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Abstract. Providing reliable projections of the ice sheet contribution to future sea-level rise has become one of the main chal-

lenges of the ice sheet modelling community. To increase confidence in future projections, a good knowledge of the present-day

state of ice flow dynamics, which is critically dependent on basal conditions, is strongly needed. The main difficulty is tied

to the scarcity of observations at the ice-bed interface at the scale of the whole ice sheet, resulting in poorly constrained

parametrisations in ice sheet models. To circumvent this drawback, inverse modelling approaches can be developed to infer5

initial conditions for ice sheet models that best reproduce available data. Most often such approaches allow for a good rep-

resentation of the mean present-day state of the ice sheet but are accompanied with unphysical trends. Here, we present an

initialisation method for the Greenland ice sheet using the thermo-mechanical hybrid GRISLI ice sheet model. Our approach

is based on the adjustment of the basal drag coefficient that relates the sliding velocities at the ice-bed interface to basal shear

stress in unfrozen bed areas. This method relies on an iterative process in which the basal drag is periodically adjusted in such10

a way that the simulated ice thickness matches the observed one. The quality of the method is assessed by computing the root

mean square errors in ice thickness changes. Because the method is based on an adjustment of the sliding velocities only, the

results are discussed in terms of varying ice flow enhancement factors that control the deformation rates. We show that this

factor has a strong impact on the minimisation of ice thickness errors and has to be chosen as a function of the internal thermal

state of the ice sheet (e.g. a low enhancement factor for a warm ice sheet). While the method performance slightly increases15

with the duration of the minimisation procedure, an ice thickness RMSE of 50.3 m is obtained in only 1320 model years. This

highlights a rapid convergence and demonstrates that the method can be used for computationally expensive ice sheet models.

1 Introduction

Recent observations provide evidence that the rate of mass loss of the Greenland ice sheet (GrIS) is continuously increasing

(Mouginot et al., 2015; Rignot et al., 2015). Simulating the GrIS response under future warm periods is therefore crucial to20
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establish reliable projections of future sea-level rise at decade to century time scales (Bindschadler et al., 2013; Edwards et al.,

2014), but also to investigate the effects of ice sheet changes on the climate system (Swingedouw et al., 2013; Böning et al.,

2016; Hansen et al., 2016; Defrance et al., 2017). As a result, better constraining the GrIS evolution has become a key objective

of the climate and ice sheet modelling communities.

5

Reliable simulations of the GrIS require a proper ice sheet model initialisation procedure to avoid an unphysical model drift

which can be caused by inconsistencies between the initial conditions of the ice sheet model and the boundary conditions

(external forcing fields). These initialisation procedures consist in finding the initial physical state of the ice sheet (such as

the internal temperature), the model parameters, and sometimes the boundary conditions, that best reproduce the observations

with a minimal model drift. Recent observations, such as surface and bedrock topographies (Bamber et al., 2013) and hori-10

zontal surface velocity (Joughin et al., 2018) offer only a partial description of the GrIS current state and a major source of

uncertainty lies in the poor knowledge of the basal properties (e.g. water content in the sediment or basal dragging) and of

the internal thermomechanical conditions (e.g. temperature and deformation profile). Indeed, both the basal properties and the

internal conditions have a strong impact on the ice motion and thus on the simulated GrIS state (Weertman, 1957; Boulton

and Hindmarsh, 1987; Kulessa et al., 2017). Optimizing the initialisation procedure of ice sheet models is therefore an active15

area of research and a multidisciplinary effort. The initMIP project (Goelzer et al., 2018) gives a recent example of this ef-

fort. Its goal is to compare different initialisation techniques and to assess their impact on the dynamic responses of the models.

The goal of ice sheet model initialisation is to infer internal properties (e.g., temperature), some boundary conditions (e.g.,

basal drag) and model parameter values. To this aim, different techniques have been developed. One approach is to allow the20

ice sheet model to evolve freely over a long enough time (ice sheet spin-up). This approach has long been the most commonly

used technique to initialise ice sheet models (Huybrechts and de Wolde, 1999; Huybrechts et al., 2002; Charbit et al., 2007, and

other references in Rogozhina et al., 2011). It consists in simulating the ice sheet during one or more glacial-interglacial cycles

to account for the long-term ice sheet history and thereby to obtain internal consistency between the simulated ice sheet and

the climate forcing evolution derived from ice core records. Even if model parameters can be chosen to reduce the mismatch25

between modelled and observed present-day ice sheet state (e.g., topography, velocity), this approach may lead to important

errors. In addition, due to the long integrations needed (> 10 000 - 100 000 year long), such spin-up methods can only be used

with low computational cost models, which are often unable to properly capture fast ice flow processes. To compute the inter-

nal properties, an alternative approach is to keep the topography fixed, while vertical temperature fields, and possibly velocity

fields, are allowed to freely evolve (e.g., Sato and Greve, 2012; Seddik et al., 2012). In this case, because the simulated ice flux30

divergence is generally far from being balanced by the net mass balance (i.e. surface and basal mass balance), an artificial drift

arises when free evolving topography is restored (Goelzer et al., 2017).

A second category of initialisation methods relies on data assimilation techniques, whose goal is to infer model parameters

or poorly known boundary conditions, are also used to minimise the mismatch between model variables (most often surface35
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velocities) and observations (e.g., Arthern and Gudmundsson, 2010; Gillet-Chaulet et al., 2012; Morlighem et al., 2010). How-

ever, this approach may lead to internal inconsistencies between the simulated internal conditions (temperature and velocities)

or between the simulated ice velocities and the observational datasets, such as surface and bedrock topography. These incon-

sistencies may have a strong impact on results of forward simulations. To circumvent this drawback, other authors (e.g., Perego

et al., 2014; Mosbeux et al., 2016) developed a multi-parameter inversion technique to optimise both the sliding velocities and5

the bedrock topography in such a way that the modelled surface ice velocities match with the observed ones. This allows the

set of initial conditions to be self-consistent. However, if not constrained by observed ice thickness, these methods may lead

to unrealistic simulated topography. An alternative approach, which avoids the previously mentioned shortcomings, consists in

considering only the observed ice sheet geometry as the final target by finding appropriate basal conditions (generally the basal

drag coefficient, see Sect. 2) that minimise the differences between observed and simulated ice thickness (Pollard and DeConto,10

2012; Pattyn, 2017). However, methods that choose to invert the basal drag coefficient only are not able to correct ice thickness

errors in regions where there is no sliding (i.e. where bed is frozen). Moreover, while inverse methods are designed to produce

an ice sheet state close to observations, the inferred basal drag coefficient may cancel errors coming from erroneous simulated

basal temperatures and/or model physics shortcomings. Yet, as outlined by Pollard and DeConto (2012), the risk of cancelling

errors is of lesser importance compared to those related to inconsistencies between internal conditions and surface properties15

that will likely to be considerably reduced with expected future improvements in ice sheet models and better observations of

basal conditions.

