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Author response to the comments from referee #1 

We thank the author for their kind comments on the importance of this work and for his constructive comments, which we have addressed as 

described below.  

General comments response: 

Page  

number 

Line 

number 

Referee comment Correction made / Sentence added to the 

paper 

Response 

25 6 The whole paper is 
focused on ’low’ yield or 
’adverse events’. But what 
about taking 
advantage of good 
seasons? There is value 
in predicting a good 
season and TAMSAT 
ALERT can be used in 

these scenarios. 

Page 25 line 6 onwards:  

Whilst the emphasis on our study has been 

on forecasting adverse events, such as low 

yields, it should be noted that TAMSAT-

ALERT is also capable of anticipating 

favourable conditions, enabling decision 

makers to maximise the benefits of such 

years - for example by managing post-

harvest storage and markets.  

Indeed, the system can help to assess 

events of favorable conditions like high 

yield and these values may have 

importance in relation to market price 

and post-harvest storage issues. But we 

are more focused on the adverse events 

because the risk associated with these 

events are much greater than that of the 

“good years” for users. A sentence has 

been added to highlight this point (Page: 

25, Line: 6) 

 

9 8 The authors set up the 
system using national 
data but then somehow 
only focus 
on Northern Ghana, while 
specifying that they do not 
have yield data for that 
region. 
There is mention of 
Tamale but without 

Page 9, Line 8 onwards 

We chose to use Tamale because it is in the 

Northern part of Ghana (Figure 2) where 

most of the Maize is grown. The station in 

Tamale also has a long-term record of the 

driving data for the crop model. It should be 

noted that TAMSAT-ALERT can in principle 

be run using any gridded meteorological data 

like satellite rainfall estimate (E.g. TAMSAT 

The available dataset of yield was a 

country wide average yield for this we 

used WFDEI dataset to calibrate the 

crop model used. But the demonstration 

of the TAMSAT-ALERT system is done 

using a point gauge data (Tamale) which 

is indicated on Figure 2, in order to 
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clarifying where that is, 
and what the agricultural 
practices are in this 
town/region. This is all 
rather confusing, and it 
would be good if the 
authors could somehow 

clarify this issue. 

(https://www.tamsat.org.uk/data/rfe/index.cgi) 

with a resolution of 4 Km (Maidment et al., 

2017).   

 

highlight the systems use at the fine 

scales of relevance for decision makers. 

A sentence has been added to highlight 

this point (Page: 9, Line: 8) 

 

19 18 Seasonal forecasts do 
come with uncertainty and 
it would be good to at 
least discuss 
the impact of forecast skill 

on these results. 

 

page 19, Line 18 onwards: 

In summary, Figures 12 and 13 indicate that 

if meteorological forecasts have sufficient 

accuracy and precision, they can add 

information to the decision-making process, 

especially in the middle to later part of the 

growing season.  However, Figures 14-16 

show that the tercile forecasts currently 

issued in northern Ghana do not have 

sufficient precision to information to yield risk 

assessments. A further application of 

TAMSAT-ALERT could be to investigate the 

level of skill that is required for 

meteorological forecasts to contribute useful 

information to such decision-making 

processes.  

 

We now comment on this at the end of 

the seasonal forecasting section (page 

19, Line 18 onwards)  

https://www.tamsat.org.uk/data/rfe/index.cgi
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25 29 Similarly, agricultural data 
have some uncertainty, as 
the authors have indicated 
in line2 page 5. 
Discussing the impact on 
calibrating a crop model 
using FAO data and 
thus the impact on the 
outputs of TAMSAT 
ALERT should be 
discussed. Especially, 
now there is a clear 
understanding that crop 
models should not be 
taken individually 
(e.g., AgMIP). 
Additionally, the sensitivity 
of GLAM to 
planting/harvest dates 
could have 
been included as well. All 

of this should at least be 

clearly discussed. 

Page 25, Line 29 onwards 

This modularity and flexibility is important, 

since the skill of the TAMSAT-ALERT system 

is constrained by the quality of the model 

and its calibration.  In this study, for example, 

the evaluation and calibration of GLAM was 

hampered by quality-control issues with the 

available yield data. The system would be 

much improved if used in-house by agencies 

with access to high quality yield data, and 

locally calibrated models.    

 

Indeed, the skill of seasonal forecast and 

the skill of the model used has an impact 

in the outcome of the risk assessment.  

Hence, using a well calibrated model is 

important and a sentence has been 

added to highlight this point (Page: 25, 

Line: 29 onwards). 
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the authors mention that 
the forecast is very similar 
to the climatology, which 
then 
obviously results in no 
clear additional 
information from the 
forecast. So, unless I 
have 
misunderstood something, 
I do not believe that the 
authors can then clearly 
say that 
there is limited value in 
seasonal forecasts. 

Page: 26, Line: 1 onwards 
Our results do not suggest that there is 
no information available from seasonal 
forecasts. However, we do show that 90-
day tercile forecasts of temperature and 
rainfall, even if perfectly skillful, provide 
comparatively little information to risk 
assessments for low maize yield.  This 
could be because the sensitivity of crops 
to moisture is on a specific period of their 
growth and the sensitivity of crops to 
temperature is also not similar 
throughout their growth stage. In other 
words, our findings highlight the 

The results shown in Figures 12 and 13 

show that even if a perfectly precise 

tercile forecast is used, the information 

provided to risk assessments is minimal. 

This is because the link between the 

metric being forecast (90 day averages 

of rainfall/temperature) are not strongly 

correlated with yield. We are not 

claiming that seasonal forecasts cannot 

add information to risk assessment, but 
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19 

 

 

 

 

18 

 

Ideally, and in order to 
make a clear suggestion 
on the usefulness of 
forecasts, the authors 
should have used several 
forecasts 
that use a variety of tercile 
distributions. So I 
encourage the authors to 
be more cautious 
with their result 

descriptions. 

necessity of more specific and localized 
forecasts, if users are to benefit from the 
inherent skill contained in the forecasts. 
 
Page 19 line 18 onwards  
In summary, Figures 12 and 13 indicate that 

if meteorological forecasts have sufficient 

accuracy and precision, they can add 

information to the decision-making process, 

especially in the middle to later part of the 

growing season.  However, Figures 14-16 

show that the tercile forecasts currently 

issued in northern Ghana do not have 

sufficient precision to information to yield risk 

assessments. A further application of 

TAMSAT-ALERT could be to investigate the 

level of skill that is required for 

meteorological forecasts to contribute useful 

information to such decision-making 

processes.  

 

rather we are highlighting the need for 

seasonal forecast to tailored to their 

application. Sentence have been added 

to clarify this point (Page: 26, Line: 1) 

and (Page: 19, Line: 18). 

 

25 29 the authors focused on 
2011 to evaluate this 
framework. From Fig 5 
one can see 
that GLAM is able to 
clearly estimate the yield 
in that year. Is there a way 
to provide 
a similar analysis for 2010 
where GLAM 
underperforms? And 
maybe include more 
discussion on what the 

decision-maker needs to 

do when the year-to-year 

page 25 line 29 onwards. 

 

This modularity and flexibility is important, 

since the skill of the TAMSAT-ALERT system 

is constrained by the quality of the model 

and its calibration.  In this study, for example, 

the evaluation and calibration of GLAM was 

hampered by quality-control issues with the 

available yield data. The system would be 

much improved if used in-house by agencies 

with access to high quality yield data, and 

locally calibrated models. Nevertheless, it is 

important that model error is taken into 

account in the decision-making process, and 

forecasts should therefore be issued in the 

Indeed, if it is to provide useful 

information, TAMSAT-ALERT must 

incorporate models that are capable of 

simulating accurately the metric under 

assessment. This is clarified in the 

discussion section, along with brief 

discussion of strategies that users might 

adopt to deal with model error.  
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estimation of this system 

is only ’moderate’. 

context of model evaluations like the one 

presented in this study. TAMSAT-ALERT's 

modular structure, moreover, permits 

forecasts to be produced using an ensemble 

of crop models/crop model parameterizations 

- facilitating formal analysis of model 

uncertainties.   

 

14 18 A. when including 
forecast (section 
3.3.2), it is unclear 
whether all 
forecasts are 
included 
simultaneously 
(i.e., in June, do 
the authors include 
forecasts for JJA, 
JAS, ASO and 
SON or do they 
only include JJA 
and climatology for 
the rest of the 
season?  

 
B. Also, is there 

scope to include 
both the 
temperature and 
rainfall forecasts at 
the same time? 

The forecasts are commonly issued at the 

start of every month. Hence, we have 

applied the forecasts only to the 

meteorological season being forecasted with 

the remaining season not included in the 

weighting estimation. For example, for 

running TAMSAT-ALERT on June 4, the 

seasonal forecast of June-July-August is 

applied. 

A. A sentence has been added to 

clarify (Page: 14, Line: 18). 

 

B. Thank you - this is a good idea! 

In principle it is possible to 

include multiple forecasts in the 

system which we will try to 

include this in the next version. 

