals with a
minimum value of 0.2 \unit{mm\,h^{-1}} in each precipitation interval bounded by at least one
interval with less than 0.2 \unit{mm\,h^{-1}}. The same periods are also used for the 1-hourly time
series. The mean of all event maxima in R1h is best reproduced by the IA1 algorithm whereas IFP
underestimates it by about 20 %.
We also removed Figure 15 and the corresponding text since it is no longer needed. It was just used
to describe the specific discrepancy in the global maxima values.   



2. Specific comments:

Comment #1: p. 2., l. 10ff: It sould be made clearer from the start that any linear interpolation will
conserve the total precipitation amount globally, but not with in each time interval. While 1this
becomes clear in the course of the discussion, clarifying this from the start will allow the reader to
understand the problem more quickly.

Answer: The  reviewer  says  that  “any”  linear  interpolation  would  have  the  property  of  global
conservation.  It  is  not  very  clear  to  us  what  this  should  mean  exactly,  and  how  this  should
eventually be proved. Therefore, we refrain from introducing such claims. However, we have added
“in each time interval” for clarification in the line referred to, assuming that this will suffice to
achieve the desired clarification.

Changes in manuscript: … as it does not conserve the total amount in each time interval, as will be
shown below.

Comment #2: Figure 1: Whue using supporting points shifted by half a grid-point? This is not
reflective of the IFP algorithm as suggested by later plots.

Answer: As explained both in the text and the caption,  this  figure serves to show the simplest
possible reconstruction, not the IFP algorithm (which is shown in Fig. 2). It also makes clear why
this  simple solution was not adopted for FLEXPART - precisely because of the shifting of the
supporting points which then are out of phase with the other input variables.

Changes in manuscript: No change as we think the text and caption are clear enough.

Comment #3: p. 3, l. 7: You refer to the asymmetry of problem in the time coordinate. This has not
been mentioned before and needs some more explanation.

Answer: “Asymmetry” was referring to the half-interval shift of the supporting points. As this may
be  misleading,  and in  order  to  clarify  the  situation,  we have  rephrased  the  paragraph.  Also,  a
footnote was added with respect to what is happening upstream, as spatially, the precipitation values
in a lat-lon grid are not truly integrated quantities in the current version of ECMWF's MARS.

Changes in manuscript: Horizontally, the precipitation values are averages for a grid cell around the
grid  point  to  which  they  are  ascribed,  and  FLEXPART  uses  bilinear  interpolation  to  obtain
precipitation  rates  at  particle  positions.  This  causes  the  same  problem  of  spreading  out  the
information to the neighbouring grid cells and implied smoothing.\footnote{In reality, the problem
is even more complex. In ECMWF's MARS archive, variables such as precipitation are stored on a
reduced Gaussian grid, and upon extraction to the latitude-longitude grid they are interpolated
without paying attention to mass conservation. This needs to be addressed in the future on the level
of the software used internally by the MARS system. Our discussion here is assuming that this
would already have happened, and even if that is not the case, adding another step of non-mass-
conserving interpolation makes things even worse.} However, the supporting points in space are not
shifted between precipitation and other variables as it is the case for the temporal dimension.

Comment #4: p. 6, l. 10: Why four conditions of mass conservation?

Answer: This refers to Eq. 15 in Zerroukat et al., 2002. For clarification we rephrase the sentence as
shown below.  



Changes in manuscript: The function values at the left border points are determined by an additional
spline interpolation using the condition of mass conservation in the two preceding, the current and
the following intervals.

Comment #5: p. 9, l. 18ff: T has not been defined.

Answer: Right, it is missing. However, T was already used on page 6 at the beginning of Sec. 3.1.
Hence, we added the definition there.

Changes in manuscript: Added definition of T in Sec 3.1 as  the time at the end of the period of
precipitation input data.  

Comment #6: p. 11, l. 5: Do you mean cases with either g_i = 0 & g_i+1 > 0 or g_i > 0 & g_i+1 =
0?

Answer: There was a typo. For a positive data value g_i > 0 one has to distinguish between g_{i+1}
> 0 and g_{i+1} = 0, leading to a lack of continuity.

Changes in manuscript: … a case distinction is required to deal separately with g_{i+1} > 0 and
g_{i+1} = 0 for a given g_{i} > 0.

Comment #7: p. 12, l. 13: The derivation of Eq. (24) needs a bit more explanation, as it does not
directly follow from Eq. (16). It would be good to explain that you use the conditions for the two
intervals on which f_{i+1} borders.

Answer: In fact, the choice of slope enters the argument already earlier in Eqs. (11) and (12), which
are used when deriving Eq. (23). From Eq. (23) it can then be directly inferred that condition (24) is
sufficient. Note that the numbering of equations changed.

Changes in manuscript: (starting p.12, l. 9 after f_{i}^{(1)} \ge 0 \wedge f_{i}^{(2)} \ge 0). For 
the central slope being defined as the mean Eq. (17), the subgrid function values are given by Eq. 
(12) and Eq. (13). The requirement of non-negativity of f_i^{(1)} (Eq. (21)) and f_i^{(2)} (Eq. (22)) 
then amounts to 
… Eq (24) …
Thus,  a  sufficient  condition  for  the  algorithm  to  preserve  non-negativity  is  the  restriction  
… Eq (25) …

Comment #8: Fig.  8b: It  would be nice to  have the original  reconstructed precipitation curve
plotted in the background to illustrate that also f_{i}^{1} changes.

Answer: Thank you, that is a good idea. We added the curve in the plot.

Changes in manuscript: We changed figure 8 by adding the original reconstructed curve in orange.

Comment #9: p. 14. l. 3: Add reference to left hand side of Table 1.

Answer: Good idea. We added a reference to the Table (not explicitly “left side”, as this is obvious).

Changes in manuscript:  Added a reference at the end of the sentence: …  and is summarised in
Table 1.

Comment #10: section 3.6.2: State explicitly that the main difference to IA1 is that the monotonicity



filter is applied to all intervals not only does exhibiting a “M-” or “W-”shape. Als add a reference
to the right hand side of Table 1.

Answer: Yes, this can be made clearer.

Changes  in  manuscript:  added reference  to  Table  1  after  IA2 definition:  …  henceforth  and is
summarised in Table 1.
Also add the statement:  It applies the filter to all the intervals rather than to `M'- or `W'-shaped
parts of the graph only, as it is the case in IA1.

Comment #11:  p. 18,  l.  7ff:  Reorder  the discussion in  this  paragraph so the requirements  are
discussed in the same order as listed in the Table.

Answer:  We agree  with  this  suggestion,  it  will  be  easier  to  follow in  this  way. We rephrased
subsection 4.1 so that it follows the correct order. We also found that the legends of Figures 10-13
still referred to the synthesised 3-hourly time series as R3h, even though they are called I3h (Ideal
3-hourly) in the text. Since I3h might be misleading considering the meaning of IA1 and IA2, we
decided to call this time series S3h (“Synthesised 3-hourly”).

Changes in manuscript:  Rephrased the complete section 4.1. Additionally we exchanged I3h with
S3h (Synthesised 3 hourly) and changed the figures accordingly.

Comment #12: p. 21, l. 9: Can you reformulate this sentence, it is not clear to me what you mean
with “precipitation rate weakened within two 3-h intervals”?

Answer: We agree, this is not clearly formulated.

Changes in manuscript:  … strong increase of the precipitation rate is followed by a weakening
within two 3-h intervals.

Comment #13: p. 22, l. 1f.: Do you mean you are using the data from the operational deterministic
forecasts? Please reformulate accordingly.

Answer: Yes, we rephrased the sentence.

Changes in manuscript:  Fields of both large-scale and convective precipitation in the operational
deterministic forecasts were extracted from ECMWF's MARS archive with ...

Comment #14: p. 22, l. 14: “Convective precipitation occurs less frequently”. Presumably you refer
to periods with only convective precipitation in the ECMWF forecast? Also, is this statement true
globally?

Answer: This statement is generally true as can be seen from Table 5 (lower threshold) and from the
standard deviation in Table 3, where values are higher for convective precipitation. Nevertheless,
we  eliminated  the  second  part  of  the  sentence  in  question  and  merged  the  sentence  with  the
following one.

Changes in manuscript: Convective precipitation occurs less frequently and its variability is higher
(cf.  Table  3)  than  in  the  case  of  large-scale  precipitation  which  is  more  continuous  and
homogeneous.

Comment #15:  p. 24, l. 18: This may also be due to the convection parameterisation used in the



ECMWF global model. It is well known that parameterised convection is too weak and too frequent
compared to either observations or convection-permitting model simulations.

Answer: While  we  agree  with  the  reviewer's  statement,  it  is  not  relevant  here  as  we  are  just
comparing the model's original precipitation with reconstructed precipitation. Our statement is true
as can be seen from Table 5 for the lower threshold. We removed “often falls only during a few
hours  per  day.” as  this  was  not  evaluated.  The  standard  deviation  is  higher  for  convective
precipitation  as shown in Table 3; we have added this information.

Changes  in  manuscript:  Convective  precipitation  occurs  less  frequently  (cf.  Table  5)  and  its
variability  is  higher  (cf.  Table  3)  than  in  the  case  of  large-scale  precipitation  which  is  more
continuous and homogeneous.

Comment #16: p. 28, l. 1: This is not only true for the “light-blue region”! Frequency values are
generally shifted towards higher IFP values in the first R1h bin compared to the second R1h bin.

Answer:  We have rephrased this  paragraph,  addressing the reviewer's  comment and done some
minor corrections.

Changes in manuscript: For both precipitation types, but especially for convective precipitation, an
overestimation of very low intensities is noticeable. Zooming in, the first R1h bin for the convective
precipitation  shows  enhanced  values  corresponding  to  the  bias  towards  wet  cases  in  Table
\ref{tab.drywet}. This is continued ...

3. Technical corrections:

Comment #1:  p. 2, l. 15: “... quantification of atmospheric transport,  such ...”

Answer: Ok

Changes in manuscript: changed as suggested

Comment #2:  p. 3, l. 22: remove “see” from figure reference

Answer: Ok

Changes in manuscript: changed as suggested

Comment #3:  p. 5, l. 19: ... ones (e.g., Hämmerlin and Hoffmann, 1994; Hermann, 2011).  The ...

Answer: Ok

Changes in manuscript: … ones ( e.g., Hämmerlin and Hoffmann, 1994; Hermann, 2011). The …

Comment #4:  p. 5, l. 21: ... out for example by  White et al. (2009) ...

Answer: Ok

Changes in manuscript: changed as suggested

Comment #5:  p. 5, l. 32: no comma after “problem”



Answer: Ok

Changes in manuscript: changed as suggested

Comment #6:  p. 6, l. 26: “... presented in section 1, we ...”

Answer: Ok

Changes in manuscript: … presented in Section 1, we …

Comment #7:  p. 9, l. 10: “g_i * g_{i+1} > 0 ” would be clearer

Answer: Standard math notation does not use multiplication symbols between two scalars. 

Changes in manuscript: We have added a thin space instead.

Comment #8:  p. 10, l. 12 & l. 19: These sentences are slightly awkward, please reformulate.

Answer: We have rewritten the whole text from l. 10 to l. 21. However, the sentence in l. 19 was not
altered as we think that it is sufficiently clear.

Changes in manuscript: This result is quite intuitive in the sense that it corresponds to the mean
slope of the interpolation function throughout the interval I_i . Letting k_i^{(2)} being determined
via Eq. (17), the function values f_i^{(2)} are uniquely determined by f_i^{(1)} through Eq. (9) as
… Eq. (18) …
and thus the degrees of freedom are reduced accordingly.
Other possible approaches for the central slope which have not been selected would be:

(i) Setting k_i^{(2)} = 0, which is the simplest choice for k_i^{(2)}. It was used for the isolated
precipitation event. This means that f is constant in the central subintervals I_i^{(2)}, and
thus f_i^{(1)} = f_i^{(2)}.  This choice,  however, does not reflect  a natural precipitation
curve.

(ii) A  more  advanced,  data-driven  approach  would  be  to  represent  the  tendency  of  the
surrounding data values by the centred finite difference
… Eq. (19) …
The problem here is to fulfil the condition of non-negativity if g_i is small compared to one
of its neighbouring values.

Comment #9:  p. 11, l. 9: “With  Eq. (2) ..”

Answer: Ok, we rephrased the sentence.

Changes in manuscript: With the additional Eq. (23) for the function value f_{i+1} , having Eq. (21)
and Eq. (22) for the sub-grid values f_i^(1) and f_i^(2) , respectively, the algorithm is now closed.

Comment #10:  p. 11, l. 20: Add “as discussed in the following paragraphs.”

Answer: Ok

Changes in manuscript: … looked at and are discussed in the following paragraphs.

Comment #11:  p. 11., l. 21: Remove “thereby”



Answer: Ok

Changes in manuscript: changed as suggested

Comment #12:  p. 12., l. 4: “The  preservation ... requirement,  as discussed above . In ... for the
nonnegativity ...”

Answer: Ok

Changes in manuscript: changed as suggested

Comment #13:  p. 12, l. 5: The sentence is somewhat awkward, could you reformulate just using the
equations constiting the algorithm so far>?

Answer: We agree that it is somehow awkward. We reformulated the sentence.

Changes  in  manuscript: The algorithm consisting of  Eqs.  (21),  (22),  and (23)  (function values
$f_{i+1}$  determined  via  the  geometric  mean)  is  considered  as  the  base.  It  has  the  strong
advantage not to require a case distinction between vanishing and positive values.

Comment #14:  p. 17, l. 11: “... requirements, as formulated  in ...”

Answer: Ok

Changes in manuscript: changed as suggested

Comment #15:  p. 18, l. 2: “... with constant  precipitation ...” ?

Answer: Ok

Changes in manuscript: changed as suggested

Comment #16:  p. 18, l. 6: “... with the results from the reconstruction algorithms  ... ”

Answer: Ok

Changes in manuscript: changed as suggested

Comment #17:  p. 18, l. 10: “... as the  input ...”

Answer: Ok

Changes in manuscript: changed as suggested

Comment #18:  p. 18, l. 22: “... both algorithms (not shown). ...”

Answer: Ok

Changes in manuscript: changed as suggested

Comment #19:  p. 19, l. 2: “ ... in addition requires  some ...”



Answer: Ok

Changes in manuscript: changed as suggested

Comment #20:  p. 19, l. 10: Replace the phrase “ go on”. The current formulation is rather casual
and unspecific.

Answer: Agreed. 
 
Changes in manuscript: … how these wiggles would further proceed in additional intervals, …

Comment #21:  p. 19, l. 17: “... the way, in which the monoticity filter is applied.  In ...”

