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Dear Dr Roche, 

 

Please find enclosed a revised version of our manuscript “V2Karst V1.0: A parsimonious large-scale integrated 

vegetation-recharge model to simulate the impact of climate and land cover change in karst regions” in which we 

address the Reviewers’ comments. The Reviewers’ detailed comments helped us to significantly improve our 

manuscript, although we have found it difficult to address some of Reviewer #2’s specific comments, because 

he/she did not provide any reference to support his/her statements. We attached a detailed reply to the Reviewers’ 

comments and a marked-up version of the manuscript that highlights in red the changes we made. Since we 

substantially revised our manuscript, we did not keep track of minor editorial changes to facilitate readability of 

the marked-up manuscript. Specifically, we wish to report some key changes: 

 

• To address the concern of Reviewer #2 regarding the suitability of using a daily simulation time step to run 

V2Karst, we performed additional simulations at hourly time step (reported in our Supplementary 

material). Our results suggest that there are no significant differences between V2Karst predictions for 

daily and hourly time steps for our study purpose, i.e. simulation of monthly and annual recharge. 

• We clarified our rationale for development of our parsimonious large-scale hydrological model (Sect. 2.1). 

We followed an approach to large-scale hydrological modelling that has been widely used for climate 

change impact studies. We aimed to limit model complexity given the limited amount of information 

available at large-scales to constrain model simulations. 

• Following the advice of Reviewer #1, we made an effort to shorten the manuscript and improve its 

readability, while also addressing the Reviewers’ comments.  

• We rewrote the discussion section to better convey the meaning and implications of our sensitivity analyses 

results and to discuss large-scale applications of V2Karst (Sect. 6). 

 

Again, we wish to thank you and the Reviewers’ for time and effort taken to review our manuscript and for any 

further comment and suggestion.  

 

Sincerely, 

 

Fanny Sarrazin 
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Response to Reviewer #1 

 

COMMENT 1: The manuscript presents a modified version of the large-scale karst recharge model VarKarst. 

The here presented model (V2Karst V1.0) replaces the simplified evapotranspiration (ET) component 

(empirical Priestley-Taylor equation) by the physical based Penman-Monteith equation (for potential 

evapotranspiration). The authors also include a separate calculation of the different evaporation processes in 

order to use the model for climate and land cover change impact studies. The model extension increases the 

number of parameters. The general functioning as well as the influence of the new parameters are tested by 

applying the new model to four study sides, different in climate and vegetation. The manuscript is a novel 

extension of previous work published by the research group. The conceptual description and the numerical 

adaptation of the processes are sound. The results of the model application on the four test sides prove the 

general functioning of the new model. However, the manuscript also has weak points, which are mainly related 

to the presentation of the method and the results. The manuscript can easily be shortened by 10-20% without 

losing important information. The presentation of the results needs to be improved, especially since it is 

difficult to distinguish between observed values and modeled results. My detailed comments are listed below. 

 

REPLY 1: We wish to thank the Reviewer for appreciating the novelty and soundness of our work and 

for the detailed comments, especially regarding the karst aspect of our work. Line numbers in our 

replies refer to the marked-up version of our revised manuscript (included in this file). In the 

marked-up version of the manuscript we highlighted in red the insertion and deletion we made. We took 

into account the Reviewers’ concerns regarding the length of the manuscript and the presentation of the 

methods and the results as explained in the following. 

 

1. Shortening the manuscript 

We realise that the manuscript was rather long in parts. We made an effort to shorten our revised version 

and to improve its readability and in particular: 

- We followed the suggestions of the Reviewer (COMMENT 6). We revised the introductions of the 

sections to make them more informative (Sect. 4 p19 L10-19) and deleted them where appropriate 

(Sect. 2 p5 L29-30, in Sect. 2 p8 L3-5, Sect. 5 p23 L21-23). We deleted wordy expressions such as 

‘Regarding the data processing’ p18 L9, ‘using numerical models’ p22 L6 and ‘the sensitivity 

indices analysed in this study’ that we replaced by ‘we analyse’ p21 L15. We rewrote wordy 

sentences such as p26 L27-28. 

- In Sect. 1, we rewrote the paragraph that describes the objectives of the study p4 L31-p5 L12 more 

concisely and deleted unnecessary repetitions. We also shorten the sentence p5 L13 by deleting ‘that 

help us to overcome the previous limitation’. 

- In Sect. 2.1 we removed the expression p6 L5-6 ‘and uncertainty in large-scale weather forcing 

variables […]’, which is not further discussed in our manuscript. We simplified the paragraph p6 

L31-p7 L3. We removed the sentence p7 L13-14 which provides unnecessary details on a previous 

karst model. 

- In Sect. 3.2, we deleted the reference to the ‘residual estimate’ of ET p18 L29-p19 L8 and we now 

only discuss the ‘bowen ratio estimate’ p18 L15-18 that we actually used in our analyses. Further 

analyses of the uncertainty in ET observations using the ‘residual estimate’ are reported in Sect. S4 

of our Supplementary material as indicated p18 L19-21. 

- In Sect. 5, we deleted more specifically the sentences p24 L24-25 and p27 L6-8 that pertained to 

Sect. 6 (discussion section). We moved the sentence p26 L15-16 into Sect. S7 of our Supplementary 

material, since it is a detailed comment on additional sensitivity analysis results that are reported in 

Sect. S7. 
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- We rewrote Sect. 6 more concisely, while also clarifying the meaning and implications of our 

sensitivity analyses and addressing other comments of the Reviewers (in particular COMMENT 3 

and 5 below). 

 

2. Presenting the methods and the results 

We clarified the presentation of the methods and the results and specifically: 

- We revised the introduction to the method section (Sect. 4) to make it more informative and to 

clarify the distinction between observed and simulated values (p19 L10-19). In brief, the parameter 

estimation approach (Sect. 4.1) uses measurements of weather variables to force the model and 

measurements of model output to define the soft rules. The global sensitivity analysis (Sect 4.2) 

uses measurements of weather variables to force the model, but no measurements of model output. 

Finally, the virtual experiments (Sect 4.3) do not use any measurements but synthetic data to force 

the model. 

- We rewrote parts of Sect. 4.3 to clarify the set-up of the virtual experiments p23 L4-18. 

- We prepared a new version of Fig. 4 in which we corrected some plotting issues (as mentioned in 

COMMENT 13), which may bring some clarity to the meaning of this figure. 

- We simplified Fig. 5 which may have brought some confusion regarding the distinction between 

observed and simulated values. We now only report the bowen ratio estimate of observed ET of Eq. 

(9) p18 and we removed the lines that corresponded to the other estimates of observed ET (estimate 

without correction and with residual correction) that are now reported in Fig. S2 in our 

Supplementary material. We clarified in the caption of Fig. 5 and p24 L26-28 the variables that are 

observed and simulated. 

- We also made numerous edits to the results section (Sect. 5) to improve its readability, for instance 

in the presentation of the results of the virtual experiments p28 L15-27. 

 

MAIN COMMENTS 

 

COMMENT 2: The purpose of V2Karst V1.0 is to predict recharge in karst regions. The authors mention 

that “a large part of the groundwater recharge occurs as concentrated and fast flow in large apertures and 

the other part as diffuse and slow flow in the matrix (Hartmann and Baker, 2017).” Especially concentrated 

recharge, e.g. fast infiltration into sinkholes, can be considered as a short-term process and is entirely 

uncoupled from soil and/or vegetation properties (overland flow -> percolation). I assume that your model, 

calculating the water balance, underestimates the recharge in karst regions dominated by concentrated 

recharge. Do you think your model is able to equally represent both recharge processes?  

 

REPLY 2:  We agree with the need for representing concentrated recharge processes. In karst systems, 

infiltration and recharge can be slow and diffuse in the matrix and fast and concentrated in large conduits 

or fissures that act as preferential flow pathways. Lateral flow at the surface and in the epikarst is an 

important mechanism that concentrates the infiltrating water into the preferential flow pathways 

(Jeannin and Grasso, 1997; Williams, 1983, 2008). In particular, the epikarst plays a role of temporary 

storage that can redistribute fast and concentrated recharge (Williams, 1983, 2008). Figure R1.c below 

provides a conceptual model of the soil and epikarst processes of a real karst system. 

 

V2karst’s representation of concentrated and diffuse infiltration and recharge, which is the same as in 

the VarKarst model (Hartmann et al., 2015), follows this conceptual model (Figure R1.a). V2karst 

represents the spatial variability of subsurface properties observed in karst systems by dividing each 

model simulation unit into a number of vertical compartments that have different soil and epikarst 

properties. Parameters for each model compartment (soil and epikarst storage capacities and epikarst 

outflow coefficient) are estimated using a distribution function. The daily water balance is explicitly 
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evaluated for each model vertical compartment. Additionally, when a given compartment saturates (both 

soil and epikarst stores), its saturation excess generates a surface lateral flow to the next unsaturated 

compartments that have higher storage capacities and higher permeabilities. In this representation, 

surface and subsurface lateral flow are thus lumped together. Conceptually, in V2Karst, the direct 

contribution of precipitation to infiltration and recharge can be associated with diffuse infiltration and 

recharge, while the contribution of lateral flow can be associated with concentrated infiltration and 

recharge. Hence, the V2karst structure allows to account for the interplay between diffuse and 

concentrated infiltration and recharge processes.  

 

The representation of karst processes in V2Karst and VarKarst is based on a previous karst model 

developed for applications at the local scale introduced in Hartmann et al. (2012). The structure of this 

previous models explicitly represents lateral flow both at the surface and in the epikarst, in agreement 

with understanding of the flow mechanisms in the epikarst (e.g. Williams, 1983, 2008). It was tested 

using hydrodynamic and hydrochemical information at stalactite drips in a karstic cave in Hartmann et 

al. (2012). However, simplifications have been introduced for applications at the large-scale, given the 

limited information available to constrain the additional parameters required in the previous karst model 

to represent lateral flow in the epikarst.  

 

We are aware of the fact that, in V2Karst’s and VarKarst’s representation, concentrated recharge is not 

entirely uncoupled from the soil and vegetation properties as it is observed in real karst systems. 

However, a previous study by Hartmann et al. (2017) compared simulated recharge with VarKarst and 

independent estimates of recharge and showed that there was no systematic bias in the simulations 

(Figure R2 below). Moreover, the study by Hartmann et al. (2017) showed that recharge values 

simulated with VarKarst were significantly higher than recharge values simulated with models that do 

not include karst processes (Figure R2 below).  

 

As also stated in REPLY 9, in the revised version of our manuscript, we briefly explained how diffuse 

and concentrated recharge is represented in VarKarst and V2karst in Sect. 2.2. p8 L12-17. 

 

 
Figure R1. (a) Schematic description of the VarKarst model for one model grid cell including the soil (yellow) 

and epikarst storages (grey) and the simulated fluxes, (b) its gridded discretization over karst regions and (c) 

the subsurface heterogeneity that its structure represents for each grid cell. 

Figure taken from Hartmann et al. (2015, Figure 1) 
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Figure R2. Comparison of simulated and observed recharge. In blue are reported values simulated 

with the VarKarst model (heterogeneous representation), in yellow values simulated with the PCR-

GLOBWB model (homogeneous representation, i.e. absence of karst processes in the model 

representation), and in green the Varkarst model with subsurface heterogeneity processes turned off. 

Whiskers indicate the simulation uncertainty (1 SD) for simulations with VarKarst. No statistical 

difference (5% significance level) was found between simulations with Varkarst and the 

observations. mm/a, millimeters per year. 

Figure taken from Hartmann et al. (2017, Figure 2) 

 

COMMENT 3: I am aware of the fact that the manuscript is focused on the implementation and the testing 

of the new evapotranspiration component. Since soil layers in karst regions can be thin or even totally absence 

the authors should consider this fact in the interpretation of the results. 

 

REPLY 3: Large differences in soil depth can indeed be observed across different karst landscapes. To 

apply the VarKarst model over Europe and the Mediterranean, Hartmann et al. (2015) have identified 

four main karst landscapes with different soil depths and degrees of karstification based on climate and 

topography (Humid, Mountain, Mediterranean and Desert landscapes). Different values of the parameter 

𝑉𝑠𝑜𝑖 (mean soil water capacity) have been applied in the different landscapes. In particular, very small 

values of  𝑉𝑠𝑜𝑖 have been used in arid areas (i.e. desert landscape in Hartmann et al. (2015)),where soils 

tend to be very thin. 

 

We are also aware of the fact that soils may be absent in some karst areas (e.g. karren field in high 

mountain areas, see e.g. Hartmann et al. (2014a)), and that these areas may consequently produce very 

high recharge amounts. The model does not account for the fact that the soil may be absent and always 

includes a soil layer, although the soil layer can be very thin and therefore can have a limited impact on 

recharge. This assumption seems reasonable given the large extent of the simulation units for large-scale 

applications (0.25°x0.25° or 0.5°x0.5° cell in previous applications). In fact, we can assume that soil 

layers can always be found in such large simulation units. However, for model applications at high 

resolutions, we recognise the fact that an explicit consideration of bare rock regions should be included 

in the model.  

 

We added a brief discussion of this point in Sect. 6.3 of our revised manuscript p33 L6-9. 
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COMMENT 4: The manuscript lacks a description/characterization of the four karst regions (e.g. by 

describing dominant karst features or by the interpretation of spring hydrographs).  

 

REPLY 4: In this study, we focus on groundwater recharge, which is a key component of the water 

balance as we clarified in our revised manuscript p5 L17-19. Recharge characterises the amount of 

renewable groundwater, and therefore the amount of groundwater available to human consumption and 

ecosystems (e.g. Scanlon et al., 2006; Döll and Fiedler, 2008; Wada et al., 2012). We do not model 

groundwater flow and storage nor spring discharge. Therefore, to test the model, we focus on datasets 

that can be related to the fluxes and states simulated by V2Karst, i.e. soil moisture and 

evapotranspiration as in Hartmann et al. (2015). No datasets providing time series of recharge are 

available. We do not use spring hydrographs, because spring discharge depends on groundwater routing 

and is not commensurate with groundwater recharge. Spring discharge measurements were used to 

extensively test a previous versions of the VarKarst model including groundwater storage and routing 

to the spring, at different locations in Europe and the Mediterranean (Hartmann et al., 2013a, 2013b, 

2014b). 

 

In the manuscript, we briefly describe the sites in Sect. 3.1 p17. Table B1 describes the four sites in 

detail, and more specifically the soil depth and bedrock. We have realised that we have exchanged the 

name of the two French sites in Table B1 (Puéchabon is actually the French 2 site and Font-Blanche the 

French 1 site). We corrected this mistake in the revised version of the manuscript. We did not add more 

details on the sites in the main text to limit the length of the manuscript. 

 

COMMENT 5: In general, a differentiation between different karst systems and therefore the wide variety of  

 

REPLY 5: A large variability in hydraulic properties and in recharge patterns can indeed be observed 

across karst systems ( e.g. Klimchouk and Ford, 2000; Hartmann et al., 2014a). For applications over 

large-scale domain, Hartmann et al. (2015) identified four typical karst landscapes with different 

hydraulic properties, based on climate and topography (as mentioned in REPLY 3). This simplified 

classification of the simulation domain in four landscapes was introduced to enable large-scale 

applications of the model. 

 

In Sect. 6.3 (discussion of V2karst large-scale application), we better highlighted the fact that future 

large-scale applications of V2Karst will need to account for the variability observed across karst 

systems, for instance using a simplified classification as in Hartmann et al. (2015) p33 L1-4. 

 

COMMENT 6: As already mentioned, the current manuscript is too long and needs to be shortened:  

1) (Almost) every section starts with a short introduction on the section. Most of them are redundant.  

2) The authors use wordy descriptions instead of clear words for describing their work. Is a “virtual 

experiment with synthetic data to assess the sensitivity” (Page 1, Line 19) not simply a “sensitivity analysis”?  

3) Discussion chapter: Consists of sentences/paragraphs, which can be defined as general knowledge (e.g. 

Page 26. Line 16; Page 26, Line 24) or which should be familiar by the readers of the journal (e.g. Page 28, 

Line 12). 

 

REPLY 6: We thank the Reviewer for suggesting how to shorten the manuscript and we reply below to 

the three points raised by the Reviewer.  
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1) As already stated in REPLY 1, we revised the introductions of the sections to make them more 

informative (Sect. 4 p19 L10-19) and deleted them where appropriate (Sect. 2 p5 L29-30, in Sect. 2 p8 

L3-5, Sect. 5 p23 L21-23).  