For now, users can only use a 

single weighting variable of their 

choice (not only rainfall or 

temperature but other forecasts 

variables available to them like 

nino3.4). However, as we have 

showed in the results the 

weighting variables need to have 

a very strong correlation with the 

metric being evaluated for the 



6 
 

weighting to have an impact on 

the decision made. 

 

19 14 And finally, it would have 
been good to see a quick 
statistical analysis on the 
usefulness 
of the forecasted variables 
in predicting maize yields 
in Ghana (i.e. run a 
multiple 
linear regression on 
yield=f(seasonal rainfall, 
seasonal mean 
temperature)). This could 
also provide more 

arguments while 

discussing the value of 

seasonal forecasts. 

...the relationship between the seasonal 

cumulative rainfall and seasonal mean 

temperature with maize yield is very low (see 

supplementary document Figure S1 and 

Figure S2). 

The figures indicating the correlation 

between seasonal rainfall and yield as 

well as seasonal mean temperature with 

yield have been added to the 

supplementary document. A sentence 

has been added referring to this in the 

paper (Page: 19, Line 14) 

25 19 As mentioned before, one 
key result here is that by 
using climatology alone, in 
that 
one year, TAMSAT 
ALERT can predict maize 
yields 6-8 weeks ahead of 
harvest. This 
is extremely useful for 
decision makers and a 
point that should be 
highlighted more in 
this paper. 

Page: 25, Line: 19 

A key result is that, even in the absence of 

meteorological seasonal forecasts, low yield 

can be anticipated 6-8 weeks before with 

some skill.  

 

Thank you for mentioning this. A 

sentence has been added to point out 

this result (Page: 25, Line: 19). 
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Technical comments response: 

Page  

number 

Line 

number 

Referee comment Correction made / Sentence added to 

the paper 

Response 

1 13 page 1 line 13: change to 

’which aims to provide 

early warning’ 

Which aims to provide early warning Corrected! 

3 

 

 

 

 

 

 

3 

 

4 

2 

 

 

 

 

 

 

19 

 

5 

A. page 3 line 2: 
should the question 
only focus on 
’adverse events’? 
or should it be more 
general? line 15: 
again, why focus on 
’unfavourable’ 
conditions?  

 
B. line 19: ’to assign 

that assign’  
 

C. rewrite Figure 1: 
again focus on 
’adverse events’. 
Overall, figure 1 
could be improved 
so that it clearly 
highlights all the 
steps mentioned in 
2.2 

 A. See above in the general 

comments! 

 

B. Corrected! 

 

C. We do not want to congests the 

framework flow; that is why we 

specify the inputs processes and 

outputs in the chart (Figure 1) and 

provide more detailed explanation in 

section 2,2. In addition, a detailed 

User manual has been available 

with the code 

(https://github.com/tamsat-alert/v1-

0) as part of the requirement of the 

Journal. But we have edited the 

figure with different colors to 

highlight inputs, processes and 

output.   

https://github.com/tamsat-alert/v1-0
https://github.com/tamsat-alert/v1-0
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5 

 

 

 

 

 

5 

15 

 

 

 

 

 

30 

A. page 5 line 11: 
what is the metric 
period?  

 
B. line 13: remove 

TAMSAT ALERT 
line 18: use” for file 
name line 22:  
 

C. what is ECDF? line  
 

D. 26: use ” for file 
name, and remove 
comma after 
<year> 

A. The metric period is the period on 

which the weighting will be done, 

and the probabilistic risk is 

calculated. For example, if one 

wants to estimate the 

metrological risk on available soil 

moisture the ensembles can be 

run for a lot longer period to allow 

spin up of model to equilibrium 

values for initial condition 

required but, the main interest for 

the user might be the first 90 

days hence the length of the 

metric period is only the first 90 

days and all the risk analysis is 

done on this metric period.   

B. The empirical cumulative 

distribution function (ECDF) 

A. A definition has been added (Page: 

5, Line: 15) onwards. 

 

B. Corrected! 

 

 

C. Full description of the acronym has 

been mentioned (Page: 5, Line: 30). 

 

D. Corrected! 

3 19 A. page 7: line 4: no 
’amount of yield’ in 
figure. What is that 
anyway Figure 3: 
can you explain the 
peak in 2002?  
 

 
 
 
 
 

 A. The figure shows only the total 

production area of maize in Ghana. 

It was only presented to show that 

that the production area is 

increasing to emphasize the 

importance of maize crop. We do 

not have any information on the 
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B. Figure 4: use same 
y scale as fig 5 

increase in production area in the 

2002 season.   

 

B. Corrected! 

9 26 page 9 line 26: no need to 

write again what WFDEI 

stands for 

 Corrected! 

10 5 page 10 lines 5-6: do you 

have info on all these other 

suggested factors? 

 We do not have any detailed information, 

but TAMSAT-ALERT is only explaining the 

meteorological risk to yield. But yield can be 

impacted by the factors suggested hence, 

the line was added to make users cautious 

when interpreting the results form TAMSAT-

ALERT. 

9 8 Where is Tamale and why 

only northern Ghana? 

Page 9 line 8 

We chose to use Tamale because it is in 

the Northern part of Ghana (Figure 2) 

where most of the Maize is grown. The 

station in Tamale also has a long-term 

record of the driving data for the crop 

model. 

This is clarified in the text.  

12  A. page 12 (and 
beyond) you have 
forgotten to include 
figure numbers 
throughout figures 
8, 9, 10 all show 
the same thing, 
consider using only 
one  

 

 A. This error was on the first 

manuscript submitted the one 

available online do not have this 

error. (this was corrected on the first 

topical editor comments were 

corrected!). 
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B. Figure 11: not sure 
what the rationale 
is to use these 
dates but I would 
guess that your 
figure for Sept 15 
would be similar to 
the one for Oct 4th, 
and it would 
indicate the 6-8 
week lead time in 
forecasting yields. 

 

B. There is no limit on the day range to 

run the TAMSAT-ALERT system. 

The dates are chosen to show yield 

changes every 4 weeks starting 

from planting to harvest. But the 

general conclusion is we can say 

something about what the yield is 

going to be 6 – 8 weeks prior to 

harvest. A sentence has been 

added to highlight this see general 

comment response. 

16 10 page 16 lines 3-5: this may 
be simply due to the fact 
that early season rainfall 
may have limited impact on 
yields (something that 
could technically be 
evaluated statistically, or 
at least acknowledged) 

The improvement is less noticeable in 

June and July, perhaps reflecting the fact 

that, at least in the GLAM crop model, 

cumulative rainfall in this part of the 

season is comparatively less strongly 

correlated with yield.  

 

A sentence has been added to 

acknowledge. (Page: 16, Line: 10). 

Relationship of seasonal rainfall with yield is 

also shown in the supplementary document 

(see supplementary document Figure S1 

and Figure S2). (See general comment 

response above).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. page 17 line 13: 
again, and as 
mentioned before, it 
is rather confusing 
to set the system 
up for all of Ghana 
and then only use 
data for Northern 
Ghana. Would 
there be a way to 
include forecasts 
for all of Ghana?  

A. --- 

B.  Page 22 Lines 14 onwards  

 Only 2007-2012 are presented in Figure 

17 because the maize variety changed in 

2007, making the hindcasts of these 

years more relevant to the present day 

A. Please see the response in the 

general comment above! 

B. A sentence has been added to the 

paper why we only show the last five 

years (Page: 22, Line: 14). 

C. Figure 4 shows the Average yield 

over Ghana, but only Statistical 
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22 

 

 

 

14 

 
B. Fig 17 and 18: they 

all have different 
time scales? (and 
fig 4), add why that 
is. 

than the 1994-2006 period (see 

supplementary document Figure S3) 

analysis was done from 2002 only  

(Figure 18) because some of the 

Gauge data in 1998 and 1999 has 

some missing values so we do not 

want to include the results in the skill 

analysis even though we used 

climatology values to run the 

system.  
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Author response to the comments from referee #2 

We thank the reviewer for their recognition of the value of this work and for their constructive comments, which we have addressed as described below.  

General comments response: 

Page  

number 

Line 

number 

Referee comment Correction made / Sentence added 

to the paper 

Response 

19 18 1. In the abstract, the example 
of Northern Ghana shows that 
predictions of rainfall and 
temperature are of limited use 
to decision makers, but is not 
followed up in the paper. 
Specifically, the paper walks 
through using different data 
within the TAMSAT ALERT 
but does not explain why 
different datasets were used. It 
would be useful to know if the 
mean temperature and 
precipitation forecasts that are 
issued are incorporated into the 
model. 

Page 19 Line 18 onwards: 

In summary, Figures 12 and 13 

indicate that if meteorological 

forecasts have sufficient accuracy 

and precision, they can add 

information to the decision-making 

process, especially in the middle to 

later part of the growing season.  

However, Figures 14-16 show that 

the tercile forecasts currently issued 

in northern Ghana do not have 

sufficient precision to information to 

yield risk assessments. A further 

application of TAMSAT-ALERT could 

be to investigate the level of skill that 

is required for meteorological 

forecasts to contribute useful 

information to such decision-making 

processes.  