Answer: Ok

Changes in manuscript: changed as suggested

Comment #22:  p. 21, l. 15ff.: “... retrieved with 1-h and 3-h  time resolution. ... algorithms, while
the 1-h data are used to validate the reconstructed  ...”

Answer: Ok

Changes in manuscript: changed as suggested

Comment  #23:  p.  22,  l.  13f.:  “...  one  dominated  by  large-scale and  another  by  convective
precipitation.”

Answer: Ok

Changes in manuscript: … dominated by large-scale and another one by convective precipitation.

Comment #24:  p. 22, l. 17: Please reformulate this sentence, it is somewhat awkward.

Answer: Ok.

Changes in manuscript: Furthermore, a criterion for the selection of the sample was that it should
exhibit monotonicity problems as discussed above.

Comment #25:  p. 22, l. 18: “Characteristic” for what?

Answer: We admit that this was the wrong word. We exchanged “characteristic” with “typical”.

Changes in manuscript: The two days are typical; they do not represent a rare or extreme situation.

Comment #26:  p. 22, l. 26 and 30f.: Please ensure you are using a consistent nomenclature for
date-times througout the paper.

Answer: Agreed. Adapted several occurrences of dates / times.

Changes in manuscript: changed date-time to e.g. 11 January 18 UTC



Comment #27:  p. 22, l. 29: “ ... last longer (Fig. 14). This  ...”

Answer: Ok

Changes in manuscript: changed as suggested

Comment #28:  p. 25, l. 14: “overall averages”: The column labelled “mean”?

Answer: Do you mean p. 24, l. 14 ? Ok, we agree that it is not consistent. We changed “averages” to
“means”.

Changes in manuscript: … overall means …

Comment #29:  Table 5, caption: “Relative deviations (_d and _w)  ...”
 
Answer: Ok

Changes in manuscript: changed as suggested

Comment #30:  p. 27, l. 1: “... more points  fall ...” ?

Answer: Ok

Changes in manuscript: changed as suggested

Comment #31:  p. 28, l. 19: The nomenclature of IA1m is slightly confusing, as IA2m refers to the
average of forward and backward execution of IA2.

Answer: We admit that this nomenclature might be slightly confusing. However, “m” stands for
“modified” and not for “mean” in both cases, which is pointed out in section 4.3, second paragraph
and section 4.1, third-last paragraph.

Changes in manuscript: No changes made as we think that the meaning of “m” is clearly stated in
the manuscript.

Comment #32:  p. 29, l. 28: “... integration of the method ... itself for the temporal ...”

Answer: Ok

Changes in manuscript: changed as suggested



Answers to comments by Referee #2 (Wayne Angevine)

We thank Dr .Wayne Angevine for his comments on our manuscript.
The point-by-point replies to the comments are provided below:

Comment #1: It would be helpful to define "extensive" and "intensive" variables.

Answer: Ok

Changes in manuscript: A short explanation / example has been added in parenthesis at the first
occurrence of each of the terms.

Comment  #2: p.6 line 10: It would be better English to say "current" rather than "actual.”

Answer: It would be better, indeed.

Changes in manuscript: We replaced “actual” with “current”.

Comment #3: p.10 line 2: Please check the part after "equivalently" to make sure the subscripts are
correct and consistent.

Answer: The subscripts are correct as can be seen from Eq. (2), but double subscripts might be
confusing. We changed the index variable from i_{T} to N to avoid that.

Changes in manuscript: In section 3.1 we changed i_{T} to N and modified the sentence: They are
available as amounts (or equivalently, as average precipitation rates) during  $N-1$  constant time
intervals of duration $\Delta t$, bounded by equidistant times $t_i$ where.
We also changed the indices in the Boundary conditions subsection 3.3.1 (old version 3.4.1).

Comment #4: Section 3.6.1: It would be helpful to state up front that this method is done as a
second pass through the data. It becomes clear later.

Answer: We agree.  This  comment  overlaps  with  comments  of  Referee  1.  In  response  to  these
comments, we have restructured section 3, and modified the subheadings so that they convey the
information that the filter is a post-processing step in IA1.  It is now also explicitly stated in the
subheading that IA2 requires a second sweep.

Changes in manuscript: We changed the title of this subsection to “Monotonicity filter as a post-
processing step”. And we modified the last sentence of the section:  The interpolation algorithm
which  uses  the  monotonicity  filter  as  a  post-processing  step  henceforth  is  called  Interpolation
Algorithm 1 (IA1) and is summarized in Table 1. 
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Abstract. Lagrangian particle dispersion models require interpolation of all meteorological input variables to the position in

space and time of computational particles. The widely used
:::::::::
widely-used

:
model FLEXPART uses linear interpolation for this

purpose, implying that the discrete input fields contain point values. As this is not the case for precipitation (and other fluxes)

which represent cell averages or integrals, a preprocessing scheme is applied which ensures the conservation of the integral

quantity with the linear interpolation in FLEXPART, at least for the temporal dimension. However, this mass conservation is5

not ensured per grid cell, and the scheme thus has undesirable properties such as temporal smoothing of the precipitation rates.

Therefore, a new reconstruction algorithm was developed, in two variants. It introduces additional supporting grid points in

each time interval and is to be used with a piecewise linear
:::::::::::::
piecewise-linear interpolation to reconstruct the precipitation time

series in FLEXPART. It fulfils the desired requirements by preserving the integral precipitation in each time interval, guaran-

teeing continuity at interval boundaries, and maintaining non-negativity. The function values of the reconstruction algorithm10

at the sub-grid and boundary grid points constitute the degrees of freedom which can be prescribed in various ways. With

the requirements mentioned it was possible to derive a suitable piecewise-linear reconstruction. To improve the monotonicity

behaviour, two versions of a filter were also developed that form a part of the final algorithm. Currently, the algorithm is meant

primarily for the temporal dimension. It was shown to significantly improve the reconstruction of hourly precipitation time

series from three-hourly input data. Preliminary considerations for the extension to additional dimensions are also included as15

well as suggestions for a range of possible applications beyond the case of precipitation in a Lagrangian particle model.

1 Motivation

In numerical models, extensive variables
:::::
(those

:::::
being

::::::::::
proportional

:::
to

::
the

:::::::
volume

::
or

::::
area

::::
that

:::
they

:::::::::
represent,

::
e.

::
g.

::
as

::::
mass

::::
and

::::::
energy)

:
are usually discretised as grid-cell integral values so that conservation properties can be fulfilled. A typical example is

the precipitation flux in a meteorological forecasting model. Usually, one is interested in the precipitation at the surface, and20

thus the quantity of interest is a two-dimensional horizontal integral (coordinates x and y) over each grid cell. Furthermore,

it is accumulated over time t during the model run, and written out at distinct intervals together with other variables, such as

1
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Figure 1. Illustration of the basic problem using an isolated precipitation event lasting one time interval represented by the thick blue

line. The amount of precipitation is given by the blue-shaded area. Simple discretisation would use the green circles as discrete grid-point

representation and interpolate linearly in between, indicated by the green line and the green-shaded area. Note that supporting points for the

interpolation are shifted by a half time interval compared to the times when other meteorological fields are available.

wind, temperature, etc. After the trivial postprocessing step of deaccumulation
:::::::::::::
de-accumulation, each value thus represents an

integral in x,y, t space – the total amount of precipitation which fell on a discrete grid cell during a discrete time interval.

In Lagrangian particle dispersion models (LPDMs) (Lin et al., 2013), it is necessary to interpolate the field variables obtained

from a meteorological model to particle positions in (three-dimensional) space and in time. The simplest option, to assign the

value corresponding to the grid cell in which the particle resides (often called “nearest-neighbour” method), is not sufficiently5

accurate. For example, in the case of precipitation, this would lead to an unrealistic, checkerboard-like deposition field. A

simple approach for improvement would be to ascribe the gridded precipitation value to the spatio-temporal centre of the

space-time cell and then perform linear interpolation between these points, as illustrated in Figure
:::
Fig.

:
1. While this works

for the case of intensive field quantities
:::::::
(velocity,

:::::::::::
temperature,

::::
etc.)

:
where gridded data truly represent point values, it is not a

satisfactory solution for extensive quantities, as it does not conserve the total amount
::
in

::::
each

::::
time

:::::::
interval, as will be shown10

below. The problem became obvious to us with respect to the precipitation field in the LPDM FLEXPART (Stohl et al., 2005).

Therefore, it will be discussed using this example, even though the problem is of a general nature and the solution proposed

has a wide range of possible applications.

1.1 Introduction of the problem at the example of precipitation in FLEXPART

FLEXPART is a Lagrangian dispersion particle
::::::
particle

:::::::::
dispersion

:
model (LPDM), which is typically applied to study air pol-15

lution, but is also used for other problems requiring the quantification of atmospheric transports
:::::::
transport, such as the global

water cycle or the exchange between the stratosphere and the troposphere, see Stohl et al. (2005). Before a FLEXPART run

::::::::
simulation

:
can be done, a separate pre-processor

::::::::::
preprocessor is used to extract the meteorological input data from the Mete-

orological Archival and Retrieval System (MARS) of the European Centre for Medium Range Weather Forecasts (ECMWF)

and prepare them for use in the model.1 (The model is also able to ingest meteorological fields from the United States National20

Center for Environmental Prediction. However, it was originally designed for ECMWF fields and we limit our discussion here

1
:::
This

::::::
software

:
is
::::::
available

::::
from

::
the

::::::::
FLEXPART

::::::::
community

:::::
website

::
in

:::::
different

::::::
versions

::
as

::::::
described

::
in https://www.flexpart.eu/wiki/FpInputMetEcmwf

:
.

2
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Figure 2. Example of so-called ‘disaggregation’ of precipitation data for the use in FLEXPART as currently implemented, with the case of

an isolated precipitation period. Note that the supporting points for the interpolation now coincide with the times when other meteorological

fields are available. Colours are used as in Fig. 1.

to this case.) Currently, a relatively simple method processes the precipitation fields in a way that is consistent with the scheme

applied in FLEXPART for all variables, linear interpolation between times where input fields are available. Under these con-

ditions, it is not possible to conserve the original amount of precipitation in each grid cell. The best option, which was realised

in the preprocessing, is conservation within the interval under consideration plus the two adjacent ones. Unfortunately, this

leads to undesired temporal smoothing of the precipitation time series – maxima are damped and minima are raised. It is even5

possible to produce nonzero
:::::::
non-zero precipitation in dry intervals bordering a precipitation period as shown in Fig. 2. The

::::
This

::
is

::::::::
obviously

::::::::::
undesirable

::
as

::
it
::::
will

:::::
affect

::::
wet

::::::::::
scavenging,

:
a
:::::

very
:::::::
efficient

:::::::
removal

:::::::
process

:::
for

:::::
many

::::::::::
atmospheric

:::::
trace

::::::
species.

::::
Wet

:::::::::
deposition

::::
may

::
be

::::::::
produced

::
in

::::
grid

::::
cells

:::::
where

::::
none

::::::
should

::::::
occur,

::
or

:::
too

::::
little

::
in

::::::
others.

::::::::
Different

:::::::
versions

::
of

:::
the

FLEXPART data extraction software refers
::::
refer to this process as ‘disaggregation’

::
or

:::::::::::::::
‘de-accumulation’.

Horizontally, the precipitation values are averages for a grid cell around the grid point to which they are ascribed. Thus, we10

don’t have the asymmetry of the time coordinate, where data are attached to the end of the integration interval. Nevertheless, the

linear interpolation causes here ,
::::
and

::::::::::
FLEXPART

::::
uses

:::::::
bilinear

::::::::::
interpolation

::
to
::::::
obtain

:::::::::::
precipitation

::::
rates

::
at

::::::
particle

:::::::::
positions.

::::
This

:::::
causes

:
the same problem of spreading out the information to the neighbouring grid cells with implied smoothing, as can

be easily seen
:::
and

:::::::
implied

:::::::::
smoothing.2

::::::::
However,

:::
the

:::::::::
supporting

:::::
points

::
in

:::::
space

:::
are

:::
not

::::::
shifted

:::::::
between

:::::::::::
precipitation

:::
and

:::::
other

:::::::
variables

::
as

::
it
::
is

:::
the

::::
case

::
for

:::
the

::::::::
temporal

:::::::::
dimension.15

The goal of this work is to develop a reconstruction algorithm for the one-dimensional temporal setting which

– strictly conserves the amount of precipitation within each single time interval,

– preserves the non-negativity,

– is continuous at the interval borders,
2
:
In
:::::
reality,

:::
the

:::::
problem

::
is
:::
even

::::
more

:::::::
complex.

:
In
::::::::

ECMWF’s
:::::
MARS

:::::
archive,

:::::::
variables

:::
such

::
as

::::::::
precipitation

:::
are

::::
stored

::
on

::
a
:::::
reduced

::::::
Gaussian

::::
grid,

:::
and

:::
upon

:::::::
extraction

::
to

::
the

::::::::::::
latitude-longitude

:::
grid

:::
they

::
are

::::::::
interpolated

::::::
without

:::::
paying

::::::
attention

:
to
::::
mass

:::::::::
conservation.

:::
This

::::
needs

::
to

::
be

::::::
addressed

::
in
::
the

:::::
future

::
on

::
the

:::
level

::
of
:::
the

:::::
software

::::
used

::::::
internally

::
by

:::
the

:::::
MARS

:::::
system.

:::
Our

:::::::
discussion

:::
here

::
is

::::::
assuming

:::
that

:::
this

::::
would

:::::
already

::::
have

::::::
happened,

:::
and

::::
even

:
if
:::
that

:
is
:::
not

::
the

::::
case,

::::
adding

:::::
another

:::
step

::
of
::::::::::::::
non-mass-conserving

:::::::::
interpolation

::::
makes

:::::
things

:::
even

:::::
worse.

3
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Figure 3. Precipitation rate linearly interpolated using a sub-grid with two additional points. Colours as in Fig. 1.

– and ideally also should reflect a natural precipitation curve. This latter condition can be understood in the sense that the

reconstruction graph should reveal
::::::
possess

:
good monotonicity properties.

– Furthermore, it should be easy and efficient to implement within the existing framework of the FLEXPART code and its

data extraction preprocessor.

These requirements on the reconstruction algorithm imply that time intervals with no precipitation remain unchanged, i. e. the5

reconstructed values vanish throughout this whole time interval, too. In the simplest scenario of an isolated precipitation event,

where in the time interval before and after the data values are zero, the reconstruction algorithm therefore has to vanish at

the boundaries of the interval, too. The additional conditions of continuity and conservation of the precipitation amount then

require to introduce sub-grid points if we want to keep a linear interpolation (see Fig. 3). The height thereby is determined

by the condition of conservation of the integral of the function over the time interval. The motivation for a linear formulation10

arises from the last point of the above list of desirable properties.