Here, we present a new iterative initialisation procedure that relies on the same basic principles as those developed by Pollard

and DeConto (2012) (referred to as PDC12 in the following) and applied by Pattyn (2017) for the Antarctic ice sheet using20

linear and non-linear sliding laws. Similarly to PDC12, we compute the basal drag coefficient that minimises the error in the

simulated ice thickness and relates basal stresses to basal velocities. However, while PDC12 requires long (multi-millennial)

integrations for the method to converge, we suggest instead an iterative method of short (decadal to centennial) integrations

starting from the observed ice thickness. Our iterative method ensures a more rapid convergence and is thus suitable for com-

putationally expensive models.25

The paper is organised as follows. In Sect. 2 we present the main characteristics of the ice sheet model used in this study.

Section 3 describes the iterative minimisation procedure in detail. The main results are presented in Sect. 4 and sensitivity

experiments in Sect. 5. These sections are followed by a discussion and the main conclusions of the present study (Sect. 6).

2 The ice sheet model GRISLI30

The GRISLI ice sheet model was first designed to describe the Antarctic ice sheet (Ritz et al., 2001) and further adapted to

the Northern Hemisphere ice sheets (Peyaud et al., 2007). The version used in this study has been specifically developed for

Greenland (Quiquet et al., 2012) with a horizontal resolution of 5 km x 5 km (301 x 561 grid points) and 21 evenly spaced
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vertical levels. GRISLI accounts for the coupled behaviour of temperature and velocity fields. It relies on basic principles

of mass, heat and momentum conservation. The evolution of ice sheet geometry is a function of surface mass balance, ice

dynamics and bedrock altitude. Since this study only deals with present-day steady-state simulations, the module describing

the isostatic adjustment is not activated here. The evolution of the ice thickness is governed by the mass balance equation:

∂H

∂t
=−∇(UGH)+SMB− bmelt (1)5

where H is the ice thickness, UG is the depth-averaged velocity (2D vector), SMB is the surface mass balance and bmelt is

the basal melting.

The ice flow velocity is derived from a simplified formulation of the Stokes equations (i.e. the stress balance) using the

shallow-ice (Hutter, 1983) and shallow-shelf (MacAyeal, 1989) approximations. The shallow-ice approximation (SIA) assumes10

that, owing to the small ratio of vertical to horizontal dimensions of the ice sheet, longitudinal stresses can be neglected with

respect to vertical shearing along the steepest slope. Conversely, in the shallow-shelf approximation (SSA), the horizontal

strain rates become dominant and the horizontal velocities do not vary with depth. In the model, the velocities are computed

as the heuristic sum of the SSA and the SIA components, as in Bueler and Brown (2009) but with no-weighting function

(Winkelmann et al., 2011). In this case, the SSA velocity is used as the sliding velocity. We assume no-slip conditions for a15

frozen bed (i.e. basal temperature below the melting point), and in these conditions, the SSA velocity is set to 0. In the model

version used in this study, we assume a linear viscous till with a uniform thickness, in which the basal shear stress (τb) and

basal velocity (ub) are related via the following expression:

τb =−βub (2)

where β is the basal drag coefficient and varies with space.20

To describe the effect of ice rheology, the deformation rate and stresses are related via the Glen’s flow law (Glen et al.,

1957). As in other large scale ice sheet models, GRISLI uses a flow enhancement factor (Ef) in the Glen’s flow law to artifi-

cially account for the impact of ice anisotropy on the deformation rate. This enhancement factor depends on the stress regime

(e.g., Huybrechts, 1990). Lower enhancement factors lead to lower deformation rates and as such to slower ice velocities. The25

grounding line position is defined according to a flotation criterion and floating points are treated following the SSA only.

Calving physics is not explicitly computed, but if a grid point at the ice-shelf front fails at maintaining a thickness threshold, it

is automatically calved (Peyaud et al., 2007). The ice thickness cut-off threshold is set to 250 m.

Since GRISLI is thermo-mechanically coupled, the ice temperature influences the ice velocity via the viscosity. The temper-30

ature is computed both in the ice and in the bedrock by solving a time-dependent heat equation. The temperature signal itself

depends on ice deformation, surface temperature forcing and geothermal heat flux.
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3 Iterative minimisation procedure

The basic principle of inverse modelling approaches for ice sheet initialisation procedure is to adjust the basal drag coefficient

(β) which varies spatially, in order to reduce the mismatch between the simulated surface ice velocities and/or the ice sheet

geometry and the observed ones.

While numerous studies are based on fitting the modelled ice velocities (e.g., Gudmundsson and Raymond, 2008; Arthern5

and Gudmundsson, 2010; Morlighem et al., 2010; Gillet-Chaulet et al., 2012; Perego et al., 2014), or both surface velocities

and basal topography (Perego et al., 2014; Mosbeux et al., 2016), only few authors opted for fitting ice surface elevation (Pol-

lard and DeConto, 2012; Pattyn, 2017). Here, we decided to adjust the basal sliding velocities via the adjustment of the β

coefficient to fit the GrIS ice thickness to the observed one. Similarly to Perego et al. (2014), our choice is motivated by the

need to refine the estimates of GrIS contribution to future sea-level rise without the sea-level rise signal being contaminated by10

unphysical transients from the initial condition. However, while Perego et al. (2014) adopted a formal minimisation approach

(i.e. adjoint-based model) we suggest instead an ad hoc method potentially applicable to any ice sheet model.