 

2) The virtual experiments are indeed sensitivity analyses. However, an important aspect is that we used 

synthetic data, which has been done only in few studies (e.g. the studies reported p22 L12-15). The 

reason for using synthetic data is that it allows to explore conditions beyond what was historically 

observed, and it is therefore useful to better understand potential impact of changes in climate. It also 

permits unequivocal attribution of changes in model output to changes in model inputs. Therefore, we 

think that it is important to mention that we used synthetic data in the abstract p1 L23. However, as 

discussed in REPLY 7, we made substantial changes to the abstract for clarification and readability, 

including the discussion of the virtual experiments.  

Furthermore, as stated in REPLY 1, we deleted wordy expressions in the manuscript, such as ‘Regarding 

the data processing’ p18 L9, ‘using numerical models’ p22 L6 and ‘the sensitivity indices analysed in 

this study’ that we replaced by ‘we analyse’ p21 L15. We rewrote wordy sentences such as p26 L27-28.  

 

3) We agree that the discussion section can be shortened and clarified and more specifically at the places 

indicated by the Reviewer. We rewrote Sect. 6 more concisely, while also clarifying the meaning and 

implications of our sensitivity analyses in Sect. 6.1 and 6.2 p29-32 and addressing other comments of 

the Reviewers (including COMMENT 3 and 5 above).  

We clarified the discussion of the virtual experiments (Sect. 6.2 p31-32). Firstly, the virtual experiments 

confirm that the model behaves reasonably, since it shows sensitivities to both precipitation (overall 

amount and temporal distribution) and land cover, in agreement with previous studies and general 

understanding. Secondly, the virtual experiments allow to unequivocally and quantitatively characterise 

the relationship between simulated recharge and both precipitation (overall mean and temporal 

distribution) and land cover. Therefore, virtual experiments are a complementary approach to model 

applications using site-specific data to assess the impact of climate and land cover changes on simulated 

recharge.  

 

SECONDARY COMMENTS 

 

COMMENT 7: - Page 1, Line 21: ”. . . and they suggest that simulated recharge is sensitive to both 

precipitation (overall amount and temporal distribution) and land cover.“ Is this one of the main results of 

your work and is it really a new finding?  

 

REPLY 7: We agree that we need to reformulate this sentence. We refer to REPLY 6 for a clarification 

of the objectives of the virtual experiments.  

We rewrote this part of the abstract (see p1 L23-27 in the revised version of the manuscript). 

 

COMMENT 8: 

- Page 2, Line 30: The sentence is difficult to understand.  

- Page 4, Line 17: Please, rephrase the long sentence (and consider deleting the first part of the sentence).  

 

REPLY 8: We deleted the fist sentence mentioned by the Reviewer p3 L29-32. The split in two the 

second sentence mentioned by the Reviewer (p6 L2-7). We also removed the expression p6 L5-6 ‘and 

uncertainty in large-scale weather forcing variables […]’, which is not further discussed in our 

manuscript. 
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COMMENT 9: Page 6, Line 12: Could you please add a bit more information on how diffuse and 

concentrated recharge is considered by the model.  

 

REPLY 9: We refer to REPLY 2 for a detailed explanation of the conceptualisation of recharge 

processes in V2Karst. In the revised version of our manuscript, we briefly explained how diffuse and 

concentrated recharge is represented in VarKarst and V2karst in Sect. 2.2. p8 L12-17. 

 

COMMENT 10: Page 12, Line 12/13/14: Please, consider using SI-Units.  

 

REPLY 10: We have adopted these units because they are typically used in the evapotranspiration 

literature (e.g. Allen et al., 1998; Shuttleworth, 1993, 2012).  

The revised version of the manuscript includes the unit of net radiation (Rn [MJ m-2 d-1]) p15 L10 which 

was missing. 

 

COMMENT 11:  Page 13 Seasonality of vegetation: Are you using the same seasonality on every study site 

irrespective of the local climate and vegetation type?  

 

REPLY 11: Typically, in hydrological models, vegetation seasonality is represented using different 

schemes with different levels of complexity or is neglected completely (Table A3). We chose to 

implement a simple representation (piecewise linear function). In this way, we can test the impact of 

vegetation seasonality by assessing the sensitivity of recharge to the seasonality parameter LAImin. We 

applied the same function at all sites, but we used different values of the seasonality parameter LAImin 

as indicated in Table 3. The timings of the four phases reported in Eq. (16) are appropriate for study 

sites that are located in the northern hemisphere and that have natural vegetation.  

 

We added a sentence p16 L18-19 to clarify the fact that the timings of the four phases of the seasonality 

model should be adapted to the application domain. We also added ‘in this study’ p16 L11 and L12 to 

clarify the fact that the choice of growing and dormant season is appropriate for application at the sites 

used in this study. 

 

COMMENT 12: 

- Page 15, Line 4: Please consider splitting the sentence.  

- Equation 17/18: Please remove the units from the equation and mention both parameters in the text, e.g. “1. 

Eact,bow [mmmonth1], a corrected value that assumes that latent heat (ð˙IR£ð ˇ ˙IRÿ [MJ.m ˇ −2.month−1]) 

and sensible heat (ð˙IRˇ z [MJ.m ˙ −2.month−1]) have similar errors (referred to as Bowen ratio estimate):  

- Page 17, Line 29: Please, rephrase the sentence.  

- Page 24, Line 4: Please, rephrase the sentence.  

 

REPLY 12: We have applied these changes in the revised manuscript: 

- p18 L2-4 

- p18 L18 

- p21 L5-7 

- p27 L29-p28 L2 

 

COMMENT 13: Figure 4: The Figure presents the results in a confusing way and some of the values exceed 

the constrained parameter ranges according to Table 3.  

 

REPLY 13: We realise that the plot we used – a parallel coordinate plot – is not familiar to all readers 

in earth sciences. A parallel coordinate plot is a two-dimensional plot that allows to visualise a 
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multidimensional space (here the space of the model parameters and outputs). In Figure 4, each line 

represents a combination of model parameters values (normalised) and the corresponding model output 

values (normalised). Parallel coordinate plots are increasingly used (e.g. Inselberg, 2009; Kasprzyk et 

al., 2013; Pianosi et al., 2017), and are implemented for instance in the Matlab Statistics and Machine 

Learning Toolbox (function “parallelcoords”) and in the SAFE toolbox for sensitivity analysis we 

utilised in our paper (Pianosi et al., 2015).  

Initially, we sampled the parameter space within wide ranges (Table 2), and we applied a priori 

information on parameter ranges (Table 3) only in rule 5. Therefore, prior to application of rule 5, 

parameter values can exceed the ranges of Table 3 (yellow, light blue, green and dark blue lines in Figure 

4). Instead, posterior to application of rule 5, all parameter values should be within the ranges of Table 

3 (red lined in Figure 4).  

 

The Reviewer may be referring to the fact that some red lines slightly exceed the black vertical lines in 

Figure 4. This is a plotting issue and we corrected it in the revised version of the manuscript.  

 

MINOR COMMENTS AND TYPOGRAPHICAL ERRORS 

 

COMMENT 14: Please, use a consistent citation style.  

 

REPLY 14: We corrected the style of the reference p6 L7. 

 

COMMENT 15: Please, use a consistent style for figure references. Two different versions exist: Fig. and 

Figure. 

 

REPLY 15: We replaced ‘Figure’ by ‘Fig.’ p6 L22, p8 L26, p17 L11 so that the referencing of the 

figures is consistent with guidelines of GMD available at (https://www.geoscientific-model-

development.net/for_authors/manuscript_preparation.html): The abbreviation "Fig." should be used 

when it appears in running text and should be followed by a number unless it comes at the beginning of 

a sentence, e.g.: "The results are depicted in Fig. 5. Figure 9 reveals that...". 

 

COMMENT 16: 

- Units -> Replace the dots by multiplication sign or even better delete them.  

- Page 2, Line 2: . . .world. . .  

- Page 2, Line 2: For instance, . . .  

- Page 5, Line 4: . . . (Hartmann et al., 2015). This . . . (space missing)  

- Page 5, Line 33: . . . to represent. . .  

- Page 7, Line 13: . . . the following formulas . . .  

- Page 12, Line 13: . . . is the psychrometric constant, . . .  

- Page 15, Line 18: . . . data processing are reported . . .  

- Page 20, Line 18: red lines -> the a priori information are indicated by black lines in Figure 4!  

- Page 29, Line 14: We, therefore, . . .  

- Figure 5, Line 4: . . . percentage of Eact . . .  

- Figure 6: Line 5: Blue . . .  

- Figure 9: Line 4: remove the open bracket 

 

REPLY 16: The revised version of the manuscript will include these corrections. We chose to add 

‘More importantly’ p2 L2. 

 

 

https://www.geoscientific-model-development.net/for_authors/manuscript_preparation.html
https://www.geoscientific-model-development.net/for_authors/manuscript_preparation.html
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Response to Reviewer #2 

 

OVERALL REPLY: We thank the Reviewer for the detailed review and take the opportunity to clarify 

some important points of our approach, while responding to the criticisms made. We provide detailed 

responses to specific comments below, but we thought it helpful to summarise the key point here: our 

manuscript introduces a new evapotranspiration component into a previously developed large-scale 

hydrological model for karst areas (Hartmann et al., 2015, GMD). We are therefore following an 

approach to large-scale hydrological modelling that has been widely used for climate change impact 

studies (e.g. Beyene et al., 2010; Sperna Weiland et al., 2012; Gosling et al., 2017). The Reviewer 

focuses on the use of land surface models to the same issue, which is an alternative approach currently 

taken to simulate climate and land cover change impacts on hydrological variables. However, we are 

not attempting to build a land surface model here, but rather to advance a hydrological model for large-

scale applications. Indeed, we ourselves have argued in the past that these two communities should come 

closer together and learn from each other (Archfield et al., 2015, WRR). 

We provide below a point-by-point reply to the comments of the Reviewer with additional references to 

previous studies that help us support our modelling choices (see list of references at the end of this 

report). Line numbers in our replies refer to the marked-up version of our revised manuscript 

(included in this file). In the marked-up version of the manuscript we highlighted in red the insertion 

and deletion we made. We found it difficult to address some of the Reviewers’ specific comments, 

because he/she did not provide any reference to support his/her statements.  

In particular, the revised version of the manuscript includes a comparison between hourly and daily 

simulations of the V2Karst model as discussed in REPLY 1 and 3 below. 

 

COMMENT 1: The paper proposed by Sarrazin et al. aims at adding a new evaporation formulation to the 

recharge model VarKarst which specialises on the hydrology of karst systems. The aim of this development is 

to make the model suitable for exploring the impact of climate and land surface changes on these very sensitive 

hydrological structures. The main themes of these improvements are to be applicable at the large scale and to 

be parsimonious.  

I believe this model fails on both accounts for a simple reason, the authors have neglected the fact that 

evaporation is strongly controlled by the diurnal cycle of radiation and atmospheric processes. One of the 

main consequences of climate change is to modify the diurnal cycle at the surface and in the atmosphere. Thus 

the application of V2Karst to climate change is bound to produce unrealistic sensitivities. The model would 

be more parsimonious and more robust (because based on stronger physical grounds) if it would explicitly 

represent the diurnal cycle.  

 

REPLY 1: Our model is in line with widely published approaches to climate change assessment using 

large-scale hydrological models (e.g. Beyene et al., 2010; Sperna Weiland et al., 2012; Gosling et al., 

2017), that all neglect the diurnal cycle and apply hydrological models at a daily time step. We provide 

further details on this issue in the reply to the reviewer’s COMMENT 3 (Penman-Monteith equation) 

and 9 (canopy interception). We agree that there is indeed a strong need for better comparison studies 

to understand how neglected processes (e.g. of diurnal cycles) affect climate change impact studies, but 

this is beyond the scope of the study presented here.  

 

Moreover, the reviewer wrote “One of the main consequences of climate change is to modify the diurnal 

cycle”. We agree that global average radiative forcing is projected to increase (IPCC, 2013; Van Vuuren 

et al., 2011), and average land surface air temperature is documented to have already increased globally 

(IPCC, 2013, Chapter 2 p187-188 for a global assessment, 2014, Chapter 23 p1275-1276 for an 

assessment for Europe) and is projected to further increase (IPCC, 2013, Chapter 12 p1062-1064 for a 

global assessment, 2014, Chapter 23 p1276 for an assessment for Europe). However, to our knowledge, 
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changes in the diurnal cycle appear to be much more uncertain. Changes in temperature are more 

documented, possibly because the historical temperature record is more accurate than the other climate 

variables (Allen and Ingram, 2002). We are aware of multiple studies that analysed the past changes in 

diurnal temperature range (i.e. difference between minimum and maximum daily temperature). A 

summary of these studies is provided in the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change (IPCC, 2013). They overall indicate that decreases in diurnal temperature range have 

been observed, but these decreases were found to be smaller than changes in average temperature (IPCC, 

2013, Chapter 2, p188). Moreover, some studies suggest that these apparent changes in diurnal 

temperature range may be attributed to non-climatic factors (IPCC, 2013, Chapter 2, p188). In this 

regard, a more recent study points out that the drivers of the past observed changes in diurnal temperature 

ranges are still not well understood (Davy et al., 2017). Additionally, it has been shown that climate 

models involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5, scientific basis for the 

IPCC fifth Assessment Report) are reproducing poorly the past observed changes in diurnal temperature 

range (Lewis and Karoly, 2013), which suggests that future projections in diurnal temperature range 

have large uncertainties.  

 

Changes in the revised version of the manuscript 

To prepare the revised version of our manuscript, we have performed additional simulations of V2Karst 

using an hourly time step. We compare the results of the parameter estimation strategy (described in 

Sect. 4.1) obtained for daily and hourly simulation. We briefly discuss the results in the manuscript p9 

L15-19, while detailed results are reported in Sect. S8 of our Supplementary material. We did not find 

significant differences between daily and hourly simulations for assessing recharge at monthly and 

annual time scale, which is the focus of our study. This demonstrates that it is reasonable to apply 

V2Karst at daily time step for our application.  

To be able to run the model at hourly time step, we modified the canopy interception routine of V2Karst. 

We introduced a state variable that represents the interception storage so that the model accounts for the 

carry-over of interception storage from one time step to the next for hourly time step. The revised 

interception routine is described p12-13 in the revised manuscript. We have also added the ground heat 

flux in the description of the Penman-Monteith equation (Eq.(14) p15). For daily simulations, ground 

heat flux is neglected, while it is accounted for hourly simulations as explained p15 L15-17 and in Sect. 

S8 of our Supplementary material. 

 

COMMENT 2:Furthermore this enhancement of VarKarst neglects 30 years in the developments of land 

surface models. These models do not represent hydrological processes and even less karst systems, and are 

rightfully criticized for this. But they have specialized on the surface/atmosphere exchanges and in particular 

the simulation of evaporation, vegetation processes and infiltration. At no moment do the authors refer to 

developments in one of the three leading land surface models ( JULES, ORCHIDEE and CLM) or their 

application to the 4 FLUXNET stations used here. A simple Google search would have shown to the authors 

that these open-access codes (Thanks in great part to GMD !) perform much better on these sites and do not 

require the tuning of so many parameters. Furthermore they are designed to be applicable at the large scale.  

I would recommend to reject the paper and encourage the authors to download one of the above mentioned 

land surface models and couple it to VarKarst. This would produce a model for these sensitive hydrological 

regions which is much more robust and produces more credible result for the impact of climate and land-cover 

changes. I am sorry to have to make such a harsh recommendation to GMD and in the following I will detail 

where I believe the basic assumptions of the authors to be wrong and where the usage of developments made 

for land surface models would help. 

 

REPLY 2: For clarity, we structured our reply in three parts: (1) we explain why we chose to develop 

V2karst as an evolution of a parsimonious hydrological model, rather than using more complex land 
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surface models, (2) we attempt to compare the performance of V2Karst and land surface models at the 

four FLUXNET sites used in our study and (3) we specify the changes that we introduced in the revised 

version of the manuscript to clarify these points. We do not discuss V2karst representations here, as we 

will explain them more specifically in REPLY 3 (Penman-Monteith equation), REPLY 6 (soil water 

balance), and REPLY 9 (interception). 

 

1. Reasons for developing a parsimonious hydrological model 

 

Land Surface Models are undeniably crucial tools because they include state-of-the-art scientific 

understanding of moisture and energy processes. However, parallel to the development of land surface 

models, a wealth of studies have drawn attention to the problem of dealing with model complexity in 

the context of natural systems. In fact, in natural systems, controlled experimentation to ascertain model 

formulations is not possible and model components and parameters tend to be poorly defined, especially 

at large-scales, because of a lack of data and knowledge (e.g. Young et al., 1996; Abramowitz et al., 

2008; Beven and Cloke, 2012; IPCC, 2013, Chapter 9, pp790-791; Hong et al., 2017; Haughton et al., 

2018). For example, Beven and Cloke (2012) highlight the fact that more complex models do not 

necessarily produce more robust predictions, presumably because of our lack of knowledge of natural 

processes and because of the uncertainty in estimates/observations of the variables needed to run such 

complex models. Therefore, regarding future modelling challenges, Beven and Cloke (2012) have 

argued that understanding which parameterisation may be more appropriate and assessing model 

uncertainties may be more relevant than further increasing the detail of process representation.  