It can be noted that in principle a single sub-grid point per time interval would be sufficient. This, however, would result in

very high function values and steep slopes of the reconstructed curve, which appears to be less realistic and thus not desirable.

As we shall see in the next section, closing the algorithm for such isolated precipitation events is quite straightforward, since

the only degree of freedom constituting the height of the reconstruction function is determined by the amount of precipitation15

in the interval. However, the situation becomes much more involved if longer periods of precipitation occur, i. e., several

consecutive time intervals with positive data. Then, in general, each sub-grid function value constitutes one degree of freedom

(Fig. 4).

Therefore, in order to close the algorithm, we have to fix all of these additionally arising degrees of freedom. As a first step

we make a choice for the slope in the central subinterval, which relates the two inner sub-grid function values. Three possible20

approaches are discussed for this choice. Conservation provides a second condition. These two can be considered to determine

the two inner sub-grid points. Then, the function values at the grid points in between time intervals of positive data are left to

be prescribed, and as each point belongs to two intervals, this corresponds to the third degree of freedom. The steps leading

to the final algorithm (of which there are some variants) are presented in Sec
:::
Sect. 3. Ways for extending the one-dimensional

4
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Figure 4. Illustration of a reconstruction for longer periods with positive data values, where each sub-grid function value constitutes one

degree of freedom.

algorithms to two-dimensional setting are briefly discussed as well. Note that we use the wording ‘reconstruction algorithm’

and ‘interpolation algorithm’ interchangeably.

In the following Sec
:::
Sect. 2, some existing literature on conservative reconstruction algorithms is briefly reviewed, with

emphasis on applications used for semi-Lagrangian advection schemes in Eulerian models. To our knowledge, confirmed by

contacts with people active in this field, a piecewise linear
:::::::::::::
piecewise-linear, conservative reconstruction algorithm using a5

sub-grid has not yet been proposed.

Section 4 then presents an evaluation of the algorithms by verifying them with synthesised data and validating them with

real
::::::
original

:
data from the ECMWF where the available 1-hourly resolution serves as a reference data set and the 3-hourly

resolution as input for the interpolation algorithms. The verification demonstrates that the demanded requirements are indeed

fulfilled and the validation compares the accuracy of the new algorithms with the currently used one to show the improvements.10

The conclusions (Sec
::::
Sect. 5) summarise the findings, present an outlook for the next steps, and suggest a range of possi-

ble applications of the new reconstruction algorithm beyond the narrow case of precipitation input to a Lagrangian particle

dispersion model.

2 Possible approaches and related literature

A widely used
::::::::::
widely-used

:
form of interpolation is the well-known spline interpolation consisting of piecewise polynomials,15

which are typically chosen as cubic ones , see e.g. Hämmerlin and Hoffmann (1994); Hermann (2011)
::::::::::::::::::::::::::::::::::::::::::::::
(e. g., Hämmerlin and Hoffmann, 1994; Hermann, 2011) .

The task of finding an appropriate piecewise polynomial interpolation, which is non-negative, continuous, mass conserving and

monotonic is a challenging one. This fact has also been pointed out e.g. in
::
for

::::::::
example

::
by White et al. (2009), where it is stated

that building a reconstruction profile satisfying all these requirements is generally not possible. Typically
:
, the reconstruction

5



profiles are not continuous on the edges of the grid cells. Sufficient conditions for positive spline interpolation in form of

inequalities on the interpolation’s coefficients have been derived in Schmidt and Heß (1988).

The issue of mass-conservative interpolation emerge also in the context of semi-Lagrangian finite-volume advection schemes,

which have become very popular. These schemes, with a two-dimensional application in mind, are known under the heading of

“remapping”. Eulerian grid cells are mapped to the respective areas covered in the previous time step, and then the mass in this5

area is calculated by a reconstruction function from the available grid-cell average values (Lauritzen et al., 2010). Apart from

global interpolation functions such as Fourier methods, piecewise defined polynomials are the method of choice in this con-

text. They can be piecewise constant, linear, parabolic (second-order) or cubic (third-order). The first two options are usually

discarded as not being accurate enough. While this application shares the need for the reconstruction to be conservative and

positive definite, and the aim of preserving monotonicity, with our problem , there are some aspects where the characteristics10

of the problems are different. For the advection schemes, continuity at the cell interface is not a strict condition. However,

they need to be able to reconstruct sharp peaks inside each volume, as otherwise through the repetitive application during the

numerical integrations, strong artificial smoothing of sharp structures would result. Therefore, at least second-order and if pos-

sible higher-order methods are preferred. The drawback of higher-order reconstruction functions is their tendency to overshoot

and produce wiggles which have to be removed or reduced by some sort of filter. However, as in the remapping process one15

always integrates over some domain, this is less of an issue than in our case, where for each computational particle we need an

interpolated value at exactly one point.

An interesting example of such a semi-Lagrangian conservative remapping is given by Zerroukat et al. (2002). The coef-

ficients of the one-dimensional cubic spline in each interval are determined using the conservation of mass in the underlying

interval. The function values at the left border points are determined by an additional spline interpolation involving
:::::
using20

::
the

:::::::::
condition

::
of

:::::
mass

:::::::::::
conservation

::
in

:
the two preceding, the actual

::::::
current

:
and the following intervalsin such a way as to

satisfy four conditions of mass conservation. The function values at the right border points are determined in a similar fash-

ion. This construction in particular provides continuity. A monotonic and positive definite filter has then been applied to this

semi-Lagrangian scheme (Zerroukat et al., 2005a), which first detects regions of non-monotonic behaviour, and then locally

reduces the order of the polynomial until monotonicity is regained. An improved version of this filter without reducing the25

order of the interpolating polynomial in most cases is provided in Zerroukat et al. (2005b), where a parabolic spline is used

for interpolation. The basic algorithm in all these cases is one-dimensional, where the application to the two-dimensional case

has been explicitly demonstrated only in Zerroukat et al. (2005a), as a combination of the so-called cascade splitting and the

one-dimensional algorithm.

Considering the mentioned differences between the reconstruction problem arising in the context of semi-Lagrangian ad-30

vection schemes and of the LPDM FLEXPART, and in addition that linear interpolation is used in FLEXPART for all other

quantities and that evaluation of the interpolation function has to be done efficiently for up to millions of particles in each time

step, we have chosen to construct a non-negative, continuous and conservative reconstruction algorithm based upon piecewise

linear
:::::::::::::
piecewise-linear

:
interpolation. Contrary to standard piecewise linear

:::::::::::::
piecewise-linear methods, we divide each grid in-

6



terval into three subintervals, so that our method has some similarity with a piecewise parabolic approach while being simpler

and presumably faster.

3 Derivation of the interpolation algorithm

3.1 Notation and basic setting
:::::::::::
requirements

In accordance with the considerations presented in the introduction (Section 1)
::::
Sect.

::
1, we consider our input data to be pre-5

cipitation values defined over a period [0,T ],
:::::
where

::
T

::
is

:::
the

::::
time

::
at
::::

the
:::
end

:::
of

:::
the

::::::
period.

:::::
They

:::
are

:
available as amounts

(or equivalently, as average precipitation rates) during
:::::
N − 1

:
constant time intervals of duration ∆t, separated

:::::::
bounded

:
by

equidistant times ti where

ti = i∆t , i ∈ {0, . . . , iTN: }. (1)

The time intervals for which the precipitation amounts are defined are denoted as10

Ii = (ti, ti+1] = (i∆t,(i+ 1)∆t] for i ∈ I := {0, . . . , iT − 1N − 1
:::::

} . (2)

Precipitation can then be
:::
The

:::::::::::
precipitation

::::
rate

:
is
::::
then

:
represented as a step function g : [0,T ]→ R with values

g(t) = gi for t ∈ Ii , i ∈ I. (3)

As an abbreviation, we write g(0) = g0. The total precipitation within one time interval Ii is then given by∫
Ii

gdt = gi ∆t . (4)15

Our aim is to find a piecewise linear
:::::::::::::
piecewise-linear

:
function f : [0,T ]→ R to serve as interpolation. We require it

1. to be continuous, and

2.
::
to

:::::::
preserve

:::
the

::::::::::::
non-negativity

::::
such

:::
that

::
f
:::::::
satisfies

:

f ≥ 0 ,and
::::::::

(5)

3. to conserve the precipitation amount within each single time interval Ii, i. e.20 ∫
Ii

f dt = gi∆t . (6)

In particular,

gi = 0 ⇔ f(t) = 0 for t ∈ Ii. (7)

These two conditions

7



ti ti
(1) ti

(2) ti + 1
time

pr
ec

ip
ita

tio
n 

ra
te

fi

Ii(1)

ki
(1)

fi
(1)

Ii(2)

ki
(2)

gi

fi
(2)

Ii(3)

ki
(3)

fi + 1

g - given data
f - interpolated data

zero baseline
function values

Figure 5. Schematic overview of the basic notation in a precipitation interval with the original precipitation rate g (green) as a step function

and the interpolated data f (dark blue) as the piecewise linear
:::::::::::
piecewise-linear

:
function. The original time interval with fixed grid length ∆t

is split equidistantly in three subintervals denoted by I(1,2,3)i , with the slopes in the subintervals as denoted by k(1,2,3)i . The sub-grid function

values fi,f
(1,2)
i ,fi+1 are marked by red diamonds.

:::::
These

:::::::::
conditions

:::
are

::::
also

::::
listed

:::
in

:::::
Table

:
2
::
as

:::
the

:::::
three

:::::
strict

:::
and

:::::
main

:::::::::::
requirements

::
of

:::
the

:::::::::
algorithm.

::::
They

:
necessitate the

introduction of sub-grid points. A single sub-grid point was deemed insufficient for a realistic representation of precipitation

time series. For simplicity, we choose an equidistant sub-grid setting with two additional points

t
(1)
i = ti +

1

3
∆t and t

(2)
i = ti +

2

3
∆t = ti+1−

1

3
∆t for i ∈ I . (8)

The subintervals resulting from these sub-grid points are defined as I(1)i = (ti, t
(1)
i ] , I

(2)
i = (t

(1)
i , t

(2)
i ] , I

(3)
i = (t

(2)
i , ti+1] and5

the slopes of the interpolation algorithm f in these subintervals are denoted accordingly by k
(1)
i , k

(2)
i , k

(3)
i . The sub-grid func-

tion values are abbreviated in the following as fi := f(ti) , f
(1)
i := f(t

(1)
i ) , f

(2)
i := f(t

(2)
i ) . Fig.

:::::
Figure 5 shows a schematic

overview of these definitions.

It is evident that the function f in Ii is uniquely determined by the function values fi, f
(1)
i , f

(2)
i , fi+1, with linear interpo-

lation between them. Equivalently, the problem can be stated in terms of the slopes, such that the function f in Ii is determined10

uniquely by fi, k
(1)
i , k

(2)
i , k

(3)
i . This equivalence is based upon the relations between slopes and function values:

f
(1)
i = fi +

1

3
k
(1)
i ∆t , f

(2)
i = f

(1)
i +

1

3
k
(2)
i ∆t , fi+1 = f

(2)
i +

1

3
k
(3)
i ∆t . (9)

8



3.2 Conservation (equal-area) condition

The key requirement for the interpolation algorithm f is to preserve precipitation amount within each single time interval Ii as

specified in Eq. (6). Therefore,

Pi =

∫
Ii

f dt =

∫
Ii

gdt for ∀i ∈ I , (10)

or, equivalently, equal areas underneath function graphs of f and g. In the following, we thus refer to Eq. (10) also as the5

equal-area condition. In terms of the function values, Eq. (10) amounts (after division by ∆t) to

gi =
1

6

(
fi + fi+1 + 2(f

(1)
i + f

(2)
i )
)

=
1

6
fi +

2

6
f
(1)
i +

2

6
f
(2)
i +

1

6
fi+1 . (11)

Since the precipitation rate is by nature a non-negative quantity,
::
In

:::::
order

::
to

::::
fulfil

:::
Eq.

:
(5)

:::::::::::::
(non-negativity) we need a solution f

satisfying f ≥ 0, or equivalently
::::::::
satisfying

:

fi, f
(1)
i , f

(2)
i ≥ 0 for ∀i ∈ I . (12)10

As already mentioned above, a further consequence of the equal-area condition and the continuity condition is in particular

gi = 0 ⇒ fi = f
(1)
i = f

(2)
i = fi+1 = 0 , (13)

such that periods with zero precipitation rate remain unchanged.

3.2 Isolated precipitation event
:
in

::
a
:::::
single

:::::
time

:::::::
interval

We first demonstrate the basic idea of the interpolation algorithm for the simplest case of an isolated precipitation event, i. e.15

we assume an interval i ∈ I with gi > 0 and gi−1 = gi+1 = 0 (see Fig. 6). As Eq. (13) then holds in the surrounding intervals

Ii−1 and Ii+1, the continuity condition yields fi = fi+1 = 0 at the boundary of the interval. Moreover, as we do not want to

create artificial asymmetry in the problem, we let f be constant in the centred subinterval I(2)i , such that the only function

value left to be determined is f (1)
i = f

(2)
i , which constitutes thus the only degree of freedom in the problem. This height of the

interpolation function is now obtained via the equal-area condition Eq. (11), which in this particular case amounts to20

f
(1)
i =

3

2
gi , (14)

therewith closing the algorithm.

3.3 General case

Whereas the derivation of the algorithm for the isolated precipitation event is straightforward, the problem becomes consider-

ably more involved if consecutive intervals with non-zero precipitation occur. Treating each interval as an isolated precipitation25

event as demonstrated in Fig. 6 by forcing the function values at the original grid points to vanish would be possible, but such

an algorithm is not acceptable, as the interpolation function f has to reflect the actual course of precipitation in a realistic way.

9
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Figure 6. Isolated precipitation event (no precipitation in gi−1 and gi+1). The only degree of freedom is given by the function value

f
(1)
i = 3

2
gi and is marked by a red square.

All function values fi inbetween periods with non-zero precipitation should be positive, too. Thus, they constitute additional

degrees of freedom and need to be determined. The main challenge for a suitable interpolation algorithm lies in finding a proper

way to deal with these additional degrees of freedom.

Therefore, we now consider the case of two consecutive intervals with non-zero data gi gi+1 > 0 for some i ∈ I. The first

function value fi is assumed to be given by the algorithm in the preceding interval Ii−1, or – for the first interval – a prescribed5

boundary value. Then, since gi+1 > 0, we neither have the condition of vanishing fi+1, nor is the symmetry relation f
(1)
i = f

(2)
i

desirable generally. Thus, with given fi, in general there are the three degrees of freedom f
(1)
i , f

(2)
i , fi+1 , associated with the

interval Ii, as illustrated in Fig. 4. Since the equal-area condition corresponds to only one of them, two additional relations are

required.