The GRISLI climate forcing, i.e. surface mass balance and surface air temperature (Fig. 1), is provided by the regional at-

mospheric model MAR (Fettweis et al., 2013) forced at its boundary by the ERA-Interim reanalyses (Berrisford et al., 2011).15

Both forcing fields are averaged over the 1979-2005 period (Figs. 1a and b). They are interpolated on the GRISLI grid (5 km x

5 km) and corrected for surface elevation differences between MAR and GRISLI by applying the method developed by Franco

et al. (2012). For the geothermal heat flux we use the data generated for the SEARISE project (Fox Maule et al., 2005). Initial

geometry consists in the present-day observed ice thickness and bedrock elevation taken from Bamber et al. (2013). To com-

pute initial conditions consistent with the boundary conditions, we run a 30 000 year-integration of the model imposing a fixed20

topography. For this long experiment, similar to the fixed topography spin-up method, we assumed a perpetual present-day

climate forcing (Figs. 1a and b) and we used a basal drag coefficient (Fig. 2a) coming from a previous simulation carried out

within the Ice2Sea project (Edwards et al., 2014). The resulting basal temperature after this long integration, presented as a

difference with respect to the pressure melting point, is shown in Fig. 1c. It shows areas with temperature largely below the

pressure melting point, associated with frozen bed, and areas with temperature at the pressure melting point (red colours), asso-25

ciated with thawed bed. Compared to the recent synthesis of GrIS basal temperatures (see Fig. 11 in MacGregor et al. (2016)),

our initial basal temperature agrees generally well with the reconstructions in the north-western and north-eastern parts of the

GrIS but are probably overestimated, with a too large thawed bed area, in the eastern and central parts of the GrIS (not shown).

The impact of ice temperature on the minimisation procedure is discussed in Sect. 5.1.

30

In order to avoid inconsistencies between the different datasets used as boundary and initial conditions, GRISLI is first run

forward (free-evolving surface elevation and temperature) for 5 years (relaxation step, blue box in Fig. 3). After this short re-

laxation period, we start the iterative minimisation procedure (red box in Fig. 3). This procedure is based on an iterative process

set up to adjust the basal drag coefficient in such a way that the mismatch between observed and simulated ice thickness is

5



reduced. Instead of optimizing the basal drag coefficient every 5 000 years as in PDC12, here the optimization is done at every

time step (which is set to one year for the present study), using an ice thickness ratio to correct the simulated sliding velocity

with the help of a modification of the basal drag coefficient.

The iterative minimisation procedure itself consists in repeated cycles, each cycle being divided in two main steps (red box5

in Fig. 3):

1st step: The first step consists in a free-evolving simulation (thickness and temperature) during which we adjust, at each

model time step, the basal drag coefficient so that the ice thickness difference with respect to the observations becomes

minimal. To this end, from the simulated vertically-averaged velocity (UG) computed from the previous time step (or

from the values obtained after the relaxation for the first iteration), we compute a corrected vertically-averaged velocity10

field (Ucorr) as a function of the computed (HG) and observed ice thickness (Hobs ):

Ucorr =UG× HG

Hobs
(3)

As seen before (in Sect. 2), the mean velocity field UG is the sum of two velocity components: the sliding velocity Usli

and the vertically-averaged velocity Udef due to vertical ice deformation:15

UG =Usli +Udef (4)

Assuming that the differences between UG, the simulated vertically-averaged velocity field, and Ucorr, the idealised

vertically-averaged velocity field, are only due to changes in the sliding velocity Usli, we can write:

Ucorr =Usli
corr +Udef (5)20

Following Eqs. 4 and 5, we can deduce the corrected sliding velocity (Usli
corr):

Usli
corr =Ucorr−UG +Usli (6)

Usli
corr represents the corrected sliding velocity whose difference with Usli indicates how the simulated sliding velocity

must change to reduce the mismatch between HG and Hobs.25

As such, we use the ratio between the simulated and the corrected sliding velocities ( Usli

Usli
corr

) to compute a new basal drag

coefficient (βnew). This results in slowing down or speeding up the simulated sliding velocity and acts to reduce the gap

between HG and Hobs:

βnew = βold×
Usli

Usli
corr

(7)30
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Equation 7 is essentially identical to what is done in Price et al. (2011) except that they use observed and modelled ve-

locities rather than observed and modelled ice thickness to adjust the basal drag coefficient. It should be noted that Usli
corr

can be lower or equal to 0, leading to infinite or negative basal drag coefficient. This can happen when the velocity due

to vertical shearing Udef is greater or equal to Ucorr. In this case we artificially impose a no-slip condition by assigning

to the basal drag coefficient a maximum value set to 5 105 Pa yr m−1. On the other hand, in case of too small Udef5

velocity, β may be as low as 1 Pa yr m−1 to facilitate ice sliding. Owing to its design, the method is only able to correct

for the ice thickness mismatch where sliding occurs, i.e. where the base of the ice sheet is at the pressure melting point.

Throughout this step, the basal drag coefficient is updated at each time step for each model grid point. In the following,

the duration of this step is referred to as Nbinv and has typical value of a few decades.

10

Note that, using Eq. 3 and Eq. 4, we can show that Eq. 7 can be rewritten as:

βold

βnew
= rH +

Udef

Usli
(rH − 1) where rH =

HG

Hobs
(8)

As such, the adjustment of the basal drag coefficient is stronger in regions dominated by ice deformation.

2nd step: The second step consists in running a new free-evolving simulation but this time using a time constant (but spatially15

varying) basal drag coefficient, i.e. the last inferred basal drag coefficient of the first step. The duration of this second

step, referred to as Nbfree in the following, is generally longer than that of the first step, typically a few decades to a few

centuries. This step aims at quantifying the model drift and the model mismatch with observations for the inferred basal

drag coefficient. The simulated ice sheet velocity and topography at the end of this second step are used to compute a

new Ucorr value in order to start a new cycle from the first step. The number of iterative cycles will be noted Nbcycle in20

the following.

In summary, our iterative minimisation procedure consists in:

(i) Adjustment of the basal drag coefficient at each time step (each year) year for Nbinv years (1st step, Eqs 3 to 7).

(ii) Free-evolving simulation with the last inferred basal drag coefficient from (i) for Nbfree years (2nd step).

(iii) The steps (i) and (ii) are repeated Nbcycle times.25

In addition, to assess the performance of the minimisation procedure (i.e. the quality of the inferred basal drag coefficient),

we compute some quality metrics at the end of each cycle (green box in Fig. 3). The metrics are computed at the year 200 of

the free-evolving simulation of the second step, independently from its duration (i.e. Nbfree). If Nbfree is shorter than 200

years, we simply extend the simulation until 200 years. The quality metrics discussed in Sec. 4 include in particular the root30

mean square error (RMSE) of the simulated ice thickness with respect to the observations and the drift in geometry (integrated

ice thickness changes). These metrics help to decide whether an additional cycle is required or not. In the following, we also

discuss the spatial patterns of ice thickness and ice velocity mismatches with respect to observations. Our method does not use
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the observed surface velocity as a constraint. However, at the end of the minimisation procedure (e.g., minimal thickness error

and minimal drift), the simulated velocity tends nonetheless to approximate the balance velocity, that is the depth-averaged

velocity required to maintain the steady-state of the ice sheet.