 

A recent study published in GMD (Haughton et al., 2018) argues that: “In general, numerical LSMs 

[Land Surface Models] have become increasingly complex over the last 5 decades, expanding from 

basic bucket schemes to models that include tens or even hundreds of processes involving multiple 

components of the soil, biosphere, and within-canopy atmosphere. Model components may have been 

added on to existing models without adequate constraint on component parameters (Abramowitz, 2013) 

or without adequate system closure (Batty and Torrens, 2001). New component parameters may be 

calibrated against existing model components, leading to problems of equifinality (Medlyn et al., 2005), 

non-identifiability (Kavetski and Clark, 2011), and epistemological holism (Lenhard and Winsberg, 

2010). These problems can often only be overcome by ensuring that each component is itself well 

constrained by data and numerically stable. As noted earlier, these conditions rarely exist for any given 

component.” In fact, although land surface models have a strong physical basis, they also include many 

empirical functions that are typically difficult to constrain (Mendoza et al., 2015). More critically, the 

fact that land surface models include a large number of parameters (many of which hard-coded, as 

highlighted in Cuntz et al. (2016) or Mendoza et al. (2015)) hampers an exhaustive assessment of 

uncertainty and sensitivity of model predictions (Young et al., 1996). We further discuss the issue of 

parameter estimation in land surface models in REPLY 15. Moreover, the study by Haughton et al. 

(2018, GMD) shows that land surface models can be outperformed by simple empirical models, in line 

with the results of previous studies conducted within the Land Surface Model Benchmarking Evaluation 

Project (PLUMBER, Best et al., 2015). 

 

Importantly, land surface models simulate a large range of different fluxes (e.g. sensible heat, latent 

heat, ground heat flux, radiation, runoff, CO2) and the sensitivity of model parameters has been reported 

to vary depending on the simulated flux considered (Cuntz et al., 2016; Rosero et al., 2010; Rosolem et 

al., 2012). For instance, Cuntz et al. (2016) showed that a large number of parameters of the Noah land 

surface model are non-influential or have a very small influence on total simulated runoff. This means 

that parts of the land surface models may be simplified when the objective is to simulate hydrological 
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variables. In this sense, Hong et al. (2017) highlighted the fact that model development should account 

for the model intended uses.  

 

V2Karst aims to simulate seasonal and annual groundwater recharge, because these variables are 

appropriate to characterise the amount of renewable groundwater, and hence the amount of groundwater 

available to human consumption and ecosystems (e.g. Scanlon et al., 2006; Döll and Fiedler, 2008; 

Wada et al., 2012). As generally done in hydrological models (Table A1 of our manuscript), V2Karst 

focuses on solving the water balance, while it does not solve the energy balance, as land surface models 

do. In fact, V2Karst is not meant to be used for assessing the energy fluxes (radiation, sensible heat, 

latent heat and ground heat flux). An additional motivation for us not to solve the energy balance is that 

its inclusion increases model complexity and computational cost tremendously, which makes it difficult 

to perform a full uncertainty and sensitivity analysis to assess the adequateness of the different model 

components. By focusing on the water balance instead and by using parsimonious representations, we 

enable all components of V2Karst to be subject to uncertainty and sensitivity analysis, as we have 

explained in Sect. 2.1 p6 L20-30 in our manuscript. 

 

2. Performance of Land Surface Models at the four FLUXNET sites  

 

We are not aware of studies that would allow us to directly infer that JULES, ORCHIDEE and CLM 

have better performance compared to V2Karst at the four FLUXNET sites, as stated by the reviewer. 

We found six studies in which the JULES, ORCHIDEE, CLM or Noah land surface models were applied 

at some of the FLUXNET sites we have used (Anav et al., 2010; Davin et al., 2011; Zhao et al., 2012; 

Kuppel et al., 2012; Van den Hoof et al., 2013; Chaney et al., 2016). In the following paragraphs, we 

explain in detail that either the results of these studies cannot be compared to our results, or that the 

performance of the land surface models appears to be similar to or slightly inferior to those of V2Karst. 

 

The results of four of these studies cannot be compared with our results. The study by Chaney et al. 

(2016) does not specifically report performance results for any of the four FLUXNET sites. The study 

by Davin et al. (2011) analysed a full Regional Climate Model including the CLM model and did not 

present performance results regarding latent heat and soil moisture simulations, which are the two 

variables we analysed in our manuscript. The study by Kuppel et al. (2012) did not analyse the bias or 

the correlation coefficient between measured and simulated latent heat/evapotranspiration, while these 

two metrics were used in our analyses (Sect 4.1 of our manuscript). In fact, both metrics are important 

to characterise the hydrological performance of the recharge model, since the bias assesses the 

performance in reproducing the overall water balance, while the correlation coefficient assesses the 

consistency between the temporal pattern of simulated and observed latent heat/evapotranspiration. 

Finally, the study by Anav et al. (2010) did not report quantitative performance metrics for the individual 

sites. 

 

In the two “comparable” studies ( Zhao et al., 2012; Van den Hoof et al., 2013), land surface models 

show similar or slightly inferior performance compared to V2Karst, although it is difficult to make a 

fair comparison because the time periods analysed were not the same as in our manuscript. Zhao et al. 

(2012) assessed the squared correlation coefficient 𝑅2 between monthly observed and simulated latent 

heat at the French 2 site (Puéchabon) using the ORCHIDEE model and local forcing data. They found 

a value of 𝑅2 of 0.59, i.e. a correlation coefficient of √0.59 = 0.77 (Zhao et al., 2012, fourth row in 

Figure 6). This is comparable to the performance of the V2Karst model, since we identified simulations 

for which the correlation coefficient between monthly simulated and observed ET was higher than 0.77 

(Figure 4 in our manuscript). We wish to mention that there appears to be a mistake in the labels in 

Figure 6 in Zhao et al. (2012) and therefore we are not completely sure we have read the figure correctly.  
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Finally,  in Van den Hoof et al. (2013), the JULES model was tested at the German site (Hainich) using 

local forcing data. The bias between observed and simulated evapotranspiration for the best performing 

version of the model is around 29% (this percentage is inferred from Figure 2.b in Van den Hoof et al. 

(2013), which reports that the mean annual observed ET is 280 mm.y-1 and the simulated mean annual 

ET is 360 mm.y-1). The bias is therefore above the limit of acceptance of 20% that we have used in our 

manuscript. Van den Hoof (2013) did not provide the monthly correlation values for individual sites, 

but we can infer that, for the German site, the monthly correlation coefficient is between 0.7 and 1 (Van 

den Hoof et al., 2013, Figure 5.b), which is comparable to our study. 

 

3. Changes in the revised version of the manuscript 

 

Based on the Reviewer’s comment, we realise that in our manuscript we have not stated clearly enough 

our philosophy in developing V2Karst in line with other large-scale hydrological models. We clarified 

this point in the introduction p5 L13-19 (in the paragraph that states the objectives of the study). We 

also added further justifications and references to support our choice of developing a parsimonious 

model in Sect. 2.1 p6 L20-30.  

We agree that for completeness our manuscript should also refer to the literature on land surface 

modelling. In the revised version of our manuscript we include a discussion of the ET components of 

land surface models in Sect. 2.1 p7 L15-21. We also explain in this paragraph why we chose to develop 

a hydrological model.  

The paragraph in the conclusions section p34 L16-25 that was already present in the previous version 

of our manuscript summarises our modelling strategy.  

However, we would avoid including a comparison between the performance of the V2Karst model and 

other land surface models at FLUXNET sites because, as shown in our point (2) above, it is difficult to 

make a fair comparison between different studies that used different metrics and different time periods 

to evaluate the models. 

 

COMMENT 3: Rational to explicitly represent land cover properties :  

 It is laudable for the authors to use the Penman-Monteith formulation for potential evaporation. But should 

they have paid attention to its derivation, they would have noted that it only provides potential evaporation 

over a infinitesimal time intervals as it assumes that atmospheric variables and surface states do not evolve 

through other processes. A constant Rn(t) or ra,can(t) over the course of the day is a very unsatisfactory 

assumption, especially under a changing climate. Because of very contrasted impact of changing atmospheric 

composition on long-wave and short-wave radiation, we can encounter the same Rn but with very different 

radiation balance, turbulent fluxes and surface temperatures. The authors will find in the literature a number 

of paper which examine the impact of climate change on the different potential evaporation formulation. They 

all recommend to use sub-diurnal solutions because of the modified diurnal dynamics.  

 

REPLY 3: We are aware of the fact that the Penman-Monteith equation has been determined over an 

infinitesimal time step (e.g. Shuttleworth, 2012) and that, therefore, using sub-daily rather than daily 

time step for the calculation of the equation provides conditions that are closer to its theoretical 

derivation. Nevertheless, Penman-Monteith equation has been shown to be applicable at daily time step 

and is widely used at daily time step. 

 

In particular, Allen et al. (2006) commented on applications of the Penman-Monteith reference crop 

framework, that was designed by the Food and Agriculture Organization of the United Nations (FAO) 

and the American Society of Civil Engineers (ASCE). The framework has standardised the use of the 

Penman-Monteith equation for both hourly and daily time step (Allen et al., 1998; Walter et al., 2005) 

with a focus on agricultural crop. Allen et al. (2006) stated the following: “The favorable performance 
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of the PM equation in many studies, when applied with 24-h (and even monthly) time steps, is somewhat 

surprising, since the formulation of the combination equation (combined energy balance and 

aerodynamic components) theoretically requires weather inputs on a nearly instantaneous basis. The 

general consistency and accuracy of the PM method for 24-h time steps speaks to the combination 

equation’s robustness in estimating evaporative behavior given a particular set of meteorological 

conditions.” More recent papers still support both hourly and daily applications of the Penman-Monteith 

reference crop framework (e.g. Pereira et al., 2015). The daily framework has been included for instance 

in an R package for simulating evapotranspiration at daily time step (Guo et al., 2016).  

 

The Penman-Monteith equation is widely used at daily time step. Among its applications, we can cite 

the Moderate Resolution Imaging Spectroradiometer (MODIS) Evapotranspiration product (Mu et al., 

2011; Running et al., 2017). Furthermore, the Penman-Monteith equation is implemented in the large-

scale hydrological models PCR-GLOBWB, MacPDM and VIC (these models are reviewed in Table 

A1-A3 of our manuscript). These models have been applied at daily time step in climate change impact 

studies. For instance, Gosling and Arnell (2016) used MacPDM, Sperna Weiland et al. (2012) used 

PCR-GLOBWB and Beyene et al. (2010) used VIC at daily time step. These three hydrological models 

are also included in the Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP, Warszawski et 

al., 2014) that aims to assess the impact of climate change. In that context, daily simulations of PCR-

GLOBWB, MacPDM and VIC are analysed for instance by Gosling et al. (2017). 

 

Changes in the revised version of the manuscript 

Given all the above, we think that applying the Penman-Monteith equation at daily time step is one 

possible choice that is consistent with a wide range of published studies. Additionally, our comparison 

between hourly and daily time step performed in the revised version of the manuscript (as explained in 

REPLY 1) demonstrates that it is reasonable to apply V2Karst at daily step for our application. This 

comparison is briefly discussed in the manuscript p9 L15-19, while detailed results are reported in Sect. 

S8 of our Supplementary material.  

Additionally, our manuscript refers to other hydrological models that applied the Penman-Monteith 

equation at a daily time (Table A2). In the revised version of the manuscript, when discussing the 

Penman-Monteith equation, we added a reference to Allen et al. (2006) and Pereira et al. (2015) to 

further justify the use of the Penman-Monteith equation at both sub-daily and daily time step p15 L4. 

 

COMMENT 4: The parsimony of our representation of nature if not for us to choose. We have to prove that 

certain simplifications in the representation of surface processes are valid for the application we envisage. 

The authors aim to develop a model valid at the large scale, for climate and land surface change. Is it then 

reasonable to assume that over the course of a day ra,can does not change ? I think the development of land 

surface models has shown that one cannot neglect the diurnal dynamic of the opening of the stomata, the soil 

moisture stress or the dependence of stomatal resistance to atmospheric CO2 concentration. If the authors 

believe that they have found a way to represent with a single daily value these complex processes and their 

interaction with the environment they should let the world know as it would allow land surface models to be 

simplified.  

 

REPLY 4: We explain in REPLY 1 and 2 why we have chosen to include a parsimonious process 

representation in V2Karst, which is in line with well-established large-scale hydrological modelling 

studies on climate change impacts. An in-depth comparison with land surface models would be 

interesting, but it is beyond the scope of our work here.  

 

The evaluation of the Penman-Monteith equation, which requires the specification of the aerodynamic 

resistance ra_can, is well documented at a daily times step (see REPLY 3). 
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Our representation does include soil moisture stress using a linear function of soil moisture which 

multiplies the potential evapotranspiration rate (Eq.(11-12) p14 of our revised manuscript). This 

formulation is similar to the previous version of the model (VarKarst, Hartmann et al., 2015) and to 

other hydrological models (Table A2 of our manuscript).  

 

V2Karst neglects the dependence of the stomatal resistance on atmospheric factors such as temperature, 

radiation, humidity and CO2 concentration, as implemented for instance in Ball-Berry (Sellers et al., 

1996) and Jarvis-Stewart (Jarvis, 1976; Stewart, 1988) schemes. Stomatal resistance is assessed as a 

function of a minimum stomatal resistance (which is a parameter of the model) and the leaf area index 

(Eq. (15) p16). This formulation is similar to the hydrological model MacPDM (Table A2) that has been 

applied in climate impact studies (e.g. Gosling and Arnell, 2016) as already reported in REPLY 3. 

Compared to MacPDM, V2Karst also includes the dependence of the stomatal resistance on the leaf 

area index, although we recognise that this approach is still a simplification of stomatal processes. The 

reason for our choice comes from the fact that the value of the stomatal resistance is poorly characterised 

for large-scale applications, because few ground measurements of stomatal resistance are available 

(some are reported in  Breuer et al. (2003) and Körner et al. (1995)). Moreover, the temporal variability 

of stomatal resistance makes its measurements particularly difficult to interpret (Breuer et al., 2003) and 

therefore to use in modelling applications. We have discussed the lack of ground measurements of 

stomatal resistance (and more generally of vegetation properties) in Sect. 2.1 p6 L2-7 and in Sect S1 of 

our Supplementary material. The Ball-Berry and Jarvis-Stewart parameterisations of stomatal resistance 

significantly increase model complexity and in particular introduce several empirical parameters, whose 

values are uncertain because of the lack of stomatal resistance measurements. The constant value of the 

stomatal resistance implemented in V2Karst allows us to lump all the uncertainties around stomatal 

resistance estimation into a single parameter, that we can include in our uncertainty and sensitivity 

analysis. In this way, we can easily analyse the impact of the value of the stomatal resistance on 

simulated recharge. We obviously do not claim to “have found a way to represent with a single daily 

value these complex processes and their interaction with the environment”, but simply to have included 

in our model a simple approach to control the overall impact of this variable on recharge predictions. 

   

The temporal behaviour of the stomatal resistance could be investigated in V2Karst in future studies. 

However, we believe that, as a first version of the model, such in-depth investigation is beyond the scope 

of this study. 

 

COMMENT 5: In their rational for their modelling strategy they only mention one land surface model : ISBA 

in its 1998 version. This is not up to date. Even ISBA has evolved since then and does not use any more a 

Jarvis type parametrisation. It now also uses a Ball-Berry type formulation which balances carbon uptake and 

transpiration. Please note that ISBA operates at sub-diurnal time steps.  

 

REPLY 5: The Reviewer is right, the description of the ISBA model is not up-to-date. Moreover, since 

the ISBA and LaD are land surface models, while we follow an approach to large-scale hydrological 

modelling, we deleted the reference to ISBA and LaD in Table A1-A3 in the revised manuscript. The 

revised version of the manuscript includes a discussion of the ET components of land surface models in 

Sect. 2.1 p7 L15-21 as already stated in REPLY 2. We explain in this paragraph why we chose to develop 

a hydrological model. 

 

COMMENT 6: Soil water balance :  

The explanations of the evolution of moisture in the unsaturated zone is not very clear to me. It looks to me 

like a superposition of buckets with the addition of lateral flows. It has been the experience in the land surface 

model community that this simple representation of soil moisture limits the ability to simulate the impact of 
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stresses on transpiration. This is particularly critical in semi-arid those encountered at 3 of the selected 

FLUXNET stations. What is the reasoning of the authors behind this simplification in the treatment of the 

unsaturated zone, apart from “parsimony” ?  