3.3.1 Boundary conditions10

In the following, we assume the boundary values

f0 := f(0) and f iT N
:

:= f(T ) (15)

as being prescribed. If their values are not explicitly provided, a simple assumption is to consider the precipitation rate to be

constant in time and thus f(0) = g(0) and f(T ) = g(T ), or, equivalently, f0 = g0 and fiT = giT−1.
::::::::::
fN = gN−1.

:

10



3.3.2 Prescribing the central slope

As a means to reflect the actual course of precipitation, a natural first step is to prescribe the central slope k(2)i . We choose it as

the average of the slopes in the outer two subintervals, i. e.

k
(2)
i =

k
(1)
i + k

(3)
i

2
, (16)

which has the desirable property that it allows for the particular case k(1)i = k
(2)
i = k

(3)
i . Moreover, inserting Eq. (9), we obtain5

the equivalent expression

k
(2)
i =

fi+1− fi
∆t

. (17)

This result is quite intuitive in the sense that it corresponds to the mean slope of the interpolation function throughout the

interval Ii. ::::::
Letting

::::
k
(2)
i :::::

being
:::::::::
determined

:::
via

::::
Eq. (17),

:::
the

:::::::
function

::::::
values

::::
f
(2)
i :::

are
::::::::
uniquely

:::::::::
determined

:::
by

::::
f
(1)
i ::::::

through
::::

Eq.

(9)
:
as
:

10

f
(2)
i = f

(1)
i +

1

3
k
(2)
i ∆t = f

(1)
i +

1

3
(fi+1− fi) ,

:::::::::::::::::::::::::::::::::::::

(18)

:::
and

::::
thus

:::
the

::::::
degrees

::
of

::::::::
freedom

:::
are

::::::
reduced

:::::::::::
accordingly.

Other possible approaches
::
for

:::
the

::::::
central

:::::
slope which have not been selected are

:::::
would

:::
be:

(i)
::::::
Setting

::::::::
k
(2)
i = 0,

:::::
which

::
is
:
the simplest choice for k

(2)
i , namely k

(2)
i = 0, having, as in .

::
It
::::

was
:::::
used

:::
for the isolated

precipitation event, the consequence of .
::::
This

::::::
means

:::
that

:
f being

:
is constant in the central subintervals I(2)i , and thus in15

particular f (1)
i = f

(2)
i ; this .

::::
This

:
choice, however, does not reflect a natural precipitation curve; .

:

(ii) a
:
A

:
more advanced, data-driven approach , representing

:::::
would

::
be

:::
to

::::::::
represent the tendency of the surrounding data

values via
::
by the centred finite difference

k
(2)
i =

gi+1− gi−1

2∆t
;. (19)

the
:::
The problem here is to fulfil the condition of non-negativity if gi is small compared to one of its neighbouring values.20

Letting k
(2)
i being determined via Eq. , the function values f (2)

i are uniquely determined by f
(1)
i through Eq.

f
(2)
i = f

(1)
i +

1

3
k
(2)
i ∆t = f

(1)
i +

1

3
(fi+1− fi) ,

and thus the degrees of freedom are reduced accordingly.

3.3.3 Using the equal-area condition

Now, the function values f (1)
i are determined in a way that the equal-area condition in Eq. (11) is satisfied, which, after inserting25

Eq. (20) yields

gi =
1

18
(5fi+1 + fi) +

2

3
f
(1)
i . (20)

11



We thus obtain for the sub-grid function values

f
(1)
i =

3

2
gi−

1

12
fi−

5

12
fi+1 , (21)

f
(2)
i =

3

2
gi−

5

12
fi−

1

12
fi+1 . (22)

3.3.4 Options for closing
::::::
Closing

:
the algorithm

:::::
under

:::
the

:::::::::
condition

::
of

::::::::::::
non-negativity

Equations Eq. (21) and Eq. (22) show that the algorithm is closed once the function values at the grid points fi+1 are deter-5

mined. Thus, the function values fi+1 for indices i ∈ I with gi gi+1 > 0 still need to be determined. An obvious first choice

would be to use the arithmetic mean value of the surrounding data values gi and gi+1. However, in order to fulfil Eq. (13), a

case distinction is required to deal separately with gi+1 > 0 or gi = 0
:::
and

:::::::
gi+1 = 0

:::
for

:
a
:::::
given

::::::
gi > 0. This would lead to a lack

of continuity between the cases of precipitation equal to or only close to zero. For the latter case, the algorithm would even

produce negative values. Therefore, the arithmetic mean is not a good choice. A better choice is the geometric mean10

fi+1 =
√
gi gi+1 for i ∈ I, (23)

which has the main advantage that the case distinction is not required. Hence
::::
With

:::
the

::::::::
additional

:::
Eq.

:
(23)

::
for

:::
the

:::::::
function

:::::
value

::::
fi+1, having Eq. (21) and Eq. (22) for the sub-grid values f

(1)
i and f

(2)
i , respectively, the algorithm is now closedwith the

additional Eq. for function value fi+1. However, the problem of negative values still can arise in the case of small values in

between larger ones. This is due to the fact that for gi+1→ 0, the geometric mean
√
gigi+1 :::::::

√
gi gi+1:

converges to 0 in general15

too slowly.

A further possible approach would be to assign fi+1 = min{gi,gi+1} with k
(2)
i = 0, which fulfils the non-negativity, but

gives a non-monotonic solution curve and thus is not producing a natural precipitation curve. A less restrictive approach

would be to use fi+1 = min{f (2)
i ,f

(1)
i+1}. However, this would also lead to one slope being artificially set to zero, and thus be

incompatible with a realistic course of the precipitation. Furthermore, this solution would be implicit, as the interval Ii depends20

on the solution in Ii+1. Since the relation is via a minimum function, one would have to distinguish between all possible cases

of function values in the whole interval of precipitation, probably a too complex operation for longer periods.

We shall note that instead of prescribing the function values at the grid points directly, there are also other possible ap-

proaches. Two of them have been looked at
:::
and

:::
are

::::::::
discussed

::
in

:::
the

::::::::
following

::::::::::
paragraphs.

Instead of a function value, we might prescribe an additional slope. We thereby tested a basic finite difference approach25

in terms of the involved data values as well as a symmetric version of it. As this does not preseve monotonicity, we also

derived a global algorithm, where the slope of the right subinterval in Ii is equal to the slope in the left subinterval of the

next time interval. Thus, the solution in the time interval Ii depends on the solution in the next time interval Ii+1, such that

the algorithm cannot be solved for each time interval individually anymore, but has to be solved globally in form of a linear

system. This algorithm was shown to create better monotonicity properties, but the implementation is much more complicated30

and solving the problem
::
is clearly computationally much more expensive. All of these algorithms, however, have a common

fault, namely the violation of non-negativity. This is caused by the fact that the algorithms with prescribed slopes all rely on

12



a case distinction, whether one involved precipitation value is positive or not, and therefore are not continuous with respect to

vanishing values. One should also note that algorithms based on prescribing additionally the slopes k(3)i for gi gi+1 > 0 are not

invariant with respect to being solved forward or backward in time. This results from the asymmetry of the slopes, since when

solving backwards in time, the roles of the slopes k(3)i and k
(1)
i from the original problem are interchanged.

Another approach would be to formulate the reconstruction problem as an optimisation problem. However, for large data5

sets this turned out to be much more expensive than the ad-hoc methods described before (using the MATLAB Optimisation

Toolbox). As the final aim is to solve the interpolation problem for large data sets in three dimensions, this approach was not

further studied.

3.4 Non-negativity

As explained above, the
:::
The preservation of non-negativity is a challenging requirement

:
,
::
as

::::::::
discussed

:::::
above. In the following,10

we investigate sufficient conditions for the latter
::::::::::::
non-negativity

:
to hold. The algorithm with the

::::::::
consisting

::
of

::::
Eqs. (21),

:
(22)

:
,

:::
and

:
(23)

:
(function values fi+1 being determined via the geometric meanEq. , )

:
is considered as the base, having

:
.
:
It
::::

has the

strong advantage not to require a case distinction between vanishing and positive values. It shall be combined with the minimum

value approach which guarantees the non-negativity of the solutions. We thus now investigate which conditions on generally

prescribed non-negative function values fi are required to guarantee that also the sub-grid function values are non-negative, i. e.15

f
(1)
i ≥ 0 ∧ f

(2)
i ≥ 0. From

:::
For

:::
the

::::::
central

:::::
slope

::::
being

:::::::
defined

::
as

:::
the

:::::
mean

:::
Eq.

::::
(17),

:::
the

::::::::
sub-grid

:::::::
function

:::::
values

:::
are

:::::
given

:::
by

Eq. (21) and Eq. (22)it can be derived that this is equivalent .
::::
The

::::::::::
requirement

::
of

::::::::::::
non-negativity

:::
of

:::
f
(1)
i ::::

and
::::
f
(2)
i :::

then
::::::::
amounts

to

18gi ≥max{fi + 5fi+1, 5fi + fi+1} . (24)

With our choice Eq. for the central slope
::::
Thus, a sufficient condition for the algorithm to preserve non-negativity is the restric-20

tion

fi+1 ≤ 3min{gi, gi+1}, ∀i ∈ I . (25)

The same condition for non-negativity is obtained if the central slope is prescribed as zero, k(2)i = 0 (option (i) in Sect. 3.3.2).

With the data-driven definition Eq. (19) for the central slope, option (ii), the additional restriction

18gi ≤ |gi+1− gi−1| (26)25

would have to be fulfilled by the input data. However, this relation is often violated in realistic precipitation data, which justifies

the decision to discard this approach.

We thus return to the geometric mean Eq. (23) method and combine it with the non-negativity constraint Eq. (25) which

results in

fi+1 = min{3gi, 3gi+1,
√
gigi+1} . (27)30

We have thus obtained a piecewise-linear interpolation function determined by Eq. (27), (21) and (22) which defines a non-

negative, continuous and area-preserving algorithm, called Interpolation Algorithm 0 (IA0) henceforth.
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Figure 7. Results with the IA0 algorithm. The original precipitation rate g is shown in green with a 3-hourly resolution. The IA0 interpolated

data f on the new sub-grid with 1-hourly resolution is given in dark blue. A zero baseline is shown in black.

3.4 Improving monotonicity

3.3.1
:::::::::::
Monotonicity

:::::
filter

::
as

::
a
:::::::::::::
postprocessing

::::
step

Figure 7 illustrates the IA0 algorithm with a practical example. It fulfils the mentioned requirements, but it appears to be not

sufficiently realistic, as it does not preserve the monotonicity as present in the input data (minimum at t = 6 h).

3.3.2 Adding a monotonicity filter5

In response to this problem, we introduce a monotonicity filter which is active only in the regions where the graph of f

resembles the shape of an ‘M’ or ‘W’, or where

sgn(k
(2)
i ) · sgn(k

(3)
i ) =−1 ∧ sgn(k

(3)
i ) · sgn(k

(1)
i+1) =−1 ∧ sgn(k

(1)
i+1) · sgn(k

(2)
i+1) =−1 . (28)

In this case, we replace the function value fi+1 by

fmon
i+1 = min

{
3gi, 3gi+1,

√
(f�

i+1 f
��
i+1)+

}
(29)10

where now f�
i+1 and f��

i+1 are the values at ti+1 obtained by taking either k
(3)
i = 0 in Ii, starting from fi, or k

(1)
i+1 = 0 in

Ii+1, ending at fi+2 respectively(see Fig. 8). Since these values can become negative, we just set negative values to zero,

as indicated by the shorthand notation F+ := max{F,0} for some value F . The function values fi and fi+2 thereby remain

unchanged while the sub-grid function values in the intervals Ii and Ii+1 are recomputed accordingly to satisfy the equal-area

condition
:::
(see

::::
Fig.

::
8).15
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Figure 8. Illustration of the monotonicity filter construction. The original precipitation rate g is shown in green with a 3-hourly resolution.

The IA0 interpolated data
::::
series

:
f on

:::
from

::::
IA0,

:::::
using the new sub-grid with 1-hourly resolution,

:
is given in dark blue. A zero baseline is

shown in black. (a) At first
:
, the function value fi+1 is split in f�

i+1 and f��
i+1 shown as red squares. Other function values are recomputed as

shown with the red line where fi and fi+2 remain unchanged as shown with purple circles. (b) Second, the function value fi+1 is substituted

by the new function value fmon
i+1 :::

fmon
i+1 as marked with a red square.

:::
The

:::::::
unfiltered

:::::
graph

::
f

:::::
derived

:::
by

:::
IA0

:
is
::::::
shown

:
in
::::::
orange

::::
here,

::::
while

:::
the

:::::
filtered

:::::
graph

::::::
resulting

::::
after

:::::::::::
recomputation

::
of

:::
the

::::::::::
neighbouring

:::::
values

:
is
:::::
shown

::
in
::::
dark

::::
blue.

More precisely, given fi, we compute fi+1 by setting k
(3)
i = 0, further on denoted by f�

i+1. With Eq. (9), this amounts to

f
(2)
i = f�

i+1. According to Eq. (22), the function value f�
i+1 becomes

f�
i+1 =

18

13
gi−

5

13
fi . (30)

15



On the other hand, given fi+2, the function value f��
i+1 corresponds to the one obtained from setting k

(1)
i+1 = 0, such that

f
(1)
i+1 = f��

i+1 (with Eq. (9)) while leaving fi+2 unchanged. Then, from Eq. (21) it follows that

f��
i+1 =

18

13
gi+1−

5

13
fi+2 . (31)

The monotonicity filter then recomputes f
(1)
i ,f

(2)
i ,f

(1)
i+1,f

(2)
i+1 according to Eq. (21) and Eq. (22) with fi+1 being replaced

by fmon
i+1 from Eq. (29). The interpolation algorithm which uses the monotonicity filter

::
as

:
a
:::::::::::::

postprocessing
::::
step henceforth is5

called Interpolation Algorithm 1 (IA1)
:::
and

::
is

::::::::::
summarised

::
in

:::::
Table

::
1.

3.3.2 Built-in
::::::::::
Alternative monotonicity filter

:::::::
yielding

::
a

:::::::::::
single-sweep

:::::::::
algorithm

It is also possible to construct an algorithm which directly incorporates the idea from the monotonicity filter introduced above.

