

RESPONSE TO REVIEWER 1:

We would like to thank the reviewer for their time to review our paper. We are glad that the reviewer found several of our recent revisions to benefit the overall quality of the manuscript, and we have carefully gone over the remaining issues that the reviewer raised. In this response, we have addressed all the reviewer's comments, by editing the manuscript for many of the points, and by providing clarifications for others. We believe that these changes and explanations will now clearly present the technical advancements and value of our new toolkit.

The reviewer's comments are copied here with a gray background. Our responses are made with a white background; quotes from the text are in italics and changes are highlighted with underlines.

I would like to thank the authors for their effort in improving the manuscript according to the reviewers' comments. I see clear changes in several parts of the manuscript, most notably in the introduction part and in the description (including also a new feature) of the proposed toolkit. All of these changes are beneficial for the overall quality of the work. However, I must also admit that one of my major remarks concerning the Results section still persists in this revised version. Here my opinion is that the effort made by the authors did not really go to the 'right' direction. **The discussion still contains many vague statements and it is not supported by illustrative figures. That is, the outcome of the results section appears disconnected from those statements (made in the Introduction) about the novelty of the toolkit.** This is, in my opinion, a major issue for a GMD paper where the reader expects to see a more in-depth discussion on the technical advancement of the proposed toolkit. I provide below some specific comments that I hope will be useful to address my major concern with the work.

Above, we boldfaced the reviewer's major general point to address. Our paper does not have sections named "Discussion" and "Results," so we assume that the reviewer was referring primarily to the "Examples" and "Conclusions" sections.

We thoroughly reviewed these sections and believe that they do support the statements in the Introduction, but the reviewer's comments make us realize that the text needed clarification in a number of places. Thus, while the reviewer recommends major revisions, we find that we can in fact address the issues through relatively straightforward edits to the text. Our revision does include the major change of adding Table 2, which summarizes the key characteristics of the diverse test catchments, including the challenging feature(s) that the GSFLOW-GRASS toolkit successfully handles to automatically produce simulations. We thank Reviewer 1 for their comments that inspired us to create this table, which we think greatly improves the presentation of our work.

We presume that the specific connections between the Introduction and the Examples and Conclusions sections that were of greatest concern to the reviewer are listed in the reviewer's

numbered comments below. However, to ensure that we have fully addressed the entirety of the reviewer's general point, we systematically list, in order, each Introduction statement about the technical advancements of our toolkit, and explain how they are supported by rest of the manuscript, including new text edits to enhance the connections where appropriate. For those points that we felt were already clearly demonstrated clearly in the original text, we did not to make further changes in the interest of remaining concise.

Introduction, Paragraph 4:

We wrote: *"Our overarching goal is to develop a bundled package -- "GSFLOW-GRASS" -- to handle the complexity of the coupled GSFLOW model, thus tackling the grand challenge of accessibility plaguing many integrated modeling systems."*

Our new toolkit does this - it can build an integrated hydrologic model run in a matter of minutes. The results are demonstrated by the Examples section. No change made.

Introduction, Paragraph 4:

We wrote that our toolkit is: *"fully automated"*

The code is indeed fully automated and based on a single DEM input and a single *"*.ini"* file, as is depicted in Figure 3 and demonstrated through the applications in the Examples section. No change made.

Introduction, Paragraph 4:

We wrote that our toolkit is: *"robust"*

Here we acknowledge that we should (1) be more careful with our use of the term "robust" (noting the reviewer's comment #1 below), and (2) summarize the various features of the example watersheds to demonstrate our point more readily. By "robust," we mean that the toolkit does not fail, even for a diverse range of implementations. To demonstrate this, the Examples section shows that GSFLOW-GRASS successfully handles three watersheds that each presents very distinct types of computational challenges to implementing GSFLOW. To more clearly depict at a glance that GSFLOW-GRASS can work for diverse settings, we now summarize the different features of each example watershed in the new Table 2. Also, to avoid confusion with other senses of "robust," we revised the text to not use this word in reference to model simulation results, where the reader can mistakenly interpret it to mean a lack of sensitivity to model inputs (reviewer's comment #1); however, we retain the term elsewhere when it is used in reference to the toolkit, where we feel that its meaning of "not failing" is unambiguous.

Introduction, Paragraph 4:

We wrote: *"Python scripts generate model input files and model output graphics, and extensions using the open-source GRASS GIS platform build topographically defined sub-watersheds linked to subsurface grid cells."*

The overall workflow described here is schematically depicted in Figure 1, and the output graphics are demonstrated in Figures 5-7. The Methods section defines in detail the GRASS GIS connection. No change made.

Introduction, Paragraph 4:

We wrote: *"Our use of only free and open-source programming languages and software is a key feature of the toolbox's accessibility... Open-source software facilitates implementation of GSFLOW-GRASS by diverse academic, government, and individual entities, enables further community development of GSFLOW-GRASS, and aligns with the USGS's goal to make its resources publicly accessible."*

The accessibility of the software used for the toolkit is discussed in the code development sections (including Section 2.2 GRASS GIS), highlighted in Shullcas example case, and re-emphasized in the Conclusions. The open-source aspect of our toolkit is verifiable with our GitHub repository, which is referenced in the manuscript. No change made.

Introduction, Paragraph 5:

We wrote: *"Whereas overland flow routing and the calculation of drainage basins from topography are standard GIS capabilities, our tool improves upon these by automatically building topologically structured vectorized drainage networks without manual corrections using a least-cost path approach (Metz et al., 2011), while also including information on adjacency and routing pathways through the network that is required by integrated hydrologic models."*

The Methods section shows that this is accomplished using r.watershed (Metz et al, 2011's tool) and our newly developed r.stream.network. No change made.

Introduction, Paragraph 5:

We wrote: *"The main technical advancement of GSFLOW-GRASS is the development of streamlined GRASS GIS extensions that have passed a diverse range of stress tests, including steep to low-relief topographies, large and intricate to small and simple drainage systems, incomplete to full topographic drainage integration, and mountainous to coastal watersheds."*

This is exactly the purpose of the Examples section. To make this clear, we have added Table 2 to summarize the different test cases and their distinct features.

Introduction, Paragraph 5:

We wrote: *"These new computational capabilities enable rapid, automated delineation of surface-water drainage networks linked to subsurface domains across any generalized landscape and practical resolution."*

In the Examples section, the implementations cover two orders of magnitude in drainage basin area, one order of magnitude in landscape relief, a factor of 30 in MODFLOW grid cell size, and a factor of 20 in HRU area. They include all of the possible complications now tabulated in Table 2. We feel that this is a broad-ranging and complete test of the capabilities of GSFLOW-GRASS, thus supporting our statement in the Introduction. To make sure that this broad range is not lost among the details in the Examples section, we added Table 2 to show at a glance how the each example demonstrates different capabilities of GSFLOW-GRASS. We also slightly edited the above sentence in the Introduction to be more exact that the range of capabilities we test with the toolkit was set by the range of capabilities of the GSFLOW model. The revised sentence is: "These new capabilities enable rapid, automated delineation of surface-water drainage networks linked to subsurface domains across any generalized landscape and computationally feasible resolution -- within the range of scales that can be

represented by GSFLOW.” (p. 3 lines 16-18)

Introduction, Paragraph 5:

We wrote: *“By doing this all within a framework that also includes open-source model input and post-processing tools, GSFLOW-GRASS presents a solution toward more accessible integrated hydrologic modeling.”*

As noted in the Introduction, the only roughly comparable software that exists for GSFLOW is commercial (Earthfx). The USGS is working on a similar product (Gardner et al., in review), but one that includes more manual work and has a different gridding structure. Thus, this toolkit does indeed fill a gap. No change made.

Finally, in response to the reviewer’s concern about whether these statements are “supported by illustrative figures”: we believe that the new Table 2 and text clarifications now highlight the distinct challenges presented with each example watershed, such that the successfully executed simulation results displayed in Figures 5-7 demonstrate the technical contribution of GSFLOW-GRASS of handling coupled hydrologic model implementations across a diverse range of conditions.

In summary, we hope this exhaustive list of points, along with new revisions to clarify the text, shows that the body of our manuscript does support the introductory statements about the technical advances of the new toolkit. We do greatly appreciate the reviewer raising their concern, because it prompted us to improve various parts of the manuscript and to create Table 2, which showcases the diverse range of challenges that we demonstrate the toolkit to successfully handle.

1. Authors state that the scope of the three examples is to demonstrate the robustness of the developed GRASS GIS domain builder across diverse topographic settings. I have problems in assessing this ‘robustness’ from Figures 5-6-7. In my opinion robust means that the output of the model does not change ‘much’ with small perturbations of the input. According to this I would frame the exercise in a different way. For each test case you identify a major challenge and then you exploit the toolkit to automatically generate a suite of model grid configurations that are tested in terms of different model output. This exercise will provide the opportunity to demonstrate the validity of the approach in guiding users during preliminary (i.e., grid definition) still critical modeling steps.

We believe the reviewer is referring to the following original text (and following passages): *“Three implementations of GSFLOW-GRASS serve the dual purposes of demonstrating (1) the robustness of the newly developed GRASS GIS domain builder across diverse topographic settings, including those prone to problems with standard GIS stream network tools, and (2) the variety of hydrological processes that can be assessed with the use of GSFLOW-GRASS. The implementations utilize topographic and climatic inputs from widely differing sites to show the range of applicability of the new toolbox.”*

We thank the reviewer for bringing to our attention the ambiguity of the term “robust.” We agree that when referring to model runs, “robust” can have a similar meaning as “stable,” where small perturbations do not cause much change in results. We instead intended to say that our toolkit (not model runs) is robust, in that it is difficult to “break” -- it can be successfully applied (without failing) to a diverse range of watersheds, including those that might pose challenges for other drainage network building workflows. The reviewer refers to this second sense of “robust” in their suggestion that we identify major challenges for each test case and then exploit the toolkit to handle them. This was exactly our intention with the Examples section, but based on the reviewer’s comment, we could have conveyed this more clearly. This lack of clarity was likely because our original opening sentences to the Examples section (cited above) made only generic reference to differences among the sites, rather than highlighting them as having challenges to be tackled by the toolkit. To address this, we revised the opening to (1) not use the misleading word “robust” and (2) to follow the reviewer’s suggestion to first explicitly introduce the examples as representing major challenges to be handled by the toolkit:

“Three example implementations demonstrate (1) the variety of hydrological processes and environments that can be explored using GSFLOW-GRASS and (2) how the toolkit’s GIS domain builder can handle diverse topographic settings, including those prone to problems with standard GIS stream network tools. For this second point, each simulation presents a unique set of technical challenges in developing a topographically based model domain that can properly route rainfall through a network of stream segments and sub-basins as well as a connected groundwater-flow grid.” (p. 18 line 30-p. 19 line 1)

The specific challenges were already described in the original text under the test case sections. Each test case section is organized to first introduce the watershed (where is it and why apply GSFLOW for it), **second explain the challenge it poses**, third provide details of the GSFLOW-GRASS implementation, and fourth describe the simulation results. For the second component, the Shullcas examples opens with “*A major obstacle with the steep topography and narrow canyons of Shullcas is the need for impractically high resolution and computational expense if using a standard gridded model domain*” (p. 21 lines 1-2). The Santa Rosa example states: “*Water Canyon is unique among the three example sites in that its outflow drains to the ocean, which is represented by cells with NULL values. This required modifications to the source code in order to properly accumulate flow across the watershed without encountering errors due to the null values offshore*” (p. 23 lines 10-12). And the Cannon River example explains: “*Much of this watershed’s post-glacial topography is characterized by small local hills and enclosed basins that have not yet been organized (or integrated) by fluvial erosion into a linked valley network, in which water would flow directly to a stream without encountering an enclosed lake or other basin. In such settings lacking integrated drainages, simple downslope flow-routing algorithms typically fail, and “pit filling” can produce spurious results by inappropriately modifying the real topography*” (p. 24 lines 2-6).

Although we believe the original text had already described the major challenge of each example, the reviewer’s comment made us realize the distinct challenges were perhaps buried within the text. To address this, we have newly created Table 2 to present the key watershed

characteristics and the challenges that each example serves to test. We anticipate that this Table 2 will clarify any confusion about the purpose of the different examples.

2. In the first example it seems that one of the most important features of the toolkit is the combination of flow paths extracted using high-resolution topography with the 'fewest' possible computational cells for MODFLOW. Could the authors identify (using their pre- and post-processing tool) the 'exact' value of the fewest possible computational cells?

We believe the reviewer is referring to the following original text: "*GSFLOW-GRASS's use of topographically based irregular HRUs makes it possible to compute flow paths using high-resolution topography but with the fewest possible computational cells corresponding to fundamental surface-water hydrologic units – stream segments and sub-basins. These irregular drainage units are then linked to a relatively coarse regular groundwater (MODFLOW) grid whose cell elevations are assigned based on our hydrologically corrected downscaling method (Section 3.2).*"

We would like to first point out that our mention of "computational cells" referred to the HRUs and stream segments, and not to the MODFLOW grid cells. We modified the second part of this passage to make the distinction clearer. Substantively, this comment did make us realize that the original text inappropriately stressed an absolute "fewest" number of cells, while the main idea we wanted to convey is that high-resolution topography may be used to define a relatively computationally inexpensive surface-water grid. Thus, it is not meaningful to calculate a "fewest" number of cells as the reviewer requests, and we have corrected our text by removing the absolute term of "fewest." The revised passage is:

"GSFLOW-GRASS's use of topographically based irregular HRUs makes it possible to compute flow paths using high-resolution topography, and then convert these into a relatively small number of computational cells corresponding to fundamental surface-water hydrologic units -- stream segments and sub-basins. In contrast, a surface discretization not automatically aligned with flow direction would require a greater number of cells to accurately resolve flow paths. The irregular drainage units generated by GSFLOW-GRASS are then linked to a groundwater (MODFLOW) grid, whose regular finite-difference grid can also be coarse relative to the high-resolution DEM. Cell elevations for the MODFLOW grid are assigned based on our hydrologically corrected downscaling method (Section 3.2)." (p. 20 line 18-p. 21 line 6)

3. In the second example, it seems that one of the most challenging task for the toolkit is to appropriately handle NULL value cells. I am not sure about it.

We believe the reviewer is referring to the following original text: "*Water Canyon is unique among the three example sites in that its outflow drains to the ocean, requiring that GSFLOW-GRASS appropriately handles NULL values for ocean grid cells.*"

We thank the reviewer for pointing out that we were not clear here. We have now revised the

text to more clearly emphasize the toolkit's important feature of properly handling NULL values:
"Water Canyon is unique among the three example sites in that its outflow drains to the ocean, which is represented by cells with NULL values. This required modifications to the source code in order to properly accumulate flow across the watershed without encountering errors due to the null values offshore." (p. 23 lines 7-9)

The relevant code modifications for GSFLOW-GRASS to function with NULL-valued ocean cells may be found at:

<https://github.com/UMN-Hydro/GSFLOW-GRASS/commit/9e1f14f54d797e4e634d1b6b27f59f9c1b3cbc6c>

4. Again in the second example, I am really confused by those statements connecting the numerical convergence of MODFLOW with the merit of the proposed toolkit. Specifically, I do not see how the suite of tools can avoid numerical convergence issues when MODFLOW cells run dry. Overall, I think that numerical convergence problems may still appear in MODFLOW and this won't make the proposed tool useless.

