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Abstract. 
 
Paleoclimate proxies are being used in conjunction with ice sheet modeling experiments to determine how 
the Greenland ice sheet responded to past changes, particularly during the last deglaciation.  Although these 15	
comparisons have been a critical component in our understanding of the Greenland ice sheet sensitivity to 
past warming, they often rely on modeling experiments that favor minimizing computational expense over 
increased model physics. Over Paleoclimate timescales, simulating the thermal structure of the ice sheet has 
large implications on the modeled ice viscosity, which can feedback onto the basal sliding and ice flow.  To 
accurately capture the thermal field, models often require a high number of vertical layers.  This is not the 20	
case for the stress balance computation, however, where a high vertical resolution is not necessary. 
Consequently, since stress balance and thermal equations are generally performed on the same mesh, more 
time is spent on the stress balance computation than is otherwise necessary. For these reasons, running a 
higher-order ice sheet model (e.g., Blatter-Pattyn) over timescales equivalent to the paleoclimate record has 
not been possible without incurring a large computational expense. To mitigate this issue, we propose a 25	
method that can be implemented within ice sheet models, whereby the vertical interpolation along the z-axis 
relies on higher-order polynomials, rather than the traditional linear interpolation. This method is tested 
within the Ice Sheet System Model (ISSM) using quadratic and cubic finite elements for the vertical 
interpolation on an idealized case and a realistic Greenland configuration. A transient experiment for the ice 
thickness evolution of a single dome ice sheet demonstrates improved accuracy using the higher-order 30	
vertical interpolation compared to models using the linear vertical interpolation, despite having fewer degrees 
of freedom.   This method is also shown to improve a models ability to capture sharp thermal gradients in an 
ice sheet particularly close to the bed, when compared to models using a linear vertical interpolation. This is 
corroborated in a thermal steady-state simulation of the Greenland ice sheet using a higher-order model. In 
general, we find that using a higher-order vertical interpolation decreases the need for a high number of 35	
vertical layers, while dramatically reducing model runtime for transient simulations. Results indicate that 
when using a higher-order vertical interpolation, runtimes for a transient ice sheet relaxation are upwards of 
5 to 7 times faster than using a model which has a linear vertical interpolation, and thus requires a higher 
number of vertical layers to achieve a similar result in simulated ice volume, basal temperature, and ice divide 
thickness. The findings suggest that this method will allow higher-order models to be used in studies 40	
investigating ice sheet behavior over paleoclimate timescales at a fraction of the computational cost than 
would otherwise be needed for a model using a linear vertical interpolation. 
 
1 Introduction 
 45	
Although the future trajectory of the Greenland ice sheet (GrIS) trends toward continued mass loss under 
elevated surface temperature into the future, the speed and magnitude of these changes remain unknown 
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(Church et al., 2013). To provide clues as to how past surface forcings influenced change over the GrIS, 
researchers have often relied on the paleoclimate record to serve as an analog for potential future changes 
(Alley et al., 2010). These records allow scientists to gain crucial insights into the evolution of the ice sheet 50	
during different climatic settings and are often corroborated by multiple lines of proxy evidence highlighting 
ice sheet change (e.g., ice core records, marine sediment records, terrestrial records). With respect to the 
GrIS, a wealth of data has been produced highlighting these changes since the beginning of the Holocene 
(e.g., Alley et al., 2010; Briner et al., 2016). These datasets have the potential to provide invaluable 
constraints for ice sheet modeling efforts aimed at exploring the sensitivity of the GrIS to past climate 55	
changes. For example, using relative sea level records throughout Greenland, Tarasov and Peltier (2002) 
were able to constrain an ice sheet model of the GrIS over the last deglaciation. This approach was improved 
through increased data coverage during later studies (Simpson et al., (2009); Lecavalier et al., 2014), 
highlighting the practical usage of paleoclimate proxies in ice sheet modeling efforts.  Recently, ice sheet 
modeling results of the last deglaciation and Holocene have been compared with terrestrial records that 60	
capture changes in the ice sheet margin position (Larsen et al., 2015; Young and Briner, 2015; Sinclair et al., 
2016). Because these comparisons are still relatively nascent, large model-data discrepancies do exist in some 
locations between the modeled margin and the margin derived from the proxy evidence, particularly in areas 
along the ice sheet margin where fast flow dominates. Some reasons for the model-data discrepancies include 
the use of a relatively coarse (10km or greater) grid and use of the shallow ice approximation (SIA; Hutter, 65	
1983; Sinclair et al., 2016). Because the SIA was mainly developed for modeling the interior flow of ice 
sheets where the ice flow is dominated by vertical shear, it ignores membrane stresses (longitudinal and 
lateral drag) that are predominant closer to the GrIS margin (Hutter, 1983), and can lead to large thickness 
errors in these regions (Bueler et al., 2005). Both of these limitations have the impact of restricting how well 
an ice sheet model can simulate the behavior of an ice sheet near the margin, which is where the majority of 70	
paleoclimate evidence exists (Kirchner et al., 2011;Seddik et al., 2012; Seddik et al., 2016).   
 