In order to apply the filter in a single sweep, we need a kind of educated guess for fi+2 as this appears in Eq. (31). We estimate

it similar to Eq. (29) as10

f̃i+2 = min{3gi+1, 3gi+2,
√
gi+1 gi+2} (32)

where the tilde indicates that it is a preliminary estimate. We can now proceed analogously to above by constructing

f�
i+1 =

18

13
gi−

5

13
fi , (33)

f��
i+1 =

18

13
gi+1−

5

13
f̃i+2 , (34)

and determine fi+1 as15

fi+1 = min
{

3gi, 3gi+1,
√

(f�
i+1 f

��
i+1)+

}
, for i ∈ I , (35)

respecting again the sufficient condition for non-negativity. Having obtained fi+1, the sub-grid function values in Ii are deter-

mined as before by Eq. (21) and Eq. (22), thus closing the algorithm. This improved version of the interpolation algorithm,

with the monotonicity filter directly built in, is called Interpolation Algorithm 2 (IA2) henceforth
:::
and

:
is
:::::::::::

summarised
::
in

:::::
Table

::
1.

:
It
::::::
applies

:::
the

:::::
filter

::
to

::
all

:::
the

:::::::
intervals

::::::
rather

::::
than

::
to

::::
‘M’-

::
or

::::::::::
‘W’-shaped

::::
parts

:::
of

::
the

::::::
graph

::::
only,

::
as

::
it

::
is

:::
the

:::
case

:::
in

:::
IA1.20

3.4 Summary of the interpolation algorithms IA1 and IA2

Three interpolation algorithms, IA0, IA1 and IA2, were developed. They were introduced on an additional sub-grid based

on the geometric mean and fulfil the conditions to be non-negative, continuous and area-conserving. The basic algorithm is

called IA0. A monotonicity filter was then introduced to improve the realism of the reconstructed function. The IA1 algorithm

requires a second sweep through the data, while IA2 has a monotonicity filter already built into the main algorithm. The25

equations defining IA1 and IA2 are listed in Table 1, and Fig. 9 illustrates all three with an example. The algorithms were

realized
::::::
realised

:
in Python and can be downloaded from the supplementary material.
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Table 1. Overview of the two algorithms IA1 and IA2. The second calculation of fi+1 in algorithm IA1 corresponds to the equation of fmon
i+1.

The superscript "mon" was neglected for
:
in
:
the definition

:::::
original

::::
form

:
of the algorithm

:::
Eq.

:::
(29)

::
is

::::::
omitted

:::
here

:::
for

::::::::
simplicity.

IA1 Ref. IA2 Ref.

f
(1)
i = 3

2
gi− 1

12
fi− 5

12
fi+1 (21) f

(1)
i = 3

2
gi− 1

12
fi− 5

12
fi+1 (21)

f
(2)
i = 3

2
gi− 5

12
fi− 1

12
fi+1 (22) f

(2)
i = 3

2
gi− 5

12
fi− 1

12
fi+1 (22)

fi+1 = min{3gi,3gi+1,
√
gigi+1} (27) f̃i+2 = min{3gi+1, 3gi+2,

√
gi+1 gi+2} (32)

if sgn(k
(2)
i ) · sgn(k

(3)
i ) =−1 ∧ (28)

sgn(k
(3)
i ) · sgn(k

(1)
i+1) =−1 ∧

sgn(k
(1)
i+1) · sgn(k

(2)
i+1) =−1 then

f�
i+1 = 18

13
gi− 5

13
fi (30) f�

i+1 = 18
13
gi− 5

13
fi (33)

f��
i+1 = 18

13
gi+1− 5

13
fi+2 (31) f��

i+1 = 18
13
gi+1− 5

13
f̃i+2 (34)

fi+1 = min
{

3gi, 3gi+1,
√

(f�
i+1 f

��
i+1)+

}
(29)∗ fi+1 = min

{
3gi, 3gi+1,

√
(f�

i+1 f
��
i+1)+

}
(35)

f
(1)
i = 3

2
gi− 1

12
fi− 5

12
fmon
i+1 (21)

f
(2)
i = 3

2
gi− 5

12
fi− 1

12
fmon
i+1 (22)

endif

3.5 The two-dimensional case

We have also carried out a preliminary investigation of the two-dimensional case. In the case of precipitation, this could be

used for horizontal interpolation. We follow the same approach and introduce a sub-grid with two additional grid points, now

for both directions.

The isolated two-dimensional precipitation event can then easily be represented on the sub-grid as a truncated pyramid. For5

multiple adjacent cells with non-zero data, this type of interpolation is, however, not suitable due to the non-vanishing values

at the boundaries of the grids which would be difficult to formulate.

A more advantageous approach is the bilinear interpolation, which defines the function in a square uniquely through its four

corner values. (Note that we assume the grid spacing equal in both directions, without loss of generality, as this can always

be achieved by simple scaling). The main idea here is to apply the bilinear interpolation in each of the nine sub-squares. We10

recall that for given function values F (Xi,Yj) := Fij , with i, j ∈ {1,2}, at the corners of an area A = [X1,X2]× [Y1,Y2], the

bilinear interpolation amounts to

F (X,Y ) =
Y2−Y

Y2−Y1

(
X2−X

X2−X1
F11 +

X −X1

X2−X1
F21

)
+

Y −Y1

Y2−Y1

(
X2−X

X2−X1
F12 +

X −X1

X2−X1
F22

)
, (36)

which corresponds to interpolating first in X at Y = Y1 and Y = Y2 and then performing another interpolation in Y (or vice

versa). Thus, the algorithm is closed if the 16 sub-grid function values in each grid cell are known, where again only one is15

determined by the conservation of mass. The case of the isolated precipitation event with vanishing boundary values is again

easily solved, since only the corner values of the centred sub-square with constant height need to be determined, amounting to
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Figure 9. Illustration of the basic IA0 algorithm in (a), with the additional monotonicity filter in algorithm IA1 in (b) and the directly

implemented filter in the algorithm IA2 in (c). The original precipitation rate g is shown in green with a 3-hourly resolution. The IA0

interpolated data f on the new sub-grid with 1-hourly resolution is given in dark blue. A zero baseline is shown in black.

one degree of freedom. This in particular demonstrates that the bilinear interpolation algorithm is a natural extension from the

one-dimensional case, since the function value in the centred sub-square of such an isolated precipitation event turns out to be

f0
ij =

9

4
gij =

(3

2

)2
gij . (37)

For the general case involving larger precipitation areas many different possibilities for prescribing the slopes and function

values arise at the sub-grid points. The geometric-mean based approach can be extended to the two-dimensional setting with5

corresponding restrictions guaranteeing non-negativity. The derivation of a full solution for the two-dimensional case is re-

served for future work.

4 Evaluation of interpolation algorithms

The evaluation of the new algorithms IA1 and IA2 was carried out in three steps. At first, the interpolation algorithms were

applied to ideal, synthetic time series to verify the fulfilment of the requirements. Next, they were validated with ECMWF data.10

Short sample sections were analysed visually. The main validation is then based on statistical metrics. The original algorithm

from the ECMWF data extraction (flex_extract) for FLEXPART was also included in the evaluation. In the following, it
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Table 2. Classification of requirements for the interpolation algorithm. They are classified into strict requirements (stRE), which are essential

and need to be fulfilled, and soft requirements (soRE), which are desirable but not absolutely necessary.

Requirements

stRE1 Mass shall be conserved in each single time interval.

stRE2 The interpolated function shall preserve non-negativity.

stRE3 The boundary transitions shall be continuous.

soRE1 The interpolated function shall remain monotonic where input data are.

soRE2 Symmetric structures shall remain symmetric.

soRE3 The interpolated curve shall be realistic and accurate.

soRE4 The algorithm shall be computationally efficient and easy to implement into the

existing framework of the FLEXPART model.

is referred to as Interpolation algorithm FLEXPART (IFP). This allows to see and quantify the improvements through the

new algorithms. The IFP is not published, but it is included in the flex_extract download at
::
on

:
the FLEXPART web site

(http://flexpart.eu/) and a python
::::::
Python

:
version of it is included in the Supplementary Material.

4.1 Verification of algorithms with synthetic data

Verification is the part of evaluation where the algorithm is tested against the requirements to show whether it is doing what5

it is supposed to do. These requirements, mentioned in the previous sections, are classified into strict requirements (main

conditions, stRE) and soft requirements (soRE). They are summarised and classified ,
:::
as

:::::::::
formulated in Table 2.

The synthetic time series for the first tests is specified with 3-hourly resolution. It consists of four isolated precipitation

events, with stationary
:::::::
constant precipitation rates during the events and durations which increase from one to four 3-h intervals.

As the variation within each 3-h interval is unknown, it is visualised as a step function. We refer to it as
::
the

:
Ideal

::::::::::
Synthesised10

3-hourly (I3h)
::::
S3h)

::::
time

:::::
series. Both new algorithms IA1 and IA2 and the currently used IFP were applied to these data.

:::
The

:::
IFP

::::::::
produces

:::::::
3-hourly

:::::::::::
disaggregated

::::::
output

:::::
which

::
is

::::::
divided

::::
into

:::::
1-hour

::::::::
segments

:::
by

:::
the

::::
usual

:::::
linear

:::::::::::
interpolation

:::::::
between

:::
the

:::::::::
supporting

::::::
points. As all three algorithms are intended to be used in connection with linear interpolation, they are visualised

by connecting the resulting supporting points with straight lines. Figure 10 shows the input data set together with all these

curves
:::
the

:::::
results

:::::
from

:::
the

::::::::::::
reconstruction

:::::::::
algorithms.15

It is easy to see that IFP violates requirement stRE1 (cf. Table 2): the mass of the first precipitation event is spread over

three intervals instead of one
::
in

:::
the

::::
first

::::
event. This leads to a reduction of the precipitation intensity in the originally rainy

interval while precipitation appears also in adjacent, originally dry intervals. This problem was already introduced in Section

1. As for the second event , the mass here is conserved within its two time intervals. A peak value is constructed which is

twice as high as
:
,
::::::::::
constituting

:::
the

:::::
basic

:::::::
problem

:::::::::
introduced

::
in

::::
Sect.

::
1.
::::
The

::::::
second

:::::
event

::
is

:::
the

::::
only

:::
one

::
in
::::
this

::::::::
synthetic

::::
time20

:::::
series

:::::
where

:::
IFP

:::::::::
conserves

::::
mass

::::::
within

::::
each

::::::::
interval.

:::
The

:::::
peak

::::
value

::::::::::
constructed

::
is

:::::
twice

:::
the

:
input precipitation rate. In the
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Figure 10. Verification of the interpolation algorithms for four simple precipitation events. The 3-hourly synthetic precipitation rate (I3h
:::
S3h)

is illustrated as a step function in light blue. Reconstructions are shown as linear connections of their respective supporting points, with the

current FLEXPART algorithm (IFP) in green, newly developed algorithm IA1 in orange, and IA2 (also new) in red
:::::::::::
(dashed-dotted).

third event, having a duration of three times 3 h
::
3-h, mass is shifted from the two outer intervals into the middle one. The

same is happening for
::::::::
Similarly,

::
in

:
the fourth event, forming

::::
mass

::
is

::::::
shifted

::::
from

:::
the

::::::
border

::
to

:::
the

::::::
central

::::::::
intervals,

::::::::
however,

:::
here

:
two local maxima separated by a local minimum in the centre of the event

::
are

:::::::
created. In all these events, symmetry and

non-negativity are conserved, hencefulfilling
:::
IFP

::::::::
produces

:
a
:::::::::::
non-negative

:::
and

::::::::::
continuous

::::::::::::
reconstruction,

::::::
hence, requirements

stRE2 and soRE2. Despite the fact that the IFP algorithm does conserve mass globally, it does not conserve the mass within5

a single time interval, thus violating the central requirement stRE1 (which motivated the search for a better solution). The

continuity requirement stRE3
:::
are

:::::::
fulfilled.

::::::::::
Concerning

:::
the

:::
soft

::::::::::::
requirements,

:::
the

:::::::::::
monotonicity

::::::::
condition

:::::::
(soRE1)

::::
may

::::::
appear

::
to

::
be

:::::::
violated

::
in

:::
the

:::::
fourth

::::::
event.

::::::::
However,

:::::
some

:::::::::::
overshooting

:
is
:::::::::
necessary

:::::
unless

:::
an

:::::::::::
instantaneous

:::::
onset

::
of

:::
the

:::::::::::
precipitation

:
at
:::

the
::::

full
:::
rate

::
is
::::::::::

postulated.
:::
The

:::::::::
symmetry

::::::::
condition

::::::::
(soRE2) is fulfilled. Requirements soRE3 and soRE4 cannot be tested

well with this short , simple and idealised case. The monotonicity condition (soRE1) appears to be violated in the fourth event,10

but we have to consider that no sub-grid behaviour of the input data is specified, thus this is only a potential violation.
:::
and

:::::
simple

:::::
case.

Concerning the behaviour of the two newly developed algorithms IA1 and IA2, we can clearly see in Fig. 10 that no mass

is spread from the wet intervals into the dry neighbourhood. For a strict verification of local mass conservation (stRE1),

we compared the integral values in each interval of the interpolated time series and I3h. The results show
::::
S3h

::::::::::
numerically15

:::
and

:::::
found

:
that mass is conserved perfectly for both algorithms. Moreover, non-negativity (stRE2) as well as the continuity

requirement (stRE3) are also fulfilled. In the representation of the input precipitation series as a step function, the precipitation

rate increases or decreases with a jump. This forces the interpolation algorithms also to have steep rises or drops of precipitation

rates and in addition require some overshoot to conserve the mass
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::::
With

::::::
respect

::
to
::::::

soRE1
::::::::::::::

(monotonicity),
:::
we

:::
are

:::::
faced

::::
with

:::
the

::::::::::::::::
already-mentioned

:::::::::::
overshooting

::::::::
behaviour. In the first two

precipitation events , our expectations for a new algorithm as formulated in Section 1.1 are certainly satisfied. In the longer

events, however, we observe a non-monotonic behaviour within the wet period
:::::
events

::::::
lasting

:::::
three

:::
and

::::
four

::::::::
intervals,

:::
the

::::
new

:::::::::
algorithms

::::::::
introduce

:
a
:::::
local

::::::::
minimum

::
in

:::
the

:::::
centre

:::
of

:::
the

::::
event. As directly intelligible, it is not possible for the interpolated

curve to directly turn into a constant value without overshoot. This would either lead to excess mass in the inner period as5

seen in the IFP algorithm, or to a lack in the outermost periods. As a compromise
::::::::
Obviously, interpolated curves have to

overshoot to compensate the non-immediate, continuous rise / drop at the border
::::::
gradual

::::
rise

:::
(or

::::
fall,

:::::::::::
respectively)

::::
near

:::
the

::::::
borders

::
of

:::::::::::
precipitation

::::::
periods. While IA1 accomplishes this within a single 3-h

::::
three

:::::
hour interval, algorithm IA2 falls off

more slowly towards the middle of the events with the consequence of non-constant behaviour extending over two intervals

:::::::
requiring

:::::::
another

::::::
interval

:
on each side

:::
for

:::::::::::
compensation. In order to investigate how these wiggles go on

:::::
would

:::::::
develop

::
in

:::
an10

::::
even

:::::
longer

:::::
event, a case with values constant during

::::
eight

:::::::
constant

::::::
values,

::::::
lasting 24 hourshas been constructed whose results

are shown in ,
::::
was

::::::::::
constructed

:
(Fig. 11. The

:
).
::

It
::::::
shows

:::
that

:::
the

:
amplitude of the wiggles in IA2 falls off rapidly. In addition,

an asymmetry can be noticed: only on the left side wiggles

:::
The

:::::::::
symmetry

::::::::
condition

:::::::
(soRE2)

::
is
::::::::

satisfied
::
by

::::
IA1

:::
but

::::
not

::
by

:::::
IA2.