We believe the reviewer is referring to the following original text: *"The semi-arid climate can lead to losing streams that may run dry (Jazwa et al., 2016); the GSFLOW-GRASS implementation correspondingly shows low streamflow in simulations (Figure 6B) but avoids numerical convergence problems that can arise when MODFLOW cells run dry."*

The reviewer's comment made us realize this sentence was poorly worded. Indeed, when a MODFLOW cells runs dry, using the GSFLOW-GRASS toolkit won't magically prevent numerical convergence issues. We meant that using GSFLOW-GRASS could help prevent the case of cells running dry -- and consequently help to avoid the corresponding numerical convergence issues. We have revised this sentence as follows:

"The semi-arid climate can lead to losing streams that may run dry (Jazwa et al., 2016), which may make GSFLOW simulations susceptible to having entire MODFLOW cells become dry and cause numerical convergence issues. The GSFLOW-GRASS implementation does simulate low streamflow as expected (Figure 6B), but the domain-builder generated sufficiently thick and hydrologically corrected MODFLOW cells that maintain water and avoid any computational problems." (p. 23 lines 16-20)

5. In the third example, authors state that under smooth topographic gradients simple downslope flow-routing algorithms fail and they use this as an example to demonstrate the ability of their toolkit under such low-relief conditions. However, it is not clear to which extent this ability is due to a new feature of the proposed toolkit or to an already existing GRASS (r.watershed) functionality.

We believe the reviewer is referring to the following original text: *"The Cannon River watershed covers 3720 km², with only 215 m of total relief, making it the largest and lowest-gradient of*

these study cases, leading to very different computational challenges than those in the steep watersheds. Its deglacial topography has not yet been organized by fluvial erosion into a linked valley network. In such settings, simple downslope flow-routing algorithms typically fail, and "pit filling" can produce spurious results by inappropriately modifying the real topography.

GSFLOW-GRASS routes surface-water flow using the GRASS GIS `r.watershed` least-cost path algorithm, which is designed to produce drainage networks that route flow in the long-range path of steepest descent regardless of the degree of local drainage integration. Its success in this example demonstrates the ability of GSFLOW-GRASS to automatically create a topologically correct and linked drainage network in low-relief settings for hydrologic model simulations."

Smooth topographic gradients make flow-routing problems easy to solve, and therefore we did NOT state that they would fail under these conditions. We believe the reviewer may have confused "low-relief" with "smooth topographic gradients," which are not the same. The problem presented with the Cannon River watershed is that formerly glaciated settings require time to develop a fully integrated drainage network that is expressed in the topography, and before this point, they are full of local depressions and pits. Most GIS tools will artificially fill these pits, but `r.watershed`'s least-cost-path algorithm is able to route flow across them in a more realistic way. This is therefore an existing GRASS GIS functionality, and our contribution has been to link it to the GSFLOW domain builder. To better explain that the issue is related to drainage integration, as well as our contribution with `r.watershed`, we have revised this paragraph:

"The Cannon River watershed covers 3723 km² with only 210 m of total relief (Table 2), including a significant amount of non-integrated drainage that leads to very different computational challenges than those in the steep watersheds. Much of this watershed's post-glacial topography is characterized by small local hills and enclosed basins that have not yet been organized (or integrated) by fluvial erosion into a linked valley network, in which water would flow directly to a stream without encountering an enclosed lake or other basin. In such settings lacking integrated drainages, simple downslope flow-routing algorithms typically fail, and "pit filling" can produce spurious results by inappropriately modifying the real topography. GSFLOW-GRASS routes surface-water flow using the GRASS GIS's `r.watershed` least-cost path algorithm, which is designed to produce drainage networks that route flow in the long-range path of steepest descent regardless of the degree of local drainage integration. By using `r.watershed`, GSFLOW-GRASS is able to automatically create a topologically correct and linked drainage network in settings that lack integrated drainage for hydrologic model simulations." (p. 23 line 31-p. 24 lines 6)

6. Finally, all applications presented in this work are at relatively small catchment scale. Can the authors proof the utility of their tool at large, i.e. continental, scale using for instance the CONUS domain?

GSFLOW is a watershed model developed for use at scales of a few square kilometers to a several thousand square kilometers. Thus, GSFLOW-GRASS should not be applied at the

continental scale. We realize that this would not be obvious for readers not closely familiar with GSFLOW, and so we added the following sentence to the Background section:

"It [GSFLOW] is designed for simulations of watersheds with areas of a few square kilometers to several thousand square kilometers (p. 2, Markstrom et al., 2008)." (p. 3 lines 24-25)

With our test cases, we do in fact span nearly this full range of scales applicable for GSFLOW, and we added a sentence to the "Examples" section to highlight this:

"Their catchment areas range from 12.5 km² to 3723.0 km², covering the range of scales that GSFLOW was developed to simulate." (p. 19 lines 10-11)

According to the aforementioned points I would encourage authors to make a substantial effort to augment the insights from the results section, which will bring the overall quality of the manuscript suitable for GMD standard.

We greatly appreciate the reviewer highlighting unclear parts of our manuscript, and we can see how the corresponding interpretations by the reviewer would seem to require major revision. We believe that our edits to clarify the text and additional Table 2 fully address the reviewer's concerns, and that additional substantive changes are not necessary (e.g., no need to reorganize examples around major challenges - this was already done and just required clarification and a summary Table; no need to calculate absolute "fewest" number of cells - just needed to correct the text to refer to "relatively few;" no need to implement GSFLOW-GRASS on a continental basin scale - just needed to explain that the GSFLOW manual says it should only be applied to much smaller scales).

Other points:

1. The discussion in the Introduction connecting surface-subsurface coupling approaches to model input parameters is misleading. You may have that a fully coupled and a sequentially coupled approach requires the same amount of input information.

We believe the reviewer is referring to the following original text: "GSFLOW is not "fully integrated" in the sense that it does not simultaneously solve surface and subsurface flow equations; instead it consists of an iterative coupling between MODFLOW and PRMS that requires nearly all the individual input files for each of the two original models as well as an additional GSFLOW-specific linkage file. This means that to run GSFLOW, the user bears the burden of first generating a multitude of formatted ASCII files while ensuring that the three sets of input files are consistent with each other and can produce convergent coupled simulations."

The reviewer is correct that fully-integrated/coupled and iteratively/sequentially-coupled approaches can require the same amount of input information. We meant that GSFLOW is iteratively coupled in a way that requires a complicated mess of heterogeneous input files, and

this is what makes the model burdensome to use. We have revised the text to clarify this: "GSFLOW is not "fully integrated" in the sense that it does not simultaneously solve surface and subsurface flow equations; instead it consists of an iterative coupling between MODFLOW and PRMS that requires nearly all the individual input files for each of the two original models as well as an additional GSFLOW-specific linkage file. While a fully integrated model may have all the input information streamlined into a small number of internally consistent and efficiently organized files, to run GSFLOW, the user bears the burden of generating a multitude of diversely formatted ASCII files and ensuring that they contain inputs that correctly correspond with each other and can produce convergent coupled simulations." (p. 2 lines 18-23)

2. I would avoid statements about the potential of the tool in developing countries where computational resources may be limited. I do not see how the proposed tool may help with respect to this limitation.

We believe the reviewer is referring to the following original text: *"Our choice of an example in the Peruvian Andes demonstrates how our entirely open-source modeling system may be applied to problems in the developing world, where computational resources may be limited for local environmental researchers and practitioners."*

We realize that we were unclear: the reviewer probably understood "computational resources" as referring to processing power. We meant it in the sense of monetary resources for software, which our toolkit does address through its use of all open-source and freely available software. We have revised the text as follows:

"Our choice of an example in the Peruvian Andes demonstrates how our entirely open-source modeling system may be applied to problems in the developing world, where financial limitations faced by local environmental researchers and practitioners make it difficult to use commercial software solutions." (p. 19 lines 14-16)

3. Usually captions do not contain discussion of the presented results. Please check Figures 5-6-7.

Thank you for pointing this out. Some of our co-authors are accustomed to sub-disciplines in which extended captions are more common (e.g. geology), but we see that they are not typical in GMD. We have moved any significant discussion from the captions to the main text, while retaining some limited information in the captions that we believe will help the reader more easily understand the figures.

RESPONSE TO REVIEWER 2:

We greatly appreciate Reviewer 2's recommendation for our manuscript to be accepted as-is. We have not made any major substantive changes to the manuscript and thus believe that it largely remains in the form approved by the reviewer. The edits that we have made in response to Reviewer 1 should only improve the presentation.

GSFLOW-GRASS v1.0.0: GIS-enabled hydrologic modeling of coupled groundwater–surface-water systems

G.-H. Crystal Ng^{1,2}, Andrew D. Wickert^{1,2}, Lauren D. Somers³, Leila Saberi¹, Collin Cronkite-Ratcliff⁴, Richard G. Niswonger⁵, and Jeffrey M. McKenzie³

¹Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota, USA

²Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA

³Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, Canada

⁴Geology, Minerals, Energy and Geophysics Science Center, United States Geological Survey, Menlo Park, California USA

⁵Earth Systems Modeling Branch, United States Geological Survey, Menlo Park, California, USA

Correspondence to: G.-H. Crystal Ng (gcn@umn.edu)

Abstract.

The importance of water moving between the atmosphere and aquifers has led to efforts to develop and maintain coupled models of surface water and groundwater. However, developing inputs to these models is usually time-consuming and requires extensive knowledge of software engineering, often prohibiting their use by many researchers and water managers, and thus 5 reducing these models' potential to promote science-driven decision-making in an era of global change and increasing water-resource stress. In response to this need, we have developed GSFLOW-GRASS, a bundled set of open-source tools that develops inputs for, executes, and graphically displays the results of GSFLOW, the U.S. Geological Survey's coupled groundwater and surface-water flow model. In order to create a robust tool that can be widely implemented over diverse hydro(geo)logic 10 settings, we built a series of GRASS GIS extensions that automatically discretizes a topological surface-water flow network that is linked with the underlying gridded groundwater domain. As inputs, GSFLOW-GRASS requires at a minimum a digital elevation model, a precipitation and temperature record, and estimates of channel parameters and hydraulic conductivity. We demonstrate the broad applicability of the toolbox by successfully testing it in environments with varying degrees of drainage 15 integration, landscape relief, and grid resolution, as well as the presence of irregular coastal boundaries. These examples also show how GSFLOW-GRASS can be implemented to examine the role of groundwater–surface-water interactions in a diverse range of water resources and land management applications.

1 Introduction

Predicting and understanding the hydrologic impacts of climate, land use, and other natural and anthropogenic change is a scientific endeavor that is increasingly necessary to manage water resources. Addressing this need requires streamlined access to models that integrate surface and subsurface processes across a watershed. This integrated approach is required because 5 traditional hydrologic models that focus only on a single component within a watershed cannot properly predict the effects of changing conditions and feedbacks across their boundaries. The widespread use of integrated models is stymied, however, by labor-intensive requirements for creating consistent sets of extensive model inputs, including the challenges of generating computationally robust surface and sub-surface model domains.

Driven by the growing recognition of tightly coupled groundwater and surface water dynamics and the need to evaluate 10 and manage the two as a single resource (Winter et al., 1998), the United States Geological Survey (USGS) developed and released GSFLOW. This integrated hydrologic model couples the groundwater flow model MODFLOW with the rainfall–runoff model PRMS (Precipitation Runoff Modeling System) (Markstrom et al., 2008). Both MODFLOW (Harbaugh, 2005; Niswonger et al., 2011) and PRMS (Leavesley et al., 1983; Markstrom et al., 2015) are popular models with significant user 15 bases. GSFLOW has been previously applied to various watersheds in the US, for example in California (Essaid and Hill, 2014), Wisconsin (Hunt et al., 2013), Pennsylvania (Galeone et al., 2016), and Oregon (Surfleet and Tullos, 2013; Gannett et al., 2017), as well as to applications outside of the US (e.g., Hassan et al., 2014; Tian et al., 2015).

The process of implementing GSFLOW includes many hurdles that require significant time and computational knowledge to overcome. GSFLOW is not “fully integrated” in the sense that it does not simultaneously solve surface and subsurface flow 20 equations; instead it consists of an iterative coupling between MODFLOW and PRMS that requires nearly all the individual input files for each of the two original models as well as an additional GSFLOW-specific linkage file. This means that While a fully integrated model may have all the input information streamlined into a small number of internally consistent and efficiently organized files, to run GSFLOW, the user bears the burden of ~~first~~ generating a multitude of diversely formatted 25 ASCII files ~~while ensuring that the three sets of input files are consistent and ensuring that they contain inputs that correctly correspond~~ with each other and can produce convergent coupled simulations. Freely available USGS GUIs – ModelMuse (Winston, 2009) and the PRMS GUI (Markstrom et al., 2015) – and proprietary GUIs (mostly for MODFLOW) can help users 30 separately develop inputs to the two individual base models but do not offer support for creating the GSFLOW linkage file. The company Earthfx (<http://www.earthfx.com/>) provides full GSFLOW support as part of their “VIEWLOG” package, designed for the environmental consulting industry. More openly accessible software endeavors have also improved the usability of integrated hydrologic models (Bhatt et al., 2014; Tian et al., 2016; Gardner et al., in review), but the community still lacks a free and complete package spanning pre- to post-processing for heterogeneous surface and subsurface domains. This lack of support for developing integrated hydrologic models such as GSFLOW motivates our present work, which we anticipate will enable more widespread hydrologic modeling.

Our overarching goal is to develop a bundled package – “GSFLOW-GRASS” – to handle the complexity of the coupled GSFLOW model, thus tackling the grand challenge of accessibility plaguing many integrated modeling systems. We develop

an integrated toolbox featuring fully automated, robust, and open-source codes that cover the entire model implementation process within a consistent and efficient framework, from building topologically linked hydrologic domains and assembling model input parameters to visualizing model outputs. Our use of only free and open-source programming languages and software is a key feature of the toolbox's accessibility. Python scripts generate model input files and model output graphics, and 5 extensions using the open-source GRASS GIS platform build topographically defined sub-watersheds linked to subsurface grid cells. Open-source software facilitates implementation of GSFLOW-GRASS by diverse academic, government, and individual entities, enables further community development of GSFLOW-GRASS, and aligns with the USGS's goal to make its resources publicly accessible.

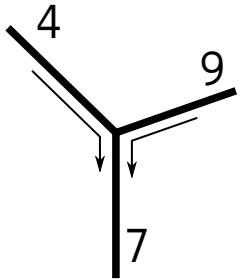
Developing a fully automated toolbox that can be readily executed for diverse physical settings raises the key technical 10 obstacle of how to robustly build stream networks and sub-basins linked to subsurface computational domains without labor-intensive user intervention. Whereas overland flow routing and the calculation of drainage basins from topography are standard GIS capabilities, our tool improves upon these by automatically building topologically structured vectorized drainage networks without manual corrections using a least-cost path approach (Metz et al., 2011), while also including information on adjacency and routing pathways through the network that is required by integrated hydrologic models. ~~While this 15 method is mathematically correct, its accuracy will be a function of digital elevation model (DEM) resolution, the topographic expression of the channel, and artificial drainage structures that may have minimal or no topographic expression. It is therefore also possible to edit drainage structure by hand.~~ The main technical advancement of GSFLOW-GRASS is the development of streamlined GRASS GIS extensions that have passed a diverse range of stress tests, including steep to low-relief topographies, 20 large and intricate to small and simple drainage systems, incomplete to full topographic drainage integration, and mountainous to coastal watersheds. These new ~~computational~~ capabilities enable rapid, automated delineation of surface-water drainage networks linked to subsurface domains across any generalized landscape and ~~practical resolution-computationally feasible resolution within the range of scales permissible by GSFLOW~~. By doing this all within a framework that also includes open-source model input and post-processing tools, GSFLOW-GRASS presents a solution toward more accessible integrated 25 hydrologic modeling.