Once the optimal basal drag coefficient is found, it can be used to run prognostic forward simulations such as in Le clec’h5

et al. (2019) and Goelzer et al. (2018).

4 Results

4.1 The importance of the initialisation procedure

To illustrate the need for an initialisation procedure, we performed a 200-year long free-evolving simulation without any spe-

cific initialisation procedure using the mean 1979-2005 climatic forcing presented in Sec. 3. For this simulation, the initial10

internal condition correspond to the one obtained after the 30 000-year temperature equilibrium simulations (see Sect. 3) and

the basal drag coefficient, coming from previous Ice2Sea simulations (Edwards et al., 2014) is left unchanged (Fig. 2a).

The simulated GrIS ice volume obtained for this experiment is 1.4 % higher than the one estimated by Bamber et al. (2013)

from observations (2.71 106 Gt). This overestimation is driven by large positive ice thickness differences (> 200 m) with re-15

spect to observations in the margin regions (Fig. 4a). There are also negative ice thickness differences in the interior of the ice

sheet, in particular in the central eastern region. On top of this geometry mismatch, this experiment also presents a drift at the

end of the 200 years with a negative contribution to global sea level of 0.7 mm yr−1 (i.e. 263 Gt yr−1 ice mass gain). Compared

to observations (Joughin et al., 2018), the simulated ice velocity presents the same large-scale pattern but with important local

differences (Fig. 4b). In particular, the main GrIS glaciers are generally too slow.20

These results show the limitations of the simulated GrIS under constant climate forcing without appropriate initialisation

procedure. In this specific case, the simulated model drift can potentially counterbalance the effect of climate warming expected

in the future, leading to unrealistic projected Greenland melting contribution to global sea level rise. Therefore, the use of an

initialisation procedure to minimise the model drift with a realistic simulated topography is not avoidable if the goal is to25

produce reliable sea-level projections.

4.2 Iterative minimisation performance for a range of enhancement factor values

An increase (respectively a decrease) of the basal drag coefficient (β) slows down (resp. speeds up) the sliding velocity and

thus the ice flow. Based on the adjustment of the sliding velocity, our iterative minimisation procedure, allows for a tuning of

β only in regions where the basal temperature is at the pressure melting point, i.e. where the ice can slide over the bedrock.30

Where the base is frozen, the tuning of the basal drag coefficient has no impact on the ice thickness minimisation, because
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no sliding occurs. In order to slow down or speed up the ice flow in such regions, the value of the enhancement factor, Ef

(see Sec. 2), can be tuned. As explained in Sect. 2, this factor is used to increase (when > 1) or decrease (when < 1) the ice

deformation velocity. The more the ice deformation is increased (respectively decreased), the more the ice flow in frozen base

region speed-ups (resp. slow-downs) and thus decrease (resp. increase) the ice thickness.

The enhancement factor for the SIA regime (slow ice flow) is expected to have a large influence on shear-stress driven ve-5

locities (Quiquet et al., 2018). Generally set to 3 (Ritz et al., 2001), the Ef can be chosen within a large range of values between

1 to 10 (Ma et al., 2010). In the following, we assess our iterative minimisation procedure for a range of Ef values: 0.1, 0.5, 1,

1.5, 2, 2.5, 4, 3, 3.5, 4, 4.5, 5. For this, we use a Nbinv of 20 years and a Nbfree of 200 years and perform 15 iterative cycles

(Nbcycle). For the first cycle, i.e. Nbcycle = 1, all the Ef experiments start from the identical initial conditions and basal drag

coefficient presented in Sec. 3.10

Each of the 180 experiments (15 cycles for 12 enhancement factors) are evaluated after 200 years of the free-evolving

simulation (2nd step, see Sect. 3) using 1D metrics (ice thickness RMSE, global ice volume, geometry drift) and 2D validation

criteria (ice thickness differences).

4.2.1 Root mean square error15

The ice thickness RMSE defined with respect to observations is displayed in Fig. 5 as a function of the number of cycles

performed for the different enhancement factors. For a given Ef value, the RMSE quickly decreases during the first cycles and

generally stabilises after Nbcycle ≈ 5-6. This means that the procedure is very effective in reducing the ice thickness error

for the first iterations but does not entirely correct the mismatch with observations. Depending on the enhancement factor

considered, the overall improvement represents a reduction of about 20 to 40 m in ice thickness RMSE with respect to the first20

iterative cycle.

The RMSE is largely different for the different enhancement factors. For Ef > 2, we have systematically a larger RMSE

for a larger Ef value regardless of the number of iterative cycles performed. This is no longer the case for smaller Ef since the

experiment (i.e. the Ef value) providing the lowest RMSE is different for the Nbcycle considered. Note that for Ef = 0.5 the

RMSE value is often larger than that obtained with Ef = 2.5 even with increasing Nbcycle. Indeed, Ef = 0.5 implies a too small25

deformation rate that leads to a too slow ice flow velocity. As such, the departure from the observations is mainly characterized

by positive ice thickness anomalies at the edges and in the half southern part of the ice sheet. The simulations with Ef varying

from 1 to 2 have very similar RMSE even if 1.5 has a slightly lower RMSE in most cases. If the lower RMSE value (49.8 m) is

obtained for Ef = 1.5 after 9 cycles (Table 1), RMSE values below 55 m are nonetheless obtained after 4 cycles for Ef varying

from 1 to 2. Considering that after one cycle the error is greater than 80 m, we are able to improve the RMSE by about 30 m in30

880 years of simulations (4 x 220 years).
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4.2.2 Model structural biases and consequence on total ice volume

a) Where are the errors: correction by deformation and basal sliding

In addition to the RMSE criterion, which is an integrated metric, the maps of the difference between the simulated and the

observed ice thickness bring valuable information to understand the model structural biases. In Fig. 6, we can distinguish two5

main patterns. Except for Ef = 0.5, all the Ef experiments with a Nbcycle producing the minimum RMSE value (Fig. 6 and

Table 1) are marked with an underestimation in ice thickness in the interior and an overestimation at the edges of the GrIS.