::::
The

::::::
wiggles

:::
in

:::
the

:::::::
24-hour

:::::
event

::::
(Fig.

::::
11)

:
spread

beyond the second rainy interval
::
on

:::
the

:::
left, but not on the right one, where the local minimum in the second interval is a bit15

bigger. Nevertheless, the mass is still conserved in both algorithms. While these cases, and especially the discontinuous input

time serious, are not very realistic, they serve to demonstrate that a strict fulfilment of the monotonicity requirement (soRE1)

cannot be demanded. The question of monotonicity will be revisited with more realistic cases.

As mentioned, Figures 10and 11 show that the symmetry condition (soRE2) is satisfied by IA1 but not by IA2
::::
side.

::
A

::::
tiny

:::::::::
asymmetry

::
is

:::::
visible

::::
also

::
in

:::
Fig.

:::
10. The reason for this difference

:::::::
between

:::
IA1

::::
and

:::
IA2

:
is the way of

::
in

:::::
which the monotonicity20

filter application
::
is

::::::
applied. In the IA1 algorithm

:
, the filter is only applied if a condition is met (

:::
the

:::::
curve

:
is
:
‘M’

:
- or ‘W’shape,

::::::
-shaped

:
(Eq. 28), while in IA2 the filter is applied for each time interval. We would see in IA1 exactly the same behaviour as

in IA2 if we would remove the condition of Eq. (28).

Verification of the different behaviour of the interpolation algorithms for a longer constant precipitation event plotted in .

The 3-hourly synthesised precipitation rate (I3h) is illustrated as a step function in light blue, the old interpolation algorithm25

of FLEXPART (IFP) in green and the newly developed algorithms IA1 and IA2 are shown in orange and red, respectively.

Same as Figure 11, but comparing only IA2 and the modified version IA2m. It is recommended to zoom in to see the

differences clearly.

In the context of investigating symmetry, we have also run the reconstruction algorithms in the reverse direction. This

produced identical results with
::
for

:
IA1

:
, but different results for IA2. As this is not desirable, we

:::
We

::::
have

::::
also

::::
tried

::
to run IA230

in both directionsand ,
::::::
taking the mean of the resulting values for the supporting pointsis taken. This results

:
.
::::
This

::::::
yields in

a nearly symmetric
::::::::::
symmetrical

:
solution (Fig. 12) and fulfils the symmetry requirement soRE2. Thus, from now on, we are

using
:::
use this version of IA2, called

:::::
calling

::
it Interpolation Algorithm 2 modified (IA2m).

:::
The

::::::::
question

::
of

:::::::::::
monotonicity

::::
will

::
be

:::::::
revisited

::::
with

:::::
more

:::::::
realistic

:::::
cases.

:::
As

:::::::::
mentioned

::::::
above,

:::
this

::::::::
idealised

:::
test

::::
case

::
is

:::
not

:::::::
suitable

::
for

:::::::
judging

:::
the

:::::::::
fulfilment

::
of

:::::
soRE3

::::
and

::::::
soRE4.

:
35
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Figure 11.
:::::::::
Verification

:
of
:::
the

:::::::
different

:::::::
behaviour

::
of

:::
the

:::::::::
interpolation

::::::::
algorithms

:::
for

:
a
:::::
longer

:::::::
constant

:::::::::
precipitation

::::
event

::::::
plotted

:
in
:
mm h−1

:
.

:::
The

::::::
3-hourly

:::::::::
synthesised

::::::::::
precipitation

:::
rate

::::
(S3h)

::
is

::::::::
illustrated

:
as
::

a
:::
step

:::::::
function

:
in
::::
light

::::
blue,

:::
the

::
old

::::::::::
interpolation

::::::::
algorithm

:
of
::::::::::
FLEXPART

::::
(IFP)

::
in

::::
green

:::
and

:::
the

:::::
newly

:::::::
developed

:::::::::
algorithms

:::
IA1

:::
and

:::
IA2

:::
are

:::::
shown

::
in

:::::
orange

:::
and

:::
red

::::::::::::
(dashed-dotted),

:::::::::
respectively.
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Figure 12.
::::
Same

::
as

:::
Fig.

:::
11,

:::
but

::::::::
comparing

::::
only

:::
IA2

:::::
(green

::::
line)

:::
and

::
the

:::::::
modified

::::::
version

:::::
IA2m

:::
(red;

::::::::::::
dashed-dotted).

::
It

:
is
:::::::::::
recommended

::
to

::::
zoom

::
in

::
to

::
see

:::
the

::::::::
differences

::::::
clearly.

In the next step, we extended the verification to a case with more realistic, but still synthetic data (Fig. 13). Again, we can see

the non-conservative behaviour of the IFP algorithm. The new algorithms IA1 and IA2m conserve the mass within each single

interval within machine accuracy (ca. ±10−15). As even spurious negative values need to be avoided for some applications,

the results were modified by setting values within a range between 0
:::::
certain

:::::::::::
applications,

::::::
values

::
of

:::::::::
supporting

:::::
points

::::::::
resulting

::::
from

::::
IA1 and

::::
IA2m

::::::
within

:::
the

:::::
range

:::::::
between

:
−10−12

:::
and

::::
zero

:::::
were

::
set

:
to zero. Mass conservation (srRE1) and the

::
All

:::
of5
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::
the

:::::
three

:::::
strict

:::::::::::
requirements

:::::
(mass

:::::::::::
conservation, non-negativitycondition srRE2 as well as srRE3 and soRE2 ,

::::::::::
continuity) are

fulfilled. In this example it becomes evident that reconstruction of the precipitation curve with IA1 and IA2m is much more

realistic (soRE3) than for IFP. Due to the two additional supporting points per interval, curves are able to adapt better to strong

variations, and the shifting in time of peaks as observed with IFP is avoided. Nevertheless, in some cases a violation

::::
This

:::
case

::::::::
provides

::::
more

:::::::::
interesting

::::::::
structures

:::
for

:::::::
looking

::
at

:::::::::::
monotonicity

::::
than

:::
the

:::::::
idealised

::::
case

::::
with

:::::::
constant

:::::::::::
precipitation5

:::::
values

::
in
:::::

each
:::::
rainy

::::::
period.

:::
For

::::
the

::::
new

:::::::::
algorithms,

::::::
minor

:::::::::
violations of monotonicity can be observed, e. g. around hour

30, and a bit before hour 26. This corresponds to a period where a generally
::::::
smaller

:::
one

:::::
after

::::
hour

::
3.

:::::
They

:::::
occur

:::::
when

::
a

strong increase of the precipitation rate is weakened within two 3-h intervals. In a way, it thus resembles the examples shown

before, where overshooting was unavoidable
:::::::
followed

:::
by

:
a
:::::::
weaker

:::
one

::
or
::::

vice
::::::

versa.
:::::
Thus,

::::
they

::::::::
represent

:
a
::::::::
transition

:::
to

:::
the

:::::::
situation

::::::::
discussed

:::::
above

::::::
where

:::
the

:::::::::::
overshooting

::
is

:::::::::::
unavoidable,

:::
and

::
it
::
is

:::::::
difficult

::
to

:::::
judge

:::::
which

:::::::::
overshoot

::
is

:::::::
possibly

::::
still10

:::::::
realistic.

:::::::::::
Subjectively,

:::
we

:::::
would

:::::
prefer

:::
an

::::::::
algorithm

::::
that

:::::
would

:::
be

:::
less

:::::
prone

:::
to

:::
this

:::::::::::
phenomenon,

::::::::
however,

:::
we

:::::::
consider

::::
this

:::::::
deviation

:::::
from

::::::
soRE1

::
as

::::::::
tolerable.

::::
The

:::::::::
symmetry

::::::::::
requirement

:::::::
(soRE2)

::
is

:::
not

::::::
strictly

::::::
tested

::::
here,

::
as

:::
no

:::::::::
symmetric

::::::::
structure

:::
was

:::::::::
prescribed

::
as

::::::
input,

:::
but

:
it
::::
can

::
be

:::::
noted

::::
that

:::::
gross

::::::::::
asymmetries

:::
as

:::
we

:::
see

::
in

:::
IFP

:::
as

::::::
shifting

:::
of

:::::
peaks

::
to

:::
the

::::::
border

::
of

:::
an

::::::
interval

:::
do

:::
not

:::::
occur

::
in

:::
IA1

::::
and

:::::
IA2m. A clear preference for

:::
The

:::::::::::
reconstructed

:::::::::::
precipitation

::::::
curves

:::::::
resulting

::::
from

:::::::::
algorithms

:
IA1 or

:::
and IA2m cannot be derived from this example. We15

found that they both fulfil all requirements
::::
have

:
a
:::::
more

:::::::
realistic

:::::
shape

:::::::
(soRE3)

::::
than

:::
that

:::::
from

::::
IFP.

::::
Due

::
to

:::
the

:::
two

:::::::::
additional

:::::::::
supporting

:::::
points

:::
per

:::::::
interval,

::::
they

:::
are

::::
able

::
to

:::::
adapt

:::::
better

::
to

:::::
strong

:::::::::
variations.

::::::::::::
Computational

:::::::::
efficiency

:::::::
(soRE4)

::
is

:::
not

:::::
tested

::
for

::::
this

:::
still

:::::
short

:::
test

::::::
period.

:

:::::::::::
Summarising

:::
the

::::::::::
verification

::::
with

::::::::
synthetic

:::::
cases,

::
it

::
is

::::::::
confirmed

::::
that

::::
IA1

:::
and

::::::
IA2m

:::::
fulfill

:::
all

::
of

:::
the

:::::
strict

:::::::::::
requirements

:::::::
whereas

:::
IFP

::::
does

:::
not.

::::
The

:::
soft

:::::::::::
requirements

:::
are

:::::::
fulfilled

::
by

:::
the

::::
new

:::::::::
algorithms with a minor exception for the soft requirement20

of monotonicity , which is deemed acceptable.

Verification of the different behaviour of the interpolation algorithms for a complex synthetic precipitation time series. R3h

is the input data series with 3 h resolution, IFP is the linearly interpolated curve according to the current scheme in FLEXPART,

while IA1 and IA2m are the reconstructions using the new algorithms.

Having verified that the newly developed algorithms fulfil the requirements
::::::::
deficiency

:::
for

:::
the

:::::::::::
monotonicity

:::::::::
condition.

::::
Next,25

they will next be validated with real data.

4.2 Validation with ECWMF data

The validation with ECMWF data makes use of precipitation data retrieved with both 1 h and 3 h
:::::::
1-hourly

:::
and

::::::::
3-hourly time

resolution. The 3-h
:::::::
3-hourly

:
data serve as input to the algorithms, and the

::::
while

:::
the

::::::::
1-hourly

::::
data

:::
are

::::
used

:::
to

:::::::
validate

:::
the

reconstructed 1-h precipitation amounts are then compared to the true 1-h data
:::::::
1-hourly

::::::::::
precipitation

::::::::
amounts. In this way, the30

improvement of replacing IFP by one of the new algorithms can be quantified. By using a large set of data, robust results are

obtained.
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Figure 13.
:::::::::
Verification

::
of

:::
the

::::::
different

::::::::
behaviour

::
of

:::
the

::::::::::
interpolation

::::::::
algorithms

:::
for

:
a
:::::::
complex

:::::::
synthetic

::::::::::
precipitation

:::
time

::::::
series.

:::
S3h

::
is

::
the

::::
input

::::
data

:::::
series

:::
with

:::
3-h

::::::::
resolution

::::
(light

:::::
blue),

:::
IFP

::
is
:::
the

::::::
linearly

:::::::::
interpolated

:::::
curve

:::::::
according

::
to

:::
the

:::::
current

::::::
scheme

::
in
::::::::::
FLEXPART

::::::
(green),

::::
while

:::
IA1

:::::::
(orange)

:::
and

:::::
IA2m

:::
(red;

::::::::::::
dashed-dotted)

::
are

:::
the

:::::::::::
reconstructions

:::::
using

::
the

::::
new

::::::::
algorithms.

:

4.2.1 ECWMF precipitation data

Fields of both large-scale and convective precipitation
::
in

:::
the

:::::::::
operational

:::::::::::
deterministic

:::::::
forecasts

:
were extracted from ECMWF’s

MARS archive as operational deterministic forecasts with 0.5◦ resolution for the whole year 2014 and the whole globe, thus

yielding approximately 2.28 · 109 one-hourly data values (720 grid cells
:::::
points in E–W direction, 361 in N–S direction,3 8761

hours including the last hour of 2013). They were extracted as 3-hourly and as 1-hourly fields. ECMWF output distinguishes5

these two precipitation types, derived from the grid-scale cloud microphysics scheme in the case of large-scale precipitation

and from the convection scheme in the case of convective precipitation. Note that parameterised convection by definition is a

sub-gridscale process, while reported precipitation intensities are averaged over the grid cell. Precipitation data are accumulated

from the start of each forecast at 00 and 12 UTC. We used both these forecasts, so that the forecast lead time is at most 12 hh.

This is in line with typical data use in FLEXPART. Data were immediately de-accumulated to 1 h and 3 h
::
1-h

::::
and

:::
3-h

:
sums10

(see Section
::::
Sect.

:
7 on the data availability for more details).

4.2.2 Visual analysis of sample period

Two short periods in January 2014 were selected for visual inspection at a grid cell with significant precipitation, one for a

::::::::
dominated

:::
by

:
large-scale and another one for a convective rain episode

::
by

:::::::::
convective

:::::::::::
precipitation. Convective precipitation

occurs less frequently and often falls only during a few hours per day. Therefore, its temporal rate of change tends to be larger15

:::
(cf.