25 2 Background

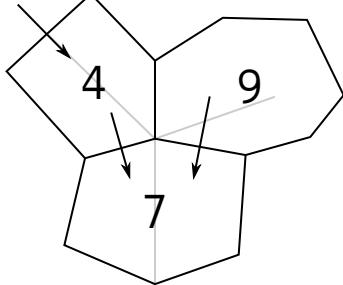
2.1 GSFLOW

GSFLOW simulates spatially distributed surface to subsurface water flow in a watershed using modified model codes from PRMS and MODFLOW. ~~It is designed for simulations of watersheds with areas of a few square kilometers to several thousand square kilometers (Markstrom et al., 2008, p. 2)~~. Although GSFLOW can run in modes equivalent to the stand-alone PRMS-30 IV model and the stand-alone MODFLOW model, only the “integrated” version is described here. Near-surface watershed processes within the shallow “soil zone,” including evapotranspiration, infiltration, runoff, and interflow, are represented by the PRMS sub-component of GSFLOW. Groundwater flow below the “soil zone,” including vertical soil water movement in the deeper unsaturated zone and saturated flow through horizontal aquifer layers, is represented by the MODFLOW sub-

component. Streamflow and exchange between streams and underlying groundwater systems are also represented by the MODFLOW sub-component. We describe here the key features of GSFLOW in order to guide new users in implementing it and interpreting its results; Markstrom et al. (2008) [documents](#) [document](#) the full details of the model.

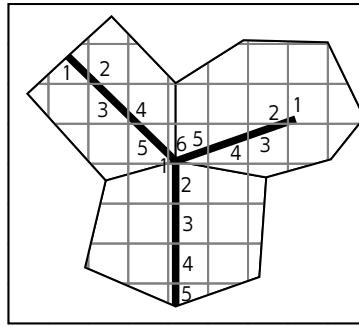

2.1.1 Domain discretization

5 GSFLOW adopts a hybrid spatial domain discretization approach (Figure 1) to establish its computational units. Stream segments are links in a river network that are used in both the PRMS and MODFLOW sub-components of GSFLOW (Figure 1A). Horizontally, the PRMS sub-component uses hydrological response units (HRUs) of any shape as its fundamental discretized unit (Figure 1B). These are used for calculations of the upper soil zone and the part of the surface not covered by the stream network. The MODFLOW sub-component uses rectangular grid cells for the deeper subsurface (Figure 1C) and to further
10 discretize the stream network into reaches (Figure 1D). Establishing reaches as the fundamental unit of computation for the stream network instead of segments makes it possible to resolve fine spatial resolution groundwater-surface exchanges. Like MODFLOW grid cells, HRUs can be set to rectangles, but they are also commonly defined topologically to correspond to sub-basins, as they are in our approach (Figure 1). Model intercomparison projects have included both representatives that use gridded domains and those that use irregular domains (Reed et al., 2004; Maxwell et al., 2014). In general, gridded domains
15 are easier to construct and extend [readily](#) to parallelized computational systems, and they allow flexible spatial specification of soil and land-cover heterogeneity. In contrast, ungridded domains, such as triangulated irregular networks (TINs) used in models including tRIBS (Vivoni et al., 2004) and PIHM (Qu and Duffy, 2007), can conform more efficiently to complex terrain. In the case of PIHM (Qu and Duffy, 2007), TINs were also implemented for better water balance performance through
20 the mass-conserving finite volume method (Leveque et al. 2002). Other hydrological models with ungridded domains use topographically defined sub-basins as efficient computational units, including SWAT (Arnold and Fohrer, 2005), SAC-SMA (Ajami et al., 2004), HEC-HMS (Feldman, 2000), and TOPNET (Bandaragoda et al., 2004).


Vertically, the PRMS sub-component of GSFLOW is discretized into conceptual shallow soil zone reservoirs, which do not correspond directly to physical locations within the soil column but are instead based on user-specified conceptual thresholds. Specifically, within an HRU, the “soil zone” is subdivided into three reservoir types – the capillary reservoir, gravity reservoir,
25 and preferential-flow reservoir, which are filled in order of increasing water storage using efficient water-accounting calculations (Section 2.1.2) (Figure 2). Underlying the PRMS soil zone are MODFLOW grid cells representing the deeper unsaturated zone and the saturated zone. While grid cells have uniform horizontal discretization, vertical layer thicknesses can be variable in order to accommodate different hydrostratigraphy. To link the PRMS and MODFLOW grids, the user must define gravity reservoirs at each different intersection of an HRU and a grid cell (Figure 1D). The MODFLOW component of GSFLOW also
30 relies on a user-specified stream network; stream segments represent tributaries, and the intersection of a stream segment with MODFLOW grid cells defines stream reaches (Figure 1A, D).

GSFLOW uses a daily computational time step for both the PRMS component and MODFLOW component. Flows are exchanged between each component at each time step. Multiple MODFLOW “stress periods” can be invoked to represent different subsurface boundary conditions within a simulation period, but their lengths must be integer days.

A. Segments (MODFLOW)
Links in river network


B. HRUs (PRMS)
Sub-catchments

C. Grid (MODFLOW)
Finite difference grid

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18
.
.
.
.
.
64	65	66	67	68	69	70	71	72

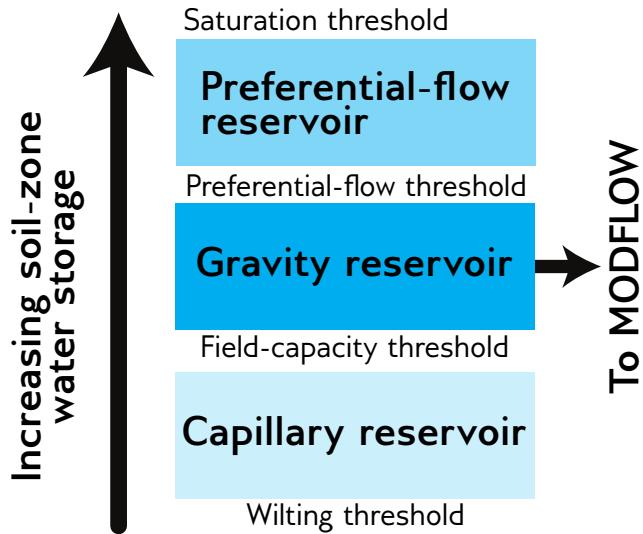

D. Reaches & Grav. Res. (GSFLOW)
Grid intersection of HRUs and segs.

Figure 1. Major features of the GSFLOW geometry. **A.** Each segment is one link in the network. At each node, two tributary segments combine to flow into a single segment. Each is numbered. They need not be in any particular order, as indicated, but a downstream-increasing numbering scheme is required for updated inflows to all segments to be computed during the same iteration. **B.** Flow in each of the sub-basin HRUs is routed directly to a corresponding stream segment. The arrow on the upper left indicates that flow from outside of the representative tributary junction may also be part of the drainage network. Our topological approach to defining HRUs allows HRUs to be numbered the same as the stream segments that they enclose. Our code is written in such a way that future developments can relax this symmetry. **C.** MODFLOW operates on a grid that underlies the PRMS-based stream network and HRUs; each cell has a unique ID that is sequentially numbered. **D.** Gravity reservoirs are defined by the intersection of the PRMS HRUs and the MODFLOW grid. “Reaches” are defined as the section of each PRMS stream segment that lies within a single MODFLOW grid cell, and are numbered sequentially downstream as shown.

2.1.2 Process description

This section includes a brief description of the main hydrologic processes represented in GSFLOW, with select parameters listed in Table 1. Full details can be found in the GSFLOW manual (Markstrom et al., 2008). In particular, Table 1 from Markstrom et al. (2008) summarizes all the surface-water processes captured by PRMS modules, groundwater processes captured by MODFLOW stress packages, and model coupling procedures captured by GSFLOW.

Figure 2. (Adapted from Markstrom et al. (2008), Figure 12) Soil water storage reservoirs in the PRMS component of GSFLOW. Within each HRU, soil water accounting calculations are carried out for three conceptual reservoirs in the order of increasing water storage and according to user-specified parameters. Climate forcing applies to the capillary reservoir, the gravity reservoir exchanges water with the deeper unsaturated and saturated zones represented by the MODFLOW component of GSFLOW, and Dunnian runoff and fast interflow occur in the preferential-flow reservoir.

The PRMS component of GSFLOW includes modules that can convert commonly available climate data into complete forcing inputs needed for model simulations. These include methods for determining potential solar radiation, potential evapotranspiration, and snow accumulation or depletion; they also include different for spatially distributing data from one or a few observations points over the entire watershed.

5 For unsaturated zone flow, PRMS does not implement the Richards equation but instead applies computationally fast soil-water routing calculations to determine inputs and outputs for each HRU as well as exchanges among the three conceptual reservoir types within an HRU (GSFLOW manual Fig 19, Table 9). The “capillary zone” reservoir represents water held by capillary forces; it receives water through infiltration (based on parameter *pref_flow_den*) and loses water through evaporation and transpiration (based on parameters *soil_moist_max*, *soil_rechr_max*, and *soil_type*). After reaching field capacity (parameter *soil_moist_max*), water transfers from the capillary zone to “gravity reservoirs”, where water can flow horizontally as slow interflow (based on parameters *slowcoef_lin* and *slowcoef_sq*) or drain vertically into the deeper subsurface domain that is handled by MODFLOW (based on parameters *ssr2gw_rate*, *ssr2gw_exp*, and *ssrmax_coeff*). Gravity reservoirs can also receive groundwater discharge from the MODFLOW component when hydraulic head values exceed the lower limit of the soil zone. A fraction of gravity reservoir storage moves to the “preferential-flow reservoir” (based on parameters *pref_flow_den* and *sat_threshold*), where fast interflow occurs (based on parameters *fastcoef_lin* and *fastcoef_sq*). If the preferential-flow reservoir becomes full (based on parameter *sat_threshold*), then water exits the soil zone as Dunnian (saturation-excess) runoff. Horto-

10

15

Table 1. Select GSFLOW parameters (adapted from Markstrom et al., 2008, Appendix 1).

Parameter	Description
<i>pref_flow_den</i>	Decimal fraction of the soil zone available for preferential flow versus capillary zone flow
<i>soil_moist_max</i>	Maximum available capillary water-holding capacity of soil zone
<i>soil_rechr_max</i>	Maximum quantity of water in the capillary reservoir (value must be less than or equal to <i>soil_moist_max</i>)
<i>soil_type</i>	Soil type: 1=sand; 2=loam; 3=clay
<i>soil_moist_max</i>	Maximum volume of water per unit area in the capillary reservoir
<i>slowcoef_lin</i>	Linear flow-routing coefficient for slow interflow
<i>slowcoef_sq</i>	Non-linear flow-routing coefficient for slow interflow
<i>ssr2gw_rate</i>	Linear coefficient in the equation used to compute gravity drainage to MODFLOW finite-difference cell
<i>ssr2gw_exp</i>	Exponent in the equation used to compute gravity drainage to MODFLOW finite-difference cell
<i>ssrmax_coef</i>	Maximum amount of gravity drainage to MODFLOW finite-difference cell
<i>sat_threshold</i>	Maximum volume of water per unit area in the soil zone, between field capacity and saturation thresholds
<i>hru_percent_imperc</i>	Decimal fraction of HRU area that is impervious
<i>ICALC</i>	An integer value used to indicate method used to calculate stream depth in this segment
<i>IRTFLG</i>	An integer value that flags whether transient streamflow routing is active

nian (infiltration-excess) runoff calculations apply for impervious fractions of HRUs (set by parameter *hru_percent_imperc*). Surface runoff and interflow are routed between HRUs, using a cascading flow scheme that follows user-specified indexing of linked HRUs, and eventually reaches the stream network.

The MODFLOW component of GSFLOW computes water flow in the deeper unsaturated zone (UZF stress package),
5 streams (SFR package), and saturated groundwater units (BCF, LPF, or UPW flow packages). Unsaturated zone flow is calculated using a kinematic-wave approach, which assumes that capillary (pressure gradient) flow is negligible compared to gravity-driven flow. Capillary-dominated effects are instead represented in the soil zone of the PRMS component described above. Unsaturated zone flow in the MODFLOW component is calculated as waves representing wetting and drying fronts. Gravity reservoir drainage from the PRMS component flows to the top of the unsaturated zone of the MODFLOW component,
10 unless the water table is above the soil-zone base – defined by the top of the MODFLOW domain – in which case the gravity reservoirs drain directly to the saturated zone. Saturated zone simulations (MODFLOW) employ [finite-difference solutions](#) [the finite difference method](#) to the groundwater flow equation.

Streamflow, as calculated by the MODFLOW component, includes inputs from upstream reaches, surface runoff and interflow from the PRMS component, base flow from the saturated zone discharge, and flows from possible underlying unsaturated areas. Outputs include flow to downstream reaches, leakage to groundwater, and flows to possible underlying unsaturated areas. Discharge across the streambed follows Darcy's law with specified streambed hydraulic properties. Five different options exist for stream discharge and head computations (parameter *ICALC*). The user can specify stream depths for each reach; apply Manning's equation to an assumed wide rectangular channel; apply Manning's equation for an eight-point-based channel and

floodplain geometry; apply at-a-station power-law relationships between discharge, flow width, and flow depth (Leopold and Maddock, 1953); or specify an input look-up table of hydraulic geometries for each segment. Streamflow can be simulated as either steady-state flow (parameter *IRTFLG* = 0), where outflow to the next stream reach balances inputs, or as transient flow (parameter *IRTFLG* > 0), using a kinematic wave formulation for surface-water routing in channels, which applies the
5 assumption that the water surface slope approximates the friction slope, and therefore negates backwater effects.

Some modifications were made to the original stand-alone PRMS and MODFLOW codes for their use in GSFLOW. Notably, the soil-zone structure of PRMS was significantly altered to facilitate its linkage with a MODFLOW subsurface domain. Other modifications are noted in the GSFLOW manual (Markstrom et al., 2008, see sections on “Changes to PRMS” and “Changes to MODFLOW-2005”). An additional feature starting in version 1.2.0 that is not described in the original manual is the inclusion
10 of MODFLOW-NWT (Niswonger et al., 2011), a more numerically robust update to MODFLOW-2005 for groundwater flow.

2.2 GRASS GIS

GRASS GIS is an open-source, multi-purpose, and cross-platform geographic information system (Neteler and Mitasova, 2008; Neteler et al., 2008, 2012) that supports utilities for efficient raster and vector computations (Shapiro and Westervelt, 1994; Mitasova et al., 1995; úri and Hofierka, 2004; Hofierka et al., 2009). It includes both graphical and command-line interfaces,
15 and may be driven by shell or Python scripts. It supports both 2D and 3D raster and vector data and includes SQL-based attribute table database management. GSFLOW-GRASS utilities are written for the most recent stable release version of GRASS GIS, v7.4. This supports Python scripting for both high-level built-in commands and for low-level access to database entries and vector geometries (Zambelli et al., 2013). We take advantage of these capabilities to develop an automated workflow to build GSFLOW inputs through GRASS GIS.
20

We chose GRASS GIS as the interface to develop inputs because (1) it is open-source and cross-platform; (2) it enforces rigid vector topology, which is critical for building stream networks; (3) its generic Python scripting library and PyGRASS Application Programming Interface (API) make it easy to develop new extensions; (4) these extensions may be added to the official subversion (svn) repository, from which they can be automatically downloaded and installed on users’ computers using the **g.extension** command; and (5) it provides a GUI and command-line interface (CLI) that are consistent with one another.
25

The GUI and CLI interfaces are not required for GSFLOW-GRASS, because the GRASS GIS component is handled mostly ~~behind-the-scenes~~ behind the scenes by a batch-processing Python script (**buildDomainGRASS.py**, Section 3.2); however, they allow end-users to re-run certain portions of the process and/or produce their own workflows using the GSFLOW-GRASS extensions as building blocks. The open-source aspect of the present work is in part motivated by the need for water assessment and planning tools in the developing world (Pal et al., 2007), and these extensions, combined with the interchangeable and
30 consistent GUI and CLI, can help users to generate their own advanced customizations of GSFLOW-GRASS.