 

We used the WFDEI data set to evaluate 

the GLAM crop model over Ghana since 

the yield data we got is from all Ghana 

maize average from FAO. So, we 

evaluate and calibrate the model, but the 

evaluation of TAMSAT-ALERT system 

was evaluated using gauge data from 

Tamale. The reason is not to introduce 

more error due to the satellite data 

estimates of driving forces. But, we will 

evaluate the system using different data 

set in the future work.  

We have also extended the discussion of 

the use of seasonal forecasts within 

TAMSAT-ALERT.  

 

1 

 

 

 

27 

 

 

 

2. It seems like this paper might 
be highlighting an issue of scale- 
local forecasts may 
be of more benefit than large, 
country-wide forecasts. In the 
conclusion, the benefit 

This finding speaks to the pressing 

need for meteorological forecast 

products that are tailored for 

individual user applications.   

 

Sentences were added in the abstract (Page 

1, Line 27). The issue of providing bespoke 

forecast metrics is also addressed in greater 
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1 

of TAMSAT ALERT may also be 
providing guidance on the 
design of forecast products 
(page 24, line 36). Since this may 
be a secondary use, it might be 
important to include 
that at the top of the paper (in 

both the abstract and the 

introduction). 

Page 26 line 1 onwards:  

Our results do not suggest that there 

is no information available from 

seasonal forecasts. However, we do 

show that 90-day tercile forecasts of 

temperature and rainfall, even if 

perfectly skillful, provide 

comparatively little information to risk 

assessments for low maize yield.  

This could be because the sensitivity 

of crops to moisture is on a specific 

period of their growth and the 

sensitivity of crops to temperature is 

also not similar throughout their 

growth stage. In other words, our 

findings highlight the necessity of 

more specific and localized forecasts 

to benefit from inherent skills 

contained in the forecasts.  

detail  in the discussion (Page 26 Line 1) to 

highlight the point.  

2 32 3. The target audience of all 
other early warning platforms 
are mentioned, but 
TAMSATALERT’s 
target audience is not 
mentioned. Perhaps this should 
be included (page 2 line 22). 

The impact model output and the 

weather risk associated with the 

output that can be obtained from 

TAMSAT-ALERT can be used by 

government, non-governmental 

organizations involved with providing 

farming information and aid, and 

weather index insurance providers 

can be benefited from continuous 

assessment of the risk.   

Sentence was added to state target audience 

of the system (Page 2 Line 32).  

Technical comments response: 

Page  

number 

Line 

number 

Referee comment Correction made / Sentence added to the 

paper 

Response 
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1 31 1. The first sentence of the 
introduction needs a citation (page 
1, line 27). My suggestion would be 
Muller, Cramer, Hare, Lotze-
Campen, 2011, "Climate 
Change Risks for African 
Agriculture", Proceedings of the 
National Academy of 
Sciences. In this paper they talk 
about naturally high levels of climat 
variability, reliance 
on rain-fed agriculture, and limited 
capacity to cope with climate 
variability makes Sub- 
Saharan Africans notably vulnerable. 

Many African people depend on rain–fed 

agriculture, and are thus vulnerable to 

drought, and other weather–related hazards 

exacerbated by climate change (Muller et al., 

2011).    

Corrected! 

2  2. The different platforms available 
for early warning on the 2nd 
paragraph of the 
introduction (pages 1-2) should 
probably have citations and links for 
them. Within that 
comment- the IRI platform is 
"IRI/LDEO Climate Data Library", and 
the maprooms are 
"IRI Climate an Society Maproom" 

The Rainwatch-AfClix early warning system 

(RWX) (http://www.rainwatch-

africa.org/rainwatch/), 

Famine Early Warning Systems Network 

Early Warning Explorer (FEWSNET-EWX) 

(https://earlywarning.usgs.gov/fews/ewx/inde

x.html) International Research Institute (IRI) 

data library/map rooms 

(http://iridl.ldeo.columbia.edu/index.html?Set-

Language=en), Africa Flood and Drought 

Monitor (AFDM) 

(http://stream.princeton.edu/AWCM/WEBPA

GE/interface.php), 

Corrected! 

4 13 -16 3. Under the Model Specification, 
Point 1 (page 4 lines 13-16), the type 
of data that 

 The TAMSAT-ALERT system 

we have takes data from text 

files and reproduce it in the 

http://www.rainwatch-africa.org/rainwatch/
http://www.rainwatch-africa.org/rainwatch/
https://earlywarning.usgs.gov/fews/ewx/index.html
https://earlywarning.usgs.gov/fews/ewx/index.html
http://iridl.ldeo.columbia.edu/index.html?Set-Language=en
http://iridl.ldeo.columbia.edu/index.html?Set-Language=en
http://stream.princeton.edu/AWCM/WEBPAGE/interface.php
http://stream.princeton.edu/AWCM/WEBPAGE/interface.php
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ALERT can use is not specified. Must 
it be converted from .csv to .txt? 
What is the delimiter? Can it accept 
geotifs or netCDF files? 

format required by the crop 

model used GLAM. When 

using a different model the the 

data should be given in the 

format required by the model 

incorporated in the system. 

A user Manual is provided on 

how to run TAMSAT-ALERT 

and what data format you can 

use. See Code Availability: 

(https://github.com/tamsat-

alert/v1-0).  

9 8 4. Although TAMSAT-ALERT is 
designed to be flexible to different 
inputs, it might be 
important to include the spatial 
resolution of TAMSAT precipitation 
data in this paper, 
since it seems logical that TAMSAT 
precipitation data may be one of the 
most logical 
inputs? 

Page 9, line 8 onwards:  

 

We chose to use Tamale because it is in the 

Northern part of Ghana (Figure 2) where 

most of the Maize is grown. The station in 

Tamale also has a long-term record of the 

driving data for the crop model. 

Sentence has been added 

explaining the possibilities of 

using gridded data set and the 

resolution of the TAMSAT 

rainfall data (Page 9  Line  8). 

5 30 5. The first time ECDF is mentioned 
(empirical cumulative distribution 
function) is on page 5 line 21, and it 
is not designated an acronym when 
it is first mentioned. However, 
later in the paragraph, (line 22), it is 
mentioned by acronym. Perhaps the 
acronym 
should be designated immediately 
after the first mention or the 
acronym on line 22 

The empirical cumulative distribution function 

(ECDF) 

Corrected! 

https://github.com/tamsat-alert/v1-0
https://github.com/tamsat-alert/v1-0
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should be replaced with the name 

since ECDF is not used again in the 

paper. 

7  6. On Figure 2 (page 7), there is a 
pre-existing map of Ghana: this 
might be a useful 
figure to include where Tamale is, 
since this is the example mentioned 
immediately on 
page 8 (line 10). 

 Corrected! 

  7. On Figures 11e, 12e, 13e, 14e, 
and 15e - the probability of low yield 
is at 100%, 
but the 100% has been cut down to 
10. That number should either be 
scrubbed off or 
should be 100% and completely 

visible. 

 Corrected! 
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TAMSAT-ALERT v1: A new framework for agricultural decision 
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Abstract. Early warning of weather related hazards enables farmers, policy makers and aid agencies to mitigate their exposure 

to risk.  We present a new operational framework, Tropical Applications of Meteorology using SATellite data and ground 

based measurements-AgricuLtural EaRly warning sysTem (TAMSAT-ALERT), which aims to provide early warning of 

meteorological risk to agriculture. TAMSAT-ALERT combines information on land surface properties, seasonal forecasts and 

historical weather to quantitatively assess the likelihood of adverse weather-related outcomes, such as low yield.  This article 15 

describes the modular TAMSAT-ALERT framework and demonstrates its application to risk assessment for low maize yield 

in Northern Ghana (Tamale). The modular design of TAMSAT-ALERT enables it to accommodate any impact/land surface 

model driven with meteorological data. The implementation described here uses the well-established General Large Area 

Model for annual crops (GLAM) to provide probabilistic assessments of the meteorological hazard to maize yield in Northern 

Ghana (Tamale) throughout the growing season. The results show that climatic risk to yield is poorly constrained in the 20 

beginning of the season, but as the season progresses, the uncertainty rapidly reduces. Based on the assessment for the period 

2002 – 2011, we show that TAMSAT-ALERT can estimate the meteorological risk on maize yield six to eight weeks in 

advance of harvest. The TAMSAT-ALERT methodology implicitly weights forecast and observational inputs according to 

their relevance to the metric being assessed A secondary application of TAMSAT-ALERT is thus evaluation of the usefulness 

of meteorological forecast products for impact assessment.  Here, we show that in Northern Ghana (Tamale), the tercile 25 

seasonal forecasts of seasonal cumulative rainfall and mean temperature, which are routinely issued to farmers, are of limited 

value because regional, seasonal temperature and rainfall are poorly correlated with yield. This finding speaks to the pressing 

need for meteorological forecast products that are tailored for individual user applications.   