:::::
Table

::
5)

:::
and

::
its

:::::::::
variability

::
is

::::::
higher

:::
(cf.

:::::
Table

::
3) than in the case of large-scale precipitation which is more continuous and

3
::
As

::::::
explained

::
in

::::::
footnote

:
2
::
on

:::
page

::
3,

::::::
currently

::
the

:::::::::
precipitation

::::::
extracted

::
on

:
a
::::
lat-lon

:::
grid

::
is

:
a
::::
point

::::
value.

::
As

::
the

:::::
global

:::
grid

:::::
includes

:::
the

::::
poles,

:::
there

:::
are

::
361

:::::
points

::
per

:::::::
meridian.

:::::::::
Nevertheless,

:
as
:::::::
explained,

:::
we

::
use

:::
the

:::::
concept

::
of

:
a
::
cell

:::
also

:::::::::
horizontally,

::
as

:::
does

:::
also

::::::::
FLEXPART.
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Figure 14. Sample periods in January 2014 at the grid cell centred on 48◦N, 16.5◦W. (a) 11 Jan
:::::
January

:
00 UTC to 13 Jan

:::::
January

:
06 UTC for

convective precipitation intensity, and (b) 14 Jan
::::::
January

:
00 UTC to 17 Jan

::::::
January 00 UTC for large-scale precipitation intensity. Original

ECMWF data are shown as step functions (1-hourly: R1h
::::
(dark

::::
blue), 3-hourly: R3h

::::
(light

:::::
blue)), while the interpolation resulting from the

reconstructions
:::::::::::
reconstruction algorithms (new algorithms: IA1

::::::
(orange) and IA2m

::::
(red;

:::::::::::
dashed-dotted), current FLEXPART algorithm: IFP

:::::
(green)) are piecewise linear between the respective supporting points. A baseline is drawn in black at intensity value zero.

homogeneous. We are interested in the performance of the reconstruction algorithms for both of these types. A
:::::::::::
Furthermore,

:
a criterion for the grid cell selection was also to

::::::::
selection

::
of

:::
the

::::::
sample

::::
was

:::
that

::
it
::::::
should

:
exhibit monotonicity problems as

discussed above. The two days are characteristic but
::::::
typical;

::::
they do not represent a rare or extreme situation. The results are

shown in Fig. 14 including the reference 1-hourly and 3-hourly ECMWF data, called R1h and R3h, respectively. Note that the

same input, namely R3h, is used for all the algorithms; R1h serves for validation.5
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Similar to the synthetic cases, large discrepancies between the real ECMWF data and the interpolated data from the IFP

algorithm can be found. This is true especially for the convective precipitation, where frequently the real peaks clipped and the

mass is instead redistributed to neighbouring time intervals with lower values, leading to a significant positive bias there. The

function curves of IA1 and IA2m follow the R3h signal and are even able to capture the tendency of the R1h signal as long

as R1h does not have too much variability within the 3-h intervals of R3h. Again, in the convective part there is one position5

in time where the
::
an

::::::
interval

::::::
where monotonicity is violated. We can see the violation at the boundary of the

:
,
::::
near 11 th of

Januaryat
:::::::
January, 12 UTC. It is noticeable that

:::
The

:::::::::
secondary

::::::::
minimum

::::::
occurs

:
a
:::
bit

:::::
earlier

::
in

:
the IA1 algorithm has the small

drop of precipitation rate earlier than
::::
than

::
in

:
the IA2m algorithmalmost every time (

:
,
:::::
which

::::::
seems

::::::
typical

::
for

:::
the

::::
case

:::
of

:::
the

::::::::
ascending

:::::
graph

:::::
(vice

::::
versa

::
in

:::
the

::::::::::
descending

:::::::
sections;

:
see also Fig. 13). As far as we know it never happened vice versa.

The large-scale precipitation rate time series is smoother and precipitation events last longer . As
:
(Fig. 14shows, this

:
).

::::
This10

is easier for the reconstruction with all three algorithms. Nevertheless,
::::
there

:::
are

::::::::
occasions

::::::
which

::::
show

::
a
:::::
clear

:::::::::::
improvement

::::::::
compared

::
to

:::
the

:::
old

::::
IFP

::::::::
algorithm,

:::
for

::::::::
example,

:
the double-peak structure of the precipitation event between 15 Jan

:::::::
January,

18 UTC
:
, and 16 Jan

:::::::
January,

:
09 UTCis only reconstructed in the new algorithms IA1 and IA2m, not in IFP. However, the R1h

time series is not always captured very well, especially short
:
,
:::::
which

::
is

:::::::
missing

::
in

:::
the

:::
IFP

:::::
curve

:::
but

:::::::::::
reconstructed

:::
by

:::
the

::::
new

:::::::::
algorithms.

:::::::::
Obviously,

::::::::::
single-hour interruptions of precipitation lasting only a single hour can not be identified by any of the15

algorithms
:::::
cannot

::
be

:::::::
exactly

:::::::::::
reconstructed

:::
and

::
it

::
is

:::
not

:::::::
possible

::
to

::::::::
reproduce

:::
all

:::
the

::::
little

:::::::
detainls

::
of

:::
the

::::
R1h

::::
time

:::::
series.

Regarding the monotonicity, the large-scale precipitation time series produces a few instances with unsatisfactory monotonic

behaviour, for example on Jan 14
:::::::
January 12 UTC or on 14 Jan

::::::
January 21 UTC, in the IA1 curve while the IA2m algorithm

avoids the secondary minima in these cases (there are other cases where the behaviour is vice versa, not shown). The double

peak structure in the IA1 and IA2m reconstructions on 15 Jan
::::::
January

:
between 6 and 15 UTC are similar to the plateau-like20

ideal cases where overshooting is unavoidable.

Notwithstanding the minor problems with the monotonicity condition, the reconstructed precipitation curve from IA1 and

IA2m are much closer to the real ones than the IFP curve. Therefore, we consider requirement soRE3 as basically fulfilled.

This example raises the expectation that the new algorithms will be capable to improve the performance of the FLEXPART

model.25

4.2.3 Statistical validation

A statistical evaluation comparing the one-hourly
::::::
1-hourly

:
precipitation reconstructed by the new IA1 and IA2m algorithms

from three-hourly
:
as

::::
well

::
as

:::
by

:::
the

:::
old

:::
IFP

::::::::
algorithm

:::::
from

:::::::
3-hourly

:
input data (R3h) to the reference one-hourly

:::::::
1-hourly data

(R1h) was carried out. In addition, the three-hourly output from the old IFP algorithm was included in the evaluations, dividing

it into one-hour segments by the usual linear interpolation between the supporting points. While the R1h data directly represent30

the amount of precipitation in the respective hour, the output of the algorithms represents precipitation rates at the supporting

points of the time axis, and the hourly integrals had to be calculated, under the assumption of linear interpolation. The data

set comprises the whole year of 2014 and all grid cells on the globe as described in Section
:::
Sect.

:
4.2.1. All evaluations were

carried out separately for large-scale and convective precipitation.
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Table 3. Statistical metrics for the global large-scale and convective precipitation rates (mm h−1) of the year 2014 ECMWF data set .
::
for

:::
the

:::
year

:::::
2014. It comprises the minimum (MIN), maximum

::::
mean

::
of

::::
event

:::::::
maxima (MAX

::::
MEX,

:::
see

:::
text

:::
for

:::::::
definition), mean value (MEAN),

standard deviation (STD), skewness (SKEW), and kurtosis (KURT) of the true ECMWF R3h and R1h data as well as of the data reconstructed

by the current FLEXPART algorithm IFP and the two new algorithms IA1 and IA2m. Among the reconstructed data, those being closest to

R1h have been marked by printing in bold.

large-scale precipitation convective precipitation

MIN MAX
::::
MEX MEAN STD SKEW KURT MIN MAX

::::
MEX MEAN STD SKEW KURT

R3h 0.0 38.95
:::
0.75 0.0443 0.2139 22.39 1021.20 0.0 19.77

:::
0.85 0.0567 0.2503 9.91 155.08

R1h 0.0 46.21
:::
1.02 0.0444 0.2282 23.98 1144.16 0.0 27.75

:::
1.53 0.0567 0.3017 12.86 275.50

IFP 0.0 42.19
:::
0.81 0.0444 0.2172 23.66 1211.27 0.0 24.26

:::
0.86 0.0567 0.2462 9.95 159.43

IA1 0.0 54.39
:::
0.91 0.0444 0.2195 23.84 1188.61 0.0 27.38

:::
1.09 0.0567 0.2584 10.70 190.07

IA2m 0.0 53.48
:::
0.89 0.0444 0.2200 23.72 1168.20 0.0 27.38

:::
1.07 0.0567 0.2591 10.65 187.13

A set of basic metrics is presented in Table 3. Since all the reconstruction algorithms are conservative, either globally (IFP)

or locally (IA), the overall averages
:::::
means

:
must be identical. This is the case for all of the 1-hourly time series. However, the

average of R3h large-scale data slightly deviates from the R1h data (fourth decimal place). This can be explained as a numerical

effect, as R3h averages were calculated from fewer data. All the data sets fulfil the non-negativity requirement as indicated by

a minimum value of zero. It may come as a surprise that the maximum precipitation rate found in the convective precipitation5

is lower than in the large-scale precipitation . However, as mentioned before, this is a grid-cell-mean of sub-grid precipitation

which may explain this behaviour. The overall maximum
:::
The

::::::
column

::::::
MEX

::
in

:::::
Table

:
3
:::::::
contains

:::
the

::::::
means

::
of

:::
the

:::::::
maxima

:::
of

::
all

::::::
distinct

:::::::::::
precipitation

::::::
events.

:::::
They

::::
were

::::::
derived

:::::
from

:::
R3h

::::
and

:::
are

::::::
defined

::
as

::::::::::
consecutive

:::::::
intervals

:::::
with

::::::::::
precipitation

::::
rate

::
of

:
at
:::::
least

:::
0.2 mm h−1

:
in

::::
each

:::::::
interval

:::::::
bounded

:::
by

::
at

::::
least

:::
one

:::::::
interval

::::
with

::::
less

:::
than

::::
0.2 mm h−1.

::::
The

::::::
periods

::::
thus

:::::::
derived

:::
are

:::
also

::::
used

:::
for

:::
the

:::::::
1-hourly

:::::
time

:::::
series.

::::
The

::::
mean

:::
of

::
all

:::::
event

:::::::
maxima in R1h is well

:::
best

:
reproduced by the new reconstruction10

algorithms maxima from the R3h input data,
:::
IA1

:::::::::
algorithm whereas IFP underestimates it by about 10

::
20 %. The overall

maximum of the
::
%

:::
for large-scale R1h data set appears to better met by IFP than by

:::
and

::
45

:
%

:::
for

:::::::::
convective

::::::::::::
precipitation.

:::
The

:::::::::
respective

:::::::
numbers

:::
for IA1 or IA2m. A closer inspection of the situation (Fig. ??) shows that even though the IA version

produce a slightly too high value in the hour with the maximum, its overall shape is much more accurate
:::
are

::
10

::
%

:::
and

:::
30

::
%. The

higher-order moments (standard deviation, skewness, kurtosis) are generally underestimated by the reconstruction algorithms.15

However, the new algorithms are always closer to the R1h values than the IFP values. An exception is the kurtosis of the

large-scale precipitation which is overestimated (again, less by IA1, IA2m than by IFP).

Illustration of the large-scale precipitation event (at grid point 49◦W, 57.5◦S) with the absolute maxima of the year 2014.

The precipitation rate is presented in . The figure shows the 1- (dark blue, R1h) and 3-hourly (light blue, R3h) original ECMWF

data, the new IA1 algorithm (orange), the new IA2m algorithm (green) and the old FLEXPART algorithm (red, IFP). The black20

line represents the zero baseline.
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Table 4. Root-mean-square error (RMSE, mm h−1), normalised root-mean-square error (NMSE, mm h−1) and correlation coefficient (R)

between the interpolated data sets IFP, IA1 and IA2m and the true ECMWF data R1h, based on the global data set for the year 2014,

large-scale and convective precipitation. Note that NMSE is calculated only for data pairs clearly different from zero as described in the text.

large-scale precipitation convective precipitation

RMSE NMSE R RMSE NMSE R

IFP_R1h 0.0860 0.4270 0.927 0.1896 0.9091 0.779

IA1_R1h 0.0630 0.3330 0.961 0.1605 0.7995 0.847

IA2m_R1h 0.0610 0.3241 0.964 0.1597 0.7970 0.849

The root mean square error (RMSE), the normalised root mean square error (NMSE) and the correlation coefficient (R)

between the R1h and the reconstructed data are listed in Table 4. The NMSE is calculated as

NMSE =

√
1

N

∑
i

(R1hi− IAi)2

[(R1hi + IAi)/2]2
(38)

where only cases with (R1hi + IAi)/2 > 0.1 are considered, N being the total number of these cases. The new methods

represent a clear improvement compared to the IFP method, with IA2m being slightly better than IA1 with respect to all5

parameters. The large-scale precipitation reconstruction is obviously more accurate than that of the convective precipitation,

even though this gap is reduced by IA1 and IA2m.

Another aspect is the ability of the algorithms to conserve the ratio of dry and wet intervals (Table 5). Two different thresholds

of the precipitation intensity were chosen to separate ‘dry’ and ‘wet’. The lower one, 0.002 mm h−1 corresponds to about

0.05 mm per day (rounded 0.1 mm, the lowest non-zero value reported by meteorological stations). The higher one is 0.210

mm h−1 and indicates substantial rain or snowfall. Again, the results are reported separately for large-scale and convective

precipitation. In all cases, the reconstructions produce too many wet intervals. The relative deviations are larger for the lower

threshold, and for convective precipitation in comparison to large-scale precipitation. In all cases, the new algorithms result

in a clear improvement compared to the current IFP algorithm. For the high threshold and large-scale precipitation, however,

already IFP deviates only by 1.9 %; for convective precipitation, the relative deviation is improved from 15 % to 11 %. In the15

case of the lower threshold, the improvement is from 18 % to 13 % and 35 % to 23 %, the latter for convective precipitation.

The differences between IA1 and IA2m are marginal, with the latter being better in three of the four situations.