3 Methods

We adopt a heterogeneous surface and subsurface computational domain for GSFLOW-GRASS that employs sub-basin surface HRUs that are linked to subsurface grid cells. In addition to the computational efficiency of discretizing complex terrain with sub-basins rather than a gridded surface domain, the use of sub-basin HRUs that route surface runoff directly to stream segments

5 also eliminates the need for establishing a cascading network (Section 2.1.2). Because of GSFLOW’s conceptual water-routing scheme (versus gradient-based), numerical differences between sub-basin and gridded HRU’s are difficult to predict, but the automated GSFLOW-GRASS toolbox can help enable future testing to rigorously interrogate their respective performances.

GSFLOW-GRASS strikes a balance between generating a ready-to-go GSFLOW implementation and providing flexibility to customize applications. With a newly developed set of automated and robust GIS domain builder tools, GSFLOW-GRASS 10 can be applied to any DEM to produce GSFLOW model simulations, with only a few steps to set up the model with the user’s computer directory system. For further model-tuning, all scripts in the toolbox are open-source and commented to allow changes to any parameter and development of optional GSFLOW capabilities not included in the default GSFLOW-GRASS implementation. Many popular hydrologic model implementation programs have GUIs, including ModelMuse (Winston, 2009), Visual Modflow (Waterloo Hydrogeologic Inc., 2011), Hydrus (Simunek et al., 2009), ArcSWAT (Neitsch et al., 2002), and 15 MIKE-SHE (Butts and Graham, 2005). While these are easiest for novice model users, GUIs can be challenging to develop for cross-platform implementations and generally support less flexibility for customization. Thus, we chose a mostly command-line approach, which has been designed and tested for use on Linux and Windows operating systems.

3.1 User-specified settings and model inputs

To seamlessly unify the different GSFLOW-GRASS functionalities, including the automated GRASS GIS domain builder, 20 GSFLOW input-file builder, and visualization components, users specify model inputs and configurations using a Settings text file. All inputs from the Settings file are read in and processed by the **ReadSettings.py** script. GSFLOW requires a daunting number of different model inputs (nearly 200 parameters for the PRMS sub-component alone). For ease of use, only a handful of application-specific and commonly adjusted inputs may be assigned using the Settings file, and default parameter values are applied elsewhere. While the default (and simplest) approach to GSFLOW-GRASS is to modify only the Settings file, other 25 parameters (including those mentioned in Section 2.1.2) may be readily changed in its input-file builder by searching for the parameter names defined in the GSFLOW manual and changing their values. The open-source nature of our toolbox also allows users to add parameters to the Settings files for future extensions of GSFLOW-GRASS.

Specifying and including spatially variable properties is a major challenge to distributed modeling. The Settings file accommodates the use of variable aquifer hydraulic conductivity, channel width, and Manning’s n parameters, which are described 30 further in Section 3.3.3. Universal solutions are beyond the scope of the default toolbox, but we do provide a generalized GRASS-GIS extension called **v.gsflow.mapdata** to facilitate the generation of heterogeneous model inputs. **v.gsflow.mapdata** can take any spatially variable data in a raster or vector GIS format and map it to one of the GSFLOW discretization structures: sub-basin HRUs for PRMS surface-water processes, regular grid cells for MODFLOW groundwater processes, gravity reser-

voirs that link the HRUs and MODFLOW grid cells, or stream segments or reaches for MODFLOW streamflow processes. This allows users to add data from any source – e.g., meteorological forcing, soil properties, hydrogeologic stratigraphy, or vegetation / land cover – to the GSFLOW-GRASS data structures. Other software have facilitated hydrologic modeling by automating the connection with established databases (Viger and Leavesley, 2007; Leonard and Duffy, 2013; Bhatt et al., 5 2014; Gardner et al., in review). The USGS’s GIS Weasel tool (Viger and Leavesley, 2007) may be used for deriving PRMS parameters from physical data sets such as STATSGO, which can then be mapped to the appropriate GSFLOW data structure using **v.gsflow.mapdata**. The current GSFLOW-GRASS release aims to provide a general set of tools and does not directly link with any specific databases, which are typically only available in observation-rich regions and countries.

The Settings file is divided into subsections, each of which drives a portion of the model setup and organization. The “paths” 10 section defines the computer directory structure for the project and GSFLOW executable, as well as the project name and GSFLOW version. Three GRASS GIS sections, “GRASS_core”, “GRASS_drainage”, and “GRASS_hydraulics”, set the GIS location and path to the DEM, the surface and subsurface flow discretization parameters, and open-channel flow geometry and resistance, respectively. The “run_mode” section allows the user to execute GSFLOW in either “spin-up” or “restart” mode (Regan et al., 2015). Spin-up simulations start with a preliminary MODFLOW steady-state execution using a specified infiltration rate (see below) to calculate reasonable initial groundwater head conditions for the subsequent transient simulation that 15 includes both the surface and subsurface domains; the steady-state step can be essential for obtaining numerically convergent groundwater results and more realistic solutions for the entire coupled system. At the end of a spin-up run, final PRMS and MODFLOW state variables are saved in files that can be specified in the run_mode section to initiate “restart” coupled runs without the preliminary groundwater steady-state period. The “time” section is used to specify the temporal window of the 20 simulation. The “climate inputs” section sets input parameters for the PRMS “climate_hru” option, which is the standard climate implementation supported by GSFLOW-GRASS (see Section 3.3.1). Finally, the “hydrogeologic_inputs” section defines the preliminary steady-state MODFLOW infiltration rate, used for “spin-up” runs, and either a layered or fully distributed subsurface hydraulic conductivity structure. The **ReadSettings.py** script uses these inputs to create a directory structure and 25 organize all GIS and simulations files. This imposed directory structure supports easy exchange between the different toolkit modules and allows the use of relative directory names, which facilitates the sharing of model files across computers systems and between users.

3.2 GRASS GIS domain builder

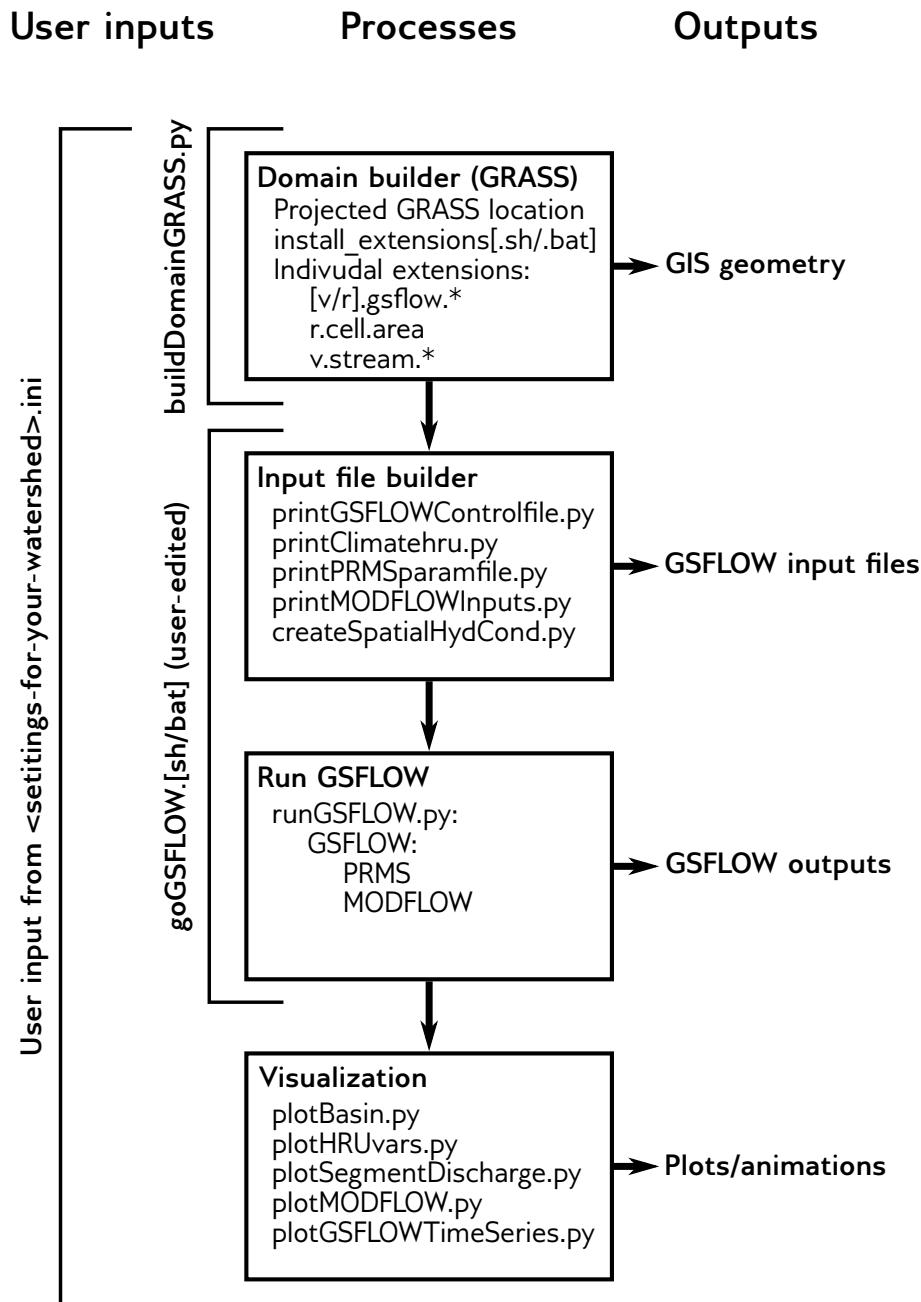
A critical challenge for any distributed hydrologic model is the fully automated development of a reproducible, topologically correct, and interlinked data structure that describes water flow through a catchment in a computationally efficient manner. 30 Semi-automated approaches to building surface flow networks are common (e.g., Luzio et al., 2006; Arnold et al., 2012), but the development of a fully automated approach has been impeded by the mathematical and logistical difficulties of building a topologically ideal drainage network (i.e. one whose fundamental unit is a tributary junction). Many standard GIS tools encounter problems when handling complex digital topography (DEM) that may contain natural or artificial depressions and whose grid cells are often much larger than real topographic features. Further complications arise when incorporating surface

flow networks into integrated hydrologic models, because each link within the network must then be tagged with sufficient information to identify drainage pathways through the whole network, and the stream network must also be linked with generally different geometries and resolutions for surface-water HRUs and the groundwater-flow grid.

We have solved this general problem for any raster data set whose values (e.g., elevation) may be used to define a flow path, and we implemented our solution in a set of GRASS GIS extensions to generate flow networks for GSFLOW. This is done by generating a topologically correct drainage network whose base unit is the tributary junction, in which two stream segments meet and form a new segment. This simple set of rules, based on a least-cost-path drainage algorithm (Metz et al., 2011), addresses systematic issues that may occur in other flow-routing algorithms and require users to manually perform error checks and corrections, which add a source of subjectivity and laborious processing time. While the automatically-generated stream ~~network and HRU networks~~ will be topologically correct, ~~it may their accuracy will be a function of digital elevation model (DEM) resolution, the topographic expression of the channel, and artificial drainage structures that may have minimal or no topographic expression. Therefore, they may also~~ be edited by hand to match the geometry of features (such as artificial drainage structures) that are not included on the DEM. For each stream segment, the unique ID is recorded of the segment to which it sends its water, and this book-keeping is used to define surface-water flow through the network. The same ID number is assigned to the sub-basin HRU associated with the corresponding stream segment and its outlet. A MODFLOW grid is then built that is aligned with, but may be coarser than, the resolution of the DEM used for flow routing, ~~its elevation values are the Elevation values of the MODFLOW grid are then~~ populated through a hydrologically correct downsampling of the DEM. From these fundamental surface-water and groundwater units, reaches and gravity reservoirs are generated based on the intersection of each segment and HRU, respectively, with the underlying MODFLOW grid. Unique identifiers are then passed between all of these in order to build a fully linked surface and subsurface flow network.

We created eleven new GRASS GIS “extensions”, also called “add-ons”, that work alongside core GRASS GIS commands to transform user inputs (including a single DEM) into a set of GSFLOW inputs via the procedure outlined above and described in greater detail below. The GSFLOW inputs are stored as raster data sets and SQL database tables attached to vector geometries, and then exported to ASCII files that are later parsed by the Python input-file builders scripts (Section 3.3). The separate ASCII files allow users to set up the spatial structure of the model only one time using GRASS GIS, and then perform multiple runs for parameter calibration or scenario tests without having to repeat the domain construction. This domain-building procedure is automated through the **buildDomainGRASS.py** script, which takes inputs from the Settings text file, implements the domain-building workflow, and produces ASCII files used by GSFLOW-GRASS’s Python input-builder scripts.

In the first step of the fully automated domain-building workflow, GRASS GIS imports a user-provided DEM to define the drainage network and HRUs. After hydrologically correcting the DEM by filling pits and removing cells that have flow inputs from outside the map area (GSFLOW-GRASS requires the full topographical catchment to be included in the model domain), a Hortonian drainage network is constructed (Jasiewicz and Metz, 2011; Metz et al., 2011). Sub-basins associated with each stream segment are designated as HRUs in order to follow both the natural discretization of the landscape and the architecture of PRMS (Markstrom et al., 2015). River headwaters are defined based on a threshold drainage area that may be weighted by the user to represent, for example, nonuniform precipitation or snowmelt inputs. Such weights permit a more


realistic representation of drainage density and, as a result, increased model resolution in areas that contribute more water to the catchment.

The next step in the automated workflow is to map the connections between each segment in the tributary network. To do this, we developed an extension called **v.stream.network**. Each stream segment has a unique positive integer identifier, called 5 a “category” in GRASS GIS. For each segment in the drainage network, **v.stream.network** writes the category value of the immediately downstream stream segment to the “tostream” column in its associated attribute table row. Any stream segment exiting the map area is given a “tostream” value of 0. At this point, the user may make edits to the structure of the drainage basin, for example, by correcting stream courses to align with human-developed drainage structures. After this, the study area is limited to a single drainage basin using the new **v.stream.inbasin** extension, completing the development of the drainage 10 network geometry and topology.

Each segment is then supplied with attributes through the **v.gsflow.segments** extension. This numbers each river channel segment for GSFLOW (Figure 1A) and populates the associated database table with hydraulic geometry, channel roughness (constant or spatially distributed), and channel and floodplain width (constant or spatially distributed). Additional less-commonly used options are also available, including additional input discharge for the upstream-most stream segments (e.g., from human 15 intervention), input diffuse runoff, and direct precipitation on the stream.

The next step is to build the MODFLOW grid and link it to the surface-water data structures (HRUs and segments). The primary difficulty is that the MODFLOW grid cells can be an arbitrary size and may not overlap with the irregularly shaped HRUs and segments. Furthermore, it is often desirable to discretize the MODFLOW groundwater domain on a grid that is coarser than the DEM used for surface flow routing, for the sake of computational efficiency. **v.gsflow.grid** builds the 20 MODFLOW grid (Figure 1C) while enforcing that it must contain only whole DEM grid cells, and that its edges must align with cell edges in the DEM. **r.gsflow.hydrodem** then hydrologically corrects the elevations of the MODFLOW grid cells; cells that contain stream segments are given a surface elevation corresponding to the lowest-elevation overlapping pixel on the flow-routing DEM, while all other MODFLOW cells are assigned the mean elevation from the corresponding cells in the flow-routing DEM. **v.gsflow.reaches** and **v.gsflow.gravres** construct the reaches and gravity reservoirs (Section 3.1), which are 25 the intersection of segments and HRUs, respectively, with each MODFLOW grid cell (Figure 1D). The database table for the reaches includes values for the thickness of the stream-bed sediment (defaults to 1 m) and its hydraulic conductivity (defaults to 5 m/d, characteristic of sand and gravel). GSFLOW supports more input options than we have defined for our GRASS GIS **v.gsflow.*** commands, but we have included the most common options, as well as the **v.gsflow.mapdata** tool for users to add other attributes to database tables.