Nevertheless, to improve simulation speed needed for long paleoclimate spinups, ice flow models of reduced 
complexity often utilizing the SIA with a horizontal resolution of 10 km or greater are used to decrease 
computational cost, ultimately allowing for more efficient modeling over time intervals equivalent to a glacial 75	
cycle (~120 kyr) or longer. Despite its simplification, the SIA has allowed great strides in our understanding 
of the paleoclimatic evolution of the GrIS both in mass and temperature (Huybrechts, 2002; Tarasov and 
Peltier, 2002; Greve et al., 2011; Rogozhina et al., 2011) and its justification can be related to its ability to 
sufficiently model the volume evolution of the GrIS on a scale that is consistent with the dominant flow 
characteristics (Furst et al., 2013).  To address issues associated with the SIA, some models combine SIA 80	
and the shallow shelf approximation (SSA; MacAyeal, 1989), which allows a model to capture some of the 
dynamical processes occurring near ice sheet margins (Pollard and DeConto, 2009; Bueler and Brown, 2009; 
Aschwanden et al., 2016). To achieve this coupling however, models impose mass flux conditions at the 
grounding line, which serves as a boundary condition for the SSA model, or rely on tuning of a weighting 
parameter, whereas this discontinuity does not exist for higher-order models.  85	
 
With model-data comparisons of past ice sheet changes becoming more common, however, some 
applications may benefit from using an ice sheet model of increased complexity, particularly when 
comparisons of past margin behavior are of interest.  Ideally, full stokes (FS) models provide a 
comprehensive 3D solution to the diagnostic.  FS models, however, are prohibitively expensive 90	
computationally and are mainly relegated to modeling experiments no more than a few hundred years.  As 
described above, SIA models represent the highest degree of simplification of the full stokes equations, in 
which the vertical shear stress is the only non-zero stress component in the force balance equations.  Although 
advantageous due to its computational efficiency, SIA models cannot simulate ice streams, grounding line 
dynamics, and floating ice shelves.  On the contrary, shelfy-stream or shallow-shelf approximation models 95	
(SSA; MacAyeal, 1989) were developed to be implemented in ice shelf regions where longitudinal stresses 
dominate. However, these models cannot represent slow flow in the interior of the ice sheet where vertical 
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shear is non-negligible.  Higher-order models (Blatter, 1995; Pattyn, 2003; herein referred to as BP for 
Blatter-Pattyn) on the other hand, that include membrane stresses and elements of the vertical shear stress 
have been a hallmark in the ice sheet modeling community over the past decade, being favored for their 100	
ability to model both the fast and slow areas of ice flow while being computationally cheaper than full stokes 
models.  The majority of the computational demand for an ice sheet model resides within the stress balance 
computation. Although the thermal model requires many vertical layers in order to capture sharp thermal 
gradients near the base of the ice, stress balance tests performed with ISSM (not shown here) on models with 
25 layers and 5 layers show the area averaged differences in the surface and basal velocities to be 0.22 % and 105	
0.012% respectively.  Therefore, for the purposes of the experiments outlined in this study, we consider that 
the stress balance computation does not require a high vertical resolution.  As a consequence of the high 
number of vertical layers needed for the thermal computation, however, more runtime is needed during the 
stress balance computation than is necessary. Because of the increased model complexity in BP models they 
have therefore not been run over paleoclimate timescales due to the large computational expenses needed to 110	
complete the runs. To utilize BP models in paleoclimate simulations, methods to improve runtime speed 
without sacrificing the models precision need to be addressed.  
 
Here we present a method, which builds upon the thermomechanical ice flow model ISSM (Ice Sheet System 
Model), to improve model speed within the BP ice sheet model simulations. While our implementation and 115	
analysis are done with ISSM, the methods can be applied to a wide range of finite element ice sheet models.  
The main component of this development focuses on the vertical extrusion of layers within ISSM, and the 
type of finite elements used to create the vertical interpolation. The aim of this method is to allow the user to 
perform model simulations that have a smaller number of vertical layers than typically used, while still being 
able to more precisely capture the thermal state of the ice sheet than would otherwise be captured using 120	
traditional means of linear vertical interpolation. We begin by first describing the methodology associated 
with the implementation of higher order vertical elements in section 2, followed by a description of the model 
experiment setup for an idealized single dome ice sheet and a realistic GrIS configuration in section 3. The 
results are accompanied by a discussion in section 4 and conclusions in section 5.    
 125	
2 Higher-order finite elements 
 
Like many finite element ice sheet models, ISSM relies on prismatic elements, which are the result of a 
vertical extrusion of a 2-dimensional triangular mesh. The interpolation used in these elements is decomposed 
into a horizontal interpolation and a vertical interpolation.  A P2xP1 finite element, for example, has a 130	
quadratic finite element on the horizontal plane (triangle) and a linear interpolation in the vertical direction. 
Here, we assume that the variations in model fields are accurately captured by the horizontal mesh, but that 
sharp gradients in the temperature at the base of the ice sheet need to be captured.  For this purpose, we 
investigate finite elements that have three different degrees in the vertical nodal functions:1) P1 linear 
elements, 2) P2, with a quadratic interpolation along the z-axis, and 3) P3, with a cubic interpolation along 135	
the z-axis, as illustrated by Figure. 1.   
 