Finally, two-dimensional histograms (relative frequency distributions) are provided for a more detailed insight into the

relationship between the reconstructed and the true 1-h
:::
R1h values (Fig. 15). The larger scatter in the convective precipitation

compared to the large-scale one is striking. The distributions are clearly asymmetric with respect to the diagonal, especially20

for the convective precipitation. One has to be careful in the interpretation, however, because most cases are concentrated in

the lower left corner (log scale for the frequencies, spanning many orders of magnitude!). Thus, at least for the high values,

more of them
:::::
points

:
fall below the diagonal, indicating more frequent underprediction. This might be due to the short duration
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Table 5. Frequencies of dry (hd) and wet (hw) intervals in the reference (R3h, R1h) and interpolated (IFP, IA1, IA2m) precipitation data

(upper part), based on the global data set for the year 2014. Relative deviations
::
(δd:::

and
:::
δw)

:
between the three interpolations and R1h are

shown in the lower part. Two different thresholds (0.2 mm h−1 and 0.002 mm h−1) were used to separate ‘wet’ and ‘dry’. Large-scale and

convective precipitation were analysed separately. All values are in percent. The reconstructed values that match best the true R1h data are

printed in bold.

threshold = 0.002 mm h−1 threshold = 0.200 mm h−1

large-scale convective large-scale convective

precipitation precipitation precipitation precipitation

hd hw hd hw hd hw hd hw

R3h 59.74 40.26 72.11 27.89 95.39 4.61 94.06 5.94

R1h 64.72 35.28 77.62 22.38 95.49 4.51 94.72 5.28

IFP 58.21 41.79 69.79 30.21 95.40 4.60 93.93 6.07

IA1 60.16 39.84 72.51 27.49 95.42 4.58 94.13 5.87

IA2m 60.24 39.76 72.46 27.54 95.43 4.57 94.15 5.85

δd δw δd δw δd δw δd δw

IFP_R1h -10.06 18.46 -10.08 34.95 -0.09 1.87 -0.83 14.97

IA1_R1h -7.05 12.94 -6.59 22.84 -0.08 1.59 -0.63 11.29

IA2m_R1h -6.93 12.71 -6.65 23.04 -0.07 1.41 -0.60 10.78

of peaks with the highest intensity. For both precipitation types,
::
but

:::::::::
especially

:::
for

:::::::::
convective

:::::::::::
precipitation, an overestimation

of very low intensities is noticeable. Whereas for the large-scale type the IFP is more or less equally distributed in the lower

intensity range and the new algorithms are overestimating the smallest intensities. Zooming in, a thin light-blue region close

to the y-axis can be seen
::
the

::::
first

::::
R1h

:::
bin for the convective precipitation ,

:::::
shows

::::::::
enhanced

:::::
values

:
corresponding to the strong

bias towards wet cases in Table 5with the low threshold. This is continued as a general levelling off of (imagined) frequency5

isolines towards the y-axis, which corresponds to the weaker, but still present dry-wet bias with higher thresholds. Another

feature for the convective precipitation is the structure noticeable in the sector below the diagonal. Especially in the IFP plot, a

secondary maximum is visible in the light-blue area, indicating a characteristic severe underprediction. This is less pronounced

for IA1 and almost absent for IA2m. Summarising, the scatter plots indicate an improvement from IFP towards IA1 and IA2m.

A near-perfect agreement obviously cannot be expected as the information content in the 3-h input data is of course less than10

in the 1-h data. This information gap is larger for the convective precipitation which obviously has a shorter autocorrelation

time scale.
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Figure 15. Two-dimensional histogram (relative frequencies) showing the relationship between the hourly precipitation reconstructed by (a)

IFP, (b) IA1 and (c) IA2m and the true R1h precipitation, based on the global data set for the year 2014. For each axis, 100 equally-distributed

bins were used. The correlation coefficient is annotated to each plot, and the one-to-one line is shown in red.

4.3 Performance

Potential applications for the new algorithm include situations where computational performance is relevant. For the precip-

itation (and possibly other input data, see Section
::::
Sect.

:
5), both the time for the preprocessing software flex_extract (which

30



Table 6. Computing time (wall-clock) for the processing of one year of global data (ECMWF test data used in this paper) with the old IFP

algorithm and the new IA1, IA1m and IA2m algorithms, on a Linux server with Intel(R) Xeon(R) E5-2690 @ 2.90GHz CPU, single thread.

Algorithm Wall-clock time

IFP 2 h 29 min

IA1 2 h 24 min

IA1m 2 h 06 min

IA2m 2 h 56 min

includes reconstruction algorithm to calculate the supporting points) and time for interpolation in FLEXPART itself are rele-

vant, and they should not significantly exceed the current computational efforts.

During the evaluation process a computationally more efficient version of the IA1 algorithm was developed. It applies the

monotonicity filter within one sweep through the time series (filter trailing behind the reconstruction) rather than processing

the series twice. The algorithmic equations are unchanged. We refer to this version as Interpolation Algorithm IA1 modified5

(IA1m). It was verified that results are not different from the standard IA1.

The wall clock time for the application of each of the algorithms to the 1-year global test data set is listed in Table 6. This

is the time needed to reconstruct the new time series with Python and to save the data in the npz format provided by Python’s

NumPy package, which is the most efficient way to write them out. The computing time for all the new algorithms is similar

to that of the old algorithm. The fastest version is IA1m, which needs about 85 % of the time required by IFP, while the IA2m,10

the slowest version, takes about 118 % of IFP.

5 Conclusions and Outlook

5.1 Conclusions

We have provided a one-dimensional, conservative and positive-definite reconstruction algorithm suitable for the interpolation

of a gridded function whose grid values represent integrals over the grid cell, such as precipitation output from numerical15

models. The approach is based on a
:::::::::::::
one-dimensional

:
piecewise-linear function with two additional supporting points within

each grid cell, dividing the interval into three pieces.

This approach has three degrees of freedom, similar to a piecewise parabolic polynomial. They are fixed through the mass

conservation condition, the slope of the central interval which is taken as the average of the slopes of the two outer subintervals,

and the left and right border grid points (each counting as half a degree of freedom). For the latter, the geometric mean value20

of the bordering integral values is chosen. Its main advantage is that the function values vanish automatically if one of the

involved values is zero, which is a necessary condition for continuity. However, the geometric mean in general converges too

slowly with vanishing values to prevent negative values under all conditions. This led us further to derive a sufficient condition

for non-negativity and restrict the function values accordingly by these upper bounds.
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This non-negative geometric-mean-based algorithm, however, still violates monotonicity. Therefore, we further introduced

a (conservative) filter for regions where the remapping function takes an ‘M’- or ‘W’-like shape, requiring a second run

through the data (IA1). Alternatively, the filter can be applied during the first sweep immediately after the construction of

the next interval (IA1m). We also showed how this basic idea of the monotonicity filter can be directly incorporated into the

construction of an algorithm (IA2). As in this case the algorithm is not symmetric, we apply it a second time in the other5

direction and average the results (IA2m).

The evaluationpart, consisting of verification and validation, confirmed the advantages of the new algorithms IA1 (including

IA1m) and IA2m. After the verification of our requirements, each evaluation step revealed a significant improvement in the

results by the new algorithms as compared to IFP, the algorithm currently used for the FLEXPART model. Nevertheless, the

soft requirement of monotonicity has not been fulfilled perfectly but the deviation is considered to be acceptable. The modified10

version of IA1, IA1m, yields identical results to IA1 and is quite fast. However, the results of the quantitative statistical

validation would slightly favour the IA2m algorithm whose computational performance is still acceptable, even though in this

modified form the original IA2 algorithm is applied twice.

5.2 Outlook

The next steps will be the integration of
::
the

:
method into the preprocessing of the meteorological input data for the FLEXPART15

Lagrangian dispersion model and the model itself for use with the temporal interpolation of precipitation. The application to

two dimensions, intended for spatial interpolation, is also under investigation. Options include the straightforward operator

splitting
::::::::::::::
operator-splitting

:
approach as well as an extension based on bilinear interpolation with additional supporting points.

As the monotonicity filter appears to be not yet perfect, this may also be revisited.

5.3 Possible other applications of the new piecewise-linear reconstruction method20

It may be noted that there is a wide range of useful applications of such conservative reconstructions. Interestingly, at least

in the geoscientific modelling community, they have largely remained restricted to the specific problem of semi-Lagrangian

advection schemes. Therefore, we are sketching below more possible use cases.

In typical LPDMs, other extensive quantities which are being used, apart from precipitation, are surface fluxes of heat and

momentum which enter boundary-layer parameter calculations and which could be treated similarly, especially for temporal25

interpolation. The often-used three-hourly input interval is quite coarse and may clip, for example, the peak values of the

turbulent heat flux.

In many applications, output is required for single points representing measurement stations or, in the case of backward runs

(Seibert and Frank, 2004), point emitters. While FLEXPART has the option of calculating concentrations at point receptors with

a parabolic sampling kernel, the results have often been similar to simple bilinear interpolation of gridded output, probably30

because of the difficulty to determine an optimum kernel width; therefore many users produce only the gridded output and

take the point values through a nearest-neighbour or a bilinear interpolation approach. The piecewise linear
:::::::::::::
piecewise-linear
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interpolation with additional supporting points as introduced here, or one of the higher-order methods discussed in Section

::::
Sect. 2, would probably provide an improvement.

This latter example could be easily extended to all kinds of model output postprocessing, where currently too simple methods

often prevail. It should be clear that applying naive bilinear interpolation to gridded output of precipitation and other extensive

quantities, including fluxes, introduces systematic errors as highlighted in Section
::::
Sect. 1.5

Finally, this also includes contouring software. Contouring involves interpolation between neighbouring supporting points

to determine where the contour line should intersect the cell boundaries. It is obvious that linear interpolation is inadequate for

extensive quantities whose values represent grid averages. This holds in particular for precipitation, energy fluxes, and trace

species concentrations. While we cannot expect the many contouring packages to be rewritten with an option for conservative

interpolation, our method (once extended to two dimensions) provides an easy implementation through preprocessing resulting10

in an auxiliary grid with triple (1-dimensional
:::::::::::::
one-dimensional) resolution that then could be linearly interpolated without

violating mass conservation, thus being able to be used with standard contouring software.

6 Code availability

The piecewise linear
:::::::::::::
piecewise-linear reconstruction routines IA1, IA2 and IA1m are written in Python2. The code is included

in the supplementary material and is licensed under the Creative Commons Attribution 4.0 International License. For IA2m,15

IA2 has to be called with the original and the reversed time series and the results have to be averaged. The software for the

statistical evaluation (written in Python2) is available on request by contacting the second author
:
, A. Philipp (anne.philipp /at/

univie.ac.at). It relies on the NumPy (Walt et al., 2011) and SciPy (Jones et al., 2001–2017) libraries for data handling and

statistics, and on Matplotlib (Hunter, 2007) for the visualisation. The FLEXPART model as well as the flex
::::::::::::
accompanying

::::
data

::::::::
extraction software can be downloaded from the community site http://flexpart.eu/.20

7 Data availability

The precipitation data used for evaluating the interpolation algorithms were extracted from ECMWF through MARS retrievals

(ECMWF, 2017). For easy reproducibility of the results, we provide the MARS retrieval routines in the supplementary material,

licensed under the Creative Commons Attribution 4.0 International License. Note that only authorised ECMWF users have

access to the operational archive data.25

Appendix A: Theoretical aspects of the monotonicity filter

We show in the following that the monotonicity filter as introduced in Section
::::
Sect. 3.3.1 improves the monotonicity behaviour

and also does not destroy non-negativity. The conservation of mass (equal-area condition) is clearly preserved by construction.
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(i) The "M"-shape: This corresponds to the case

k
(2)
i > 0 ∧ k

(3)
i < 0 ∧ k

(1)
i+1 > 0 ∧ k

(2)
i+1 < 0 . (A1)

Then, the filter improves the monotonicity behaviour in the sense that

fmon
i+1 > fi+1 for all i ∈ I . (A2)

To see this we note that according to Eq. (17), the conditions k(2)i > 0 and k
(2)
i+1 < 0 are equivalent to5

fi < fi+1 and fi+2 < fi+1 . (A3)

Furthermore, from the condition k
(3)
i < 0 we can deduce

fi+1 < f
(2)
i =

3

2
gi−

5

12
fi−

1

12
fi+1 and thus gi >

13

18
fi+1 +

5

18
fi ,

implying in particular also

fi+1 < 3gi , and furthermore f�
i+1 =

18

13
gi−

5

13
fi > fi+1 . (A4)10

From the condition k
(1)
i+1 > 0 we can deduce in a similar fashion that

f i+1 < f
(1)
i =

3

2
gi+1−

1

12
fi+1−

5

12
fi+2 and thus gi+1 >i+1 < f

(1)
i+1 =

3

2
gi+1−

1

12
fi+1−

5

12
fi+2 and thus gi+1 >

:::::::::::::::::::::::::::::::::::::::::::::::::::::

13

18
fi+1 +

5

18
fi+2 ,

such that in particular also

fi+1 < 3gi+1 , and moreover f��
i+1 =

18

13
gi+1−

5

13
fi+2 > fi+1 . (A5)

Making use of all derived inequalities we can deduce15

fmon
i+1 = min

{
3gi,3gi+1,

√
(f�

i+1 f
��
i+1)+

}
> fi+1 .

(ii) The "W"-shape. This corresponds to the case

k
(2)
i < 0 ∧ k

(3)
i > 0 ∧ k

(1)
i+1 < 0 ∧ k

(2)
i+1 > 0 . (A6)

Again the filters
::::
filter

:
improves the monotonicity behaviour in the sense that

fmon
i+1 < fi+1 for all i ∈ I . (A7)20
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Arguing similarly, now the conditions k(2)i < 0 and k
(2)
i+1 > 0 imply

fi+1 < fi and fi+1 < fi+2 (A8)

and thus in particular

fi+1 < min{3gi,3gi+1} . (A9)

This can be easily proven by contradiction, since otherwise if fi+1 = 3gi (or fi+1 = 3gi+1), then also fi ≤ 3gi (or fi+2 ≤5

3gi+1 respectively) by construction, implying furthermore fi ≤ fi+1 (or fi+2 ≤ fi+1), which obviously contradicts (A8).

From the condition k
(3)
i > 0 we can deduce similar to above

gi <
13

18
fi+1 +

5

18
fi , and therefore f�

i+1 =
18

13
gi−

5

13
fi < fi+1 . (A10)

From k
(1)
i+1 < 0 we obtain accordingly

gi+1 <
13

18
fi+1 +

5

18
fi+2 such that f��

i+1 =
18

13
gi+1−

5

13
fi+2 < fi+1 . (A11)10

Note that in comparison to the "M" - shape above there is no lower bound for the different constructed values f�
i+1,f

��
i+1.

Thus they can take possibly negative values and care has to be taken here to ensure that the filter still preserves non-

negativity. Combining now (A9), (A10) and (A11) we can deduce

fmon
i+1 = min

{
3gi,3gi+1,

√
(f�

i+1 f
��
i+1)+

}
=
√

(f�
i+1 f

��
i+1)+ < fi+1 . (A12)
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