30 Finally, the generated attributes and geometries are exported. **buildDomainGRASS.py** exports a rasterized “basin mask” (1 in the basin, 0 outside) and the hydrologically corrected DEM at the MODFLOW grid resolution, as well as vectorized GIS data (shapefile format) for the HRUs, gravity reservoirs, MODFLOW grid, stream segments, stream reaches, pour point, full study basin area, and downstream boundary-condition cells. **v.gsflow.output** exports the database tables associated with the vectorized GIS data in comma-separated variables (CSV) files that can be read in by the input-file builder scripts (Section 3.3) 35 for use in GSFLOW.

Figure 3. GSFLOW-GRASS workflow. The user: (1) creates a *.ini file based on their study catchment; (2) creates a projected GRASS GIS location; (3) runs **buildDomainGRASS.py**; (4) edits and runs **goGSFLOW.py**. After this, they may use GSFLOW-GRASS's visualization tools to study the GIS and model outputs.

3.3 GSFLOW Input File Builder

GSFLOW-GRASS includes a set of input-file builder scripts that are streamlined to incorporate the model domain discretization constructed by the GRASS GIS workflow and generate corresponding model inputs for the GSFLOW control file, PRMS-type input files, and MODFLOW-type input files. Most of the new features in GSFLOW that are not in stand-alone PRMS or

5 MODFLOW follow the same Modular Modeling System input-data file format (Leavesley et al., 1996) as PRMS, which includes use of a “control file” as the main interface file, “modules” for different computational options, and the PRMS input file syntax. In contrast, MODFLOW uses a “name file” as its main interface file, implements “packages” for computational options, and follows its own file syntax. The following builder scripts handle these different formats and are automatically 10 executed through the toolkit’s Run file (Section 3.4). The builder scripts may also be customized for extensions beyond the default implementation.

3.3.1 GSFLOW control file

The GSFLOW control file is the highest level input file and is created by the `printGSFLOWControlfile.py` script in the GSFLOW-GRASS toolkit. The toolkit is streamlined for configuring the integrated mode of GSFLOW (set through the “model_mode” parameter).

15 Inputs for the control file parameters are organized under six numbered sections in `printGSFLOWControlfile.py`. The script sets parameters related to climate forcing, time domain, and run mode based on what the user specifies in the Settings file; all other parameters are pre-set to default values. Further customization of control file parameters (stored in the list variable `con_par_name`) requires simply changing default values (in the corresponding list variable `con_par_values`) in the script; 20 spatially variable entries can be generated with the aid of the `v.gsflow.mapdata` tool. The first two sections are required and include details about the simulation execution and module choices. The third section establishes spin-up versus restart run modes based on Settings file entries. Sections 4 and 5 contain customizable lists of output variables to be printed, which can be used by visualization scripts in GSFLOW-GRASS (Section 3.5). The last optional section is for running the model in a 25 debugging mode.

25 Note that the default implementation of this toolkit uses the “climate_hru” module for precipitation and minimum and maximum daily temperature; this means that the model will employ pre-existing files containing data already specified by HRU. The PRMS component of GSFLOW does include other modules for distributing data from one or a handful of weather stations, but these typically require application-specific empirical parameters that are difficult to incorporate in a generic toolkit. Use of the “climate_hru” module provides flexibility for the user to implement their own spatial interpolation or extrapolation methods, 30 which can then be transferred to the GSFLOW domain with the `v.gsflow.mapdata` tool. GSFLOW-GRASS’s default implementation also uses the Priestley-Taylor formulation for potential evapotranspiration calculations (Markstrom et al., 2008). This module was chosen because of its reliance on only air temperature and solar radiation (calculated by the PRMS component of GSFLOW), and because of the relative ease of accounting for different vegetation properties through the parameter `pt_alpha` (in the PRMS parameter file, Section 3.3.2).

After the six parameter input sections in `printGSFLOWControlfile.py`, the script builds the control file and then generates an executable file (shell script for Linux or batch file for Windows) for running GSFLOW with the control file. After all other input files are created, this executable is called by the toolkit's automated Run file (Section 3.4). The executable can also be used to run GSFLOW outside of the GSFLOW-GRASS toolkit.

5 3.3.2 PRMS-type input files

Input files required for the PRMS component of GSFLOW are the parameter file (“param_file” in the control file), which includes empirical surface and soil zone properties, and the data file (“data_file” in the control file), which includes climate observations for the spatial interpolation/extrapolation algorithms. If the “climate_hru” module is selected, as it is in the toolkit’s default implementation (Section 3.3.1), then individual input files with HRU-distributed climate variables must also be 10 specified. For a quick set-up of GSFLOW-GRASS, the script `printClimatehru.py` takes daily observations from a single file and distributes them uniformly over all HRUs. The toolkit handles the minimum required climate variables – daily precipitation, maximum temperature, and minimum temperature, and it is set up to be readily extended to also include humidity, solar radiation, and/or wind speed. A spatially uniform approach may be acceptable where the size of a rainstorm is typically greater 15 than the size of a catchment and climatic variables vary only weakly with slope and aspect. Larger and higher-relief catchments require spatially distributed climate inputs for realistic outputs; these require custom inputs from the end-user, which can be ported from any discretization to the HRU domain with the aid of the `v.gsflow.mapdata` tool.

The parameter file is created by the script `printPRMSparamfile.py`. The script includes sections for domain dimensions and for parameters inputs, both of which are streamlined to take values parsed from the GRASS GIS domain builder outputs (as indicated in the comments in the script). Because of PRMS’s conceptual soil moisture regimes, the parameter `files_file` requires 20 a substantial number of parameter inputs related to the soil and vegetation that cannot easily be specified without calibration. As a default to help the user get GSFLOW up and running, most parameter values in `printPRMSparamfile.py` are preset, mostly using calibrated values from the Sagehen watershed example that was distributed with the GSFLOW model version 1.2.1. We have indicated with the comment “# *** CHANGE FOR SPECIFIC SITE” those parameters that could also be altered based on 25 known characteristics of one’s watershed site. This includes various soil and land-cover inputs, such as `soil_type` (sand, loam, or clay), `cov_type` (bare soil, grasses, shrubs, or trees), `transp_end` (end month of transpiration, for phenology), and `pt_alpha` (Priestley-Taylor parameter α , which can be based on literature values). In addition to these highlighted parameters, users can review all parameters to determine whether others could be particularly important for their specific application. These may include some of the parameters mentioned in Section 2.1.2 that determine exchanges between different soil-zone reservoirs. 30 Spatially variable information can be transferred to the HRU domain using the `v.gsflow.mapdata` tool. Rigorous calibration of PRMS parameters can eventually be carried out with inverse codes such as PEST (Doherty, 1994) or UCODE (Poeter and Hill, 1998, 1999).

3.3.3 MODFLOW-type input files

GSFLOW requires input files for each MODFLOW package utilized, which can include any of the packages listed in Table 1 of the GSFLOW manual (Markstrom et al., 2008, Appendix 1, p. 176-226 provides details). Our toolkit by default creates a relatively general MODFLOW set-up, which includes required input files and omits most optional ones, such as the Well package.

5 Our Python library **MODFLOWLib.py** consists of functions for creating: four Basic package input files (name file, basic package file, discretization file, and the optional output control file for customizing output files), two different groundwater flow package options (the Layer-Property Flow (LPF) from MODFLOW-2005 and the Upstream Weighting Package (UPW) from MODFLOW-NWT), the numerical solver package (Preconditioned Conjugate Gradient (PCG) for LPF and Newtonian (NWT) input file for UPW), the Streamflow-Routing package (SFR), and the Unsaturated-Zone Flow package (UZF).

10 The script **printMODFLOWInputs.py** calls the functions from **MODFLOWLib.py** to create a set of internally consistent input files that incorporate the domains constructed by the GRASS-GIS workflow (Section 3.2) and conform to the simulation directory structure established through the **ReadSettings.py** utility. By default, **printMODFLOWInputs.py** calls the MODFLOW-NWT UPW/NWT flow package instead of the MODFLOW-2005, because of the superior numerical performance of the former in tests with steep elevation gradients (e.g., Section 4.1). If desired, users can easily switch to the LPF/PCG formulation from MODFLOW-2005 by setting *sw_2005_NWT = 1* in **printMODFLOWInputs.py**.

15 Input files created outside of our toolkit for a stand-alone MODFLOW model implementation of identical discretization will for the most part be usable with the integrated GSFLOW model. However, as indicated in Table 1 of the GSFLOW manual, some MODFLOW packages were modified for their use in GSFLOW. Advantages of implementing our toolkit over using pre-created MODFLOW input files are that it already incorporates these GSFLOW modifications, it automatically uses the GRASS-GIS builder results for the domain, and it guarantees ~~consistent directory structure—a directory structure that is consistent~~ with the rest of the input files and the visualization scripts.

20 The GSFLOW-GRASS toolkit also offers an optional script **createSpatialHydCond.py** for generating spatially distributed hydraulic conductivity fields for the upper layer based on elevation and/or distance from the stream network, with the assumption that lower elevations and/or riparian corridors have higher hydraulic conductivity properties. Because application-specific entries cannot easily be generalized for input through the Settings file, users should directly customize elevation and stream distance thresholds, as well as corresponding hydraulic conductivity values, at the top of the **createSpatialHydCond.py** script. 25 This script will automatically import domain information from the Settings file and export results to the file location specified by the Settings file. **createSpatialHydCond.py** serves as a ready-to-go tool for creating physically plausible hydraulic conductivity patterns, and it provides an example for how users can create their own scripts to customize spatially distributed inputs. A similar type of script could create spatially distributed infiltration fields for the preliminary MODFLOW steady-state simulation in spin-up runs (~~see discussion of e.g., finf~~ entry in the Settings file in Section 3.4). These tools can provide preliminary inputs to jump-start GSFLOW model implementations. However, realistic construction of hydrogeologic frameworks relies on data from sources such as well logs, geologic maps, geophysical measurements, and pumping tests (Reilly, 2001; Reilly and Harbaugh, 2004). For these, we recommend that users import the appropriate data sources into GRASS GIS and

use the **v.gsflow.mapdata** extension to map these parameters onto the appropriate GSFLOW objects (e.g., HRUs, MODFLOW cells). Properties for stream segments and reaches – such as streambed hydraulic conductivity, and unsaturated hydraulic properties below the streambed – are set to default values that can be changed through the GRASS GIS extensions. By default, the streamflow calculation is set to use Manning’s equation by assuming a wide rectangular channel (*ICALC*= 1). Spatially variable stream widths and/or Manning’s *n* values may be set through the Settings file, based on either gridded or point-based (e.g., survey) data, and **v.gsflow.segments** also supports the delineation of both channel and floodplain geometries and roughness parameters.

3.4 GSFLOW run file

For the user’s convenience, the GSFLOW-GRASS toolkit includes an executable Run file, which is a shell script for Linux, 10 **goGSFLOW.sh**, and a batch file for Windows, **goGSFLOW.bat**. The Run file collects input from a specified Settings file and then runs all of the above input-file builder scripts; the script **runGSFLOW.py**, which launches the GSFLOW simulation; and the runtime visualization script **plotGSFLOWTimeSeries_Runtime.py**, further described below. If the runtime visualization is not desired, the user can comment out the corresponding execution line in the Run file. As long as the user does not wish to 15 use more features than are exposed in the Settings file, no direct interface with the code is required to run GSFLOW-GRASS. This permits a “quick-start” implementations of GSFLOW, which can substantially lower the barrier to entry for using this model.

The Run file may be implemented only after the model domain is generated through **buildDomainGRASS.py**. The GSFLOW- 20 GRASS toolkit separates the GRASS domain-builder module from the Run file because users will typically only need to construct their domain once, but will perform multiple runs of the model with variable parameter inputs, for example, for model calibration or to simulate different time periods.

After preliminary quick-start simulation tests, users can further customize their runs by taking advantage of the modular structure of the toolkit, which has a separate script for each input file. For example, to target specific aspects of the model, such as the surface runoff properties, corresponding parameters may be adjusted in the PRMS parameter file by editing and re-running **printPRMSparamfile.py**. Select input-file builder scripts can be run either within Python, or by editing the executable 25 Run file.

3.5 Visualization tools

Our toolkit includes post-processing Python scripts that employ the Matplotlib plotting library (Hunter, 2007) for visualizing the domain discretization, key MODFLOW inputs, and model output results. The model discretization for the PRMS component of GSFLOW is exported from GRASS GIS as a set of standard vector GIS files (shapefiles). Our Python plotting scripts 30 use these shapefiles to create figures of the surface HRU and stream segment discretization (**plotBasin.py**), and to generate movies of HRU-distributed and stream segment-distributed variables (**plotHRUvars.py** and **plotSegmentDischarge.py**). These output variables (e.g., evapotranspiration and streamflow) are set through *aniOutVar_names* in the GSFLOW control

file (see Section 3.3.1). The exported shapefiles may also be used to visualize model results with standard GIS packages (e.g., QGIS: QGIS Development Team, 2013) outside of GSFLOW-GRASS.

For the MODFLOW component of GSFLOW, the toolkit’s script **plotMODFLOW.py** plots spatially distributed layer elevations, hydraulic conductivity, and a map of active computational grid cells. The script also plots spatially distributed MODFLOW simulations results over time, including for hydraulic head, change in head, water table depth, and recharge from the unsaturated zone. For storage efficiency, the toolkit creates and reads in head and unsaturated zone output files in binary format.

For basin-total GSFLOW results, the Python script **plotGSFLOWTimeSeries.py** generates time series lines for user-selected variables from the main GSFLOW CSV output file. Names of all variables, along with their descriptions and units, are listed in **GSFLOWcsvTable.py**, which is imported into **plotGSFLOWTimeSeries.py** to ensure consistency in figure labels and axes. Our toolbox also includes the runtime visualization script **plotGSFLOWTimeSeries_Runtime.py** that is by default called by the Run file (but can be commented out if desired) and displays a continuously updated time series plot of basin-total precipitation and discharge. Tracking simulation progress with runtime plots can be very useful for complex integrated models, which can have lengthy simulation times.

The visualization scripts can be run using a command-line parser and/or by editing plot options that appear near the top of each script. More advanced users may modify the bodies of the scripts to change to features such as axis intervals or color schemes. For users who want to adjust the scripts, we suggest running them in the iPython interactive programming console (Pérez and Granger, 2007), which is also incorporated into the Spyder integrated development environment (IDE). Although this visualization approach requires some familiarity with Python and/or command-line argument parsing, it accommodates a wide range of plotting preferences. All plots and videos may be displayed as on-screen figures (in raster or vector formats, using the interactive Matplotlib window), and may be saved as images (interactively) or videos (*.mp4 format) as defined by inputs to the plotting script.

Other existing no-fee USGS GUI programs for MODFLOW also provide visualization capabilities, and using these with the input and output files produced with GSFLOW-GRASS is possible. In particular, GW Chart (Winston, 2000) can be directly implemented for plotting basin-level time series results. Additionally, Model Viewer (Hsieh and Winston, 2002) and ModelMuse (Winston, 2009) are able to read in and plot spatially variable head results from binary files with the extension “.bhd,” but this does require manual post-processing steps. For Model Viewer, the user needs to copy all MODFLOW input and output files to a new folder inside the Model Viewer project directory and select the namefile when prompted. For ModelMuse, the user must first delete the line that starts with “IWRT” from the name file in order to load the project into the program. Once the project settings are loaded into ModelMuse, the user can use the “import model results” tool to select the binary head file.