Since the nodal functions are taken as a product of horizontal and vertical polynomials, they can be written 
in the following terms: Ni(x,y,z) = fj(x,y) ´ gk(z). Here, we keep a linear interpolation for fj and they are 
classically written as 140	
 
𝑓"(𝑥, 𝑦) = 𝑥	
 
𝑓*(𝑥, 𝑦) = 𝑦                 (1) 
 145	
𝑓+(𝑥, 𝑦) = 	1 − 𝑥 − 𝑦 
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in the standard triangle reference element whose corners are (0,0), (1,0) and (0,1). The functions gk(z) control 
the degree of interpolation along the z-axis, and the nodes associated to these functions are located along the 
3 vertical segments of the prism. The number of nodes along these segments depends on the degree of these 150	
polynomials.   
 
2.1 P1xP1 prismatic elements 
 
In the vertical direction, we use a reference element that goes from z = -1 to z = 1.  A linear element (P1xP1; 155	
herein noted as P1) has 6 nodes: one per vertex.  We have 6 nodal functions for the reference element, 3 in 
the horizontal plane (Eq.1), times 2 along the z-axis: 
 

𝑔"(𝑧) = 	
1
2
(1 − 𝑧) 

                                                                                                                                           (2) 160	

𝑔*(𝑧) = 	
1
2 (1 + 𝑧) 

 
2.2 P1xP2 prismatic elements 
 
For a quadratic finite element in the vertical direction (herein noted as P2), we have 9 nodes per element (Fig. 165	
1): one per vertex and one in the center of each vertical segment.  We have the following functions in the 
vertical direction: 
 

𝑔"(𝑧) =
1
2 𝑧(1 − 𝑧) 

 170	
𝑔*(𝑧) = 	

"
*
𝑧(1 + 𝑧)                                                                                                           (3) 

 
𝑔+(𝑧) = (1 − 𝑧*) 
 
2.3 P1xP3 prismatic elements 175	
 
For a cubic finite element in the vertical direction (herein noted as P3), one needs 12 nodes per element (Fig. 
1): one per vertex and 2 located at one third and two thirds of each vertical segment.  The vertical components 
of the nodal functions are: 
 180	

𝑔"(𝑧) = 	−
9
16 (𝑧 − 1) 4𝑧 −

1
36 4𝑧 +

1
36 

 

𝑔*(𝑧) = 	
9
16 4𝑧 −

1
36 4𝑧 +

1
36 (𝑧 + 1) 

                                                                                                                                           (4) 

𝑔+(𝑧) = 	
27
16 (𝑧 − 1) 4𝑧 −

1
36 (𝑧 + 1) 185	

 

𝑔8(𝑧) = 	−
27
16 (𝑧 − 1) 4𝑧 +

1
36 (𝑧 + 1) 

 
2.4 Benefits of higher-order vertical finite elements 
 190	
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Increasing the degree of finite elements along the z-axis is comparable to increasing the resolution along the 
z-axis, whereby having higher-order polynomials makes it possible to better capture sharp changes despite 
the number of elements in the vertical being limited to 4 or 5.  Figure 2 illustrates this idea for an exponential 
function that is representative of a thermal profile.  Here, the ice is uniformly cold throughout except at the 
base where the ice is warmer due to the geothermal heat flux and frictional heating.  Using only 4 layers and 195	
linear elements (P1), this vertical profile is poorly captured, as the number of layers is too small to correctly 
represent the gradient of temperatures near the base.  While quadratic elements do better, the cubic elements 
capture the shape of the exponential curve with maximum accuracy, even for a coarse mesh.  For more 
information about the finite element method, we direct the reader to Zienkiewicz and Taylor (1989).    
 200	
3 Model description and experimental setup 
 
For the following model experiments we use the Ice-sheet System Model (ISSM; Larour et al., 2012), a finite 
element, thermomechanical ice sheet model.  The tests performed in this study can be split into two 
experiments.  We first test the precision of the higher-order vertical interpolation using a simplified single 205	
dome ice sheet experiment that uses the SIA, following experiment A of the European Ice Sheet Modeling 
INiTiative (EISMINT2) experiments (Payne et al., 2000).  We then apply a similar setup to a GrIS wide 
model, where the steady-state thermal solution is computed using the higher order BP model.  Specifics 
regarding model setup and the relevant experiments are discussed below. 
 210	
3.1 Single dome experiment setup 
 
To test the performance of the higher-order vertical interpolation, we adopt a setup similar to the EISMINT2 
experiments (Payne et al., 2000), which were targeted for the assessment of thermomechanical shallow ice 
models. We perform all of our single ice dome experiments using the SIA on models with horizontal grid 215	
resolution of 20 km x 20 km, with a model domain of 1500 km x 1500 km.  The maximum surface mass 
balance of 0.5 m/yr occurs at the center of the domain (over the dome summit), and linearly decreases radially 
as a function of the geographical distance from the dome. Accordingly, the minimum surface air temperature 
(238.15 K) is set at the dome summit, and decreases away from the dome following the same basis as the 
surface mass balance.  The ice rheology is temperature dependent, following Cuffey and Paterson (2010, p. 220	
75).  
 