This overestimation can be slightly reduced using higher Ef values, the underestimation being nonetheless larger in this case.

As explained above, larger Ef values amplify ice deformation and therefore speed up the ice velocity, explaining the spread10

of the regions where the ice thickness is underestimated (Fig. 6). Some of these regions, such as a significant portion of the

half central part of the ice sheet, are often associated in our model with thawed bed areas (i.e. basal temperature is over the

pressure melting point, Fig. 1c) while frozen bed is expected (MacGregor et al., 2016). This may further enhance the ice flow

acceleration by favouring basal sliding. On the other hand, when basal sliding occurs, our iterative minimisation procedure

may counteract the ice flow acceleration by reducing the basal sliding (i.e. increasing the basal drag coefficient). However,15

in some cases, the velocity due to deformation is too fast and the basal drag coefficient is set to its maximal value (βmax =

5 105 Pa yr m−1) so that the sliding velocity becomes virtually zero. This is visible in Fig. 7 where the area for which the

basal drag coefficient is set to βmax (dark red colour) is getting larger with increasing Ef. On the contrary, in Fig. 7, where the

model overestimates the ice thickness (i.e. too slow ice flow) and where basal temperature is at the pressure melting point (i.e.

sliding can occurs), the computed basal drag coefficient is weaker in order to increase basal sliding. Similar to the βmax region,20

our iterative initialisation method could reach a minimum basal drag coefficient value (set to βmin = 1 Pa yr m−1) in regions

where the sliding velocity must be as strong as allowed by the flow law equation (i.e. meaning no basal friction). Reducing

the enhancement factor, and thus the ice deformation in these regions can locally increase the ice thickness overestimation.

Regions with βmax or βmin values are an indication of the limit of our iterative ice thickness error minimisation procedure.

25

The ice thickness errors shown in Fig. 6 correspond to a median value ranging from +15 m to -99 m from the lowest (Ef = 0.5)

to the highest (Ef = 5) enhancement factor. The decrease in the median of the error with increasing Ef values is mostly driven by

the underestimation of the ice thickness in the interior regions. Our results show that the Ef = 1 experiment produces the best ice

thickness error pattern, ranging from +133 m (5th quantile) to -39 m (95th quantile) and reaching a median error equal to +3 m.

30

b) Total ice volume and compensating biases

Because most of the Ef experiments have both positive ice thickness biases at the margins and negative biases over the

central part (Fig. 6), the global ice sheet volume is not a good metric for model performance due to compensating biases. Fig-
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ure 8 shows the total ice volume difference with respect to observations for varying enhancement factors as a function of the

number of iterative cycle. Some specific experiments show a very small error in global ice volume with respect to observations

for given Ef values even though they have a poor RMSE (Fig. 5). Also, for Nbcycle = 6, RMSE value for Ef = 0.5 and Ef =

2.5 are identical (68.8 m) but ice volume anomalies are drastically different with 57994 Gt and -38841 Gt respectively (Ta-

ble 1). Thus, a small global ice sheet volume difference does not necessary mean a minimisation of the ice thickness difference.5

For the same reasons, the trend in global ice volume is not a good metric for assessing the ice sheet drift because local

changes in ice thickness can compensate for each other. As an illustration, using a range of enhancement factors, Fig. 9 shows

for free-evolving simulations, the temporal evolution of the total ice volume difference with respect to observations, along with

the evolution of the RMSE. This figure confirms that the GrIS volume equilibrium can be reached by biases compensation as10

we have a near-zero error in volume with Ef = 1.5 while the RMSE is very similar to that obtained with Ef = 1 and Ef = 2. For

Ef > 2, the negative biases in ice thickness dominate, with a decrease in ice volume as Ef increases. For Ef < 2, the positive

biases in ice thickness dominate, leading to an increase of the global ice volume.

To assess the simulated ice sheet drift and in order to avoid the biases compensation, we compute the geometry trend as the15

root mean square ice thickness change (ξt, expressed in cm yr−1):

ξt = [< (Ht−Ht−1)
2 >]0.5 (9)

where < (Ht−Ht−1)
2 > represents the averaged squared ice thickness change over the whole GrIS.

Values of ξ computed from the last 5 years of the 200 yr free-evolving simulation in the 2nd step (green box in Fig. 3) are20

reported in Table 1 for a given iteration and varying enhancement factors. The lowest values are generally obtained with the

experiments that provide the lowest RMSE, which means that these simulated ice sheets are the closest to equilibrium. The

minimal trends are about 15 cm yr−1 and are obtained with enhancement factors between 1 and 2.

c) Ice dynamics25

Our iterative minimisation procedure aims at simulating an ice thickness as close as possible to observations. Hence, the

observed ice velocity is not used as a target by the model. However, because our procedure generates an ice sheet at quasi-

equilibrium (trend ξ close to 0), the simulated velocities are close to the balance velocities, which in turn are supposedly close

to present-day observations. As a result, our method simulates an ice flow pattern similar to the observations (Fig. 10).30

The simulated velocity field is particularly sensitive to the choice of the enhancement factor (Fig. 10). In particular, for the

highest Ef values, the simulated velocity is overestimated for the major ice streams where deformation due to vertical shearing

is expected to be of lesser importance compared to basal sliding. For Ef = 1.5, the ice flow pattern in the margin regions is well
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reproduced compared to observations. Only some glaciers ice velocities can be faster (e.g. Jakobshavn or Kangerlussuaq) or

slower (e.g. Petermann or NEGIS). While the best GrIS geometry (lowest RMSE) is obtained with Ef = 1.5, the experiments

with Ef = 1 or Ef = 0.5 best reproduce the observed surface velocities (RMSE about 150 m yr−1, Fig. S1).

Interestingly the extent of the NEGIS is particularly well represented, in particular for lower enhancement factors (Fig.5

S2). This can be a relic of the long temperature equilibrium performed with a time constant basal drag coefficient taken from

Ice2Sea experiments (Edwards et al., 2014), in which the NEGIS is well delimited (Fig. 2a). However, because this feature is

still present when starting the iterations from a spatially homogeneous basal drag coefficient (see Sec. 5.2), it can also suggests

that there is some topographic control of this feature as the adjustment of our local basal drag coefficient is very effective

in reproducing the observed velocity in this area. Having a good representation of the NEGIS is an encouraging sign for the10

performance of our minimisation procedure, especially since most models fail to achieve this (Goelzer et al., 2018).