4 Examples

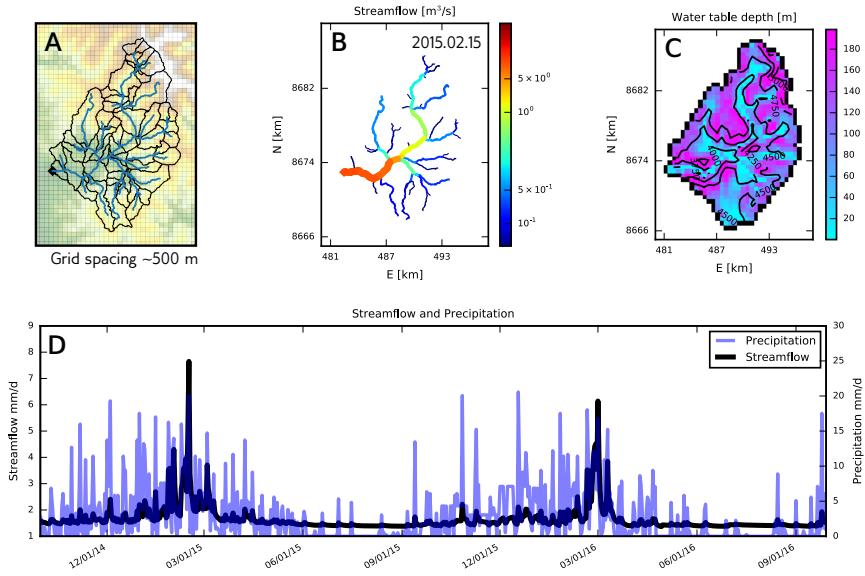
Three implementations of GSFLOW-GRASS serve the dual purposes of demonstrating ~~Three example implementations demonstrate~~ (1) the ~~robustness of the newly developed GRASS~~ variety of hydrological processes and environments that can be explored

Figure 4. Our test sites include the high Andes, a mountainous island, and a formerly glaciated Mississippi tributary.

using GSFLOW-GRASS, and (2) how the toolkit's GIS domain builder ~~aeross can handle~~ diverse topographic settings, including those prone to problems with standard GIS stream network tools, ~~and (2) the variety of hydrological processes that can be assessed with the use of GSFLOW-GRASS. The implementations utilize topographic and climatic inputs from widely differing sites to show the range of applicability of the new toolbox. Towards this second point, each simulation presents a unique set of technical challenges in developing a topographically based model domain that can properly route rainfall through a network of stream segments and sub-basins as well as a connected groundwater-flow grid.~~ It is important to note, however, that no calibration effort was made to match field observations ~~for these test cases~~. The simulation results thus serve as purely schematic examples based on certain settings and do not aim to capture actual conditions at the corresponding sites.

The examples are based on the water-stressed Shullcas River Watershed, Junín Region, Peru, which is experiencing rapid glacier retreat; Water Canyon on Santa Rosa Island off the coast of California, USA, which has undergone land-cover change impacts; and the formerly glaciated Cannon River watershed, in which water flows from intensely farmed uplands into an incised bedrock valley in Minnesota, USA (Figure 4). All regions contain complex hydrology with interactions between surface water and groundwater and are exemplars of practical management concerns. Together they span a range of environments: high to low elevations, steep to low-gradient catchments, coastal to inland settings, tectonically active to cratonal, and with partially-
15 to ~~fully-integrated drainage. They are impacted~~ ~~fully-integrated drainage. Their catchment areas range from 12.5 km² to 3723.0 km², covering the range of scales that GSFLOW was developed to simulate. They are affected~~ by modern climate and land-use change impacts on glaciers and agricultural (water and soil) resources (Shullcas) (Gómez et al., 2014; Arroyo Aliaga et al., 2015; Travezan Adauto, 2015), grazing-induced erosion (Santa Rosa) (Schumann et al., 2016), and agricultural runoff and

Table 2. Catchment and hydrological characteristics of the GSFLOW example sites and their tests for GSFLOW-GRASS.


Site	Drainage area [km ²]	Elevation range [m]	MODFLOW cellsize [km ²]	Min. HRU area [km ²]	Mean annual rainfall [mm]	Daily rainfall CV	Tests of GSFLOW-GRASS capabilities
Shullcas River, Junín Region, Peru	161.4	3526–5527	0.25	1.0	1076	1.4	Steep topography, seasonal rainfall
Water Canyon, Santa Rosa Island, California, USA	12.5	23–378	0.0324	0.4	265	5.4	NULL cells defining irregular coastline, small basin, small number of coarse-resolution cells
Cannon River, Minnesota, USA	3723.0	203–413	1.0	10.0	756	3.2	Two-layer hydraulic conductivity, poorly integrated drainage, low relief, large basin

Precipitation statistics from 2013-08-26 to 2016-09-29 (Shullcas); 1990-04-23 to 2017-09-27 (Water Canyon); 1938-05-12 to 1943-11-05 (Cannon). CV = coefficient of variation.

fertilizers (Cannon River) (Kreiling and Houser, 2016). Our choice of an example in the Peruvian Andes demonstrates how our entirely open-source modeling system may be applied to problems in the developing world, where ~~computational resources may be limited for financial limitations faced by~~ local environmental researchers and practitioners ~~make it difficult to use commercial software solutions.~~

5 Figures 5–7 display sample inputs and outputs of the model simulations using the default GSFLOW-GRASS toolkit for the three test cases. These applications show that even before any parameter adjustments, the GSFLOW-GRASS toolkit can readily generate GSFLOW model domains and parameter inputs that produce numerically convergent simulations in a variety of topographies and hydroclimatic conditions.

10 Preliminary simulations with the default GSFLOW-GRASS provide a valuable springboard for the next step of performing the calibration needed to generate realistic model outputs for specific sites. The GSFLOW-GRASS toolkit can be customized to quickly generate additional model runs ~~with varying input values~~ to expedite the parameter calibration. ~~Also, the GSFLOW-GRASS toolkit can~~ ~~It can also~~ facilitate the implementation of sensitivity or other Monte Carlo-type analyses that are critical for identifying issues such as equifinality and over-parameterization and for determining uncertainty estimates (Beven, 2006; Gallagher and Doherty, 2007; Razavi and Gupta, 2015; Song et al., 2015).

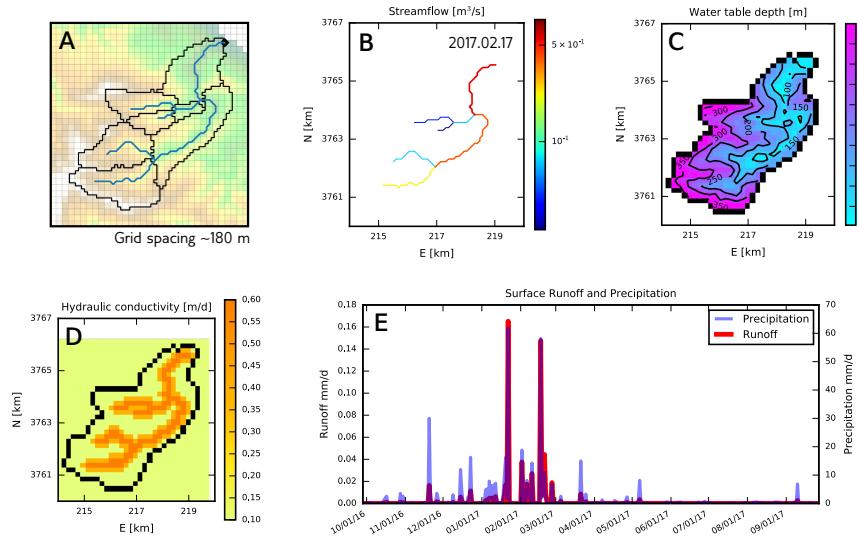
Figure 5. Model based on Río Shullcas, Peru. (A) Map with MODFLOW grid, HRU outlines, stream segments (blue), and digital elevation model. (B) The model shows streamflow accumulating through the mountainous drainage network. (C) Simulated groundwater levels are shallowest in low and flat areas. (D) In simulations, peak discharge occurs late in the wet season, after significant antecedent moisture has built up within the catchment. Both precipitation and essentially constant baseflow supports low but reliable discharge throughout the dry season. streamflow are seasonal.

4.1 Shullcas River watershed, Peru

The first test case is based on the Shullcas River Watershed, located in the central Peruvian Andes. Precipitation is highly seasonal, and water shortages are common during the dry season from May to September. The Huaytapallana ~~Glaciers, which supply~~ Glacier, which supplies meltwater to the Shullcas River, ~~are~~ is rapidly retreating (López-Moreno et al., 2014), causing

5 concern over future water resources. However, ~~in~~ glacierized ~~watersheds of the Peruvian Andes,~~ a large proportion of the dry season stream discharge ~~is~~ can be composed of groundwater (Baraer et al., 2015), driving the need to better understand groundwater-surface water interactions in the catchment. The steep topography and seasonal precipitation make the Shullcas River Watershed an apt testbed for examining the ability of GSFLOW-GRASS to represent surface-water-groundwater links in challenging terrain.

10 A major obstacle with the steep topography and narrow canyons of Shullcas is the need for impractically high resolution and computational expense if using a standard gridded model domain. GSFLOW-GRASS's use of topographically based irregular HRUs makes it possible to compute flow paths using high-resolution topography ~~but with the fewest possible, and then convert these into a relatively small number of~~ computational cells corresponding to fundamental surface-water hydrologic units – stream segments and sub-basins. ~~These~~ In contrast, a surface discretization not automatically aligned with flow


direction would require a greater number of cells to accurately resolve flow paths. The irregular drainage units generated by GSFLOW-GRASS are then linked to a relatively coarse regular groundwater (MODFLOW) grid whose cell elevations, whose regular finite-difference grid can also be coarse relative to the high-resolution DEM. Cell elevations for the MODFLOW grid are assigned based on our hydrologically corrected downscaling method (Section 3.2). This combination of network-based 5 surface-water routing and hydrologically corrected grid cell elevations for groundwater solves the problem of spurious dams and lakes that arise when routing flow across a rectangular grid in which grid cell elevations are averages across steep gradients.

The simple hydrologic model based on the Shullcas watershed covers an area of 170–161.4 km² and ranges in elevation from 3600 to 5500 m above sea level (a.s.l.) (Table 2). Using the GRASS domain-builder, the watershed was divided into 59 sub-basin HRUs based on an ASTER 30 m resolution DEM (Tachikawa et al., 2011). The subsurface was 10 represented by a single 200 m thick MODFLOW layer, with a horizontal discretization of 46 rows, each with a length of 485 m, by 33 columns, each with a width of 492 m. Meteorological data were obtained from the Peruvian Meteorological Office (SENMAHI) online database.

The Shullcas-based simulation does not represent glacier melt, but spatiotemporal results in Figure 5 show that GSFLOW can be useful for evaluating the potential for groundwater to buffer surface water resources in mountainous watersheds with 15 high seasonal variability. In simulations, peak discharge occurs late in the wet season, after significant antecedent moisture has built up within the catchment, and essentially constant baseflow supports low but reliable discharge throughout the dry season. The GSFLOW-GRASS post-processing visualization tools were used to depict the spatial distribution of water table depths relative to the drainage network (Figure 5B–C), as well as time series of watershed forcing and responses (Figure 5D). Results shows that The model simulates most rainfall infiltrating to recharge the aquifer, with relatively little overland flow. 20 This result likely underestimates actual surface runoff, considering the significant erosive overland flow events have occurred in the recent past (Wagner et al., 2004). Nevertheless, preliminary results depict groundwater converging at the stream network could support baseflow contributions at the discharge outlet over time to sustain discharge that can give information about whether baseflow can sustain discharge at the catchment outlet during dry periods.

4.2 Santa Rosa Island, California, USA

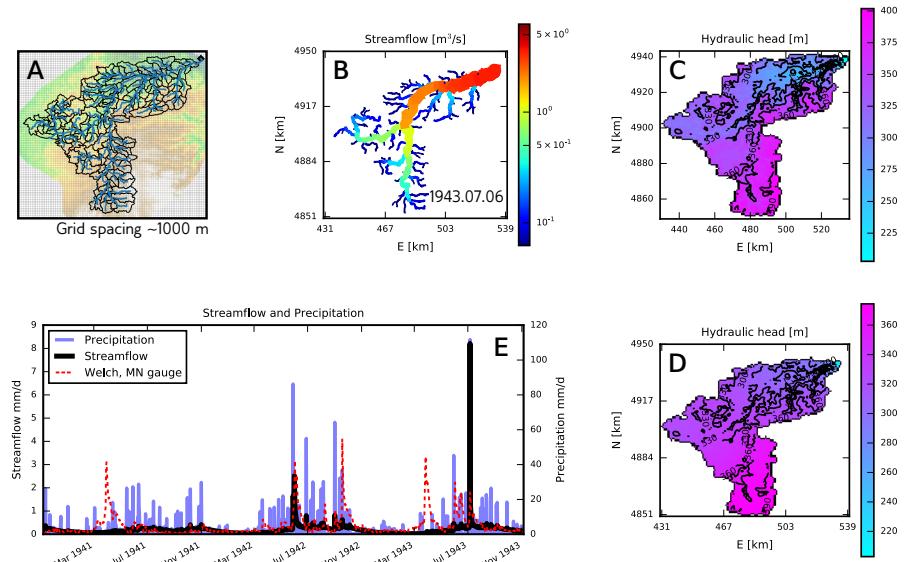

25 Santa Rosa Island is one of the Channel Islands of California, USA, and is part of the Channel Islands National Park. The island has an area of approximately 214 km² and is characterized by mountainous topography, with its highest point at 484 m a.s.l. (Clark et al., 1990). Hydrologic modeling of Santa Rosa Island has previously been performed by Jazwa et al. (2016), who applied the PIHM hydrologic model (Qu and Duffy, 2007) to the island in order to understand the relationship between prehistoric human settlement patterns and surface water availability. They reported streamflow characteristics modeled for the 30 19 major drainages around the island during hypothetical climate regimes that are wet, dry, and of average wetness when compared to modern conditions. Unlike PIHM, GSFLOW-GRASS employs regular groundwater grid cells that are distinct from the irregular surface units, which makes the integrated domain building more complicated but allows for more complex representation of the surface-water and aquifer systems.

Figure 6. Model based on Water Canyon, Santa Rosa Island, California, USA. **(A)** Map with MODFLOW grid, HRU outlines, stream segments (blue), and digital elevation model. **(B)** Streamflow accumulation through the drainage network is simulated to be mostly less than $1 \text{ m}^3/\text{s}$ in this semi-arid system. **(C)** The modeled water table is deepest below ridge tops and becomes shallow in the valleys. **(D)** We simulated generated a spatially variable hydraulic conductivity structure, with hydraulic conductivity as increasing around near the channel network to represent alluvium and colluvium. **(E)** Simulated surface runoff contributions to catchment-wide discharge correlate in time with precipitation, but are much lower in magnitude. Under the semi-arid climate forcing, the model simulates most rainfall infiltrating to recharge the aquifer, with relatively little overland flow. This result likely underestimates actual surface runoff, considering the significant erosive overland flow events have occurred in the recent past (Wagner et al., 2004).

Here we apply the GSFLOW-GRASS toolbox to model Water Canyon (Table 2), one of the island's many drainages, and demonstrate its ability to generate small drainages covering just a few high-gradient DEM grid cells and an irregular but real-world boundary: the coastline. Water Canyon is unique among the three example sites in that its outflow drains to the ocean, requiring that which is represented by cells with NULL values. This required modifications to the GSFLOW-GRASS 5 appropriately handles NULL values for ocean grid cells source code in order to properly accumulate flow across the watershed without encountering errors due to the null values offshore. We drove this hydrologic model with topography derived from a 3 arcsecond SRTM DEM (Farr et al., 2007) projected to a UTM coordinate system at 90 m resolution. This resolution is already low compared to the size of the island drainages, but we further down-sampled the DEM to 180 m resolution for the MODFLOW grid to test the performance of our toolbox with a coarse-resolution representation of a steep catchment.