Rather than perform all of the experiments associated with the EISMINT2 benchmarks, we choose to limit 
the analysis to only experiment A, where models begin from the same initial state.  Experiments begin with 
zero ice over a bed with flat topography and are run to relaxation for 100,000 years.  To compare the 225	
differences between the vertical interpolations, we run 24 simulations in total.  These simulations use the P1, 
P2, and P3 vertical interpolation for models that have a minimum of 3 non-uniform layers to a maximum of 
10 non-uniform layers. Each model uses an extrusion exponent of 1.2, indicating that the layers are not 
equally spaced but rather modestly biased towards thinner layers at the bed. Aside from comparison of the 
results to EISMINT2, we run a simulation using the P1 vertical interpolation on a model with 25 layers. This 230	
model will serve as the benchmark to compare the other simulations to, with a 25 layer P1 model being 
representative of what is typically used in the setup for GrIS wide simulations in ISSM (Seroussi et al., 2013).  
We note that for the stress balance computation we use the P1 vertical interpolation, while the thermal 
computation makes use of the higher order vertical elements.   
  235	
3.2 GrIS model setup 
 
In addition to comparison with the EISMINT2 experiment A, thermal steady-state computations are 
performed for a GrIS wide model to determine how well the vertical interpolations can capture thermal 
profiles and basal temperatures throughout the ice sheet. The three-dimensional higher-order model (i.e. BP) 240	
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of Blatter (1995) and Pattyn (2003) is used for the momentum balance equations. The nonlinear effective ice 
viscosity result from Glen’s flow law (Glen, 1955) and is given in equation 5.   
 
𝜇 = :

*;̇=
>?@
>
	                                                                                                                                                  (5) 

 245	
Where B is the ice hardness, n is Glen’s flow law exponent and 𝜖Ḃ  is the effective strain rate.  The ice 
hardness, B, is temperature dependent following the rate factors given in Cuffey and Paterson (2010, p. 75), 
while basal drag is empirically determined following a viscous flow law outlined in Cuffey and Paterson 
(2010). 
 250	
The GrIS wide model relies on anisotropic mesh adaptation, whereby the element size is refined as a function 
of surface elevation (Howat et al., 2014) and InSAR surface velocities from Rignot and Mouginot (2012), 
becoming finer in areas where the second derivative of these two quantities is higher. The model mesh has a 
horizontal resolution ranging from 3 km in areas of ice streams to 20 km over the interior regions where the 
ice flow is slow, corresponding to a two-dimensional model with ~10,000 triangular elements. The horizontal 255	
mesh is then extruded to the corresponding number of layers outlined in section 3.1. This results in 24 models 
with a 3-D mesh ranging from 30,000 to 100,000 prismatic elements, depending on the models number of 
vertical elements.  Similar to the experiments outlined in section 3.1, we run a benchmark thermal steady-
state simulation using a model that has 25 non-uniform layers and uses the P1 vertical interpolation (250,000 
elements). 260	
 
The models are initialized with bed topography from BedMachine Greenland v3 (Morlighem et al., 2017), 
and ice surface elevation from the GMIP DEM of Howat et al. (2014). The surface mass balance and surface 
temperatures are taken from Ettema et al. (2009), and the geothermal heat flux relies on a setup identical to 
Seroussi et al. (2013).  The underlying geothermal heat flux from Shapiro and Ritzwoller (2004) is used, 265	
however, values of 20 mWm-2 and 60 mWm-2 are added at the Dye3 and GRIP sites respectively, after 
Seroussi et al. (2013).  These modifications follow an exponential decay from the particular sites with a radius 
of 250 km.   
 
The thermal model for both the single dome and steady-state experiments use an enthalpy formulation derived 270	
from Aschwanden et al. (2012), which includes both temperate and cold ice.  At the ice surface, air 
temperature is imposed, while the geothermal heat flux is applied at the base. For full details outlining the 
thermal model used in ISSM we direct the reader to Seroussi et al. (2013) and Larour et al. (2012). Lastly, 
the spatially varying basal drag coefficient is determined using inverse methods (Morlighem et al., 2010; 
Larour et al., 2012), providing the best match between modeled and InSAR surface velocities from Rignot 275	
and Mouginot (2012).  
 