 

REPLY 6: The evolution of moisture in the saturated zone in V2Karst is the same as in VarKarst 

(Hartmann et al., 2015, GMD). This representation is supported by physical reasoning and by previous 

testing of the VarKarst model. 

 

As explained in Sect. 2.3.2 p10-11, percolation from a given soil layer (𝑆𝑜𝑖𝑖) to the underlying soil layer 

(𝑆𝑜𝑖𝑘) is equal to the saturation excess in 𝑆𝑜𝑖𝑖. Percolation from the deeper (third) soil layer to the 

epikarst layer is also equal to the third soil layer saturation excess. As explained p3 L10 and p11 L6-12, 

the reasoning behind this simplification is that soils in karst areas typically have a high clay content 

(Blume et al., 2010), and therefore tend to have low unsaturated permeability (Clapp and Hornberger, 

1978). Instead, saturated permeability is typically high because clay soil generally have cracks that can 

act as preferential flow pathways under wet conditions (Lu et al., 2016).  

 

The representation of the process of lateral flow is a feature specific to the VarKarst model, which, 

together with the explicit representation of sub-surface sub-grid heterogeneity (using model vertical 

compartments), makes the model more appropriate for karst areas than other large models. The adequacy 

of the soil water balance representation in VarKarst has been tested in previous studies for previous 

versions of the model (Hartmann et al., 2012, 2015, 2017). In particular, Hartmann et al. (2015, 2017) 

showed that there is no systematic bias in the model predictions, and that recharge predictions produced 

by VarKarst are significantly higher than those produced by models that do not include karst processes. 

Further discussion of the representation of diffuse and concentrated flow in V2Karst and of the testing 

of the previous versions of the model are given in our response to the first review of this manuscript 

(REPLY 2 in ‘Response to Reviewer #1’). 

 

Changes in the revised version of the manuscript 

In the revised version of our manuscript, we added a briefly explanation on how diffuse and concentrated 

recharge is represented in VarKarst and V2karst in Sect. 2.2. p8 L12-17 which was missing. 

 

COMMENT 7: Evapotranspiration :  

Only one vegetation type seems to be allowed per grid-box, is this correct ? Because of the strong heterogeneity 

of the distribution of vegetation, it has been the experience of the community that a larger number of plant 

functional types is needed per grid box. The strict minimum has been found to be a low and a high vegetation. 

This simplification will be critical for the application to larger domains and in particular in semi-arid regions 

where the competition of the various vegetation types for water is critical.  

 

REPLY 7: We agree that, for large-scale applications, the model should be able to represent different 

vegetation types within a given simulation grid cell. The model can account for sub-grid heterogeneity 

in vegetation type using a ‘tile’ approach.  

A ‘tile’ approach consists of subdividing each model grid cell in a number of independent units (tiles), 

each of which has a specific land cover (e.g. short or tall vegetation). The model can then be evaluated 

separately over each tile. The overall simulated fluxes for a given grid cell are computed as the area 

weighted average of the fluxes calculated over the tiles. The same approach is also used in other large-

scale hydrological models, for instance in the Mac-PDM model (Gosling and Arnell, 2011) and in the 

VIC model (Bohn and Vivoni, 2016; Liang et al., 1994, 

http://vic.readthedocs.io/en/master/Overview/ModelOverview/).  
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Changes in the revised version of the manuscript 

We added a paragraph in Sect. 6.3 p33 L10-14 (this section discusses large-scale application of V2Karst) 

to clarify the fact that sub-grid heterogeneity in vegetation types can be treated following a tile approach. 

 

COMMENT 8: Please explain here as well why the literature on vegetation modelling is not relevant for this 

model.  

 

REPLY 8: We are not sure which specific literature the reviewer is referring to. In Sect. 2.1 and Tables 

A1-A3 of our manuscript we have provided a detailed review of ET and vegetation modelling in other 

large-scale hydrological models. As mentioned in REPLY 2 and 5, we also added a brief discussion of 

the ET components of land surface models in Sect. 2.1 of our revised manuscript.  

We are aware of the fact that our manuscript is rather long and we have already been advised by another 

reviewer to shorten it, hence we would avoid adding further details on vegetation modelling besides 

Sect. 2.1.  

 

COMMENT 9: Canopy interception :  

This is another topic where the community has acquired a rich experience which could benefit the authors. 

The representation of canopy interception at different temporal and spatial scales has been fiercely debated 

in the early 90s. Thus a number of parametrisations were developed to take into account the spatial and 

temporal variability of interception. This would be relevant here. Do the authors believe that a rainfall event 

in the evening or in the morning produces the same interception loss ? Does a rainfall event of 10mm/h and 

100mm/h produce the same interception ? So does the assumption of treating these processes averaged over 

the day have any implication on the sensitivity of V2Karst to climate change ? We know that rainfall intensity 

and possibly also the time of day at which precipitation will occur will change in a warmer climate. 

 

REPLY 9: V2Karst implements a parsimonious daily interception model as done in other large-scale 

hydrological models.  

 

In V2Karst, for each day, evaporation from the interception store is assessed over the vegetated fraction 

as the maximum value between daily precipitation, potential evapotranspiration and interception storage 

capacity. Our model is similar to the large-scale hydrological models WaterGap, PCR-GLOBWB and 

VIC (Table A3 in our manuscript). These models have been simulated at daily step to assess the 

hydrological impact of future changes in climate, for instance in Gosling et al. (2017) within the Inter-

Sectoral Impact Model Intercomparison Project (ISI–MIP, Warszawski et al., 2014), and in Döll et al. 

(2018) for WaterGap, in Sperna Weiland et al. (2012) for PCR-GLOBWB and Beyene et al. (2010) for 

VIC. Past studies have shown that interception can be reasonably represented at a daily time scale 

(Savenije, 1997; De Groen and Savenije, 2006; Gerrits et al., 2009). 

 

We are aware of the fact that more sophisticated interception schemes have been developed, as reviewed 

for instance in (Muzylo et al., 2009). These more complex schemes include additional parameters 

compared to our formulation that includes only one parameter, namely the interception storage capacity. 

We chose to implement a simple interception scheme for large-scale applications because (1) the 

physical processes and atmospheric conditions driving evaporation from canopy interception are still 

poorly understood (Van Dijk et al., 2015), (2) ground measurements of evaporation from interception 

that would be necessary to constrain model parameters are not available (Fatichi and Pappas, 2017; 

Miralles et al., 2016), and (3) ground measurements of canopy interception are also affected by large 

uncertainties (Van Dijk et al., 2015).  
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As already mentioned in REPLY 4, we have discussed the issues arising from lack of measurements in 

large-scale model applications in our model development rationale (Sect. 2.1 p6 L2-7 and in Sect S1 of 

our supplementary material). Similar to our representation of stomatal resistance (REPLY 4), since the 

representation of interception processes can only be poorly constrained for large-scale applications, we 

chose a simple interception scheme. In this way, we can easily include the uncertainty in interception 

representation in our analyses and gain a systematic understanding of the impact of this uncertainty on 

seasonal and annual recharge predictions (our variables of interest).  

 

Changes in the revised version of the manuscript 

Additionally, as explained in REPLY 1, the revised version of the manuscript includes a state variable 

that represents the interception storage so that V2Karst accounts for the carry-over of interception 

storage from one time step to the next for hourly time step. The revised interception routine is described 

p12-13 in the revised manuscript. 

 

COMMENT 10: May I point out at this stage that precipitation intensification has been observed at the 

sub-diurnal range. Daily mean rainfall has not yet been too much affected by climate change. On the other 

hand, hourly precipitation rates have been increasing faster than expected from the Clausius-Capleyron 

relation. Thus, the virtual experiments experiments proposed in section 4.3 are not relevant for climate 

change. The authors are referred to the wealth of literature published on this topic in the last few years.  

REPLY 10: We have actually found evidence suggesting that daily mean rainfall has been affected by 

climate change, and therefore analysing the impact of changes in daily precipitation (overall mean and 

temporal distribution), as done in our virtual experiment, is relevant.  

The last IPCC assessment reported that many regions show a significant trend (positive or negative) in 

mean daily precipitation for the past period (IPCC, 2013 and particularly Fig. 2.33, reported as Figure 

R1 below). Additionally, a more recent study by Ye et al. (2016) found that an increase in mean daily 

precipitation intensity occurred in all seasons in the northern Eurasia region over the period 1966-2010. 

Regarding future climate, model projections indicate changes in seasonal precipitation and changes in 

the 95 percentile of daily precipitation, for instance in Europe (IPCC, 2014, Chapter 23, Section 23.2.2.2 

and Fig. 23-2).  

 

Changes in the revised version of the manuscript 

In the revised version of the manuscript, we clarify the fact that daily precipitation is likely to change in 

Sect. 4.3 p22 L4. 
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Figure R1. Trend in daily precipitation intensity over the period 1951-2010. Trends were calculated only for 

grid boxes that had at least 40 years of data during this period and where data ended no earlier than 2003. Grey 

areas indicate incomplete or missing data. Black plus signs (+) indicate grid boxes where trends are significant 

(i.e., a trend of zero lies outside the 90% confidence interval).  

Source of the Figure: (IPCC, 2013, Figure 2.33) 

 

COMMENT 11: Transpiration from vegetated soil :  

Transpiration does not occur from the soils (as written in the paper) but from the stomata in the vegetation. 

This is not a negligible detail. Firstly the stomata only open when daylight is present and thus photosynthesis 

can occur. During the early afternoon, once the water in contact with the roots and within the plant has been 

evaporated, transpiration declines. This is caused by the slower diffusion of water within the soil which limits 

the supply. This is known to be a critical process for transpiration and which will be affected by higher CO2 

concentration which will lead plants to reduce the opening of their stomata. I guess these processes are 

neglected in the proposed model, why ? It would be a very interesting topic to see how this early afternoon 

depression of transpiration is affected by climate change for plants on karstic soils. It is bound to be different 

than on loamy soils for instance.  

 

REPLY 11: We agree with the reviewer that “transpiration does not occur from the soil”. In the revised 

version of the manuscript, we will correct this mistake. More specifically, p13 L19 we replaced 

‘Transpiration from vegetated soil’ by ‘Transpiration over the vegetated fraction’. 

 

Regarding the reviewer’s comment “I guess these processes are neglected in the proposed model, why 

?”, as explained in detail in REPLY 4, we neglect the dynamics of stomatal resistance because lack of 

observations does not allow constraining complex stomatal resistance schemes at a large-scale. We 

instead use a constant value of the stomatal resistance (scaled by the leaf area index). This enables us to 

easily analyse the effect of uncertain stomatal resistance on simulated recharge by including the stomatal 

resistance parameter in our sensitivity analysis. 

 

“How this early afternoon depression of transpiration is affected by climate change for plants on karstic 

soils” is a very interesting research question but is beyond the scope of our research. Again, the aim of 

our modelling activity here is to (reasonably, given all data and knowledge limitations) assess the effects 

of climate and land cover changes on groundwater recharge at the spatial and temporal scale of interest 

(large/regional; seasonal/annual). Our objective is not to assess the effect of climate variations on every 

specific process involved in plant transpiration. As stated in REPLY 2, we have clarified the objectives 

of our study p5 L13-19. 
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COMMENT 12: Sorry, the assumption “... evaporation from interception is constant throughout the day ...” 

is not valid and will change with climate and land surface type.  

 

REPLY 12: We agree with the reviewer that the justification of Eq. (13) p14 (fraction of the day with 

wet canopy) has been expressed incorrectly, ultimately misleading the interpretation of our proposed 

approach.  

 

We do not actually make the strong assumption that “evaporation from interception is constant 

throughout the day”. We instead assess the fraction of the day with wet canopy as the fraction of 

available energy that was used to evaporate water from the interception store. This conceptual 

representation was proposed in Kergoat et al. (1998) and it was adopted in the dynamic vegetation model 

LPJ (Gerten et al., 2004; Murray, 2014) presented in Table A1-A3. In V2Karst, we revised this 

formulation, which in the referenced studies uses the fraction of daytime with wet canopy (hence 

assuming that ET fluxes occur during daytime only), by using the fraction of the entire day, given that 

night time ET fluxes have been shown to be also important ( e.g. Pearce et al., 1980; Sugita and 

Brutsaert, 1991; Kelliher et al., 1992).  

 

Changes in the revised version of the manuscript 

In the revised version of the manuscript, we clarified and replaced the statement  the point by replacing 

the statement p14 L12-15 (“The fraction of the day with wet canopy 𝑡𝑤𝑒𝑡(t) [−] is estimated by 

assuming that evaporation from interception is constant throughout the day ...”) by  “The fraction of the 

day with wet canopy 𝑡𝑤𝑒𝑡(t) [−] is estimated as the fraction of available energy that was used to 

evaporate water from the interception store …”. 

 

COMMENT 13: Parameter estimation :  

The proposed parameter estimation is difficult to interpret in view of the strong hypothesis made in the basic 

equations of the model. The 15 parameters of this model are so conceptual, i.e. far away from first physical 

principles, that indeed they can all be tuned. But given the large number of “tunable parameters” can it not 

be expected that the model can be made to match any dataset ? To me hveg, LAI(min,max) or z0 are not 

“tunable parameters” as they can either be measured or derived from turbulence theory. 

 

REPLY 13: We agree with the Reviewer that (1) the ability to identify parameter sets that produce 

predictions close to observations is a necessary but not sufficient condition for the plausibility of the 

V2Karst model and (2) some parameters of V2Karst can be derived from a priori information. We think 

that we have accounted for these two points in our methodology, as we explain below. 

 

Regarding (1), we agree that a model can produce reasonable predictions by ‘incorrectly’ activating 

processes to compensate for structural deficiencies. For this reason, in our evaluation of V2Karst, in 

addition to the comparison between observations and predictions (Sect. 4.1), we also performed two 

sensitivity analyses: one using measured forcing data (Sect. 4.2) and the other one using synthetic 

forcing data (Sect. 4.3). The aim of these analyses was precisely to assess whether the sensitivities of 

V2Karst outputs across sites are consistent with our understanding of the physical characteristics of 

those sites, and hence whether the model reproduces the observations for the right reasons by activating 

the appropriate controlling factors at the right place. In our manuscript, we discuss the fact that the global 

sensitivity analysis applied to V2Karst showed a set of sensitivities that are interpretable in light of the 

different climatic conditions at the four FLUXNET sites (see Sect. 5.2 p26 L27-p27 L2 and Sect. 6.1 

p29 L17-27). Such use of sensitivity analysis as a tool for model diagnostic evaluation (verification of 
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model structures) has been successfully applied already in several modelling studies (e.g. Rosero et al., 

2010; Reusser and Zehe, 2011; Rosolem et al., 2012;  Hartmann et al., 2013). 

 

Regarding (2), we have actually used measurements at the FLUXNET sites to constrain the value of 

parameters hveg, LAI(min,max), Vr and Vsoi. As explained in Sect. 4.1, our parameter estimation 

strategy is based on the sequential application of ‘soft rules’ to identify plausible parameter values within 

an initial sample spanning over a wide range. Rules 1-4 select ‘plausible’ parameter sets based on their 

ability to produce model outputs consistent with observations, while the last rule (rule 5) selects the 

parameter sets that are consistent with a priori information about the sites. Constraining parameter values 

based on a priori information in the last step, instead of doing it in the first step as typical of other 

estimation strategies, provides us with a more stringent test of the adequacy of the model structure. In 

fact, if the parameter sets identified as plausible by Rules 1-4 (consistency with observations) are also 

plausible according to Rule 5 (a priori knowledge about the site), we can indeed conclude that the model 

‘gives the right response for the right reason’. If instead some parameter sets identified as ‘plausible’ by 

the comparison with observations (Rules 1-4) are then ruled out when including a priori information 

(Rule 5), this indicates some deficiencies in the model structure that are being ‘compensated for’ by 

tunable parameters and points us to the model components that need improvement. In our experiment, 

presumably because too few data are available to constrain the simulations, Rules 1-4 result in little 

constraining of the parameter ranges (Figure 4, Sect. 5.1). However, importantly, we can identify 

parameter sets that satisfy all rules simultaneously and that are therefore consistent with a priori 

information at the site, while also producing predictions consistent with the available observations.  

A similar strategy was used in previous studies, and more specifically in Hartmann (2015) to estimate 

the parameters of the VarKarst model and in Rosero et al. (2010) to estimate soil and vegetation 

parameters of the Noah land surface model. 

 

In future large-scale applications of V2Karst, we envisage that parameters hveg, LAI(min,max), Vr and 

Vsoi can be a priori constrained based on grid-cell specific information about vegetation and karst 

landscape type (Vsoi was constrained based on karst landscape type in Hartmann et al. (2015)).  