5 Sensitivity of the method to the initial conditions and to the duration (Nbinv and Nbfree) of the minimisation

procedure

5.1 Sensitivity to the initial temperature profiles

In Sec. 4.2 we have shown that the results of the minimisation are particularly impacted by the basal temperature. In particular,15

where the bed is frozen our iterative mininisation procedure is unable to correct for the ice thickness mismatch. This leads

to a predominant role of the enhancement factor. The aim of this section is to investigate the sensitivity of our procedure to

the initial temperature profile. To this end, we followed the same methodology as in Sec. 4.2, and performed a new set of

experiments for which we used an initial temperature profile coming from a previous simulation performed in the framework

of the Ice2Sea project (Edwards et al., 2014).20

This temperature profile differs substantially from the one used in the previous section (black dashed line to be compared

to the red line in Fig. 12). The temperature profile taken from Edwards et al. (2014) is not consistent with the MAR climatic

forcing used for this work and the warmer climatic forcing used here leads to a warmer (about 5 ◦C) ice sheet compared to the

one in Edwards et al. (2014) (Fig. 12). In the following, the temperature profile taken from Edwards et al. (2014) is referred to

as the non-equilibrated temperature as opposed to the 30-kyr equilibrated temperature used in the rest of the manuscript.25

Figure 13 shows the evolution of the RMSE for 9 iterative cycles for the experiment performed with the non-equilibrated

temperature profile with Ef = 3 (dark blue dots). Similarly to what was shown in Sec. 4.2, the minimisation procedure reduces

the RMSE from +76.0 m after Nbcycle = 1 to a minimum after Nbcycle = 9 around +47 m. Figure 13 shows also the evolution

of the RMSE for two experiments with Ef = 1 and Ef = 3 but using the equilibrated temperature profile (cyan and orange dots30

in Fig. 13). If the pattern is essentially the same between the different experiments, the RMSE is higher when using the equili-

brated temperature. For the same Ef value, the RMSE is 11.4 m higher (Nbcycle = 8) when using the equilibrated temperature.

This is because the warmer equilibrated temperature with respect to the non-equilibrated one leads to higher velocities which
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ultimately favour the ice thickness underestimation in the central regions (shown in Fig. 6). Using a smaller enhancement factor

with the equilibrated temperature reduces the gap (3.3 m for Nbcycle = 8) and provides a closer response to that obtained for

Ef = 3 with the non-equilibrated temperature.

If the RMSE is lower when the non-equilibrated temperature profile is used, the trend ξ is nonetheless largely higher (24.75

cm yr−1 for Nbcycle = 6) compared to the experiments with an equilibrated temperature (16.5 cm yr-1 for Ef=3 and 16.3 cm

yr−1 for Ef = 1, for Nbcycle = 6 and 8 respectively). This is expected as there is an important thermal adjustment when using a

profile that is not consistent with the climatic forcing.

However, despite existing differences with results obtained with the equilibrated temperature profile, this shows that our10

minimisation procedure is able to reduce the mismatch between simulated and observed ice thickness independently from the

initial temperature profile.

5.2 Sensitivity to the initial basal drag coefficient

As explained in Sec. 3, the initial basal drag coefficient β for the first iteration of the minimisation procedure is the one used

in Edwards et al. (2014) (shown in Fig. 2a). To assess the robustness of our iterative procedure to the choice of the initial basal15

drag coefficient we have performed a new set of experiments starting from a uniform β equal to 1 instead of the one from

Edwards et al. (2014).

Using Nbinv = 20, Nbfree = 200, and Nbcycle varying from 1 to 15 with Ef = 1, we obtain a minimum ice thickness RMSE

of 49.9 m and a trend ξ of 15.1 cm yr−1. While there are some minor spatial differences in terms of the inferred basal drag

coefficient (Fig. 2c), the aggregated metric such as the RMSE and the trend are identical to the results presented in Table 1. In20

the same way, the simulated ice thickness and surface velocities obtained with β = 1 present very small differences with those

obtained when starting from the Ice2Sea basal drag coefficient (Figs S3 and S4). This illustrates the robustness of the method

and shows that it does not depend on the chosen initial distribution of the basal drag coefficient.

5.3 Sensitivity to the duration (Nbinv and Nbfree) of the minimisation procedure

In this section we assess the sensitivity of the minimisation procedure to the coefficients Nbinv (i.e. the duration of the period25

during which the basal drag coefficient is iteratively computed — 1st step) and Nbfree (duration of the free-evolving simula-

tions — 2nd step). While in Sec. 4.2 we used Nbinv = 20 and Nbfree = 200, here we explore a range of combinations of these

parameters exploring four values for Nbinv (20, 40, 80, 160 yr) and Nbfree (50, 100, 200 and 400 yr). Using an enhancement

factor of 1, we iterate on 15 cycles (Nbcycle from 1 to 15). The initial conditions are the same as in Sec. 4.2.

30

Figure 14 shows the evolution of the RMSE as a function of the number of cycles performed for a range of Nbfree values.

As previously shown, there is a strong decrease in RMSE between the first two cycles and only a limited improvement when

using more than 6 cycles. The response is very linear: using larger Nbfree leads to a smaller RMSE. This can be explained
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by the fact that the correction computed at the end of the 2nd step, after Nbfree, is greater if the duration of the free-evolving

simulation is longer. This means that the changes imposed to the new basal drag coefficient computation (Eq. 7) from one cycle

to another is larger for longer Nbfree.

In Fig. 15 we show the evolution of the RMSE as a function of the number of cycles performed for a range of Nbinv values5

(20, 40, 80 and 160 yr). The RMSE difference for a given Nbcycle is generally less than 10 m, while this difference is sometimes

larger than 20 m when Nbfree varies from one value to the other. This suggests that Nbinv is of second importance relative to

Nbfree. The RMSE appears to be slightly smaller for longer Nbinv . For example, for Nbfree = 200 yr, increasing Nbinv from

20 yr to 40, 80 or 160 yr slightly reduces the minimum RMSE by 0.1 m, 1.7 m or 3.5 m respectively, and decreases the trend

ξ by 13.7%, 7.2% and 21.1% for Nbcycle equal to 12, 11 and 8 respectively. The minimum RMSE value (46.1 m) and trend ξ10

(12.3 cm yr-1) are reached with Nbcycle = 10 and with Nbinv = 160 yr. Performing more cycles once the minimum RMSE is

reached does not improve the results.