4 Results and discussion 
 
4.1 Single dome experiment 280	
 
Each individual model is relaxed for 100,000 years to bring the ice sheet into steady-state both with respect 
to the ice thickness and temperature.  In Fig. 3, the ice volume for each particular simulation is shown as a 
percent difference from the 25 layer P1 simulation with the shading corresponding to the zone where models 
fall within 2% of the ending ice volume simulated by the 25 layer P1 model.  Although all models simulate 285	
the same relative trend for the ice volume relaxation, they do not all converge on the ice volume simulated 
by the 25 layer P1 model.  For the models where the linear (P1) interpolation (Fig. 3A) is used in the thermal 
model, only those models with at least 8 layers fall within the 2% range of ending ice volume for the 25 layer 
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P1 simulation.  When using a higher-order vertical interpolation (P2 and P3), however, models with 4 layers 
and above fall within the 2% range (Figs. 3B and 3C).   290	
 
To further compare the performance of each model, the corresponding ice volume, ice divide basal 
temperature, and ice divide thickness are shown in Table 1 for each model simulation and are compared to 
the mean values derived from the EISMINT2 experiment A results (Payne et al., 2000).  It is important to 
note that no known analytic solution was provided in the EISMINT 2 experiment A comparison. Similar to 295	
Rutt et al. (2009), however, we compare our simulated values to the mean and the standard deviation of the 
values for experiment A in the EISMINT2 experiment to assess the relative spread.  In general, models using 
the higher-order vertical interpolation tend to better match the EISMINT2 results.  Models with 4 layers or 
more using the P2 or P3 vertical interpolation fall within 1 standard deviation (σ) of the mean for simulated 
ice volume, whereas models using the linear vertical interpolation require 8 or more layers to satisfy this 300	
constraint.  With respect to the basal temperatures simulated at the ice divide, only the 10 layer P2, 10 layer 
P3, and the 25 layer P1 simulations fall within 1 σ of the mean for the EISMINT2 experiment A results.   
 
Models with 5 or more layers using the P2 or P3 vertical interpolation fall within 2 σ of the EISMINT2 
experiment A mean for basal temperatures simulated at the ice divide, while at least 7 layers are needed for 305	
models using the linear vertical interpolation. Regarding ice divide thickness, none of the models with 10 
layers or less using the linear interpolation fall within 3 σ of the mean, however, the 25 layer P1 simulation 
does.  Generally, models using at least 6 layers and the P2 or P3 vertical interpolation fall within at least 3 σ 
of the mean for the simulated ice divide thickness.  Interestingly, whereas the P3 models with 6 layers and 
above only fall within 3 σ of the mean, models with 8 layers and above for the P2 interpolation fall within 2 310	
σ of the mean.  This is likely explained by the slightly higher temperatures simulated with the P2 
interpolation, which may feed back onto the ice rheology and correspondingly, the ice flow.  We note 
however that these differences are small, and overall models using the P2 and P3 vertical interpolation show 
excellent agreement amongst each other.  From this exercise, it can be concluded that when using fewer 
layers, models that utilize the higher-order vertical interpolation are more capable of capturing the simulated 315	
ice volume, ice divide basal temperatures and ice divide thickness simulated by the EISMINT2 experiment 
A models.  Although some differences do exist between our simulated values and those derived from the 
EISMINT2 experiment A results, the precision of the models using the P2 or P3 vertical interpolation is 
reasonable.  As noted by Rutt et al. (2009), there are inherent difficulties in associating particular differences 
to specific model processes.  Most differences in the simulated temperature can have feedbacks on the ice 320	
rheology and therefore the ice flow, which make comparisons with models using different discretization 
methods difficult.  Overall, comparison with the EISMINT2 experiment A results demonstrate that by using 
fewer layers with a higher-order vertical interpolation, models are capable of capturing particular constraints 
more accurately than would otherwise be simulated using a linear vertical interpolation.  
 325	
Because of the potential difficulties in assessing differences between our results and those derived from the 
EISMINT2 experiment A, we also compare our results to the model simulation using the 25 layer P1 vertical 
interpolation.  Because this model is representative of what is characteristically used for three-dimensional, 
thermomechanical modeling in ISSM (Seroussi et al., 2013), further comparisons can be made to those 
models that agree well with simulated ice volume, ice divide basal temperature, and ice divide thickness from 330	
the 25 layer P1 model.  In Table 2, the absolute value of the percent difference is shown between each 
individual model simulation and that using the 25 layer P1 model.  Following from the comparison with the 
EISMINT2 experiment A results, the higher-order vertical interpolation allows models with fewer layers to 
capture changes simulated by the 25 layer P1 model with a higher precision.  In Table 2, the green shading 
denotes those model simulations where the simulated ice volume, ice divide basal temperature, or ice divide 335	
thickness is within 1% of the 25 layer P1 model.  Generally, models with at least 4 (P3) and 5 (P2) layers 
capture the simulated ice volume within 1% of that simulated by the 25 layer P1 model.  Using the linear 
vertical interpolation, 10 layers are needed before simulating ice volume within 1% of the 25 layer P1 model.  
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This is better illustrated in Fig. 4, where the percent difference in ice volume from the 25 layer P1 model is 
shown as a function of the number of layers in each model.   Those models using the P2 and P3 vertical 340	
interpolation converge significantly faster to ~0-1% difference at 4-5 layers from the 25 layer P1 model.  We 
note that the negative difference for the P2 and P3 models arises as the temperatures simulated with the 
higher-order vertical interpolation are slightly higher, but not significantly different than that simulated by 
the 25 layer P1 model (Table 2), providing a feedback between ice rheology and ice flow.  Lastly, the ice 
divide thickness follows a similar trend in that using the higher-order vertical interpolation allows a model 345	
with fewer layers to capture what is simulated with the 25 layer P1 model (Table 2).  When viewed as ice 
profiles extending from the dome summit to the ice edge for 3, 5, and 7 layer models (Fig. S1), the differences 
in ice thickness between models appear small, with the P2 and P3 being almost identical, and only minor 
differences existing for the models using the P1 vertical interpolation.    
 350	
Differences between the linear vertical interpolation and the P2 or P3 interpolation become more apparent 
when analyzing ice temperature profiles.  In Fig. 5, ice temperature profiles are plotted at the ice divide for 
models with 3, 5, and 7 layers.  With only 3 layers, models with the P1, P2, and P3 vertical interpolation 
simulate a temperature profile that is too warm between 500 to 1500 meters, and too cold approaching the 
base.  Despite the vertical interpolation used, the profile is not well captured, although improvements to the 355	
shape of the temperature profile in the transition between 500 to 1500 meters can be seen in models using 
the higher-order vertical interpolation.   Adding more layers to each model improves the overall fit to the 25 
layer P1 model, although the models using the P2 and P3 vertical interpolation capture the shape of the 
temperature profile much better than the linear interpolation.  The overall fit is improved not only at the base 
but also in the transition between 500 to 1500 meters where the ice begins to warm more rapidly approaching 360	
the base. We also find that the differences between the P2 and P3 vertical interpolation are marginal in this 
example, indicating that using a quadratic vertical interpolation (P2) is suitable when given the choice to 
using a cubic vertical interpolation (P3).   
 