1 Introduction 

Many African people depend on rain–fed agriculture, and are thus vulnerable to drought, and other weather–related hazards 30 

exacerbated by climate change (Muller et al., 2011).   Anticipation of hazard enables farmers and aid agencies to plan ahead, 

averting disaster (Boyd et al., 2013).  Here, we present a new framework for early warning of high meteorological risk to 

agriculture, the Tropical Applications of Meteorology using SATellite data and ground based measurements-AgricuLtural 

EaRly warning sysTem (TAMSAT-ALERT). TAMSAT-ALERT integrates assessment of climatological weather-related risk, 

with forecasts and real-time monitoring of environmental conditions.  The framework is intended to be a decision support 35 

system, which when combined with socio-economic assessments, can be used by governmental agencies and NGOs to help 

farmers manage agricultural risk.    

The need for timely information on agricultural risk has motivated the development of a number of drought early warning 

systems and decision support platforms. The Rainwatch-AfClix early warning system (RWX) (http://www.rainwatch-

http://www.rainwatch-africa.org/rainwatch/
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africa.org/rainwatch/), for example, provides time series of cumulative rainfall, which are compared against historical time 

years.  Users value the facility to compare the current season against past years, finding that it enables them to intuitively 

gauge risk (Tarhule et al., 2009).  The severity of drought, however, depends not only on rainfall. It is, furthermore, not 

straightforward to translate information on meteorological drought (deficit rainfall) into warning of agricultural drought 

(deficit soil moisture) (Black et al., 2016).  The need to consider a range of variables, and to compare data from a variety of 5 

sources is addressed by more comprehensive platforms, such as the Famine Early Warning Systems Network Early Warning 

Explorer (FEWSNET-EWX) (https://earlywarning.usgs.gov/fews/ewx/index.html) and International Research Institute (IRI) 

data library/map rooms (http://iridl.ldeo.columbia.edu/index.html?Set-Language=en), which enable users to compare 

meteorological data with land-surface remote sensing products, such as Normalized Difference Vegetation Index (NDVI) and 

soil moisture. Such platforms are aimed at expert users, capable of interpreting complex, multivariate data. An alternative 10 

approach is to use a land surface model, driven with meteorological time series, to derive snapshots and forecasts of soil 

moisture.  The Africa Flood and Drought Monitor (AFDM) (http://stream.princeton.edu/AWCM/WEBPAGE/interface.php), 

for example, estimates soil moisture using a land surface model.  The model is driven with satellite data for monitoring current 

conditions and with bias-corrected, downscaled forecasts, for predicting future conditions (Sheffield et al., 2014). The Africa 

Flood and Drought Monitor is implemented continent wide, with the aim of monitoring and forecasting metrics related to 15 

drought and flood (soil moisture and streamflow).  The AFDM does not, however, attempt to predict crop yield at particular 

localities. There have been several attempts to forecast yield using crop models, driven by seasonal forecasts (Hansen and 

Indeje, 2004; Semenov and Doblas-Reyes, 2007). Mismatches between the scales of the input agronomical and climate data, 

and lack of skill of the seasonal forecasts proved challenging for these early systems (Hansen and Indeje, 2004). In the last 

few years there have, however, been marked improvements in the skill of sub-seasonal to seasonal forecasts, leading to greater 20 

success for forecasting yield, even in the extra-tropics, where predictability is low. A recent study, for example, demonstrated 

significant skill for predicting wheat yield in France, using a wheat growing model driven with seasonal forecasts (Canal et 

al., 2017). Previous operational attempts to predict yield using crop models have mainly focused on issuing predictions in 

advance of sowing.  A weather generator approach to providing continually updated assessments was, however, successfully 

demonstrated for UK winter wheat yield (Bannayan et al., 2003), indicating the potential of this type of approach for 25 

operational risk assessment.  

TAMSAT-ALERT complements existing systems by providing a means of continually updating yield predictions as the season 

progresses, in a manner similar to that proposed in Hansen et al., 2006 for characterizing the simulated uncertainty in yield, 

resulting from climatic variability. The TAMSAT-ALERT methodological approach combines the use of historical 

information, as encapsulated in the RWX methodology, with a land surface/impact model, as demonstrated in the Africa 30 

Drought and Flood Monitor. The system can output any variable or metric that can be generated by the land surface or impact 

model. The impact model output and the weather risk associated with the output that can be obtained from TAMSAT-ALERT 

can be used by governmental and non-governmental organizations involved with providing farming information and aid, as 

well as by weather index insurance providers, who require continuously updated assessment of the risk.   

In this study, TAMSAT-ALERT is demonstrated through continually updated seasonal assessments of the meteorological risk 35 

to agriculture for Ghana. Although an application of TAMSAT-ALERT has been described elsewhere (Brown et al., 2017), 

this paper is the first formal description and validation of the methodological approach. Section 2 describes the design of the 

framework and give brief notes about its implementation. Section 3 describes the implementation of the framework for 

assessment of meteorological risk to yield in Ghana. The paper concludes with a discussion of the place that TAMSAT-ALERT 

has in early warning of meteorological hazard, and wider decision-making processes (Section 4).  A user manual for TAMSAT-40 

ALERT is included as supplementary information, and all of the TAMSAT-ALERT scripts are freely available on GitHub. 

http://www.rainwatch-africa.org/rainwatch/
https://earlywarning.usgs.gov/fews/ewx/index.html
http://iridl.ldeo.columbia.edu/index.html?Set-Language=en
http://stream.princeton.edu/AWCM/WEBPAGE/interface.php
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2 Framework concept and design 

2.1 Concept 

The TAMSAT-ALERT framework provides a means of deriving quantitative agricultural risk assessments from information 

on the climatology, historical time series and (optionally) meteorological forecasts. In essence, the system addresses the 

question: 5 

Given the climatology, the state of the land surface, the evolution of the growing season so far, and (optionally) the 

meteorological forecast, what is the risk of some adverse event?  

The ‘adverse event’ is any metric that can be derived either directly from meteorological data, or using a model driven with 

meteorological data. TAMSAT-ALERT is designed to be modular and flexible, enabling users to choose models and datasets 

to suit their application.  So far it has been applied to risk assessments of agricultural drought using the Joint UK Land 10 

Environment Simulator (JULES) model (Brown et al., 2017) and to risk assessments of low yield, using the General Large 

Area Model for annual crops (GLAM) (section 3.2.2).  In addition, code is supplied for assessment of purely meteorological 

metrics, such as cumulative rainfall (Supplementary information - User Guide). 

At a given location and for a given season, the likelihood of an adverse event may depend on past and future weather. Midway 

through the growing season, for example, the likelihood of low yield depends both on weather in the past and on the likelihood 15 

of unfavourable conditions in the coming weeks.  In TAMSAT-ALERT, past weather is based on observations, and future 

weather is based on the climatology. Thus, a 30-year climatology generates a 30-member ensemble of possible yields, based 

on 30 possible weather futures, each of which can be driven through a crop model and used to derive a possible yield. Statistical 

comparison between the forecast ensemble yield and the climatological ensemble of yield leads to quantitative assessments of 

the risk of unfavourable conditions.  20 

In its default set up, for which meteorological forecast information is not included, TAMSAT-ALERT treats all weather futures 

as equally likely. The risk assessments can, however, be refined by weighting the ensemble members, based on probabilistic 

forecast information - for example, tercile forecasts of cumulative rainfall or mean temperature, cumulated/averaged over a 

90-day period.  Specifically, the value of the metric being forecasted for each ensemble is used to assign that ensemble member 

to a particular tercile. Each ensemble member is then weighted by the appropriate tercile probability (see section 2.2 for further 25 

explanation). If there is a weak link between the metric being forecast (for example regional seasonal rainfall) and the risk 

being assessed (for example local low yield), then the forecast will have little impact on the risk assessments. Conversely, if 

the link is strong, skilful forecasts can significantly reduce the uncertainty in the risk assessments.  TAMSAT-ALERT is thus 

both a method for downscaling/bias correcting meteorological input into impact models, and a method for accounting for 

mismatch between forecast variables and metrics of risk. 30 

There are several sources of potential predictive power in TAMSAT-ALERT. Firstly, as the season progresses, the amount of 

observational information included in the forecast increases, and the range of possible outcomes is thus reduced. Secondly, 

the antecedent state of the land surface (especially root zone soil moisture) has a significant effect on the likelihood of drought, 

and hence low yield (Brown et al., 2017). Thirdly, local information on the climatology determines the likelihood that 

meteorological conditions will be sufficiently favourable during the remainder of the season to offset less favourable past 35 

meteorological and land-surface conditions.  Finally, skilful meteorological forecasts provide direct information on the 

likelihood of adverse weather conditions in the remainder of the season. The relative importance of these sources depends on 

the metric being predicted, along with the local climate and land-surface conditions. The effect of forecast information depends 
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both on the precision of the forecast and the relevance of the meteorological forecast metric for the metric of hazard assessed 

by TAMSAT-ALERT. 

 

Figure 1: Conceptual overview of the TAMSAT–ALERT system. The blue boxes represent input data sources, the orange color 

boxes represent the processes involved in the system and the green boxes show the outputs from TAMSAT-ALERT system.   5 

2.2 Model implementation 

The TAMSAT-ALERT framework is illustrated in Figure 1.  The user provides a time series of driving data, which is long 

enough to generate a statistically meaningful ensemble and climatology.  The driving meteorological data is used in several 

ways: to generate an ensemble of predictions; to assess the progress of the period of interest so far and to derive initial 

conditions for the future period (if required for the ensemble predictions); and to generate a climatology against which the 10 

forecast ensemble can be compared.  Once the climatology and ensemble have been produced, meteorological forecast 

information is optionally introduced, to weight the ensemble members.  The system is modular and thus easily adapted for 

different impact models, metrics of risk and meteorological forecasts.   