Overall, the combination of the highest Nbinv (160 yr) with the highest Nbfree (400 yr) leads to the smallest RMSE (44.1

m) with a trend ξ of 9.9 cm yr−1 for Nbcycle = 11. However, this minimum represents a considerable amount of computing15

time (6160 years) and does not represent the most efficient combination. As shown in Figures 5, 8 and 13, the minimum RMSE

generally stabilises between Nbcycle equal to 4 and 6. This means that similar RMSE and trend ξ could be obtained using fewer

computing resources. For each set of combination, the mean value of the best RMSE values is equal to 51.1 m and is associated

to a mean trend ξ of 15.5 cm yr−1. The experiment with Nbinv = 20 yr, Nbfree = 200 yr and Nbcycle = 6 produces a RMSE 0.6

m lower than the mean and is more than three times faster than best of the RMSE (1320 years to be compared to 6160 years).20

6 Summary and discussion

In order to improve the reliability of Greenland ice sheet simulations in a future transient climate, an accurate evaluation of

the present-day trend of ice flow dynamics is required. One the major difficulties in addressing this need lies in the poorly

constrained observational data of the basal conditions that strongly control the ice motion in the entire ice sheet. Here, we

present an inverse method to infer the spatial distribution of the basal drag coefficient in such a way that the mismatch between25

simulated and observed GrIS ice thickness is minimised. As such, our target criteria are defined for the sets of minimisation

procedure parameters providing minimum values of ice thickness RMSE (with respect to observations) and ice thickness trend,

which are respectively as low as ∼ 50 m and 15 cm yr−1 for our best fit. This remains in the range of PDC12 results. The

great advantage of the method is its rapid convergence (i.e. 1320 years) making it suitable for more computationally expensive

models. Moreover, we have also shown that it only poorly depends on the initial guess of the spatial distribution of the basal30

drag coefficient and the initial temperature profile.
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Based on the adjustment of the basal sliding, our method cannot be applied in regions of frozen bed and is only effective in

thawed bed areas where basal sliding may occur. However, in case of a too large deformation rate in these regions, the basal

drag coefficient is set to its maximum value to counteract the too fast ice flow. The limit of applicability of the method led us to

investigate the impact of the enhancement factor which is expected to have a large influence on the deformation rate, and thus,

on the ice flow and subsequently on the simulated ice thickness. We performed a series of simulations with a range of various5

values of the enhancement factor (from 0.5 to 5) and showed that the mismatch between the simulated and the observed GrIS

topography is reduced with an appropriate tuning of the enhancement factor. This highlights that the overall performance of the

method is critically dependent on the basal thermal state and points out that the finding of appropriate initial conditions with a

simple adjustment procedure remains an undetermined issue. Actually, multiple combinations of the enhancement factor and

the basal drag coefficient can produce a simulated ice thickness close the observed one, but this cannot discard the possibility10

of errors in modelled basal and vertical temperatures. A logical next step could lie in the adjustment of the basal drag coeffi-

cient combined with a similar approach for the adjustment of the enhancement factor in frozen bed areas. However, we have

shown that the minimisation procedure presented in this paper is able to reduce the ice thickness mismatch regardless of the

initial temperature profile. This offers the possibility to tune the thermal state to be as close as possible to the observations

(inferred basal temperature as in MacGregor et al. (2016), or vertical profiles at ice core locations) before running the iterative15

minimisation procedure. Increasing our confidence in the vertical temperature profile would therefore increase our confidence

in the choice of Ef and β values.

Finally, we have shown in this paper that the iterative adjustment of β produces modelled surface velocities that compare

well with the observed ones. This suggests that future work could include an additional metric related to surface ice velocities20

so as to further reduce the uncertainties associated with the choice of model parameters and variables.

Another limitation of the method may come from the model resolution. The succession of higher/lower ice thickness due

to the succession of valleys/ridges in mountain areas may be poorly resolved. Owing to the insulation effect of the ice, this

may lead to an erroneous representation of the basal temperature patterns, and SSA regions may be erroneously interpreted as25

frozen bed regions and vice versa (Pattyn, 2010). This drawback is clearly illustrated in our study in Fig. 6 (Ef = 1). Indeed,

the simulated ice thickness obtained with the inversion procedure is generally less than 50 m in most GrIS areas, but can be

greater than several hundred meters in coastal mountain ranges such the central eastern margin area where ice flow occurs in

deep valleys. An alternative solution consists in correcting the basal temperature to account for bedrock roughness, similarly

to what was done in PDC12 to improve their inversion procedure in the Transantarctics. On the other hand, higher resolution30

models can also better account for the dynamics of small-scale outlet glaciers and for their interactions with floating ice that

strongly influence the ice sheet mass balance (e.g., Aschwanden et al., 2016). However, due to the elliptic character of the SSA

equation (e.g., Quiquet et al., 2018), the local adjustment of the basal drag coefficient impact the ice velocity of neighbouring

points. As a result increased resolution may increase the noise, unless introducing a smoothing function that filters the high
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frequency noise (Pattyn, 2017).

The reliability of the method also depends on the quality of observations data and of climate forcing. Errors in observed

surface or bedrock topography or in SMB patterns different from those associated to the observed ice thickness would give rise

to errors in the present-day estimated ice thickness and thus to an erroneous choice of the best spin-up parameters. In the same5

way, large uncertainties remain in the reconstruction of the geothermal heat flux that strongly impacts the basal temperature.