 

Changes in the revised version of the manuscript 

In the revised version of the manuscript, we clarify the meaning and implications of our sensitivity 

analyses and the strategy we envisage to estimate V2Karst parameters in future large-scale applications. 

We revised the introduction to the method section (Sect. 4) to make it clearer and more informative (p19 

L10-19). We rewrote Sect. 6 more concisely to better highlight the meaning and implications of our 

sensitivity analyses (Sect. 6.1 and 6.2 p29-32) and the strategy we envisage to estimate V2Karst 

parameters in future large-scale applications (Sect. 6.3 p32-33). In particular, in Sect. 6.3, we explain 

that some model parameters will be estimated using a priori information for the different simulation 

grid-cells (p32 L23-25). Additionally, we rewrote the last paragraph of the conclusions section (p35 L5-

11) to stress the importance of using global sensitivity analysis to check that the model is able to 

reproduce the data for the ‘right reasons’.  

 

COMMENT 14: Furthermore I find that the range of values explored for these parameters (Table 3 does not 

provide the limits for all 15 parameters) is much wider than realistic values I have observed. 

 

REPLY 14: Table 1 provides the wide ranges for all 15 parameters that were used to derive the initial 

parameter sample for our parameter estimation strategy. Table 3 provides the a priori ranges that were 

used for applying our soft rule 5. These ranges are defined only for those parameters for which site-

specific a priori information was available.  
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All these ranges were determined in accordance with values found in the literature. References and 

detailed explanations are given in Sect. S3 of our Supplementary material (Table S11 and S12 p14-16). 

 

 COMMENT 15: Land surface models also use the FLUXNET observations to “tune parameters”. But fewer 

parameters are adjusted and only those where the definition itself includes processes which are not modelled, 

i.e. are conceptual. Furthermore these parameters are specific to the plant functional type present at the 

FLUXNET station and then then transferred to the larger scale. This is the value of using vegetation classes 

in land surface models. A simple internet search for FLUXNET and the name of one of the leading land surface 

models, returns a large number of papers. Some where the models are simply validated and others where the 

observations are used to refine some vegetation parameters. The authors should have done that search during 

the development of their model.  

 

REPLY 15: We are aware of the fact that land surface models indeed typically tune a very limited 

number of model parameters. However, the results of recent studies suggest that excluding many 

parameters from calibration and uncertainty/sensitivity analysis raises a number of issues and that 

parameter estimation strategies of land surface models should be enhanced, as explained in the next 

paragraphs. 

 

Among the parameters of land surface models that are not ‘tuned’, some are considered as ‘physical’ 

parameters and are commonly read from look-up tables (more specifically soil and vegetation 

parameters are assigned based on soil texture and vegetation type respectively) or are set to site-specific 

values when measurements are available. Other parameters, which have an empirical basis, are set to 

constant values or are even hard-coded, i.e. are embedded in the model code as fixed values (e.g. 

coefficients to describe a particular shape for a curve in the model, such as the exponent used in the 

snow depletion curves for the melting season in the Noah land surface model as reported in Mendoza et 

al., (2015). Hogue et al. (2006) highlighted the fact that many parameters in land surface models cannot 

be directly obtained from field measurements but through curve-fitting techniques, such as parameters 

controlling the soil hydraulic properties (derived for instance in Clapp and Hornberger, 1978).  

 

Previous studies suggest that reading parameters from look-up tables or setting them to fixed values are 

not satisfying strategies. Some studies have put into questions the physical meaning of vegetation and 

soil parameters in land surface models, and therefore the fact that they can be assigned from look-up 

tables or from site measurements. Rosero et al. (2010) analysed the sensitivity and optimal values of 

different vegetation and soil parameters for different version of the Noah land surface model along a 

precipitation gradient in the southern USA. Their results suggest that climate strongly controls the 

optimal value of soil and vegetation parameters. This means that vegetation and soil parameters do not 

strictly represent vegetation and soil properties but also account for other properties. Hogue et al. (2006) 

analysed the differences in optimal values of different vegetation and soil parameters across five 

different land surface models (BUCKET, CHASM, BATS1e, BATS2, and Noah) and for five different 

vegetated sites in the USA. They found significant differences in optimal parameter values for the same 

parameters and the same site across models. This suggests that the vegetation and soil parameters have 

a different meaning across models. Therefore, they conclude that land surface models should be 

interpreted as simplified conceptual representations of natural systems, in which parameters are also 

conceptual representations of physical properties. The incommensurability between model parameters 

and physical properties can be explained by the scale mismatch between physical variables that can be 

actually measured and model parameters that represent cell average properties. An additional possible 

explanation for this incommensurability is that models implement governing equations that are well 

established to describe the behaviour of the system over small scales (e.g. Darcy’s law), but that may 

not be valid for applications over larger domains (Kirchner, 2006). 
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Moreover, it has been shown that some empirical parameters that are typically fixed to constant values, 

and in particular some hard-coded parameters, have a significant impact on model predictions and 

therefore these parameters would need to be included in the parameter estimation strategy, i.e. to be 

‘tuned’ (Cuntz et al., 2016; Mendoza et al., 2015). 

 

The fact that land surface models include a large number of parameters that would potentially need to 

be ‘tuned’, and the limited availability of data to constrain model predictions at large-scales (as discussed 

p6 L2-7 of our revised manuscript, in Sect. S1 of our supplementary material, and in REPLY 4 and 9 

above) make the calibration of land surface models particularly challenging in large-scale applications. 

How to enhance parameter estimation of land surface models is indeed still an open question (e.g. 

Chaney et al., 2016).  

 

Changes in the revised version of the manuscript 

In the revised version of our manuscript, we added a discussion on the challenge of estimating the 

parameters of large-scale models, and in particular land surface models (Sect. 2.1 p6 L2-7 and p7 L17-

21). 

 

COMMENT 16: Conclusion :  

I am very sorry to have to write this review about the development of V2Karst. I know what a huge effort it is 

to develop a complex numerical model. As the authors are working in Britain, I would recommend that they 

look into the JULES land surface model. It is freely available and could be coupled to VarKarst to produce a 

very innovative tool which could indeed allow to explore the consequences of climate and land surface changes 

on water resources of karst aquifers. This need, to initiate a convergence between hydrological and land 

surface modelling, has been recognized by NERC and lead to the initiation of the HydoJULES program. The 

authors should contact the leaders of this program to obtain help. 

 

REPLY 16:  The V2karst V1.0 model is an extension of a large-scale hydrological model previously 

published in GMD (VarKarst, Hartmann et al., 2015) that aims to simulate groundwater recharge in 

karst areas under changing environmental boundary conditions. Hydrological models are widely applied 

to study groundwater recharge at large-scales. As we have stressed in REPLY 2 and 15, land surface 

models simulate many more fluxes than hydrological models (e.g. sensible heat, latent heat, ground heat 

flux, radiation, CO2), which implies that they include many more parameters that are difficult to 

constrain in large-scale applications. Since our objective is to predict seasonal and annual recharge (as 

stated in our manuscript p5 L13-19), which is the key variable of interest for water resources 

management in karst areas, and not to assess the other fluxes simulated by land surface models, we 

chose to build on and expand a hydrological model instead of using a land surface model. While we 

acknowledge that the approach proposed by the Reviewer may be an alternative route to achieve our 

goal, we hope we have provided a convincing rationale for our modelling choices.  

We took the opportunity to revise our manuscript to clarify these points and to assess the effect of the 

simulation time step on the simulation results (p9 L15-19 and in Sect. S8 of our Supplementary 

material). We demonstrated that the effect of the simulation time step is not significant for our 

application and that it is reasonable to run V2Karst using a daily time step. 
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Abstract. Karst aquifers are an important source of drinking water in many regions of the world. Karst areas are highly 10 

permeable and produce large amounts of groundwater recharge, while surface runoff is often negligible. As a result, recharge 

in these systems may have a different sensitivity to climate and land cover changes compared to other less permeable systems. 

However, little effort has been directed toward assessingis known about the combined impact of climate and land cover changes 

in karst areas at large-scales. In particular, the representation of land cover and its controls on evapotranspiration has been very 

limited in previous karst hydrological models. In this study, we address this gap (1) by introducing the first large-scale 15 

hydrological model including an explicit representation of both karst and land cover properties, and (2) by analysing providing 

an in-depth analysis of the model’s recharge production behaviour. To achieve these pointsaims, we first improve thereplace 

the empirical approach to evapotranspiration estimation of a previous large-scale karst recharge model (VarKarst) with an 

explicit, mechanistic and parsimonious approach in the new model (V2Karst V1.0) includes a parsimonious representation of 

relevant ET processes for climate and land cover change impact studies. We demonstrate the plausibility of V2Karst 20 

simulations at four carbonate rock FLUXNET sites by assessing the model’s ability to reproduce observed evapotranspiration 

and soil moisture patterns andusing soft rules and global sensitivity analysis by showing that the controlling modelled processes 

are in line with expectations. Additional virtual experiments with synthetic input data systematically explore the sensitivities 

of recharge to precipitation characteristics (overall amount and temporal distribution) and land cover properties. This approach 

confirms that these sensitivities agree with expectations and provides first insights into potential impacts of future change. 25 

V2Karst is the first model that enables the study of the joint impacts of large-scale land cover and climate changes on 

groundwater recharge in karst regions. Then, we use virtual experiments with synthetic data to assess the sensitivity of 

simulated recharge to precipitation characteristics and land cover. Results reveal how both vegetation and soil parameters 

control the model behaviour, and they suggest that simulated recharge is sensitive to both precipitation (overall amount and 

temporal distribution) and land cover. Large-scale assessment of future karst groundwater recharge should therefore consider 30 



2 

 

 

the combined impact of changes in land cover and precipitation properties, if it is to produce realistic projections of future 

change impacts. 
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1. Introduction 

Carbonate rocks, from which karst systems typically develop, are estimated to cover 10-15% of the world continental areas 

(Ford and Williams, 2007). More importantly, karst aquifers are a considerable source of drinking water for almost a quarter 

of the world’s population (Ford and Williams, 2007) and have play a critical role in sustaining food production because most 

karst areas present contain some form of agricultural activity (Coxon, 2011). In Europe, carbonate rock areas cover 14-29% 5 

of the land area, and some European countries such as Austria and Slovenia derive up to 50% of their total water supply from 

karst aquifers (Chen et al., 2017; COST, 1995). 

Karst systems are characterised by a high spatial variability of bedrock and soil permeability due to the presence of 

preferential flow pathways (Hartmann et al., 2014). The soluble carbonate bedrock is structured by large dissolution fissures 

or conduits (Williams, 1983, 2008) and the typically clayey soil often contains cracks (Blume et al., 2010; Lu et al., 2016) 10 

where infiltrating water concentrates. Therefore, a large part of the groundwater recharge occurs as concentrated and fast flow 

in large apertures and while the other part moves as diffuse and slow flow through the matrix (Hartmann and Baker, 2017). 

Preferential flow pathways are particularly developed in karst, but they are also widely found in many other systems, due to 

root and organism activities, discontinuous subsurface layers, surface depressions, soil desiccation, tectonic processes and 

physical and chemical weathering (Beven and Germann, 2013; Hendrickx and Flury, 2001; Uhlenbrook, 2006)  15 

Preferential infiltration is typically triggered when thresholds in rain intensity and soil moisture levels are exceeded (Rahman 

and Rosolem, 2017; Tritz et al., 2011). When activated, preferential infiltration pathways may enhance groundwater recharge 

while limiting surface runoff  (e.g. Bargués Tobella et al., 2014). In karst systems, permeability is often so high that surface 

runoff is negligible, and virtually all precipitation infiltrates (Contreras et al., 2008; Fleury et al., 2007; Hartmann et al., 2014). 

Furthermore, preferential infiltration pathways can affect the temporal dynamics of recharge. For instance, Cuthberth et al. 20 

(2013) showed that macro-pores in the soil can generate quick responses in the water table, and Arbel et al. (2010) observed 

that dripping rates in a karst cave can fluctuate following precipitation inter-seasonal and intra-seasonal variations.  

 

Changes in weather patterns (e.g. due to climate change), and specifically in the intensity and frequency of precipitation, 

may alter the activation of preferential flow pathways. From previous studies in non-karst areas we can learn that changes in 25 

the intensity and frequency of precipitation events have an impact on the water yield. For instance, using an analytical 

framework and synthetic experiments, (Porporato et al., 2004) established a dependency between the soil water balance and 

both the frequency and intensity of precipitation events, while (Jothityangkoon and Sivapalan, 2009) determined different 

theoretical hydrological regimes based on the intensity and frequency of the precipitation input over Australian catchments. A 

modelling study by (Weiß and Alcamo, 2011) showed that for a given change in the total precipitation amount, a change in 30 

the intensity of precipitation events have a larger impact on water availability than a change in the number of wet days over 

European river basins. Regarding groundwater recharge, observation records are scarce but data indicate a sensitivity to 

extreme rainfall in a semi-arid tropical region (Taylor et al., 2013; ) and in a seasonally humid tropical region (Owor et al., 
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2009). In karst areas, few several modelling studies showed that groundwater recharge (Hartmann et al., 2012; Loáiciga et al., 

2000), spring discharge (Hao et al., 2006), and streamflow (Samuels et al., 2010) respond to changes in climate. However, to 

our knowledge, only the study by Hartmann et al. (2017) quantified the sensitivity of simulated karst groundwater recharge to 

specific precipitation characteristics, namely the mean precipitation and the intensity of daily heavy precipitation events. This 

modelling study was conducted across carbonate rock areas in Europe, the Middle East and Northern Africa , for different 5 

climate change projections. The study authors results suggesteds that, due to the presence of preferential flow pathways, 

recharge in karst systems tends to exhibit a higher sensitivity to changes in mean precipitation and to in the intensity of heavy 

precipitation events in dry climates, and a lower sensitivity in wet climates compared to non-karst systems. Hartmann et al. 

(2017) also showed that the intensity of heavy precipitation can have both a positive or a negative effect on recharge for both 

karst and non-karst systems,. However, other observational studies in non-karst areas associate increases in extreme rainfall 10 

with higher recharge amount, e.g. in a semi-arid tropical region (Taylor et al., 2013) and in a seasonally humid tropical region 

(Owor et al., 2009). The discrepancy among these results might be explained by the fact that Hartmann et al. (2017) only tested 

recharge sensitivity against precipitation properties, while ignoring their interactions with other meteorological variables such 

as temperature or humidity.  

 15 

In addition to climate change, land cover/use change could alsois also expected to have a major impact on hydrological 

processes in the future (DeFries and Eshleman, 2004; Vörösmarty, 2002). Changes in land cover/use can impact the 

partitioning between green water (water that can be lost through evapotranspiration losses) and blue water (water potentially 

available for human activities, namely groundwater recharge and runoff) (Falkenmark and Rockström, 2006). Green water 

tends to be higher for forested areas than for shorter vegetation (e.g. Brown et al., 2005), which has also been found in few 20 

local studies inconfirmed for karst areas (Ford and Williams, 2007; Williams, 1993). Significant land cover/use changes are 

expected to occur in the future, including in European and Mediterranean karst areas. These are will partly be due tocaused by 

modifications in socio-economic and technological factors, such as changes to food and wood demand or changes in 

agricultural management practices that could enhance agricultural yields (see e.g. Holman et al., 2017 for a European 

assessment; Hurtt et al., 2011 for a global assessment). Future vegetation will also be impacted by other changing 25 

environmental conditions such as modifications increases in atmospheric CO2 leading to differences in plant behaviour and 

leaf area index, as well as to differences in climate and weather patterns, which in turn change the frequencies , nitrate 

deposition and climate, andof natural disturbances such as wildfires, storms or bark beetle infestations could also cause changes 

in land cover and in vegetation characteristics (e.g. leaf area index) (Seidl et al., 2014; Zhu et al., 2016). 

 30 

The above review of the literature reveals that changes in climate characteristics (e.g. precipitation intensity and frequency) 

and in land cover properties are can be expected to have significant combined impacts on karst the hydrology of karst regions. 

Yet, the impact of preferential pathways on the partitioning between green and blue water, and the joint effect of climate and 



5 

 

 

land cover changechanges in these boundary conditions has not been studied systematically, while such assessment is needed 

at large-scales to inform water resources management plans (Archfield et al., 2015).  for those areas, thus creating uncertainties 

in future groundwater estimates and therefore . Determining how sensitive groundwater recharge is to climate and land cover 

may change in the presence of preferential pathways, and therefore to what extent findings obtained for non-karst areas may 

be extrapolated to karst ones, is also essential to improve our understanding of future groundwater recharge at large-scales and 5 

ultimately to improve  In this study we introduce a novel large-scale hydrological model that includes explicit representation 

of both karst and vegetation properties, and systematically explore the sensitivity of its its simulated groundwater recharge 

predictions to meteorology and vegetation inputsproperties. Our model builds extendson an existing karst hydrology model, 

called VarKarst, which was recently developed for large-scale applications and demonstrated tested over European and 

Mediterranean carbonate rock areas (Hartmann et al., 2015). However, VarKarst only containshas a very simplistic and 10 

empirical representation of evapotranspiration processes that and does not include land cover properties explicitly, which, up 

to now, prevented its application in land cover change impact studies.  