The steps for deriving probabilistic assessments of risk of some adverse event on a particular day (the day in question) can be 

summarized as follows: 15 

1. The user prepares a file containing historical time series of driving data, along with any other parameter files (e.g. 

agronomical or soil parameters). These should extend at least until the day in question. Note that TAMSAT-ALERT 

v1.0, only supports daily input. Support for higher/lower resolution data will be introduced in future versions of the 

framework.  
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2. The user converts the long daily time series of driving data into the appropriate format for their impact model, and 

carries out a historical run, in order to derive an annual historical time series of their chosen risk metric. This enables 

a base line assessment of climatological risk. The risk metric time series should be presented as an annual time series 

of the form <year> <data>. Here, we will call this time series file 'historical_metric.txt'.  

3. For the probabilistic risk assessments, the impact model is driven with an ensemble of meteorological forcing data, 5 

generated by TAMSAT-ALERT. As described earlier, the period of interest might contain both the past and the future.  

a. For the past, the meteorological driving data for ensemble member includes identical time series, taken from 

observations. 

b. For the future, the meteorological driving data for each ensemble member is based on the historical 

climatology. Specifically, for a given Day of Year (DoY), the driving data are taken for that DoY for a year 10 

in the past. To maintain the daily weather statistics and the consistency between variables, each ensemble 

member is based on a particular past year. Thus, ensemble member 'x' is based entirely on year 'y'. 

To accomplish this, the system converts the daily time series of driving data into multiple files, each containing 

driving data for one ensemble member.  The user is allowed to set the period over which the ensemble system will be 

run. This is distinct from the period over which the metric is calculated (the metric period). The metric period is the 15 

period on which the weighting will be done, and the probabilistic risk is calculated. For example, if one wants to 

estimate the metrological risk on available soil moisture the ensembles can be run for a lot longer period to allow spin 

up of model to equilibrium values for initial condition required but, the main interest for the user might be the first 

90 days hence the length of the metric period is only the first 90 days and all the risk analysis is done on this metric 

period.  The period over which the ensemble will be run should include sufficient time before the metric period to 20 

allow for spin up. The user makes any format changes necessary to convert these TAMSAT-ALERT driving data 

files into driving data specific to their impact model.  The user then carries out the ensemble prediction runs, 

outputting the time series of driving data through the impact model, outputting the user-defined metric - over whatever 

period is relevant for that metric. Because of the nature of the TAMSAT-ALERT method, each ensemble member is 

associated with the year for which the possible weather future was derived (see above).  The output can thus be 25 

presented in a single file, with two columns: <year> <data> for file name ensemble_metric.txt. 

4. The risk assessment is derived by comparing the mean and standard deviation of the climatological baseline 

distribution (historical_metric.txt derived in (2)) with the mean and standard deviation ensemble distribution 

(ensemble_metric.txt derived in (3)).  Note that an alternative approach, employing an empirical cumulative 

distribution function can be specified by the user. The empirical cumulative distribution function (ECDF) approach 30 

is suitable for non-Gaussian variables but can result in noisy predictions if the ensemble is relatively small.  

At this point, meteorological forecast data is incorporated (if available): 

a. An annual historical time series of the metric being forecast (e.g. cumulative June-August rainfall) is 

provided by the user for file name weighting_metric.txt, which is of the form <year> <data>. The data series 

should be provided for the years used to generate the weather future aspect of the ensemble (i.e. 35 

ensemble_metric.txt as described in (3b)). [The TAMSAT-ALERT v1.0 release includes a utility function 

for extracting forecast metrics from the historical driving meteorological data file supplied by the user.] 

b. The annual time series of forecast metric is then ranked. Based on this ranking, each historical year is 

assigned to a forecast category. In the case of terciles, for example, the bottom third is assigned to tercile 1, 

the middle third to tercile 2 and the top third to tercile 3.  40 
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c. As was noted in 3b, each ensemble member is associated with a historical year and ensemble_metric.txt is 

presented in the form <year> <data>. Each data point in this file can thus be associated with a quantile 

category, using the year assignments described in 4b.  

d. When calculating the mean and standard deviation, the ensemble is weighted by the user-supplied categorical 

forecast probabilities, which are assigned to each member during 4c.  5 

The TAMSAT-ALERT code is written in Python. All code and documentation (including a user manual) for TAMSAT-

ALERT have been released on GitHub (https://github.com/tamsat-alert/v1-0). However, users need to have their own working 

installations of their chosen impact model. The TAMSAT-ALERT v1.0 release consists of scripts to: 

• Convert meteorological time series into driving data for both the ensemble forecast. 

• Calculate quintile predictions for user defined risk metrics, based on the input files historical_metric.txt, 10 

ensemble_metric.txt and weighting_metric.txt.  

• Produce a set of plots comparing the ensemble and climatological distribution (see User Guide in supplementary 

information). 

In the GitHub release, in addition to the general TAMSAT-ALERT framework scripts listed above, scripts are provided that 

set TAMSAT-ALERT up for (i) for the GLAM crop model (the implementation demonstrated in Section 3 of this paper), and 15 

(ii) for assessments based purely on time means/cumulations of meteorological variables.  A test case is provided so that users 

can be assured that the system is working as expected. 

3 Demonstration of the system: A case study of maize yield prediction in Ghana 

This case study demonstrates the use of TAMSAT-ALERT system for forecasting the risk of poor maize harvest in Ghana. 

The first and second part of the case study describe the study area and the implementation and evaluation of a mechanistic 20 

crop model GLAM. The third part demonstrates the implementation of GLAM as part of the TAMSAT-ALERT system for 

continually updated risk assessments. 

3.1 Study area 

Ghana is located on the southern coast of West Africa, between latitudes 4° 44’ N and 11° 11’ N and longitudes 3° 11’ W and 

1° 11’ E. Rainfed agricultural systems are the major component of the Ghanaian economy, accounting for 30 % of the GDP 25 

and employing half of the labour force (PARI, 2015). The country is divided into six agro-ecological zones, each with a distinct 

rainfall pattern (Figure 2). The Northern part is dominated by Guinea Savannah with average annual rainfall of 1000–1100 

mm from one rainy season spanning May to September, while in the southern part, moist semi-deciduous agro ecology 

dominates, with an average annual rainfall of 1500 mm, falling within two rainfall seasons (Owusu and Waylen, 2009; Owusu 

and Waylen, 2013). Most of the cereal crops (primarily Sorghum, Millet and Maize) are produced in the northern part of Ghana 30 

(Martey et al., 2014). Table 1 shows the six agro ecological zones with the average annual rainfall and major crops grown in 

the agro-ecological zones.  

 

 

 35 
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Table 1: Characteristics of agroecological zones in Ghana (source: www.fao.org/nr/water/aquastat/countries_regions/GHA/) 

Agro ecological zone Rainfall (mm annum–1) Number of seasons Major crops grown 

Sudan savannah 1000 1 Millet, Sorghum, Maize 

Guinea savannah 1100 1 Maize, Sorghum 

Transition zone 1300 1 Maize, Roots, Plantain 

Moist semi deciduous forest 1500 2 Roots, Plantain 

Costal savannah 800 2 Roots, Maize 

Rainforest 2200 2 Roots, Plantain 

 

 

Figure 2: Agro Ecological zones of Ghana (source: Sidibe et al., 2016) and average seasonal rainfall pattern of each agro ecological 

zone, based on TAMSAT rainfall estimates. 5 

Maize is one of the major crops produced in Ghana. The production area and the amount of yield has been increasing since 

1994 (Figure 3). Figure 4 shows a time series of maize yield in Ghana (expressed in Kg ha–1). From 1994–2006 there is no 

observed trend but after 2007, there is a step change in yield, coinciding with the introduction of a new variety by the Crop 

Research Institute (CRI) of the Council for Scientific and Industrial Research (CSIR) of Ghana in 2007 (Ragasa et al., 2013). 
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Figure 3: Maize production area over Ghana from 1994 to 2014. 

 

Figure 4: Maize yield in Ghana 1994–2014. There are two separate periods marked by the red lines where we observe changes in 

yield. 1994–2006 there is no clear trend in the yield produced and 2007–2014 there is a shift in the production where higher yield is 5 
observed. 
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3.2 Data and methods  

3.2.1 Datasets used  

The driving weather data sets for the evaluation of the model were daily time series extracted from the Watch Forcing Data 

ERA-Interim (WFDEI) (Weedon et al., 2014) for shortwave radiation, maximum temperature, minimum temperature and 

rainfall. For the demonstration of the system at a point, the driving data were based on daily, quality-controlled station data 5 

provided by the Ghana Meteorological Agency. The station used is Tamale which is located Northern Ghana (9.41° N, 0.85° 

W) (Figure 2). Precipitation and maximum/minimum temperature were measured directly, and shortwave radiation was 

derived from sunshine hours. We chose to use Tamale because it is in the Northern part of Ghana (Figure 2) where most of 

the Maize is grown. The station in Tamale also has a long-term record of the driving data for the crop model. It should be 

noted that TAMSAT-ALERT can in principle be run using any gridded meteorological data like satellite rainfall estimate (E.g. 10 

TAMSAT (https://www.tamsat.org.uk/data/rfe/index.cgi) with a resolution of 4 Km (Maidment et al., 2017).   