4.2 Improvements in simulation speed 365	
 
Although much of the success regarding the higher-order vertical interpolation resides in the models ability 
to capture the vertical structure of temperature in the ice using fewer layers than is needed from the traditional 
linear vertical interpolation, improvements to model speed are the main motivation for its implementation, 
particularly in BP models.  To test how model speed is improved when implementing the higher-order vertical 370	
interpolation, we begin by using the relaxed model simulations that have thus far only used the SIA for the 
single dome experiments in section 4.1.  From the relaxed model states, each simulation is run for 100 years 
using the BP ice flow model in ISSM, and uses the same boundary conditions from the relaxation with a 
fixed time step of 0.2 years. 
 375	
Since we assume that the horizontal mesh accurately captures variations in the model fields, running a higher-
order vertical interpolation reduces the number of layers used in the stress balance computation, which is the 
most computationally demanding part of transient simulations.  Comparing the simulation time for each 
individual model compared to the 25 layer P1 model, all models, despite the vertical interpolation used, 
complete the 100 year run anywhere between 241 (3P1) to 9 (10P3) times faster (Fig. 6). To determine how 380	
models perform based upon the vertical interpolation, a criterion is established based upon Table 2, such that 
each models simulated ice volume must be within 1% of those values simulated by the 25 layer P1 model, 
which represents the relative uncertainty associated with the present day ice volume of the GrIS (Morlighem 
et al., 2017). Based upon these criteria, models using the P1 vertical interpolation must have 10 layers or 
more, while models using the P2 and P3 vertical interpolation can use at least 5 or 4 layers respectively. 385	
When applying these criteria, runtime is 5 times faster for a 5 layer P2 model versus a 10 layer P1 model.  If 
we assume a 7 layer P1 model is adequate, the runtime for a 5 layer P2 model is 2 times faster.  When 
compared with the 25 layer P1 model, the 5 layer P2 model completes the relaxation 57 times faster.  
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4.3 Application to a GrIS wide model 390	
 