The presentOur study has two objectives that help us to overcome the previous limitation. First, we aim to add an explicit 

representation of land cover properties to VarKarst by improving its evapotranspiration (ET) estimation. While we seek to 

keep the model structure parsimonious, we want the new version of the model, called ( V2Karst (V1.0), to be appropriate for 15 

assessing hydrological impacts of combined land cover and climate change impact studies to advanceat large-scale hydrologic 

modelling.  The model should ultimately simulatewith respect to seasonal and annual groundwater recharge, which is the 

amount of renewable groundwater available to human consumption and ecosystems, at both seasonal and annual time scales 

(e.g. Döll and Fiedler, 2008; Scanlon et al., 2006; Wada et al., 2012). Second, we aim to We test the plausibility of the V2Karst 

model behaviour by comparing its predictions against observations available at carbonate rock FLUXNET sites, and by 20 

analysing the sensitivity of simulated recharge using both measured and synthetic data to force the model. In particular, the 

use of synthetic data in virtual experiments dominant controls of simulated recharge. Second, we aim to understand the 

sensitivity of simulated groundwater recharge with V2Karst to changes in the vegetation characteristics and climate. We use 

a set of virtual experiments that allows us to control variations in climate and vegetation inputs, so that we can better 

exploreisolate their individual and combined effects on model outputssimulated recharge.  and overcomes some of the previous 25 

issues of isolating the impact of individual variables asissues found by Hartmann et al. (2017) as discussed above. 

2 New version of VarKarst with explicit representation of land cover properties (V2Karst) 

 

In this section, we first introduce our rationale to explicitly represent land cover properties into VarKarst (Sec. 2.1), we then 

briefly describe the previous ET component of VarKarst (Sect. 2.2) and we finally present the new V2Karst model (Sect. 2.3). 30 
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2.1 Rationale to for our approach to explicitly represent land cover properties representation into VarKarst 

The new version of the VarKarst model should be appropriate to assess the impact of climate and land cover change on karst  

groundwater recharge. It should also consider the range of challenges related to modelling ET at large-scales, namely a lack 

of ET observations to compare with model predictions,  and a lack of observations of vegetation properties (e.g. rooting depth, 

stomatal resistance, canopy interception storage capacity), and uncertainty in large-scale forcing weather variables (specifically 5 

air temperature, net radiation, humidity and wind speed). to constrain the model parameters (See section S1 in our 

Supplementary material). Further details on these three challenges are reported in Sect. S1 of our supplementary material. 

According to that, wWe hence define the three following criteria to develop an represent ET in the enhanced version of the 

VarKarst model with explicit representation of land cover properties: 

1. The new model should assess separately all the three main ET components (bare soil evaporation in presence 10 

of sparse canopy, transpiration and evaporation from canopy interception) separately and explicitly. In fact, 

these fluxes exhibit different dynamics and sensitivity to environmental conditions; therefore they are likely to 

respond differently to climate and land cover changes (Gerrits, 2010; Maxwell and Condon, 2016; Savenije, 2004; 

Wang and Dickinson, 2012).  

2. The model should therefore use a Penman-Monteith formulation for to estimate the potential 15 

evapotranspiration (PET) (Monteith, 1965), so that it canto separate the effects of climate and land cover and assess 

specific rates foron each of the different ET components. In fact, empirical PET formulations such as the Priestley-

Taylor equation (Priestley and Taylor, 1972) do not allow for such separations as they do not represent explicitly 

include land cover properties. 

3. All processes should be represented parsimoniously in accordance with the modelling philosophy underpinning 20 

the first version of VarKarst (Hartmann et al., 2015). This criterion aims to avoid over-parameterisation given the 

limited amount of available information to constrain and test model simulations in particular at large-scales 

(Abramowitz et al., 2008; Beven and Cloke, 2012; Haughton et al., 2018; Hong et al., 2017; IPCC, 2013, Chapter 9, 

pp. 790-791; Young et al., 1996). In particular, parameters that account for physical properties of the system (e.g. soil 

and vegetation properties) are commonly readtaken from look-up tables but their physical meaning have been put 25 

into question and they may actually not be commensurate with field measurements as discussed in Hogue et al. (2006) 

and in Rosero et al. (2010). Therefore, it has been suggested that even these ‘physical’ parameters should be calibrated 

so to optimise the model performance (Chaney et al., 2016; Rosolem et al., 2013). Importantly, parsimony, limits the 

computational time for model simulations and allows for assessing the impact of modelling choices and the 

uncertainty and sensitivity of model output using Monte-Carlo simulation (Hong et al., 2017; Young et al., 1996).  30 

We review the different approaches currently used to explicitly represent explicitly land cover properties in existing 

hydrological models of karst areas and in existing large-scale models, to assess their consistency with the three above-

mentioned criteria and to determine whether we could directly adopt some of these ET representations for VarKarst. We report 
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a summary of our findings in the following paragraphs, while more details on the processes and parameterisations of the ET 

components of other large-scale models are reported in Tables (A1-A3), and a detailed list of all parameters involved in the 

representation of ET in large-scale models can be found in Section S2 of our supplementary material. 

With respect to existing previous modelling studies of karst systems, to our  knowledge, only four have used models that 

explicitly include ET and land cover processesperties were applied in karst studies, all of which were applied to the local scale 5 

studies wherewith detailed on-site information was available. Three of these studies (Canora et al., 2008; Doummar et al., 

2012; Zhang et al., 2011) used generic hydrological models that were not specifically developed for karst areas but they are  

distributed included enough models that simply utilised the flexibility in their spatially-distributed parameters to represent the 

variability in soil and bedrock properties. These models are The heavily large number of parameters in these models ised, 

which hampers their application at large-scales, and does not comply with criterion 3 (parsimony). The fourth study  introduced 10 

in (Sauter, 1992) used a is lumped model that and is much more parsimonious than the three other modelsbut . However, the 

model does not represent soil evaporation, and uses empirical PET equations, which does not allow to separate the effect of 

climate and land cover (disagreement with criteria 1 and 2). Moreover, the model of (Sauter, 1992) has a rather sophisticated 

interception routine, which includes both canopy and trunk interception. 

As for large-scale models, we can identify two main types: hydrological models, which focus on the assessment of 15 

hydrological fluxes, and land surface models, which also evaluate many other fluxes (such as sensible heat, latent heat, ground 

heat flux, radiation and carbon fluxes (for a review, see Bierkens, 2015). Land surface models do not usually comply with 

criteriona 3 because they have many parameters, including a number of empirical parameters that are difficult to constrain 

(Mendoza et al., 2015). Moreover, it has been shown that land surface models could be simplified when the objective is to 

assess hydrological fluxes only. For instance, Cuntz et al. (2016) demonstrated that a large number of parameters of the Noah 20 

land surface model are non-influential or have very little influence on simulated runoff. In contrast, hydrological models focus 

on the representation of hydrological processes and include farefar fewer parameters. However, Regarding the representation 

of ET in existing large-scale models, our literature review (summarised in Tables A1-A3) showed that we cannot directly adopt 

any of their ET representation into VarKarst. In fact, as shown in Tables (A1-A3), the most parsimonious models (WBM, LaD 

and WaterGap and mHM) neglect some ET components and/or use empirical PET equations, which contradicts criteria 1 and 25 

2, while models that comply with criteria 1 and 2 (PCR-GLOBWB, ISBA and VIC and the model of Kergoat (1998)) use 

heavily parameterised schemes, such as a Jarvis type parameterisation of surface resistance (Jarvis, 1976; Stewart, 1988) and 

therefore do not satisfy criterion 3 (parsimony). Moreover, we found that large-scale models include empirical schemes with 

no clear origin, such as the reference crop formulation used in the PCR-GLOBWB model for PET calculation or the 

interception model used in LPJ and in the model of Kergoat (1998). Importantly, our review revealed the tremendous variability 30 

of approaches used in large-scale models when it comes to representingto represent ET processes. A detailed list of all 

parameters involved in the representation of ET the models of Table A1-A3 can be found in Section S2 of our Supplementary 

material. Consequently, no clear indication emerged regarding a ‘best way’ to parameterise the different ET processes at large-
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scales, which leaves us with a large range of different formulations to choose from to implement an explicit representation of 

land cover processes into VarKarst. 

The next sections provide more details on the specific assumptions and choices made to develop the new ET component for 

the VarKarst model, which satisfies the three criteria defined in this section and utilises some of the schemes from other large-

scale models. 5 

2.2 Previous representation of ET processes in VarKarst 

VarKarst (Hartmann et al., 2015) [Hartmann et al., 2015] is currently the only karst recharge model developed for large-scale 

applications. It is a conceptual semi-distributed model that simulates karst potential recharge (Fig. 1.a). VarKarst includes two 

horizontal subsurface layers, a top layer called ‘soil’ and a deeper layer called ‘epikarst’. The soil layer corresponds to the 

layer from which ET can occur. The epikarst layer corresponds to the uppermost layer of weathered carbonate rocks where it 10 

is assumed that water cannot be lost through ET. Groundwater recharge predicted by VarKarst includes both the diffuse and 

concentration fractions, VarKarst represents karst processes because for each model grid cell, the water balance is evaluated 

separately over a number of vertical compartments with varying soil and epikarst properties. Additionally, and lateral flow 

concentrates the infiltrating water from saturated to unsaturated compartments. Conceptually, the direct contribution of 

precipitation to infiltration and recharge can be associated with the diffuse fraction, while the contribution of lateral flow can 15 

be associated with the concentrated fraction. The model has been shown to be more appropriate for applications over karst 

areas than other large-scale hydrological models that do not represent karst processes (Hartmann et al., 2017). The ET 

component of the VarKarst model is very simple and does not include explicit representation of land cover properties. ET is 

lumped in the soil layer, is estimated from PET and reduced by a water stress factor, which is estimated as a linear function of 

soil moisture. The PET rate is calculated with the empirical Priestley-Taylor equation (Priestley and Taylor, 1972) using a 20 

spatially and temporally uniform value of the empirical coefficient. This approach does not allow to separate the effect of 

climate and land cover, since the empirical coefficient reflects both climate and vegetation characteristics simultaneously. 

Therefore, the ET component of VarKarst needs to be modified if the model is to be used for large-scale land cover change 

impact assessment.  

2.3 V2Karst: the new version of VarKarst for integrated vegetation-recharge simulations over karst areas 25 

In this section, we propose a new version of the VarKarst model, called V2Karst (Figure Fig. 1b). In accordance with criteria 

1 and 2 defined in Sect. 2.1, compared to VarKarst, the new V2Karst model includes a physically based PET equation, separates 

the evapotranspiration flux into three components (transpiration, bare soil evaporation and evaporation from canopy 

interception), and comprises three soil layers. In agreement with criteria 3 of Sect. 2.1 (parsimony), we sought to represent 

parsimoniously the different ET processes into VarKarst. In fact, V2Karst uses 12 parameters to represent ET and vegetation 30 

seasonality (, includingnamely the 11 newly introduced parameters that replace the Priestley-Taylor empirical coefficient α 
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used in Varkarst and the soil water capacity parameters 𝑉𝑠𝑜𝑖  already present in VarKarst (model parameters are described in 

Table 1 and Fig. 1)). This is less than other existing large-scale models that use Penman-Monteith equation and separate the 

three ET components, since these models have over 15 parameters in their ET component (PCR-GLOBWB, ISBA and VIC 

and model of Kergoat (1998) in Tables A1-A3). Additionally, V2Karst represents parsimoniously the seasonal changes in the 

vegetation properties, which will allow us to analyse the importance of this process on simulated recharge. We assumed 5 

homogeneous above ground vegetation properties across model compartments. 

We note that V2Karst has a total of 15 parameters (described in Table 1 and Figure 1), including the 4 parameters of VarKarst 

and 11 new parameters in the new ET component, that replaces the Priestley-Taylor empirical coefficient 𝛼 used in VarKarst. 

In agreement with criteria 3 of Sect. 2.1 (parsimony), we sought to represent parsimoniously the different ET processes into 

VarKarst. In fact, V2Karst uses 12 parameters to represent ET and vegetation seasonality (including the 11 newly introduced 10 

parameters and the soil water capacity parameters 𝑉𝑠𝑜𝑖  already present in VarKarst). This is less than other existing large-scale 

models that use Penman-Monteith equation and separate the three ET components, since these models have over 15 parameters 

in their ET component (PCR-GLOBWB, ISBA and VIC and model of (Kergoat, 1998) in Tables A1-A3). The new model is 

forced by time series of precipitation 𝑃, air temperature 𝑇 and net radiation 𝑅𝑛 as VarKarst. Additionally, time series of relative 

humidity RH and wind speed WS are now needed for PET calculation. The V2Karst model can be run at both daily and sub-15 

daily time step. In this study, we present simulation results obtained using a daily time step, while results from hourly 

simulations are reported in Sect. S8 of our Supplementary Material. We did not find significant differences between daily and 

hourly simulations for assessing recharge at monthly and annual time scale, which is the focus of our study. Therefore, it is 

reasonable to apply the model at daily time step, which significantly reduces the computational requirements. 

2.3.1 Definition of soil and epikarst properties in V2Karst 20 

The computation of water storage capacity of the entire soil column 𝑉𝑆,𝑖  [mm] and of the epikarst 𝑉𝐸,𝑖  [mm], and the epikarst 

outflow coefficient 𝐾𝐸,𝑖  [d]  for the 𝑖th model compartment is done as before in VarKarst: 

𝑉𝑆,𝑖 = 𝑉𝑚𝑎𝑥,𝑆 (
𝑖

𝑛𝑐
)

𝑎

, 

𝑉𝐸,𝑖 = 𝑉𝑚𝑎𝑥,𝐸 (
𝑖

𝑛𝑐
)

𝑎

, 

𝐾𝐸,𝑖 = 𝐾𝑚𝑎𝑥,𝐸 (
𝑛𝑐 − 𝑖 + 1

𝑛𝑐
)

𝑎

. 

(1) 

where 𝑉𝑚𝑎𝑥,𝑆 [mm] is the maximum soil storage capacity over all model compartments, 𝑉𝑚𝑎𝑥,𝐸  [mm] is the maximum 

epikarst storage capacity, 𝐾𝑚𝑎𝑥,𝐸  [d] is the maximum outflow coefficient, 𝑛𝑐 [−] is the number of model compartments, which 

is set to 15 following (Hartmann et al., 2013, 2015) and 𝑎 [−] is the spatial variability coefficient. A previous study showed 25 
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that 𝑉𝑆,𝑖, 𝑉𝐸,𝑖 and 𝐾𝐸,𝑖 can be determined using the same distribution coefficient 𝑎 (Hartmann et al., 2013). In V2Karst, 𝑉𝑚𝑎𝑥,𝑆, 

𝑉𝑚𝑎𝑥,𝐸 and 𝐾𝐸,𝑖  are computed as a function of the average properties of the cell using the following the formulas: 

𝑉𝑚𝑎𝑥,𝑆 =
𝑉𝑠𝑜𝑖𝑛𝑐

∑ (
𝑖

𝑛𝑐
)

𝑎
𝑛
𝑖=1

, 

𝑉𝑚𝑎𝑥,𝐸 =
𝑉𝑒𝑝𝑖𝑛𝑐

∑ (
𝑖

𝑛𝑐
)

𝑎
𝑛
𝑖=1

, 

𝐾𝑚𝑎𝑥,𝐸 =
𝐾𝑒𝑝𝑖𝑛𝑐

∑ (
𝑖

𝑛𝑐
)

𝑎
𝑛
𝑖=1

, 

(2) 

where 𝑉𝑠𝑜𝑖  [mm] is the mean soil storage capacity, 𝑉𝑒𝑝𝑖  [mm] is the mean epikarst storage capacity and 𝐾𝑒𝑝𝑖  [mm] is the mean 

epikarst outflow coefficient. We note that the definition of the three parameters 𝑉𝑠𝑜𝑖 , 𝑉𝑒𝑝𝑖 and 𝐾𝑒𝑝𝑖  is revised compared to 

VarKarst. 5 

As in VarKarst, we neglect ET from the epikarst. Several studies showed that in presence of shallow soil and dry climate, 

plants can take up water in the weathered bedrock where soil pockets can sustain roots development (Schwinning, 2010). 