Tercile forecast data was downloaded from the publicly available IRI regional forecasts (http://iri.columbia.edu/our-

expertise/climate/forecasts/seasonal-climate-forecasts/). The IRI forecasts are based on a hybrid dynamical/statistical method, 

developed by the U.S National Oceanographic and Atmospheric Administration North American Multi-Model Ensemble 

Project (NOAA-NMME) (Kirtman et al., 2014). The seasonal forecasts are issued at the beginning of each month for 15 

precipitation and temperature at a global scale with a spatial resolution of 2.5° for precipitation and 2° for temperature 

(Barnston and Tippett, 2014). The IRI forecasts were chosen for this analysis because of their wide use by African 

meteorological services and regional climate outlook forums.  In this study the seasonal forecast data were used in the form 

they are supplied to farmers - i.e. tercile probabilities of 3-month cumulative rainfall / 3-month mean temperature at a regional 

level. 20 

In addition to meteorological time series, GLAM requires data on soil type and the agronomical properties of maize (Section 

3.2.2). For this study, the soil texture was set to be sandy loam and planting date was set starting from 124th day of the year to 

154th day of the year which allows a 30 days planting window. The maize agronomical properties were taken from the 

published literature and are presented in the supplementary information (Table S1).  

GLAM was evaluated against national level maize yield data released by the FAOSTAT (http://www.fao.org/faostat/) (see 25 

Figure 4). Although the FAO issues guidance on the compilation of these datasets, in practice, there is little quality control 

and the data should be treated with caution.   

3.2.2 The GLAM crop model  

As described in section 2.1, the TAMSAT-ALERT system can be used to assess any metric of risk that can be output by a 

model driven with meteorological data. In this study, the General Large Area Model (GLAM) for annual crops is used to 30 

simulate maize yield and subsequently to monitor the probabilistic risk of poor harvest as the growing season progresses.  

GLAM is a process based crop simulation model, which incorporates sufficient processes to capture the impact of climate 

variability on crop yield (Challinor et al., 2004; Ramirez-Villegas et al., 2015b).  GLAM uses a limited number of driving data 

sets and an intermediate complexity of crop development process representation. Nevertheless, previous studies have 

demonstrated that GLAM has skill in capturing the impact of weather on crops (Challinor et al., 2005; Challinor et al., 2006).  35 

Such information enables users to translate time series of weather into a time series of yield estimates (Challinor and Wheeler, 

2008).  GLAM has also been used to model weather and climate change impact on crop yield and adaptation strategies (Parkes 

et al., 2015; Ramirez-Villegas et al., 2015a; Ramirez-Villegas and Challinor, 2016). 

https://www.tamsat.org.uk/data/rfe/index.cgi
http://www.fao.org/faostat/)
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GLAM requires daily values of precipitation, shortwave radiation, maximum temperature and minimum temperature as driving 

weather data with additional inputs of soil properties and planting window (Watson et al., 2013). GLAM accumulates the 

above ground biomass, which is a product of daily transpiration and predetermined transpiration efficiency value, within the 

growing season to determine total biomass production which is converted into yield using a harvest index (Osborne et al., 

2007).  Planting date is either prescribed by the user or determined using GLAM’s intelligent planting date system (the 5 

approach taken in this study). It is important to note that GLAM does not account, in a process-based fashion, for non-

meteorological influences on crop growth, such as pests, diseases and fertilizer use. Rather, these factors are encapsulated in 

the yield gap parameter (YGP), which is determined by calibrating the model yield with observed yield (Challinor et al., 2004). 

The YGP is assigned a value between zero and one where ‘one’ represents the potential yield, given the weather conditions, 

soil texture and crop development parameters (Challinor et al., 2005).  10 

3.2.3 GLAM model evaluation 

GLAM was used to simulate the yield from 1994 to 2014 using the WFDEI as a driving dataset. The WFDEI has a 0.5⁰ by 

0.5⁰ resolution and so GLAM was output at this resolution. The simulated yield at each grid point was then weighted by the 

year 2000 season fraction of production area over each grid point to make a country average yield (Weedon et al., 2014; 

Monfreda et al., 2008). This country average yield was then compared with the FAO maize yield data set for the same period. 15 

It was shown on Figure 4 that maize production can be split into two distinct periods:  1994–2006 and 2007–2014. Because of 

the reported changes in agronomic practice and drought tolerant maize variety introduction through the Drought tolerant maize 

for Africa (DTMA) project (Obeng-Antwi et al., 2013; Ragasa et al., 2013) the transpiration efficiency (TE) value was 

increased from 7.0 for the period 1997–2006 to 8.0 for the period 2007–2014. The YGP was maintained at 0.4 for the whole 

simulation period.  20 

 

The results of the simulated crop yield are presented on Figure 5 and the statistical values of the comparison are presented 

with the scatter plot on Figure 6. GLAM was able to maintain the overall mean yield and, and as a result, the normalized root 

mean square error (NRMSE) is very low (0.07). The overall correlation value is found to be 0.67 (Pearson) and the Spearman 

correlation which is less affected by outliers is 0.8. The difference in the Spearman and Pearson correlation coefficients is 25 

mainly due to the severe overestimation of 2001 season yield, probably resulting from a long dry spell, the impact of which 

on farming practices was not fully accounted for by GLAM (FAO/WFP-GIEWS, 2002). Some of the correlation strength is 

due to capturing the change in mean yield from 1994–2006 to 2007–2014 period, and this is done by changing transpiration 

efficiency (TE) value for the two periods. The strength of the correlation of yield suggests that the link between Ghana–wide 

weather and yield is moderate – an important consideration for policy makers when they make use of information from 30 

TAMSAT-ALERT.  This is primarily due to the myriad of factors that can affect yield, including agronomical practice, pests 

and disease and socio-economic problems. Nevertheless, in vulnerable regions, the meteorological risk to yield is, in itself, an 

important consideration for agricultural agencies because action can be taken to mitigate the hazard. This might include 

subsidizing drought resistant varieties or encouraging early planting/re-planting.  
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Figure 5: Time series of FAO yield (red line) and GLAM simulated yield (green line).  

 

Figure 6: Scatter plot between FAO yield and GLAM simulated yield. The red dotted line is the best fit line for the whole period 

considered (1994–2014). The blue solid line shows the best fit line for the period 1994–2006. The green line shows the best fit line for 5 
the period 2007–2014. 
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3.2.4 Incorporation of GLAM into TAMSAT–ALERT 

Figure  7 shows how GLAM has been incorporated into the TAMSAT-ALERT system.  As described in Section 2, time series 

of driving data based on historical observations are used both to derive climatological yield and to generate an ensemble of 

predicted yield.  Individual planting dates are determined for each ensemble member using GLAM’s intelligent planting date 

system, and the crop is harvested when the growing degree days requirement is fulfilled (Challinor et al., 2004; Challinor and 5 

Wheeler, 2008).  Because of the way TAMSAT-ALERT is set up to incorporate observational data continually as the season 

progresses, once the optimum planting time is passed for the year being hindcast, the planting date for each ensemble member 

converges.  Analogously, once the harvest date for the hindcast year has passed in the observations, the harvest date, and 

indeed the predicted yield, for each ensemble member is identical. In this implementation of GLAM, a climatological period 

of 30 years (1980–2009) was used for the yield forecast.  10 

 

Figure 7: Process flow chart for crop yield forecasting within the TAMSAT-ALERT system. The blue boxes represent input data 

sources, the orange colour represent the processes involved in the system and the green box show the final probabilistic forecast for 

the crop yield. 

3.3 Case study results  15 

3.3.1 Yield forecasting using GLAM: 2011 season example  

Figure 8, Figure 9 and Figure 10 illustrate the implementation of TAMSAT-ALERT for the 2011 growing season –  nationally, 

a low yield year compared to other post-2007 years (noting that we do not have yield data for Tamale). The hindcasts were 

initiated every 5 days. GLAM infers that planting occurred on 4th June and harvesting on 15th September to 20th September.  

Figure 8 depicts all ensemble members in the context of the climatological spread in yield.  Figure 9 shows histograms of 20 

ensemble members at monthly intervals, starting 10 days after planting. Figure 10 shows a time series of ensemble spread 

(standard deviation of ensemble yield predictions).  

At the outset of the season, the yield estimates are derived only from the meteorological climatology; no in-season 

observational data is incorporated. The spread is thus large (equivalent to the climatology). During the season, as in-season 

data is incorporated by TAMSAT-ALERT, the meteorological time series driving GLAM become progressively more similar. 25 
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As a result, the ensemble rapidly converges. In this example, for instance, two months after planting, the ensemble standard 

deviation is 34 % of the climatology.   