GSFLOW-GRASS successfully produced simulation results shown in Figure 6 using weather data from the Western Regional Climate Center (wrcc.dri.edu) and spatially heterogeneous hydraulic conductivity (Figure 6D) generated with the example model input script. The semi-arid climate can lead to losing streams that may run dry (Jazwa et al., 2016); the, which may make GSFLOW simulations susceptible to having entire MODFLOW cells become dry and cause numerical convergence issues.

Figure 7. Model based on Cannon River, Minnesota, USA. (A) Map with MODFLOW grid, HRU outlines, stream segments (blue), and digital elevation model. (B) Simulated discharge after an 11 cm rainfall event. (C, D) Two MODFLOW layers were implemented to represent an upper glacial till unit ([low hydraulic conductivity](#)) and the underlying fractured carbonate bedrock [with likely](#) (higher hydraulic conductivity). In the model, this low-relief catchment exhibits a shallow water table, except around the river gorge near the outlet. (E) The two-year hydrograph shows uncalibrated discharge simulations matching observations reasonably well during non-peak flood times but failing to capture many of the actual peaks with default model parameters.

The GSFLOW-GRASS implementation [correspondingly shows low streamflow in simulations](#) [does simulate low streamflow as expected](#) (Figure 6B) [but avoids numerical convergence problems that can arise when MODFLOW cells run dry](#), but the domain-builder generated sufficiently thick and hydrologically corrected MODFLOW cells that they maintain water and avoid any computational problems. Figure 6E demonstrates how the post-processing tools can be used to evaluate surface runoff, a

5 concern because of its potential for causing erosion on the island (Schumann et al., 2016).

4.3 Cannon River, Minnesota, USA

The Cannon River is a tributary to the Upper Mississippi River in Minnesota, USA. Its headwaters cross low-relief uplands that are capped by low hydraulic conductivity glacial deposits (Patterson and Hobbs, 1995), and are intensively farmed (Kreiling and Houser, 2016). Its lower reaches pass through a valley cut into fractured carbonate bedrock that is popular for recreation.

10 This combination of agricultural and recreational uses and its transient geomorphology (low-gradient headwaters above a high-gradient river) are common in the formerly glaciated Upper Midwest (Blumentritt et al., 2009; Carson et al., 2017). This leads to a suite of management concerns related to agricultural nutrients and fine sediments, and their interactions with both the

surface water and the bedrock groundwater systems that underlie them (Tipping, 2006; Steenberg et al., 2013), thus motivating the need for integrated hydrologic modeling tools.

The Cannon River watershed covers ~~3720~~³⁷²³ km², ~~with only 215~~ with only 210 m of total relief, ~~making it the largest and lowest-gradient of these study cases, leading~~ (Table 2), including a significant amount of non-integrated drainage that leads to very different computational challenges than those in the steep watersheds. ~~Its deglacial topography has~~ Much of this watershed's post-glacial topography is characterized by small local hills and enclosed basins that have not yet been organized ~~(or integrated)~~ by fluvial erosion into a linked valley network, ~~in which water would flow directly to a stream without encountering an enclosed lake or other basin~~. In such settings lacking integrated drainage, simple downslope flow-routing algorithms typically fail, and “pit filling” can produce spurious results by inappropriately modifying the real topography.

GSFLOW-GRASS routes surface-water flow using the GRASS ~~GIS~~^{GIS's} **r.watershed** least-cost path algorithm, which is designed to produce drainage networks that route flow in the long-range path of steepest descent regardless of the degree of local drainage integration. ~~Its success in this example demonstrates the ability of~~ By using **r.watershed**, GSFLOW-GRASS is able to automatically create a topologically correct and linked drainage network in ~~low-relief settings~~ settings that lack integrated drainage for hydrologic model simulations.

We implemented GSFLOW-GRASS using the Minnesota state-wide 1 m LiDAR data set (<http://www.mngeo.state.mn.us/chouse/elevation/lidar.html>), which we resampled to 15 m resolution. We discretized the subsurface of the Cannon River watershed into 1 km MODFLOW grid cells. Meteorological data from nearby Zumbrota, Minnesota was obtained from the Midwestern Regional Climate Center (Adresen et al., 2014). The northern, mid-continental **temperate** setting makes the Cannon River watershed the example with the most ~~seasonally-distributed precipitation~~ ~~evenly distributed precipitation across seasons~~ and strongest seasonal temperature differences. Comparisons between the simulated streamflow at the watershed outlet and corresponding observations at Welch, MN over the three-year model run reveal that without any parameter calibrations, the model produces realistic discharge during non-peak flood times and during one of the observed peaks during July 1942. The severely over-simulated discharge in July 1943 may be evidence for a local convective summer storm system passing over the Zumbrota weather station, which is located outside of the watershed boundary. Recurring failure of the model to capture April discharge indicates that snowmelt-related parameters require adjustment. Once the model is calibrated, which can be greatly facilitated by employing the automated GSFLOW-GRASS toolkit, results such as those shown in Figure 7 can be used to evaluate infiltration from overlying agricultural plots to shallow and low-gradient water tables, as well as subsequent flushing of impacted shallow groundwater into the river channels during major storms.

5 Conclusions

To address the need for a fully automated and freely accessible software that handles the complete workflow for implementing complex hydrologic models, we have created GSFLOW-GRASS, a bundled toolkit for the coupled surface-water and groundwater model GSFLOW, using open-source Python scripts and GRASS GIS commands. GSFLOW-GRASS allows users equipped with a DEM, precipitation and temperature data, and basic knowledge about land-surface and subsurface properties

to efficiently construct watershed-scale hydrologic simulations. In order to create a robust tool that can be widely implemented over diverse hydro(geo)logic settings, we built a set of GRASS GIS extensions that automatically discretizes a topological surface-water flow network that is linked with the underlying gridded groundwater domain. Our fully automated and generalized toolbox advances the accessibility of complex hydrologic software and will thus broaden the reach of integrated hydrologic
5 models and their usage in both scientific research and practical resource management.

We have demonstrated GSFLOW-GRASS using three diverse examples based on topographies and climates from the water-stressed Andes, Santa Rosa Island off the coast of California, USA, and the intensively farmed Upper Midwest region of the United States. The results show that the new and automated GRASS GIS extensions can automatically and consistently build topologically complete linked surface and subsurface flow domains in settings that are typically challenging for standard
10 GIS tools, including steep topographies, irregular coastal boundaries, and low-relief terrains that lack integrated drainage. Although uncalibrated, these examples further demonstrate that GSFLOW-GRASS is a flexible tool for investigating the role of groundwater-surface water interactions in modulating dry-season discharge, controlling runoff in erosion-prone landscapes, and imposing possible water-quality threats in agricultural and recreational watersheds.

We designed GSFLOW-GRASS to strike a balance between direct “out-of-the-box” functionality and full flexibility for
15 customizing model runs. A default implementation can be launched with no programming required by the user to readily produce preliminary uncalibrated simulations that can serve as a springboard for further model-parameter adjustment through the fully commented toolkit scripts. A key feature of GSFLOW-GRASS is its use of all open-source software, enabling users anywhere to apply GSFLOW. We believe that the open-source platform will facilitate future toolbox enhancements through
20 efforts by not only the original GSFLOW-GRASS developer team, but also new model users. We envision a number of new capabilities to tackle the grand challenge of handling spatial heterogeneity in integrated hydrologic models. Higher resolution land-surface variability could be achieved by further subdividing sub-basins according to vegetation, soil type, or other geographic features to produce HRUs. Obtaining spatially variable information can be facilitated by linking GSFLOW-GRASS to existing regional to international databases for meteorology, soil and geologic properties, and ~~land-cover~~land cover. Further calibration of spatially distributed parameters can be carried out by directly setting up GSFLOW-GRASS with a flexible inverse modeling code (e.g., Doherty (1994); Poeter and Hill (1998, 1999))~~(e.g., Doherty, 1994; Poeter and Hill, 1998, 1999)~~. It is our hope that with its generalized form and open-access, GSFLOW-GRASS can become a community tool that continues
25 to grow to better solve hydrologic and water resources problems of both scientific and general management concerns.

Code availability. The version of GSFLOW-GRASS used for this paper is available at <https://github.com/UMN-Hydro/GSFLOW-GRASS> releases. Updated versions of our code are downloadable directly from the UMN-Hydro repository on GitHub, at <https://github.com/UMN-Hydro/GSFLOW-GRASS>. The user’s manual is available as the README.md file in the repository. The GSFLOW executable and source code are available in the UMN-Hydro repository <https://github.com/UMN-Hydro/GSFLOW-1.2.0> and from the USGS website <https://water.usgs.gov/ogw/gsflow/>. GRASS GIS 7.3+ is available from <https://grass.osgeo.org/download/software/>.

Author contributions. G.-H. C. Ng and A. D. Wickert contributed equally to this work; they together conceived of the project idea, wrote the majority of the paper, and built the visualization scripts. G.-H. C. Ng wrote the input file builder and plotting scripts. A. D. Wickert built the GRASS GIS extensions and integrated them with Ng's workflow. L. D. Somers and C. Cronkite-Ratcliff tested the code during its development and contributed their study cases. L. Saberi helped code the input-file builder scripts. R. Niswonger provided advice and support 5 from the U.S. Geological Survey team that develops GSFLOW. J. M. McKenzie provided support for the Shullcas test case.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors acknowledge all contributors to MODFLOW, PRMS, and GSFLOW, without whom this work would not be possible.

References

Adresen, J., Hilberg, S., and Kunkel, K.: Historical climate and climate trends in the Midwestern United States, Climate Change in the Midwest: A Synthesis Report for the National Climate Assessment, pp. 8–36, 2014.

Ajami, N. K., Gupta, H., Wagener, T., and Sorooshian, S.: Calibration of a semi-distributed hydrologic model for streamflow estimation
5 along a river system, *Journal of Hydrology*, 298, 112–135, <https://doi.org/10.1016/j.jhydrol.2004.03.033>, 2004.

Arnold, J. G. and Fohrer, N.: SWAT2000: Current capabilities and research opportunities in applied watershed modelling, *Hydrological Processes*, 19, 563–572, <https://doi.org/10.1002/hyp.5611>, 2005.

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., and White, M. W.: SWAT: Model use, calibration, and validation, *Biological Systems Engineering*, 55, 1491 – 1508, 2012.

10 Arroyo Aliaga, J., Gurmendi Párraga, P., and Machuca Manrique, E.: Efectos de las anomalías climáticas en la cobertura de nieve de los glaciares centrales del Perú, *Apuntes de Ciencia & Sociedad*, 5, 146–156, file:///C:/Users/ISABEL/Downloads/310-1312-4-PB.pdf, 2015.

Bandaragoda, C., Tarboton, D. G., and Woods, R.: Application of TOPNET in the distributed model intercomparison project, *Journal of Hydrology*, 298, 178–201, <https://doi.org/10.1016/j.jhydrol.2004.03.038>, <http://linkinghub.elsevier.com/retrieve/pii/S0022169404002446>, 2004.

15 Baraer, M., Mckenzie, J., Mark, B. G., Gordon, R., Bury, J., Condom, T., Gomez, J., Knox, S., and Fortner, S. K.: Contribution of groundwater to the outflow from ungauged glacierized catchments: A multi-site study in the tropical Cordillera Blanca, Peru, *Hydrological Processes*, 29, 2561–2581, <https://doi.org/10.1002/hyp.10386>, 2015.

Beven, K.: A manifesto for the equifinality thesis, *Journal of Hydrology*, 320, 18–36, <https://doi.org/10.1016/j.jhydrol.2005.07.007>, 2006.

Bhatt, G., Kumar, M., and Duffy, C. J.: A tightly coupled GIS and distributed hydrologic modeling framework, *Environmental Modelling
20 and Software*, 62, 70–84, <https://doi.org/10.1016/j.envsoft.2014.08.003>, <http://dx.doi.org/10.1016/j.envsoft.2014.08.003>, 2014.

Blumentritt, D. J., Wright, H. E., and Stefanova, V.: Formation and early history of Lakes Pepin and St. Croix of the upper Mississippi River, *Journal of Paleolimnology*, 41, 545–562, 2009.

Butts, M. and Graham, D.: Flexible Integrated Watershed Modeling with MIKE SHE, in: *Watershed Models*, pp. 245–271, CRC Press, <https://doi.org/10.1201/9781420037432.ch10>, <http://www.crcnetbase.com/doi/10.1201/9781420037432.ch10>, 2005.

25 Carson, E. C., Rawling III, J. E., Attig, J. W., and Bates, B. R.: Late Cenozoic evolution of the upper Mississippi River, stream piracy, and reorganization of North American drainage systems, *GSA Today*, accepted, 2017.

Clark, R. A., Halvorson, W. L., Sawdo, A. A., and Danielsen, K. C.: Plant communities of Santa Rosa Island, Channel Islands National Park, vol. Technical, University of California, Davis, California, 1990.

Doherty, J.: PEST: A Unique Computer Program for Model-independent Parameter Optimisation, in: *Water Down Under 94: Ground-
30 water/Surface Hydrology Common Interest Papers; Preprints of Papers*, p. 551, <http://search.informit.com.au/documentSummary;dn=752715546665009;res=IELENG>, 1994.

Essaid, H. I. and Hill, B. R.: Watershed-scale modeling of streamflow change in incised montane meadows, *Water Resources Research*, 50, 2657–2678, <https://doi.org/10.1002/2013WR014420>, 2014.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer,
35 S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, *Reviews of Geophysics*, 45, RG2004, <https://doi.org/10.1029/2005RG000183>, <http://doi.wiley.com/10.1029/2005RG000183>, 2007.

Feldman, A. D.: Hydrologic modeling system HEC-HMS, Technical Reference Manual, Technical Reference Manual, p. 145, <https://doi.org/10.1007/s10661-016-5464-3>, <http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Hydrologic+Modeling+System+HEC-HMS#7>, 2000.

Galeone, D. G., Risser, D. W., Eicholtz, L. W., and Hoffman, S. A.: Water Quality and Quantity and Simulated Surface-Water and Groundwater Flow in the Laurel Hill Creek Basin, Southwestern Pennsylvania, 1991-2007, vol. 2016-5082 of *Scientific Investigations Report*, U.S. Geological Survey, <https://doi.org/10.3133/sir20165082>, 2016.

Gallagher, M. and Doherty, J.: Parameter estimation and uncertainty analysis for a watershed model, *Environmental Modelling & Software*, 22, 1000–1020, <https://doi.org/10.1016/j.envsoft.2006.06.007>, <http://linkinghub.elsevier.com/retrieve/pii/S1364815206001629>, 2007.

Gannett, M., Lite, K. J., Risley, J., Pischel, E., and La Marche, J.: Simulation of Groundwater and Surface-Water Flow in the Upper Deschutes Basin, Oregon, vol. 2017-5097 of *Scientific Investigations Report*, U.S. Geological Survey, <https://doi.org/10.3133/sir20175097>, 2017.

Gardner, M., Morton, C., Huntington, J. L., Niswonger, R. G., and Henson, W. R.: Input Data Processing Tools for Integrated Hydrologic Models, *Environmental Modelling and Software*, in review.

Gómez, G. C., Cerrón, R. M., Capcha, T. M., and Villavicencio, C. O.: Evaluación de la Tasa de Infiltración en Tierras Agrícolas, Forestales y de Pastoreo en la Subcuenca del Río Shullcas, *Apuntes de Ciencia & Sociedad*, 4, 32–43, 2014.