The thermal steady state simulation is compared with the GRIP ice core record (Dahl-Jensen et al., 1998) in 
Fig. 7 for models with 3, 5, and 7 layers as well as the 25 layer model with the P1 vertical interpolation.  The 
simulated thermal structure for the 25 layer P1 model is similar to the thermal profile presented in Seroussi 
et al. (2013).  Temperature differences of 2-5 degrees occur between the models and the GRIP record between 395	
1200 to 2200 meters, and 500 to 1000 meters, however, this is consistent with other models computing the 
thermal steady-state (Dahl-Jensen et al., 1998; Rogozhina et al., 2011).  The influence of past surface 
temperatures, ice flow history, and accumulation are not represented in our thermal steady-state computation.  
Spinning up an ice sheet model over a glacial cycle typically provides a better match to the ice core records 
but is beyond the scope of this experiment (Greve, 1997; Rogozhina et al., 2011).  Nevertheless, the general 400	
profile is well simulated, with only minor differences in the simulated basal temperatures for the models 
using P2 or P3 interpolations.  Similar to the results presented for the ice dome (Fig. 5), models using the 
higher-order vertical interpolation simulate the shape of the thermal profile (compared to 25 layer P1) much 
better than the models using the linear vertical interpolation and the same number of layers.  When examined 
spatially, the difference in basal temperature decreases using a model with a higher-order vertical 405	
interpolation, particularly over the interior of the ice sheet (Fig. S2a-c).  Although differences between 
models using the P1 vertical interpolation and the 25 layer model begin to minimize with 8 layers, the 
differences for models using the P2 and P3 vertical interpolation become small with 4-5 layers.    
 
5 Conclusion 410	
 
This study aims at addressing the current computational limitation in using higher-order stress balance ice 
sheet models for paleoclimate studies.  Currently, analysis of ice sheet modeling experiments focusing on the 
past behavior of the GrIS are being complemented with rich paleoclimate data constraining features of the 
past ice sheet behavior (Larsen et al., 2015; Young and Briner, 2015; Sinclair et al., 2016).  Where shallow 415	
ice models might be limited in their ability to simulate the marginal behavior of the GrIS through the 
exclusion of higher-order stress terms and an inability to run on a high-resolution mesh, BP models may 
become more appropriate for such comparisons in the future.  To help alleviate the computational expense 
in using a BP model, we implement higher order vertical elements.  As shown in section 4.1 of this study, 
increasing the degree of the vertical interpolation allows the model to capture gradients in the thermal profile 420	
of the ice with more precision than would otherwise be captured using a model with a linear vertical 
interpolation, despite having the same number of vertical layers.  Models with correspondingly fewer layers 
that used the higher-order vertical interpolation were able to capture the transient behavior consistent with 
the EISMINT2 experiment A results (Payne et al., 2000) and also performed well when compared to a model 
similar to those that are used for modeling studies in ISSM (Seroussi et al., 2013).   425	
 
The biggest attraction for using higher order vertical elements is that they not only decrease the computational 
burden for the thermal model, but also for the stress balance computation, due to a decrease in the number of 
vertical layers needed. Overall, this leads to a large reduction in computational time, particularly when a BP 
model is used. Models using the higher-order vertical interpolation were shown to shorten runtime anywhere 430	
between 2 to 5 times for a 5 layer model compared to models with 7 and 10 layers respectively, using a linear 
vertical interpolation.  When compared to the 25 layer model using the linear vertical interpolation, models 
with 5 to 10 layers using the higher-order vertical interpolation had anywhere between a 57 to 10 times faster 
runtime, with minimal impacts on the precision of the simulated ice volume and thermal state.  When the 
higher order vertical elements were applied to a 3 dimensional, BP model of the GrIS, experiments showed 435	
the thermal state of the ice sheet can be captured as precisely as our 25 layer P1 model when at least 5 layers 
are used for a quadratic (P2) vertical interpolation and at least 4 layers for a cubic (P3) vertical interpolation. 
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When comparing the quadratic and cubic vertical interpolation, the benefits of using a cubic vertical 
interpolation are slight, although it may be useful when modeling in areas of complex thermal regimes.    
 440	
In the context of paleoclimate simulations, using a higher-order vertical interpolation improves simulation 
speed, particularly for BP ice sheet models.  BP models using this will still likely be too computationally 
intensive for simulations which sample parameter space and thus require multiple independent simulations 
(Applegate et al., 2012; Robinson et al., 2011).  However, in experiments where BP models may offer 
improvements in model data comparison versus using shallow ice models, higher-order vertical elements can 445	
be used as a means to improve model speed while still being able to capture the qualities simulated in a model 
with many more layers, but at the fraction of the speed.  In this respect, future studies will use these higher-
order vertical elements to enhance computational speed while maintaining mechanical complexity for ice 
sheet modeling experiments over various paleoclimate timescales.   
 450	
 
Code availability 
 
The higher order finite elements are currently implemented in the ISSM code, which can be compiled 
following the instructions on the ISSM website (https://issm.jpl.nasa.gov/download). 455	
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Table I.  Ice volume, ice divide basal temperature, and ice divide thickness for each individual simulation 630	
after a 100 kyr relaxation.  Also shown are the corresponding mean values for the EISMINT2 (Payne et al., 
2000) experiment A simulation and the standard deviation.  The shading indicates those simulations whose 
values fall within 1 standard deviation (green), 2 standard deviations (blue,) and 3 standard deviations (red) 
from the EISMINT2 experiment A mean values. 