 

Figure 8: An example of hindcast of maize yield using GLAM implemented into the TAMSAT-ALERT system.  Black dots represent 

individual ensemble members and red lines are the climatology.   5 

 

Figure 9: Histograms of yield forecast for (a) 15 June 2011, (b) 15 July 2011, (c) 15 August 2011, and (d) 15 September 2011. 
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Figure 10: Standard deviation of the yield estimate initiated on the dates displayed on the x-axis.  

The yield forecasts can be communicated with end users in a probabilistic form, with the ensemble expressed as quintiles, 

representing the following categories: above the 80th percentile, 60th–80th percentile, 40th–60th percentile, 20th–40th percentile 

and below 20th percentile. These categories can be equated to very high, high, average, low, and very low yield respectively. 5 

An example of such quintile forecasts at monthly intervals during the 2011 growing season is shown on Figure 11. Consistent 

with Figures 8 and 9, at the outset of the season, the categories are equally likely except the extreme categories, the difference 

in probability coming from the change in planting date for some years in the climatological period considered (1980–2009). 

As the season progresses, the average and low categories become more likely and the extreme categories (very high and very 

low), less likely.   10 

It is evident from Figure 11 that the ensemble mean tends towards average or low values, even 2 months ahead of the harvest 

date during 2011 – suggesting a degree of precision, even towards the beginning of the growing season. Section 3.3.3 presents 

a formal evaluation of skill for the 2002–2011 period. 

3.3.2 Incorporation of meteorological forecasts 

As described in Section 2.1, the TAMSAT-ALERT framework can use probabilistic information from meteorological forecasts 15 

to weight the yield forecast ensemble – providing a means of incorporating forecast information into the decision support 

system. In this study, we consider tercile forecasts of cumulative 90-day rainfall and mean 90-day temperature to reflect the 

information currently available to the Ghana Meteorological Agency. The forecasts are commonly issued at the start of every 

month. Hence, we have applied the forecasts only to the meteorological season being forecasted with the remaining season not 

included in the weighting estimation. For example, for running TAMSAT-ALERT on June 4, the seasonal forecast of June-20 

July-August is applied. To illustrate the process of including forecasts, we continue with the 2011 case study. We have used 

idealized tercile seasonal forecasts for total June-July-August (JJA) precipitation to weight the forecast on 4 June 2011, July-

August-September (JAS) precipitation to weight the forecast on 4 July 2011, August-September-October (ASO) precipitation 
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to weight the forecast on 4 August 2011, and September-October-November (SON) precipitation to weight the forecast on 4 

September 2011. 

 

Figure 11: Probabilistic forecasts for maize yield in Northern Ghana (Tamale) for five dates (a) 4 June 2011, (b) 4 July 2011, (c) 4 

August 2011 and (d) 4 September 2011 and (e) 4 October 2011. The planting date was 4 June 2011. In the first day of planting the 5 
impact of the weather is not indicated well that the yield probabilities are spread more or less equally in all categories but after one 

month in 4 July 2011 it is indicated that 62 % of the ensembles fall in the average and low categories after two months 4 August 

2011 76 % of the ensembles indicate an average and low yield estimate compare to the climatological yield. Few days before harvest 

on 5 September 2011 100 % of the yield is estimated to be in the average and low quintile category.  
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To assess the potential value of tercile rainfall and temperature seasonal forecast information, we have weighted the ensemble 

as if the next 90 days of temperature and cumulative rain are known (i.e. perfect forecast experiment). So, we consider three 

probabilistic forecasts: tercile weightings of [0,0,1] for the lower, middle and upper tercile respectively (perfect wet forecast), 

[0,1,0] for the lower, middle and upper tercile respectively (perfect normal forecast) and [1,0,0] for the lower, middle and 

upper tercile respectively (perfect dry forecast). The ensemble was weighted by these perfect tercile forecasts according to the 5 

actual total rainfall (perfect rainfall forecast) or the actual mean temperature (perfect temperature forecast) that ensued in the 

next 90 days following each TAMSAT-ALERT hindcast.  

Figure 12 shows the yield forecast probabilities when the perfect rainfall forecast is used. When a perfect rainfall forecast is 

used to weight the ensemble, the probabilities of the quintile forecast show more rapid convergence especially two months 

into the season. The improvement is less noticeable in June and July, perhaps reflecting the fact that, at least in the GLAM 10 

crop model, cumulative rainfall in this part of the season is comparatively less strongly correlated with yield.  
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Figure 12: Yield probability forecast for the year 2011 for five forecast dates (a) 4 June, (b)4 July, (c) 4 August, (d) 4 September and 

(e) 4 October when ensembles are weighted by a perfect tercile seasonal rainfall forecast. 

An alternative approach is to use temperature forecasts to weight the ensemble. To investigate the effect of temperature 

forecasts, the ensemble was weighted using idealized June-July-August (JJA) tercile temperature forecasts to weight the 5 

forecast on 4 June 2011, July-August-September (JAS) tercile temperature forecasts to weight the forecast on 4 July 2011, 

August-September-October (ASO) tercile temperature forecasts to weight the forecast on 4 August 2011, and September-

October-November (SON) tercile temperature forecasts to weight the forecast on 4 September 2011. As with rainfall, the 

upper, middle and lower terciles are weighted [1,0,0] for a ‘perfect cold forecast’, [0,1,0] for a 'perfect normal forecast' and 
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[0,0,1] for a ‘perfect warm forecast’. Figure 13 shows the forecast for the 2011 cropping season with a perfect average 

temperature forecasts. Due to a negative correlation of the average temperature with maize yield, a warmer temperature 

forecast is associated with predictions of lower yield. Comparison between Figures 12 and 13 suggest that temperature 

forecasts have greater effect on the risk assessments than rainfall forecasts.  

 5 

 

Figure 13: Yield probability forecast for the year 2011 for five forecast dates (a) 4 June, (b) 4 July, (c) 4 August, (d) 4 September 

and (e) 4 October when ensembles are weighted by a perfect average temperature of seasonal forecast. 
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So far, only idealized forecasts have been considered. In the next section, we demonstrate the effect of using actual tercile 

forecast information issued by the International Research Institute (IRI) for rainfall and temperature. The seasonal forecast 

from IRI for 2011 in northern Ghana are shown on Table 2. 

 

Table 2: IRI tercile seasonal forecast for the 2011 season. 5 

Season Rainfall Temperature 

Below normal Normal Above normal Below normal Normal Above normal 

JJA 25 35 40 30 40 30 

JAS 33.3 33.4 33.3 30 40 30 

ASO 33.3 33.4 33.3 45 35 20 

SON 33.3 33.4 33.3 33.3 33.4 33.3 

 

Figure 14 shows the yield forecast probabilities based on weighting the yield ensembles by seasonal rainfall forecasts from 

IRI. Comparison with Figure 11 suggests that the weighting has little effect. Figure 15 shows the quintile yield predictions 

when temperature forecast weightings from IRI are applied. As with rainfall, comparison with Figure 15 shows that the 

weighting has little effect.  10 

The results are summarized on Figure 16, which represents the probability of each yield pentile at different lead time of the 

2011 season yield forecast, with no seasonal forecast, precipitation forecast, and temperature forecast applied. For all lead time 

periods indicated weighting by IRI seasonal forecast for the 2011 season showed no improvement in predicting the final yield 

compared to the non-weighted values. This is not surprising because the relationship between the seasonal cumulative rainfall 

and seasonal mean temperature with maize yield is very low (see supplementary document Figure S1 and Figure S2). The 15 

tercile weightings for the IRI forecast (Table 2) are close to climatology, and the previous discussion, moreover, showed that 

even a perfect and precise seasonal forecast has relatively little impact. 

In summary, Figures 12 and 13 indicate that if meteorological forecasts have sufficient accuracy and precision, they can add 

information to the decision-making process, especially in the middle to later part of the growing season.  However, Figures 

14-16 show that the tercile forecasts currently issued in northern Ghana do not have sufficient precision to information to yield 20 

risk assessments. A further application of TAMSAT-ALERT could be to investigate the level of skill that is required for 

meteorological forecasts to contribute useful information to such decision-making processes.  
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Figure 14: Yield probability forecast for the year 2011 for five forecast dates (a) 4 June, (b) 4 July, (c) 4 August, (d) 4 September 

and (e) 4 October when ensembles are weighted by IRI seasonal rainfall forecast.  
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Figure 15: Yield probability forecast for the year 2011 for five forecast dates (a) 4 June, (b) 4 July, (c) 4 August, (d) 4 September 

and (e) 4 October when ensembles are weighted by IRI seasonal forecast average temperature. 
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Figure 16: Probability of yield forecast for 2011 growing season when weighted by IRI seasonal forecast of rainfall (blue), when 

weighted by IRI seasonal forecast of temperature (green) and no weightings are used (red). The x-axis represents the pentile 

categories used in the yield forecast. 