Harbaugh, A. W.: MODFLOW-2005, The U. S. Geological Survey Modular Ground-Water Model — the Ground-Water Flow Process, in: Book 6. Modeling techniques, Section A. Ground Water, vol. U.S. Geolo, chap. 16, p. 253, U.S. Geological Survey, Reston, Virginia, USA, <https://doi.org/10.1007/s10661-016-5464-3>, 2005.

Hassan, S. T., Lubczynski, M. W., Niswonger, R. G., and Su, Z.: Surface–groundwater interactions in hard rocks in Sardon Catchment of western Spain: An integrated modeling approach, *Journal of Hydrology*, 517, 390–410, <https://doi.org/10.1016/j.jhydrol.2014.05.026>, <http://dx.doi.org/10.1016/j.jhydrol.2014.05.026>, <http://linkinghub.elsevier.com/retrieve/pii/S0022169414003904>, 2014.

Hofierka, J., Mitášová, H., and Neteler, M.: Chapter 17 Geomorphometry in GRASS GIS, in: *Developments in Soil Science*, vol. 33, chap. 17, pp. 387–410, [https://doi.org/10.1016/S0166-2481\(08\)00017-2](https://doi.org/10.1016/S0166-2481(08)00017-2), <http://linkinghub.elsevier.com/retrieve/pii/S0166248108000172>, 2009.

Hsieh, P. A. and Winston, R. B.: User's Guide To Model Viewer, a Program for Three-Dimensional Visualization of Ground-Water Model Results, vol. 02-106 of *Open-File Report*, U.S. Geological Survey, Menlo Park, CA, 2002.

Hunt, R. J., Walker, J. F., Selbig, W. R., Westenbroek, S. M., and Regan, R. S.: Simulation of Climate - Change effects on streamflow, Lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin, USGS Scientific Investigations Report., pp. 2013–5159, 2013.

Hunter, J. D.: Matplotlib: A 2D graphics environment, *Computing in Science and Engineering*, 9, 99–104, <https://doi.org/10.1109/MCSE.2007.55>, 2007.

Jasiewicz, J. and Metz, M.: A new GRASS GIS toolkit for Hortonian analysis of drainage networks, *Computers and Geosciences*, 37, 1162–1173, <https://doi.org/10.1016/j.cageo.2011.03.003>, 2011.

Jazwa, C. S., Duffy, C. J., Leonard, L., and Kennett, D. J.: Hydrological Modeling and Prehistoric Settlement on Santa Rosa Island, California, USA, *Geoarchaeology*, 31, 101–120, <https://doi.org/10.1002/gea.21532>, 2016.

Kreiling, R. M. and Houser, J. N.: Long-term decreases in phosphorus and suspended solids, but not nitrogen, in six upper Mississippi River tributaries, 1991–2014, *Environmental Monitoring and Assessment*, 188, <https://doi.org/10.1007/s10661-016-5464-3>, <http://dx.doi.org/10.1007/s10661-016-5464-3>, 2016.

Leavesley, G. H., Lichy, R., Troutman, B., and Saindon, L.: Precipitation-Runoff Modeling System: User's Manual, vol. Water Reso, U.S. Geological Survey, Denver, Colorado, USA, 1983.

Leavesley, G. H., Restrepo, P., Markstrom, S., Dixon, M., and Stannard, L.: The Modular Modeling System (MMS): User's Manual, vol. 1, 1996.

Leonard, L. and Duffy, C. J.: Essential Terrestrial Variable data workflows for distributed water resources modeling, *Environmental Modelling & Software*, 50, 85–96, <https://doi.org/10.1016/j.envsoft.2013.09.003>, <http://linkinghub.elsevier.com/retrieve/pii/S1364815213001941>, 5 2013.

Leopold, L. B. and Maddock, T.: The hydraulic geometry of stream channels and some physiographic implications, *Professional Paper*, United States Geological Survey, Washington, D.C., 1953.

López-Moreno, J., Fontaneda, S., Bazo, J., Revuelto, J., Azorin-Molina, C., Valero-Garcés, B., Morán-Tejeda, E., Vicente-Serrano, S., Zubíeta, R., and Alejo-Cochachín, J.: Recent glacier retreat and climate trends in Cordillera Huaytapallana, Peru, *Global and Planetary Change*, 10 112, 1–11, <https://doi.org/10.1016/j.gloplacha.2013.10.010>, <http://linkinghub.elsevier.com/retrieve/pii/S0921818113002385>, 2014.

Luzio, M. D., Arnold, J. G., and Srinivasan, R.: A GIS Coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution, *Transactions in GIS*, 8, 113–136, <https://doi.org/10.1111/j.1467-9671.2004.00170.x>, 2006.

Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E., and Barlow, P. M.: GSFLOW—Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005), U.S. Geological Survey, p. 240, <https://doi.org/10.13140/2.1.2741.9202>, <http://pubs.er.usgs.gov/publication/tm6D1>, 15 2008.

Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb, R. M. T., Payn, R. A., and LaFontaine, J. H.: PRMS-IV, the Precipitation-Runoff Modeling System, Version 4, U.S. Geological Survey, Reston, Virginia, USA, <https://doi.org/http://dx.doi.org/10.3133/tm6B7>, 2015.

20 Maxwell, R., Putti, M., Meyerhoff, S., Delfs, J., Ferguson, I. M., Ivanov, V., Kim, J., Kolditz, O., Kollet, S. J., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y., Phanikumar, M., Shen, C., Sudicky, E. A., and Sulis, M.: Water Resources Research, *Water resources research*, 50, 1531–1549, <https://doi.org/10.1002/2013WR013725>. Received, 2014.

Metz, M., Mitasova, H., and Harmon, R. S.: Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search, *Hydrology and Earth System Sciences*, 15, 667–678, <https://doi.org/10.5194/hess-15-667-2011>, <http://www.hydrol-earth-syst-sci.net/15/667/2011/>, 2011.

25 Mitasova, H., Mitas, L., Brown, W. M., Gerdes, D. P., Kosinovsky, R., and Baker, T.: Modelling spatially and temporally distributed phenomena: New methods and tools for GRASS GIS, *International Journal of Geographical Information Systems*, 9, 433–446, <https://doi.org/10.1080/02693799508902048>, 1995.

Neitsch, S., Arnold, J., Kiniry, J., Srinivasan, R., and Williams, J.: Soil and Water Assessment Tool User's Manual, vol. TR-192, Texas Water 30 Resources Institute, College Station, Texas, USA, <http://swat.tamu.edu/media/1294/swatuserman.pdf>, 2002.

Neteler, M. and Mitasova, H.: Open Source GIS: A GRASS GIS Approach, Springer, New York, New York, USA, third edit edn., 2008.

Neteler, M., Beaudette, D., Cavallini, P., Lami, L., and Cepicky, J.: GRASS GIS, Open Source Approaches in Spatial Data Handling, 2, 171–199, https://doi.org/10.1007/978-3-540-74831-1_9, http://dx.doi.org/10.1007/978-3-540-74831-1_9, 2008.

Neteler, M., Bowman, M. H., Landa, M., and Metz, M.: GRASS GIS: A multi-purpose open source GIS, *Environmental Modelling & 35 Software*, 31, 124–130, <https://doi.org/10.1016/j.envsoft.2011.11.014>, <http://dx.doi.org/10.1016/j.envsoft.2011.11.014> <http://linkinghub.elsevier.com/retrieve/pii/S1364815211002775>, 2012.

Niswonger, R. G., Panday, S., and Motomu, I.: MODFLOW-NWT, A Newton Formulation for MODFLOW-2005, vol. Techniques, U.S. Geological Survey, Reston, Virginia, USA, 2011.

Pal, J. S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Gao, X., Rauscher, S. A., Francisco, R., Zakey, A., Winter, J., Ashfaq, M., Syed, F. S., Bell, J. L., Differbaugh, N. S., Karmacharya, J., Konari, A., Martinez, D., Da Rocha, R. P., Sloan, L. C., and Steiner, A. L.: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET, *Bulletin of the American Meteorological Society*, 88, 1395–1409, <https://doi.org/10.1175/BAMS-88-9-1395>, 2007.

5 Patterson, C. J. and Hobbs, H. C.: Surficial geology, in: *County Atlas C-9: Geologic atlas of Rice County*, edited by Hobbs, H. C., vol. pl. 3 of *1:100,000*, Minnesota Geological Survey, Saint Paul, Minnesota, USA, 1995.

Pérez, F. and Granger, B. E.: IPython: A system for interactive scientific computing, *Computing in Science and Engineering*, 9, 21–29, <https://doi.org/10.1109/MCSE.2007.53>, 2007.

Poeter, E. P. and Hill, M. C.: Documentation of UCODE, A Computer Code for Universal Inverse Modeling, USGS Water Resources 10 Investigations Report 98-4080, vol. Water-Reso, U.S. Geological Survey, Denver, Colorado, USA, 1998.

Poeter, E. P. and Hill, M. C.: UCODE, a computer code for universal inverse modeling, *Computers and Geosciences*, 25, 457–462, [https://doi.org/10.1016/S0098-3004\(98\)00149-6](https://doi.org/10.1016/S0098-3004(98)00149-6), 1999.

QGIS Development Team: QGIS Geographic Information System, <http://qgis.osgeo.org>, 2013.

Qu, Y. and Duffy, C. J.: A semidiscrete finite volume formulation for multiprocess watershed simulation, *Water Resources Research*, 43, 15 1–18, <https://doi.org/10.1029/2006WR005752>, 2007.

Razavi, S. and Gupta, H. V.: What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and Environmental systems models, *Water Resources Research*, 51, 3070–3092, <https://doi.org/10.1002/2014WR016527>. Received, 2015.

Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., and Seo, D. J.: Overall distributed model intercomparison project results, *Journal of Hydrology*, 298, 27–60, <https://doi.org/10.1016/j.jhydrol.2004.03.031>, 2004.

Regan, R. S., Niswonger, R. G., Markstrom, S. L., and Barlow, P. M.: Documentation of a restart option for the U.S. Geological Survey coupled groundwater and surface-water flow (GSFLOW) model, vol. 6-D3, U.S. Geological Survey, Reston, Virginia, USA, 2015.

Reilly, T. E.: System and Boundary Conceptualization in Ground-Water Flow Simulation, in: *Techniques of Water-Resources Investigations of the United States Geological Survey, Book 3, Applications of Hydraulics*, chap. B8, p. 38, U.S. Geological Survey, 2001.

25 Reilly, T. E. and Harbaugh, A. W.: *Guidelines for Evaluating Ground-Water Flow Models*, vol. 2004-5038, U.S. Geological Survey, 2004.

Schumann, R. R., Pigati, J. S., and McGeehin, J. P.: Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California, *Geomorphology*, 268, 322–340, <https://doi.org/10.1016/j.geomorph.2016.05.033>, <http://dx.doi.org/10.1016/j.geomorph.2016.05.033>, 2016.

Shapiro, M. and Westervelt, J.: *r.mapcalc: An algebra for GIS and image processing*, vol. USACERL-TR, Construction Engineering Research 30 Lab, Champaign, Illinois, USA, 1994.

Simunek, J., Sejna, M., Saito, H., Sakai, M., and van Genuchten, M.: “The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 4.08. HYDRUS Softw. Ser. 3., Tech. Rep. January, 2009.

Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., and Xu, C.: Global sensitivity analysis in hydrological modeling: Review of concepts, 35 methods, theoretical framework, and applications, *Journal of Hydrology*, 523, 739–757, <https://doi.org/10.1016/j.jhydrol.2015.02.013>, <http://dx.doi.org/10.1016/j.jhydrol.2015.02.013>, 2015.

Steenberg, J. R., Tipping, R. G., and Runkel, A. C.: Geologic controls on groundwater and surface water flow in southeastern Minnesota and its impact on nitrate concentrations in streams, Minnesota Geological Survey Open File Report, p. 154, 2013.

Surfleet, C. G. and Tullus, D.: Uncertainty in hydrologic modelling for estimating hydrologic response due to climate change (Santiam River, Oregon), *Hydrological Processes*, 27, 3560–3576, <https://doi.org/10.1002/hyp.9485>, <http://doi.wiley.com/10.1002/hyp.9485>, 2013.

Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R., Carabajal, C., and ASTER GDEM Validation Team: ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results, Tech. rep., NASA Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, USA, <https://doi.org/10.1017/CBO9781107415324.004>, http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validation_report_final.pdf, 2011.

Tian, Y., Zheng, Y., Wu, B., Wu, X., Liu, J., and Zheng, C.: Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture, *Environmental Modelling and Software*, 63, 170–184, <https://doi.org/10.1016/j.envsoft.2014.10.011>, 2015.

Tian, Y., Zheng, Y., and Zheng, C.: Development of a visualization tool for integrated surface water-groundwater modeling, *Computers and Geosciences*, 86, 1–14, <https://doi.org/10.1016/j.cageo.2015.09.019>, <http://dx.doi.org/10.1016/j.cageo.2015.09.019>, 2016.

Tipping, R. G.: Subsurface recharge and surface infiltration, in: *Geologic Atlas of Scott County, Minnesota*, Minnesota Geological Survey Atlas Series, 2006.

Travezan Adauto, D.: Disponibilidad de pago por los agricultores para la conservación de los recursos hídricos en la microcuenca del Río Shullcas-Huancayo 2014, Ph.D. thesis, Universidad Nacional del Centro del Perú, Huancayo, 2015.

Viger, R. J. and Leavesley, G. H.: The GIS Weasel User's Manual, U.S. Geological Survey, 2007.

Vivoni, E. R., Ivanov, V. Y., Bras, R. L., and Entekhabi, D.: Generation of Triangulated Irregular Networks Based on Hydrological Similarity, *Journal of Hydrologic Engineering*, 9, 288–302, [https://doi.org/10.1061/\(ASCE\)1084-0699\(2004\)9:4\(288\)](https://doi.org/10.1061/(ASCE)1084-0699(2004)9:4(288)), 2004.

Wagner, J., Martin, M., Faulkner, K. R., Chaney, S., Noon, K., Denn, M., and Reiner, J.: Riparian System Recovery After Removal of Livestock From Santa Rosa Island, Channel Islands National Park, California, Tech. rep., National Park Service Technical Report NPS/NRWRD/NRTR-2004/324, Fort Collins, Colorado, USA, 2004.

Waterloo Hydrogeologic Inc.: Visual MODFLOW 2011.1 User's Manual: For Professional Applications in Three-Dimensional Groundwater Flow and Contaminant Transport Modeling, Waterloo Hydrogeologic, Inc., Waterloo, Ontario, Canada, http://trials.swstechnology.com/software/Visual_MODFLOW/2011/Manuals_and_Guides/VMOD-2011.1_Manual.pdf, 2011.

Winston, R. B.: Graphical User Interface for MODFLOW, Version 4, vol. 00-315 of *Open-File Report*, U.S. Geological Survey, Reston, Virginia, USA, 2000.

Winston, R. B.: ModelMuse: A Graphical User Interface for MODFLOW-2005 and PHAST, in: Section A, Ground Water—Book 6, Modeling Techniques, vol. 6-A29 of *Techniques and Methods*, chap. 29, p. 52 p, U.S. Geological Survey, Reston, Virginia, USA, <http://pubs.usgs.gov/tm/tm6A29/tm6A29.pdf>, 2009.

Winter, T. C., Harvey, J. W., Franke, O. L., and Alley, W. M.: Ground water and surface water: A single resource, U.S. Government Printing Office, Denver, Colorado, USA, 1998.

Zambelli, P., Gebbert, S., and Ciolfi, M.: Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS), *ISPRS International Journal of Geo-Information*, 2, 201–219, <https://doi.org/10.3390/ijgi2010201>, <http://www.mdpi.com/2220-9964/2/1/201/>, 2013.

úri, M. and Hofierka, J.: A new GIS-based solar radiation model and its application to photovoltaic assessments, *Transactions in GIS*, 8, 175–190, <https://doi.org/10.1111/j.1467-9671.2004.00174.x>, 2004.