Volume ( 106 km3) Ice divide basal temp (K) Ice divide thickness (m)

Eismint 2 exp. A 
(mean value) 

Payne et al., 2000 2.128 ±  0.051 255.605 ± 1.037 3688.3 ± 27.757
25 layer P1 2.144 254.723 3767.0
3 layer P1 2.344 247.229 4093.2
4 layer P1 2.265 250.240 3960.4
5 layer P1 2.231 252.351 3876.5
6 layer P1 2.209 253.285 3844.4
7 layer P1 2.192 253.793 3823.0
8 layer P1 2.179 254.115 3806.7
9layer P1 2.171 254.337 3794.5

10 layer P1 2.165 254.480 3785.4
3 layer P2 2.264 249.873 4023.2
4 layer P2 2.169 252.598 3838.1
5 layer P2 2.146 253.717 3785.8
6 layer P2 2.138 254.225 3764.8
7 layer P2 2.131 254.488 3753.9
8 layer P2 2.124 254.532 3747.1
9 layer P2 2.123 254.634 3743.6
10 layer P2 2.122 254.656 3741.3
3 layer P3 2.245 250.019 4002.0
4 layer P3 2.160 252.689 3826.4
5 layer P3 2.145 253.581 3779.3
6 layer P3 2.143 253.895 3765.0
7 layer P3 2.138 254.213 3756.5
8 layer P3 2.131 254.334 3750.3
9 layer P3 2.129 254.436 3748.5
10 layer P3 2.127 254.600 3746.2
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	635	
Table II.  The absolute value of the percent difference between each individual model run and the 25 layer 
P1 simulation at the end of the 100,000 year relaxation for ice volume, ice divide basal temperature, and ice 
divide thickness Green shading denotes models that fall within 1% of the variables simulated by the 25 layer 
P1 model at the end of the relaxation.   

 640	

 

 

 

 

 645	

 

 

 

 

 650	

Ice volume Ice divide basal temp. Ice divide thickness 
3 layer P1 9.33 2.94 8.66
4 layer P1 5.64 1.76 5.13
5 layer P1 4.06 0.93 2.91
6 layer P1 3.03 0.56 2.05
7 layer P1 2.24 0.37 1.49
8 layer P1 1.63 0.24 1.05
9layer P1 1.26 0.15 0.73

10 layer P1 0.98 0.10 0.49
3 layer P2 5.60 1.90 6.80
4 layer P2 1.17 0.83 1.89
5 layer P2 0.09 0.39 0.50
6 layer P2 0.28 0.20 0.06
7 layer P2 0.61 0.09 0.35
8 layer P2 0.93 0.08 0.53
9 layer P2 0.95 0.04 0.62

10 layer P2 0.98 0.03 0.68
3 layer P3 4.71 1.85 6.24
4 layer P3 0.75 0.80 1.58
5 layer P3 0.05 0.45 0.33
6 layer P3 0.05 0.33 0.05
7 layer P3 0.28 0.20 0.28
8 layer P3 0.61 0.15 0.44
9 layer P3 0.70 0.11 0.49

10 layer P3 0.79 0.05 0.55

Table 2.  The percent difference between each  run and the 25 layer P1 after 100kyr of relaxation.
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Figure 1. Top row: nodes for the P1×P1, P1×P2, and P1×P3 prismatic finite element, respectively.  Bottom 
row: vertical nodal functions for P1, P2 and P3 finite elements. 670	
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	690	
	
	
Figure 2. On the left is an example of 3 prismatic elements used to capture an exponential profile.  On the 
right is an example of exponential profile captured by P1, P2 and P3 finite elements.  With higher order finite 
elements in the vertical, sharp gradients in temperature are captured more precisely than with a linear (P1) 695	
interpolation.  
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 735	

 

Figure 3.  The percent difference in ice volume from the 25 layer P1 model for models using the P1 (a), P2 
(b), and P3 (c) vertical interpolation scheme over the 100,000 year relaxation.  The gray shading highlights 
the models that fall within 2% of the simulated ice volume for the 25 layer P1 model at the end of the 100,000 
year relaxation.  Only those models that fall within 2% of the simulated ice volume for the 25 layer P1 model 740	
are labeled and colored as shown in their respective legends.   
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	750	

	
Figure 4. The percent difference in simulated ice volume after the 100,000 year relaxation for the single ice 
dome experiment compared to the 25 layer P1 model.  Each model run is shown as a function of the 
vertical interpolation and the number of layers used.	
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	775	
Figure 5.  The resulting temperature profiles at the ice divide after the 100,000 year single ice dome 
relaxation for models with 3, 5, and 7 layers, compared to the temperature profile from the 25 layer P1 
model. 
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 800	
Figure 6. Run times for the 100 year higher order simulation of the single ice dome for each individual 
model based upon the number of layers and vertical interpolation scheme used. 
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Figure 7. The resulting temperature profiles for the higher order steady state thermal computation at the 845	
GRIP ice core site location for models with 3, 5, and 7 layers, compared to the temperature profile from the 
25 layer P1 model and the measured GRIP temperature profile (Dahl-Jensen et al., 1998). 
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