However, given the uncertainty in soil depth for large-scale applications, V2Kast does not allow ET from the epikarst to avoid 

over-parameterisation. Therefore, the V2Karst soil layer must be interpreted as a conceptual layer that does not exactly 

correspond to the physical soil layer (layer of loose material) but is defined as the portion of the subsurface where ET losses 10 

can occur.  

In V2Karst, the soil layer is further divided into a shallow top layer from which water can be lost from both evaporation and 

transpiration, a second middle layer where only transpiration can occur and a third deeper layer below the root zone where 

transpiration can only take place when the first two layers are depleted. The maximum storage capacity of the first layer is 

noted as 𝑉𝑒  [mm] , and the maximum storage capacity of first and second layers combined is noted as 𝑉𝑟  [mm] , which 15 

corresponds to the maximum storage capacity of the root zone. The model assumes that 𝑉𝑒 is smaller than 𝑉𝑟 , which is in turn 

smaller than the storage capacity of the deeper model compartment 𝑉𝑆,𝑛. 

2.3.2 Soil water balance 

The soil water storage 𝑉𝑠𝑜𝑖,𝑖
𝑗 (𝑡) [mm] in the 𝑖th compartment and the 𝑗th soil layer 𝑗 = 1,2,3 is updated at the end of each 

time step 𝑡 as follows: 20 

𝑉𝑠𝑜𝑖,𝑖
1 (𝑡) = 𝑉𝑠𝑜𝑖,𝑖

1 (𝑡 − 1) + 𝑇𝑓(𝑡) + 𝑄𝑙𝑎𝑡,𝑖−1→𝑖(𝑡) − 𝐸𝑠𝑎𝑐𝑡,𝑖(𝑡) − 𝑇𝑎𝑐𝑡,𝑖
1 (𝑡) − 𝑅12,𝑖(𝑡), 

𝑉𝑠𝑜𝑖,𝑖
2 (𝑡) = 𝑉𝑠𝑜𝑖,𝑖

2 (𝑡 − 1) + 𝑅12,𝑖(𝑡) − 𝑇𝑎𝑐𝑡,𝑖
2 (𝑡) − 𝑅23,𝑖(𝑡), 

(3) 
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𝑉𝑠𝑜𝑖,𝑖
3 (𝑡) = 𝑉𝑠𝑜𝑖,𝑖

3 (𝑡 − 1) + 𝑅23,𝑖(𝑡) − 𝑇𝑎𝑐𝑡,𝑖
3 (𝑡) − 𝑅𝑒𝑝𝑖,𝑖(𝑡). 

where 𝑇𝑓(𝑡) [mm] is the throughfall i.e. the fraction of precipitation that is not evaporated from the interception storereaches 

the ground (Eq. (8)), 𝑄𝑙𝑎𝑡,𝑖−1→𝑖(𝑡) [mm] is the lateral flow from the (𝑖 − 1)th to the 𝑖th model compartment (Sect. 2.3.4), 

𝐸𝑠𝑎𝑐𝑡,𝑖(𝑡) [mm]  is the actual soil evaporation (Eq. (97)), 𝑇𝑎𝑐𝑡,𝑖
𝑗 (𝑡) [mm]  is the actual transpiration in the 𝑗th soil layer (Eq. 

(9-1011-12)), 𝑅12,𝑖(𝑡) [mm] is the downward flow from the first to the second soil layer, 𝑅23,𝑖(𝑡) [mm] is the downward flow 

from the second to the third soil layer and 𝑅𝑒𝑝𝑖,𝑖(𝑡) [mm] is the downward flow from the soil to the epikarst. 5 

It is assumed that percolation from the unsaturated soil to the epikarst is negligible due to low permeability of the soil. This 

assumption seems reasonable since karst soils usually have a high clay content (Blume et al., 2010; Clapp and Hornberger, 

1978). However, clayey soil typically present cracks (Lu et al., 2016), and therefore when the soil reaches saturation, 

preferential flow starts to occur in the soil cracks, which causes all saturation excess to quickly infiltrate to the epikarst. Just 

as in VarKarst, such preferential vertical flow is represented by the variable 𝑅𝑒𝑝𝑖,𝑖(𝑡) (used in Eq. (3)) and is set equal to the 10 

saturation excess in the (lowest) soil layer. In V2Karst, a similar approach is also used to assess the other vertical flows from 

one soil layer to another (𝑅12,𝑖(𝑡) and 𝑅23,𝑖(𝑡)) in Eq. (3)). 

2.3.3 Evapotranspiration 

We adopt the representation of sparse vegetation proposed by Bohn and Vivoni (2016) for the VIC model and referred to as 

‘clumped’ vegetation scheme. Each model compartment is divided into a vegetated and a non-vegetated fraction using a canopy 15 

cover fraction coefficient 𝑓𝑐(𝑡) [−]. The uptake of soil moisture for transpiration and soil evaporation is coupled in a way that, 

for each model compartment, we evaluate an overall water balance over the two fractions. Using such a coupled approach 

facilitates the representation of the seasonal variations in vegetated and non-vegetated fractions compared to an uncoupled 

‘tile’ approach, in which a separate soil moisture state is represented for vegetated and bare soil fractions. Consistently with 

other existing large-scale models, aerodynamic interactions between both fractions are neglected to keep the number of 20 

parameters to a minimum (Table A3). 

The canopy coefficient 𝑓𝑐(𝑡) is estimated in V2Karst using the Beer-Lambert’s law as in Van Dijk and Bruijnzeel (2001) 

and Ruiz et al. (2010). This law has been originally used to separate the fraction of incident radiation (and by extension of net 

radiation) absorbed by the canopy from the fraction penetrating the canopy (Kergoat, 1998; Ross, 1975; Shuttleworth and 

Wallace, 1985). The canopy cover fraction at time 𝑡  is expressed as a function of the cell average leaf area index 25 

𝐿𝐴𝐼(𝑡) [m2 . m−2] and an extinction coefficient 𝑘 [−], which is understood to vary across vegetation type since it accounts for 

leaf architecture (Ross, 1975): 

𝑓𝑐(𝑡) = 1 − 𝑒−𝑘𝐿𝐴𝐼(𝑡). (4) 

Notice that Eq. (4) allows to describe the seasonal variations in canopy cover fraction without introducing additional 

parameters in the model, given that it will simply follow the seasonal variations in 𝐿𝐴𝐼. 
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Canopy interception 

The interception storage capacity over the vegetated fraction 𝑉𝑐𝑎𝑛,𝑚𝑎𝑥(𝑡) [mm]  depends (1) on the leaf area index over the 

vegetated fraction, which is estimated by rescaling the cell average leaf area index 𝐿𝐴𝐼(𝑡) by the vegetation cover fraction 

𝑓𝑐(t) (as in Bohn and Vivoni, 2016), and (2) on the canopy storage capacity per unit of leaf area index, denoted by 𝑉𝑐𝑎𝑛, which 

is understood to depend on the vegetation type since it accounts for leaf architecture (Gerrits, 2010). Specifically, Iit is 5 

expressed as: 

𝑉𝑐𝑎𝑛,𝑚𝑎𝑥(t) = 𝑉𝑐𝑎𝑛 (
LAI(t)

𝑓𝑐(t)
). 

(5) 

The interception storage over the vegetated fraction 𝐼𝑐(𝑡) [mm] is then updated at each time step as follows: 

𝐼𝑐(𝑡) = 𝑚𝑖𝑛 (𝑃(𝑡) + 𝐼𝑐(𝑡 − 1) −
𝐸𝑐𝑎𝑐𝑡(𝑡)

𝑓𝑐(𝑡)
, 𝑉𝑐𝑎𝑛,𝑚𝑎𝑥(𝑡)). (6) 

The actual evapotranspiration from canopy interception 𝐸𝑐𝑎𝑐𝑡(𝑡) [𝑚𝑚] is computed as:It has been shown that a simple 

parameterization of daily interception can give reasonable simulation results (Gerrits, 2010; De Groen, 2002; Savenije, 1997). 

Following these studies, in V2Karst, interception is represented by a daily threshold model. Our formulation is as follows: 10 

𝐸𝑐𝑎𝑐𝑡(𝑡) = 𝑓𝑐(𝑡)𝑚𝑖𝑛 (𝐸𝑐𝑝𝑜𝑡(𝑡), 𝑃(𝑡) + 𝐼𝑐(𝑡 − 1), 𝑉𝑐𝑎𝑛,𝑚𝑎𝑥(𝑡)), (57) 

where 𝐸𝑐𝑝𝑜𝑡(𝑡) [mm] is the potential evaporation from canopy interception (Eq. (142)) and, 𝑃(𝑡) [mm] is the precipitation 

and 𝑉𝑐𝑎𝑛,𝑚𝑎𝑥(𝑡) [mm] is the interception storage capacity over the vegetated fraction of the cell (Eq. (6)). The factor 𝑓𝑐(𝑡) in 

Eq. (57) accounts for the fact that evaporation from canopy occurs over the vegetated fraction only. We note that the potential 

rate 𝐸𝑐𝑝𝑜𝑡(𝑡) was not accounted for in the original formulation by (Gerrits, 2010; De Groen, 2002; Savenije, 1997). Finally, 

the throughfall is calculated as: 15 

𝑇𝑓(𝑡) = max(𝑃(𝑡) − 𝐸𝑐𝑎𝑐𝑡(𝑡) − 𝑓𝑐(𝑡)(𝐼𝑐(𝑡) − 𝐼𝑐(𝑡 − 1)), 0). (8) 

The interception storage capacity over the vegetated fraction 𝑉𝑐𝑎𝑛,𝑚𝑎𝑥  [mm]  depends (1) on the leaf area index over the 

vegetated fraction, which is estimated by rescaling cell average leaf area index 𝐿𝐴𝐼(𝑡) using the vegetation cover fraction 𝑓𝑐(t) 

following (Bohn and Vivoni, 2016), and (2) on the canopy storage capacity per unit of leaf area index, denoted by 𝑉𝑐𝑎𝑛 , which 

is understood to depend on the vegetation type since it accounts for leaf architecture (Gerrits, 2010). It is expressed as: 

𝑉𝑐𝑎𝑛,𝑚𝑎𝑥(t) = 𝑉𝑐𝑎𝑛 (
LAI(t)

𝑓𝑐(t)
). 

(6) 

Previous studies suggest that daily simulations of interceptions can provide reasonable results (Gerrits, 2010; De Groen, 20 

2002; Savenije, 1997). For daily simulation, the model does not account for the carry-over of interception storage from one 

day to the next, which means that 𝐼𝑐(𝑡) is set to zero at the end of each day and that all precipitation which is not evaporated 
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from the interception store reaches the ground as throughfallbecomes throughfall as in Gerrits (2010), De Groen (2002) and 

Savenije (1997). This assumption can be justified by the fact that the interception process is highly dynamic at a sub-daily time 

scale, because the canopy can go through several wetting-drying cycles within a day (Gerrits, 2010). Therefore, when 

evaporation from canopy interception is estimated with aat daily time step as in V2Karst, the canopy layer must be interpreted 

as a conceptual layer, whose storage capacity does not exactly correspond to the physical storage capacity of the canopy (i.e. 5 

the amount of water that can be hold at a given time), but to the cumulative amount of water that can be hold by the canopy 

over a day (Gerrits, 2010). 

Bare soil evaporation  

It is assumed that soil evaporation is a faster process than transpiration consistently with general knowledge on ET processes 

(Wang and Dickinson, 2012). Therefore, soil moisture can be first evaporated and then transpired if some available moisture 10 

remains for plant water uptake. Soil evaporation is withdrawn for the first soil layer as a function of the potential rate and soil 

moisture, similar to the previous version of VarKarst: 

𝐸𝑠𝑎𝑐𝑡,𝑖(𝑡) = min ((1 − 𝑓𝑐(𝑡))𝐸𝑠𝑝𝑜𝑡(𝑡)
𝑉𝑠𝑜𝑖,𝑖

1 (𝑡 − 1)

𝑉𝑆,𝑖
1 , 𝑉𝑠𝑜𝑖,𝑖

1 (𝑡 − 1) + 𝑇𝑓(𝑡)), (79) 

where 𝐸𝑠𝑝𝑜𝑡(𝑡) is the potential soil evaporation (Eq. (1214)). The factor (1 − 𝑓𝑐(𝑡)) in Eq. (79) accounts for the fact that soil 

evaporation occurs from the non-vegetated fraction only and therefore the potential rate has to be weighted by the bare soil 

cover fraction. The right term of the equation (𝑉𝑠𝑜𝑖,𝑖
1 (𝑡 − 1) + 𝑇𝑓(𝑡)) is not weighted because we assume that the soil moisture 15 

is uniform over the fractions of each model compartment (we compute a unique water balance) and therefore the total moisture 

present in the first soil layer is available to soil evaporation because the vegetated fraction can supply moisture to the bare soil 

fraction.  

Transpiration from vegetated soilover the vegetated fraction 

Transpiration mainly occurs in the first and second soil layers, and it switches to the third soil layer when the first two layers 20 

are depleted. The extraction of water by the roots below the root zone is e.g. documented in Penman (1950). and we We 

account for this process by representing a soil layer below the root zone, which can provide water to the root zone through 

capillary rise as in the ISBA model (Boone et al., 1999). In V2Karst, the rate at which transpiration occurs in the two first soil 

layers 𝑇𝑟𝑎𝑡𝑒,𝑖
12 (𝑡) [mm] and in the third soil layer 𝑇𝑟𝑎𝑡𝑒,𝑖

3 (𝑡) [mm] are assessed as follows: 

𝑇𝑟𝑎𝑡𝑒,𝑖
12 (𝑡) = (1 − 𝑡𝑤𝑒𝑡(𝑡))𝑓𝑐(𝑡)𝑇𝑝𝑜𝑡(𝑡)

𝑉𝑠𝑜𝑖,𝑖
1 (𝑡 − 1) + 𝑉𝑠𝑜𝑖,𝑖

2 (𝑡 − 1)

𝑉𝑆,𝑖
1 + 𝑉𝑆,𝑖

2 , (810) 
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𝑇𝑟𝑎𝑡𝑒,𝑖
3 (𝑡) = (1 − 𝑡𝑤𝑒𝑡(𝑡))𝑓𝑐(𝑡)𝑇𝑝𝑜𝑡(𝑡)

𝑉𝑠𝑜𝑖,𝑖
3 (𝑡 − 1)

𝑉𝑆,𝑖
3 𝑓𝑟𝑒𝑑. 

Where 𝑇𝑝𝑜𝑡(𝑡) is the potential transpiration (Eq. (142)), 𝑡𝑤𝑒𝑡(𝑡) [−] is the fraction of the day time step with wet canopy (Eq. 

(1113)) and 𝑓𝑟𝑒𝑑  [−] is a reduction factor which accounts for the fact that moisture below the root zone is less easily accessible 

to the roots than moisture in the root zone (Penman, 1950), and which is expected to vary across soil type since it is linked to 

the soil capability to supply water to the root zone. It is assumed that transpiration occurs in the two first soil layers when 

𝑇𝑟𝑎𝑡𝑒,𝑖
12 (𝑡) is higher than 𝑇𝑟𝑎𝑡𝑒,𝑖

3 (𝑡), and that transpiration is drawn from the third soil layer otherwise. The actual transpiration 5 

in the two first soil layers 𝑇𝑎𝑐𝑡,𝑖
12 (𝑡) [mm] and in the third soil layer 𝑇𝑎𝑐𝑡,𝑖

3 (𝑡) [mm] are therefore calculated as follows: 

when 𝑇𝑟𝑎𝑡𝑒,𝑖
12 (𝑡) ≥ 𝑇𝑟𝑎𝑡𝑒,𝑖

3 (𝑡): 

{
𝑇𝑎𝑐𝑡,𝑖

12 (𝑡) = min (𝑇𝑟𝑎𝑡𝑒,𝑖
12 (𝑡), 𝑉𝑠𝑜𝑖,𝑖

1 (𝑡 − 1) + 𝑉𝑠𝑜𝑖,𝑖
2 (𝑡 − 1) + 𝑇𝑓(𝑡) − 𝐸𝑠𝑎𝑐𝑡,𝑖(𝑡)) ,

𝑇𝑎𝑐𝑡,𝑖
3 (𝑡) = 0,

  

when 𝑇𝑟𝑎𝑡𝑒,𝑖
12 (𝑡) < 𝑇𝑟𝑎𝑡𝑒,𝑖

3 (𝑡): 

{
𝑇𝑎𝑐𝑡,𝑖

12 (𝑡) = 0,

𝑇𝑎𝑐𝑡,𝑖
3 (𝑡) = min (𝑇𝑟𝑎𝑡𝑒,𝑖

3 (𝑡),   𝑉𝑠𝑜𝑖,𝑖
3 (𝑡 − 1) + 𝑅23,𝑖(𝑡)) . 