Finally, we would like to stress that in our simulations, the spatial distribution of the basal drag coefficient does not change

through time. However, changes in basal hydrological conditions along with changes in ice surface elevation and ice extent are

likely to occur in a changing climate. While a constant spatial distribution of the β coefficient may seem reasonable for short-

term projections, it is more questionable at the century time scale, and future modelling efforts should therefore be undertaken10

to compute interactively the basal drag coefficient as a function of changes in basal conditions.
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Figure 1. Climate forcing averaged over the 1979-2005 period simulated by the atmospheric regional model MAR (Fettweis et al., 2013)

and interpolated on the GRISLI ice sheet model grid (5 km x 5 km): a/ mean surface mass balance (in m yr−1, i.e. 103 kg m−2 yr−1) with

the black line representing the equilibrium line indicating the frontier between accumulation and ablation areas; b/ mean annual surface

temperature (in ◦C) with the white dashed lines representing the 5 ◦C iso-contours. In addition, c/ basal temperature difference with respect

to the pressure melting point (in ◦C) after the 30 000 years equilibrium temperature computation for a fixed topography.
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Figure 2. Spatial distribution of the basal drag coefficient (in log10 Pa yr m−1) in: a/ the initial condition, used in the GRISLI Ice2Sea

simulations; b/ the iterative cycle that produces the minimal RMSE (Nbcycle = 9) when using Ef = 1 for Nbinv = 20 yr and Nbfree = 200 yr

(Sec. 4.2); c/ the iterative cycle that produces the minimal RMSE (Nbcycle = 9) when using Ef = 1 for Nbinv = 20 yr and Nbfree = 200 yr

but starting from a uniform basal drag coefficient (Sec. 5.2).
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Relaxation

T
H5 yrs

Iterative minimisation procedure

1st step 2nd step
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Nbcycle
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temperature equilibrium
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Quality check
RMSE,         , ...dV
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Figure 3. Schematic representation of the iterative minimisation procedure method. The iterative process itself (step 1 and step 2) is shown

in the red box. The assessment of the performance of the method for a given cycle (e.g., RMSE and trend discussed in Sec. 4 and 5) is

performed at 200 years of the 2nd step (green box), independently from the value of Nbfree. The initial conditions for the iterations are the

results of the 30 000 year temperature computation using a fixed topography (black box) followed by a relaxation of the surface topography

(blue box).
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Ice thickness di�erence (m)
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Figure 4. (a) Ice thickness difference (in m) simulated at the end of a 200-year-long simulation without any specific initialisation procedure

with respect to the observed ice thickness from Bamber et al. (2013). (b) Difference (in m yr−1) between the surface ice velocity in the same

simulation and the observed surface velocity from Joughin et al. (2018). The dashed lines correspond to the 1000 m surface elevation iso-

contours for the simulated topography. Grey areas represent non-ice-covered areas. Note that a logarithmic scale is used for the ice velocity

difference.
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Ef=1 Ef=1.5 Ef=2 Ef=2.5 Ef=3.5 Ef=4 Ef=4.5Ef=3 Ef=5Ef=0.5

Nbcycle

Figure 5. Ice thickness root mean square error w.r.t. observations from Bamber et al. (2013), in meters for Nbinv = 20, Nbfree = 200 and

with enhancement factors (Ef) ranging from 0.5 to 5 as a function of the number of iterations (Nbcycle)
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Figure 6. Difference between the simulated and the observed (Bamber et al., 2013) ice thickness (in meters) for Ef ranging from 0.5 to 5 for

the iterative cycle Nbcycle that produces the lowest RMSE (Table 1). Here, Nbinv and Nbfree are set to 20 and 200 years respectively.
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Figure 7. Spatial distribution of the basal drag coefficient (in log10 Pa yr m−1) for Ef ranging from 0.5 to 5 for the iterative cycle Nbcycle

that produces the lowest RMSE (Table 1). Here, Nbinv and Nbfree are set to 20 and 200 years respectively.

28



Nbcycle

Ef=1 Ef=1.5 Ef=2 Ef=2.5 Ef=3.5 Ef=4 Ef=4.5Ef=3 Ef=5Ef=0.5

Ic
e 

vo
lu

m
e 

di
�e

re
nc

e 
(1

04  G
t)

7.5

5

2.5

0

-2.5

-5

-7.5

-10

-12.5

Figure 8. GrIS volume difference w.r.t. observations from Bamber et al. (2013), in Gt, for Nbinv = 20 yr and Nbfree = 200 yr and with

enhancement factors (Ef) ranging from 0.5 to 5 as a function of the number of iterations (Nbcycle).
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Figure 9. Temporal evolution of GrIS total volume difference in Gt (solid lines) and RMSE in m (dashed lines) for Nbinv = 20 yr and

Nbfree = 200 yr, with varying enhancement factors (Ef) ranging from 0.5 to 5. The Nbcycle chosen here corresponds to the one producing

the minimum ice thickness RMSE (see Table 1).
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Figure 10. : a/ MEaSUREs Greenland ice sheet velocity (in m yr−1) map from InSAR for the 2016-2018 mean period (Joughin et al., 2018).

b/ Simulated surface ice velocity using Ef = 1 for Nbinv = 20 yr, Nbfree = 200 yr and Nbcycle = 13 (the one producing the minimal ice

thickness RMSE, Table 1).
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Figure 11. Simulated ice surface velocity difference (in m yr−1) with respect to observations (Joughin et al., 2018) using Ef ranging from

0.5 to 5 for Nbinv = 20 yr, Nbfree = 200 yr and Nbcycle that corresponds to the one producing the lowest ice thickness RMSE (see Table 1).
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Figure 12. Vertical temperature profiles (in ◦C) from the ice sheet surface to the bedrock over Greenland central region (73-74.5 ◦N, 40-43
◦W). The black dashed line is the non-equilibrated temperature profile used in Edwards et al. (2014). The coloured lines are the profiles in the

course of the long 30-kyr experiment for the temperature calculation. The red profile is the one used as initial condition for the experiments

shown in Sec. 4.2.
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Equilibrated Ef=3 Equilibrated Ef=1 Non-equilibrated

Nbcycle

Figure 13. Ice thickness root mean square error w.r.t. observations from Bamber et al. (2013), in meters for Nbinv = 20 yr, Nbfree = 200

yr as a function of the number of iterations (Nbinv). Dark blue dots are for the experiment that uses the non-equilibrated temperature profile

as initial condition and Ef = 3. Cyan and orange dots are for the experiments using the equilibrated temperature and Ef = 3 and Ef = 1,

respectively.
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Nbfree=400
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Figure 14. Ice thickness root mean square error w.r.t. observations from Bamber et al. (2013), in meters for a fixed Nbinv = 20 and four

Nbfree values (50, 100, 200, 400) as a function of the number of iterations (Nbcycle). The experiments use an enhancement factor of 1.
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Figure 15. Ice thickness root mean square error w.r.t. observations from Bamber et al. (2013), in meters for a fixed Nbfree = 200 and four

Nbinv values (20, 40, 80, 160) as a function of the number of iterations (Nbcycle). The experiments use an enhancement factor of 1.
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