3.3.3 Formal skill evaluation 5 

The objective of TAMSAT-ALERT is to provide early warning of the meteorological risk to yield, which is not an observable 

quantity. For this reason, the evaluations of TAMSAT-ALERT’s skill are carried out in a ‘perfect model’ framework, in which 

we attempt to forecast the yield simulated by GLAM forced with observed weather data. It is important not to confuse these 

skill assessments with evaluation of GLAM (Section 3.2.3) – although the usefulness of the framework depends, to a large 

extent, on the quality of the model and data incorporated within it. 10 

Figure 17 shows GLAM hindcasts at four approximate lead times (i.e. ~3, ~2, ~1, ~1/2 months ahead of harvest), for five 

years. Towards the outset of the season, the hindcasts for each year are similar, and close to the climatology, with the minor 

differences explained by variation in planting date. For all the lead times considered the spread of the ensembles reduces as 

the season progresses.  Only 2007-2012 are presented in Figure 17 because the maize variety changed in 2007, making the 

hindcasts of these years more relevant to the present day than the 1994-2006 period (see supplementary document Figure S3).  15 
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Figure 17: Time series of maize yield forecast in Ghana from 2007 to 2011 with four lead time of forecast. This is done using a 

hindcast for each year and comparing the plots of ~3–month lead time (red), ~2–month lead time (green), ~1–month lead time 

(magenta) and ~1/2–month lead time (blue).  

As described in Section 3.3.1, the probabilistic ensemble forecasts will be presented as the likelihood of quintile categories.  5 

The skill of the probabilistic forecast was assessed using the ranked probability skill score (RPSS). The ranked probability 

skill score is a skill score formulated from the ranked probability score (RPS) that compares the cumulative squared probability 

error for forecasts and climatological forecast for each category identified. The RPSS is negatively biased with smaller 

ensemble sizes (< 40) and due to this a correction was done on the reference RPS used before calculating the final RPSS. The 

bias corrected RPSS is called the discrete ranked probability skill score (RPSSD). Details of the calculation and bias correction 10 

are given in (Muller et al., 2005; Weigel et al., 2007). Positive values indicate better skill than the climatology; a unit value 

represent a perfect score and zero or below zero values indicate no skill in the forecast.  

 

The RPSSD for Tamale was derived for the period 2002–2011. This period is used because IRI seasonal forecasts for 

precipitation and temperature issued on monthly basis are only available from 2002. Figure 18 indicates the skill scores for 15 

the four lead times for the forecasts made using the TAMSAT-ALERT system.  The skill scores are generally above 0.4 for 

~2-month lead time and over 0.6 for ~1-month lead time over the 10-year period considered. There are some years where the 

skill score was lower than the stated values and this is mainly because of shifts in forecast categories towards the end of the 

season, which tends to happen if the yield is near a category boundary. For example, 2011 final yield was in the low category 

but one month earlier than harvest the ensembles indicate 56 % in the average category and 44 % in the low category (see 20 

Figure 11), which results in a low skill score for that year.  The overall skill of the system is presented in Figure 19 where it 

shows a good skill even two months ahead of harvest. The average RPSSD shows an increase of skill as the lead time decreases, 

which is expected. Comparison of similar period skill scores for yield forecasted weighted by the IRI seasonal weather forecast 

of rainfall and temperature showed a similar result to that of the non-weighted forecast. This indicates that the seasonal 
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forecasts have little impact in predicting the maize yield in the region, which is associated both with the low correlation of 

seasonal weather values and maize yield and with the vague nature of the forecasts.  

 

Figure 18: Discrete ranked probability skill score for the yield forecasts over Tamale using TAMSAT-ALERT system at different 

lead time. 5 

 

Figure 19: Discrete ranked probability skill score for the yield forecasts over Tamale using TAMSAT-ALERT system at different 

lead time averaged for 2002–2011. 
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4 Discussion and conclusions 

The TAMSAT-ALERT framework complements and extends previous systems by driving impact models with ensembles 

based on observed weather rather than weather generators or direct forcing with seasonal forecasts. This provides a simple 

means both of combining information at different scales, and of bias correcting seasonal forecasts. The framework is thus 

capable of integrating multiple sources of environmental observations/forecasts into continually updated assessments of the 5 

likelihood of a user defined adverse event, such as unfavourable weather conditions for maize yield. Whilst the emphasis on 

our study has been on forecasting adverse events, such as low yields, it should be noted that TAMSAT-ALERT is also capable 

of anticipating favourable conditions, enabling decision makers to maximise the benefits of such years - for example by 

managing post-harvest storage and markets. The system can, moreover, work at any spatial scale for which driving data is 

available, including for individual communities.   10 

The use of decision support tools for agricultural activities in Africa is low because of low capacity for model use, lack of 

funding from governments in the development of agricultural decision support tools, lack of data availability for validation 

and calibration of models and low knowledge among decision makers about the use of decision making tools (MacCarthy et 

al., 2017b).  Nevertheless, the demand for meteorologically driven crop models, such as Decision Support System for 

Agrometeorology Transfer (DSSAT), World Food Studies (WOFOST) and Crop Environment Resource Synthesis–Maize 15 

(CERES–Maize) for Sub Saharan Africa, speaks to a need for quantification of the meteorological hazard to yield (Dzotsi et 

al., 2003, Kassie et al., 2014, Kassie et al., 2015, MacCarthy et al., 2017a). The implementation of TAMSAT-ALERT 

described in this study quantifies the meteorological risk to agriculture, and as such potentially provides information for 

government, aid agencies and nongovernmental organizations working in agriculture.  A key result is that, even in the absence 

of meteorological seasonal forecasts, low yield can be anticipated 6-8 weeks before with some skill.  20 

In the example described in this paper, we have used the GLAM crop model. It is clear from the validation of GLAM against 

national yield statistics presented in Section 3.2.3, that the model’s ability to simulate year to year variation in Ghana-wide 

yield in maize is moderate. Nevertheless, previous studies have demonstrated that GLAM can capture the meteorological 

hazard to yield (Challinor et al., 2007; Challinor et al., 2010; Osborne et al., 2013), when the model is driven with high quality 

meteorological data and is compared against robust information on yield.  The provision of the scripts for the GLAM 25 

implementation will enable further studies to be carried out at locations with more robust information on yield and agronomical 

characteristics.  

This study used the GLAM crop model, as an illustration of the implementation of the system. The strength of TAMSAT-

ALERT, however, is its modularity. TAMSAT-ALERT can be implemented for any impact model driven with meteorological 

data. There is now demand for TAMSAT-ALERT in locations throughout East and West Africa, with the system adapted to 30 

implement trusted metrics and models. This modularity and flexibility is important, since the skill of the TAMSAT-ALERT 

system is constrained by the quality of the model and its calibration.  In this study, for example, the evaluation and calibration 

of GLAM was hampered by quality-control issues with the available yield data. The system would be much improved if used 

in-house by agencies with access to high quality yield data, and locally calibrated models. Nevertheless, it is important that 

model error is taken into account in the decision-making process, and forecasts should therefore be issued in the context of 35 

model evaluations like the one presented in this study. TAMSAT-ALERT's modular structure, moreover, permits forecasts to 

be produced using an ensemble of crop models/crop model parameterizations - facilitating formal analysis of model 

uncertainties.   

A key finding from our study is that tercile seasonal forecasts have little impact on TAMSAT-ALERT's skill, for the case 

study considered. This is not unexpected. The correlation of 90-day total rainfall with GLAM simulated maize yield, in this 40 

region, is low. The low correlation means that we do not expect precipitation seasonal forecasts to improve the yield forecasts 
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even if they are skilful. Our results do not suggest that there is no information available from seasonal forecasts. However, we 

do show that 90-day tercile forecasts of temperature and rainfall, even if perfectly skillful, provide comparatively little 

information to risk assessments for low maize yield.  This could be because the sensitivity of crops to moisture is on a specific 

period of their growth and the sensitivity of crops to temperature is also not similar throughout their growth stage. In other 

words, our findings highlight the necessity of more specific and localized forecasts, if users are to benefit from the inherent 5 

skill contained in the forecasts. These findings are consistent with anecdotal evidence that the tercile seasonal forecasts of 

rainfall routinely issued by forecasting organizations are of little practical benefit for decision making. A secondary application 

of TAMSAT-ALERT could be to provide guidance on forecasts that would, potentially, be of use for decision makers, should 

they have sufficient skill. Such analyses are currently underway as part of a major national capability programme being carried 

out at the National Centre for Atmospheric Science.  10 

In summary, TAMSAT-ALERT is a light-weight system, which can be run either using the computing facilities available in 

house at meteorological services, or on the cloud. Its modular design enables it to work alongside existing systems to combine 

multiple sources of data into quantitative assessments of risk. Together with socio-economic assessments, this information 

could be of significant value for government, policy makers and humanitarian service providers tasked with mitigating the 

effect of drought on Africa's poorest farmers. 15 

 

5 Code availability  

The TAMSAT-ALERT v1.0 frame work code and the user manual are openly available on GitHub  

(https://github.com/tamsat-alert/v1-0). The GLAM-v3 crop model is provided under a license agreement, so it is not possible 

to directly release it on GitHub but it is possible to obtain it through the contacts form in the following link 20 

(http://www.see.leeds.ac.uk/research/icas/research-themes/climate-change-and-impacts/climate-impacts/glam/). 
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