 

(911) 

Actual transpiration in the upper two layers 𝑇𝑎𝑐𝑡,𝑖
12 (𝑡) is partitioned between the two soil layers within the root zone as is used 

in the PCR-GLOBWB model (Van Beek, 2008). In V2Karst, the transpiration is attributed to the two first soil layers 

proportional to their storage content. This simple representation assumes that the roots can equally access the moisture stored 

in the first and second layer. Actual transpiration from the first layer 𝑇𝑎𝑐𝑡,𝑖
1 (𝑡) [mm] and the second layer 𝑇𝑎𝑐𝑡,𝑖

2 (𝑡) [mm] are 10 

computed as follows: 

𝑇𝑎𝑐𝑡,𝑖
1 (𝑡) =

𝑉𝑠𝑜𝑖,𝑖
1 (𝑡 − 1) + 𝑇𝑓(𝑡)−𝐸𝑠𝑎𝑐𝑡,𝑖(𝑡)

𝑉𝑠𝑜𝑖,𝑖
1 (𝑡 − 1) + 𝑇𝑓(𝑡)−𝐸𝑠𝑎𝑐𝑡,𝑖(𝑡) + 𝑉𝑠𝑜𝑖,𝑖

2 (𝑡 − 1)
𝑇𝑎𝑐𝑡,𝑖

12 (𝑡), 

𝑇𝑎𝑐𝑡,𝑖
2 (𝑡) =

𝑉𝑠𝑜𝑖,𝑖
2 (𝑡 − 1)

𝑉𝑠𝑜𝑖,𝑖
1 (𝑡 − 1) + 𝑇𝑓(𝑡)−𝐸𝑠𝑎𝑐𝑡,𝑖(𝑡) + 𝑉𝑠𝑜𝑖,𝑖

2 (𝑡 − 1)
𝑇𝑎𝑐𝑡,𝑖

12 (𝑡). 

(1012) 

In V2Karst, it is assumed that transpiration occurs when the canopy is dry only, as it is typically done in the other large-scale 

models. The fraction of the day with wet canopy 𝑡𝑤𝑒𝑡(𝑡) [−] is estimated as the fraction of available energy that was used to 

evaporate water from the interception store by assuming that the actual rate of evaporation from interception is constant 

throughout the day and is equal to the potential rate similar to Kergoat (1998): 15 

𝑡𝑤𝑒𝑡(𝑡) =
𝐸𝑐𝑎𝑐𝑡(𝑡)

𝑓𝑐(𝑡)𝐸𝑐𝑝𝑜𝑡(𝑡)
    (1113) 
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Potential evapotranspiration 

We replace the Priestley-Taylor potential evaporation equation originally used in VarKarst used in the previous version of the 

model by the Penman-Monteith equation (Monteith, 1965), that has been shown to be applicable at both daily and sub-daily 

time step (e.g. Allen et al., 2006; Pereira et al., 2015). Potential transpiration rate over the vegetated fraction of the cell 

𝑇𝑝𝑜𝑡(𝑡) [mm]  is estimated from the canopy aerodynamic resistance 𝑟𝑎,𝑐𝑎𝑛(t) [s . m−1]  and surface resistance 5 

𝑟𝑠,𝑐𝑎𝑛(𝑡) [s . m−1], potential evaporation from interception over the vegetated fraction of the cell 𝐸𝑐𝑝𝑜𝑡(𝑡) [mm] is assessed 

assuming that the surface resistance is equal to 0 following e.g. Shuttleworth (1993), while potential bare soil evaporation rate 

over the bare soil fraction of the cell 𝐸𝑠𝑝𝑜𝑡(𝑡) [mm] is calculated from the soil aerodynamic resistance 𝑟𝑎,𝑠𝑜𝑖(𝑡) [s . m−1]  and 

surface resistance 𝑟𝑠,𝑠𝑜𝑖  [s . m−1], using the following equations: 

𝑇𝑝𝑜𝑡(𝑡) =

∆(𝑡)(𝑅𝑛(𝑡) − 𝐺(𝑡)) + 𝐾𝑡𝜌𝑎(𝑡)𝑐𝑝
𝑒𝑠(𝑡) − 𝑒𝑎(𝑡)

𝑟𝑎,𝑐𝑎𝑛(𝑡)

𝜆(𝑡) (∆(𝑡) + 𝛾(𝑡) (1 +
𝑟𝑠,𝑐𝑎𝑛(𝑡)

𝑟𝑎,𝑐𝑎𝑛(𝑡)
))

, 

𝐸𝑐𝑝𝑜𝑡(𝑡) =

∆(𝑡)(𝑅𝑛(𝑡) − 𝐺(𝑡)) + 𝐾𝑡𝜌𝑎(𝑡)𝑐𝑝
𝑒𝑠(𝑡) − 𝑒𝑎(𝑡)

𝑟𝑎,𝑐𝑎𝑛(𝑡)

𝜆(𝑡)(∆(𝑡) + 𝛾(𝑡))
, 

𝐸𝑠𝑝𝑜𝑡(𝑡) =

∆(𝑡)(𝑅𝑛(𝑡) − 𝐺(𝑡)) + 𝐾𝑡𝜌𝑎(𝑡)𝑐𝑝
𝑒𝑠(𝑡) − 𝑒𝑎(𝑡)

𝑟𝑎,𝑠𝑜𝑖(𝑡)

𝜆(𝑡) (∆(𝑡) + 𝛾(𝑡) (1 +
𝑟𝑠,𝑠𝑜𝑖

𝑟𝑎,𝑠𝑜𝑖(𝑡)
))

. 

(1214) 

wWhere 𝑅𝑛(𝑡) [MJ m−2 Δt−1] is the net radiation (𝛥𝑡 is the simulation time step), 𝐺(𝑡) [MJ m−2 Δt−1] is the ground heat flux, 10 

𝜆(𝑡) [MJ . kg−1]  is the latent heat of vaporization of water, ∆(t) [kPa . °C−1] is the gradient of the saturated vapour pressure-

temperature function, 𝛾(𝑡) [kPa . °C−1] is the psychrometric constant, 𝜌𝑎(𝑡) [kg . m−3] is the air density, 𝑐𝑝 [MJ . kg−1 . °C−1]  

is the specific heat of the air and is equal to  1.013.10−3MJ . kg−1 . °C−1 , 𝑒𝑠(𝑡) [kPa] is the saturation vapor pressure, 

𝑒𝑎(𝑡) [kPa] is the actual vapor pressure, and 𝐾𝑡  [s . Δtd−1]  is a time conversion factor which corresponds to the number of 

seconds per simulation time step (equal to 86,400 s. d−1for daily simulations). In this study, we neglect ground heat flux for 15 

daily time step, which seems to be a reasonable for daily calculationsassumption (see e.g. Allen et al., 1998; Shuttleworth, 

2012). 

The aerodynamic resistances of canopy (𝑟𝑎,𝑐𝑎𝑛(t)) and of the soil (𝑟𝑎,𝑠𝑜𝑖(𝑡)), that depend on the properties of the land cover 

and the soil respectively, are computed using the formulation of Allen (1998). To assess 𝑟𝑎,𝑐𝑎𝑛(t)), roughness lengths and zero 

displacement plane for the canopy are estimated from the vegetation height ℎ𝑣𝑒𝑔  [m] (Allen et al., 1998). To calculate 20 
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𝑟𝑎,𝑠𝑜𝑖(𝑡)), the zero plane displacement height is equal to zero (𝑑 = 0) and the roughness length for momentum and for heat 

and water vapor transfer are assumed to be equal, as in Šimůnek et al. (2009) and denoted as 𝑧0 [m]. 

Finally, the canopy surface resistance is computed by scaling the stomatal resistance  𝑟𝑠𝑡  [s . m−1]  to canopy level using the 

leaf area index over the vegetated fraction (as in Eq. (56) to assess canopy interception capacity), and therefore assuming a 

homogeneous response across all stomata in the canopy (Allen et al., 1998; Liang et al., 1994): 5 

𝑟𝑠,𝑐𝑎𝑛(𝑡) =
𝑟𝑠𝑡

(
𝐿𝐴𝐼(𝑡)
𝑓𝑐(𝑡)

)
. 

(1315) 

In other large-scale models, 𝑟𝑠,𝑐𝑎𝑛  is also often expressed as a function of 𝐿𝐴𝐼 , which allows to directly represents its 

seasonality following the variations in 𝐿𝐴𝐼. 

Seasonality of vegetation 

We represent the seasonality of vegetation by describing the seasonal variation of the cell average leaf area index 𝐿𝐴𝐼. We use 

two parameters, the maximum 𝐿𝐴𝐼𝑚𝑎𝑥  [m2.  m−2], which is the annual maximum value of 𝐿𝐴𝐼 during the growing season 10 

(assumed to be from June to August in this study) and 𝐿𝐴𝐼𝑚𝑖𝑛  [%], which is the percentage of reduction in 𝐿𝐴𝐼 during the 

dormant season (assumed to be from December to February in this study). The monthly value of leaf area index 

𝐿𝐴𝐼𝑚  [m2.  m−2] for the 𝑚𝑡ℎ month is computed using a continuous, piecewise linear function of  𝐿𝐴𝐼𝑚𝑎𝑥 and 𝐿𝐴𝐼𝑚𝑖𝑛 , which 

allows for a smooth transition between dormant and growing seasons and is similar to the function proposed by Allen et al. 

(1998) to assess the seasonality in crop factors: 15 

𝐿𝐴𝐼𝑚 =
𝐿𝐴𝐼𝑚𝑖𝑛

100
𝐿𝐴𝐼𝑚𝑎𝑥                                               when 𝑚 = 1, 2,12 

𝐿𝐴𝐼𝑚 =
𝐿𝐴𝐼𝑚𝑖𝑛

100

𝐿𝐴𝐼𝑚𝑎𝑥

4
(6 − 𝑚) +

𝐿𝐴𝐼𝑚𝑎𝑥

4
(𝑚 − 2)    when 𝑚 = 3, 4, 5          

𝐿𝐴𝐼𝑚 = 𝐿𝐴𝐼𝑚𝑎𝑥                                                        when 𝑚 = 6,7,8 

𝐿𝐴𝐼𝑚 =
𝐿𝐴𝐼𝑚𝑖𝑛

100

𝐿𝐴𝐼𝑚𝑎𝑥

4
(𝑚 − 8) +

𝐿𝐴𝐼𝑚𝑎𝑥

4
 (12 − 𝑚)  when 𝑚 = 9, 10, 11. 

(1416) 

The advantage of using this simple parameterisation is that it permits to easily analyse the effect of vegetation seasonality 

by studying the sensitivity of the model predictions to parameter 𝐿𝐴𝐼𝑚𝑖𝑛, which captures the strength of the seasonal variation 

in 𝐿𝐴𝐼. Timings of the four phases of the seasonality model reported in Eq. (16) are adapted for the application at the sites 

used in the present study, which are all located in Europe (Sect. 3.3.1). 

2.3.4 Water storage in the epikarst 20 

Epikarst water storage 𝑉𝑒𝑝𝑖,𝑖(𝑡) [mm] for the 𝑖th compartment is updated at the end of each time step 𝑡 as follows: 
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𝑉𝑒𝑝𝑖,𝑖(𝑡) = 𝑉𝑒𝑝𝑖,𝑖(𝑡 − 1) + 𝑅𝑒𝑝𝑖,𝑖(𝑡) − 𝑄𝑒𝑝𝑖,𝑖(𝑡) − 𝑄𝑙𝑎𝑡,i→i+1(𝑡)        when 𝑖 < 𝑛𝑐, 

𝑉𝑒𝑝𝑖,𝑛𝑐
(𝑡) = 𝑉𝑒𝑝𝑖,𝑛𝑐

(𝑡 − 1) + 𝑅𝑒𝑝𝑖,𝑛𝑐
(𝑡) − 𝑄𝑒𝑝𝑖,𝑛𝑐

(𝑡) − 𝑄𝑠𝑢𝑟𝑓,𝑛𝑐
(𝑡)  when  𝑖 = 𝑛𝑐.   

(1517) 

where 𝑄𝑒𝑝𝑖,𝑖(𝑡) [mm]  is the potential recharge to the groundwater (Eq. (186)), 𝑄𝑙𝑎𝑡,i→𝑖+1(𝑡) [mm] is the lateral flow from the 

𝑖th to the (𝑖 + 1)th model compartment and 𝑄𝑠𝑢𝑟𝑓,𝑛𝑐
(𝑡) [mm] is the surface runoff generated by the 𝑛𝑐th compartment. When 

soil and epikarst layers are saturated, the concentration flow component of the model is activated. The 𝑖th model compartment 

generates lateral flow towards the (𝑖 + 1)th compartment 𝑄𝑙𝑎𝑡,i→𝑖+1(𝑡) [𝑚𝑚] equal to its saturation excess. Lateral flow from 

the 𝑛𝑐th compartment is lost from the cell as surface runoff while the other model compartments do not produce any surface 5 

runoff. The epikarst is simulated as a linear reservoir (Rimmer and Hartmann, 2012) with outflow coefficient 𝐾𝐸,𝑖  [d]:  

𝑄𝑒𝑝𝑖,𝑖(𝑡) = min (
𝑉𝑒𝑝𝑖,𝑖(𝑡 − 1)

𝐾𝐸,𝑖
, 𝑉𝑒𝑝𝑖,𝑖(𝑡 − 1) + 𝑅𝑒𝑝𝑖,𝑖(𝑡)). (1618) 

3. Sites and data for model testing 

3.1 Site dDescription of study sites 

We test the model with plot scale measurements from sites of the FLUXNET network (Baldocchi et al., 2001). We identified 

four FLUXNET sites across European and Mediterranean carbonate rock areas for which sufficient data are available to force 10 

V2Karst and to test the model (see Sect. 3.2). A short summary of each site characteristics is provided in Figure Fig. 2, and 

more detailed information can be found in Table B1. 

The sites have different climate and land cover properties. The first site (Hainich site, referred to as ‘German site’) is located 

in the protected Hainich National Park, Thuringia, central Germany, and is characterised by a suboceanic-submountain climate 

and a tall and dense deciduous broadleaf forest. The second site (Llano de los Juanes site referred to as ‘Spanish site’) is located 15 

on a plateau of the Sierra de Gádor mountains, south-eastern Spain, has a semi-arid mountain Mediterranean climate and is an 

open shrubland. The third site (Font-Blanche site, referred to as ‘French 1 site’) is located in south-eastern France, has a 

Mediterranean climate and its land cover is medium-height mixed evergreen forest. The fourth site (Puéchabon site, referred 

to as ‘French 2 site’) is located in southern France and is characterised by a Mediterranean climate with a short evergreen 

broadleaf forest. Overground vegetation properties are well characterised at all sites, but subsurface properties are more 20 

uncertain. In particular, the rooting depth water capacity was only well investigated at the French 2 site. The four sites are 

appropriate for testing V2Karst since they satisfy the model assumptions, namely a karstified or fissured and fractured bedrock, 

overall high infiltration capacity with limited surface runoff and high clay content in the soil (Table B1). 
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3.2 Data description and preprocessingparation 

Data available at the four FLUXNET sites include measurements of precipitation, temperature, net radiation, relative humidity 

and wind speed to force the model, and. Eeddy-covariance measurements of latent heat flux (density) and at the German and 

Spanish sites measurements of soil moisture are also available to estimate the model parameters (Sect. 4.1). Specifically, at 

the German site, soil moisture was measured in one vertical soil profile at three different depths (5, 15  and 30 cm) with Theta-5 

probes (Knohl et al., 2003). We selected the measurement at 30 cm depth, which we deem to be most representative of the 

entire soil column which has a depth between 50 and 60 cm. At the Spanish site, soil moisture was assessed at a depth of 15 

cm using a water content reflectometer (Pérez-Priego et al., 2013). 

Regarding the data processing, dData to force the model were gap-filled and aggregated from 30 min to daily time scale. 

V2Karst output observations, namely latent heat flux and soil moisture measurements, were aggregated from 30 min to 10 

monthly time scale and we discarded the months when more than 20 % of 30 min data were missing. We discarded the monthly 

observations of latent heat flux and soil moisture for months in which the forcing data contain many gaps, and therefore the 

impact of the gap-filling of the data on the simulation results is likely to be too significant to sensibly compare simulated and 

observed soil moisture and latent heat flux. Additionally, we removed monthly aggregated latent heat flux measurements when 

the mismatch in the energy balance closure was higher than 50% similar to (Miralles et al., 2011). We corrected latent heat 15 

flux measurements to force the closure of the energy balance assuming that measured latent heat flux 𝐿𝐸 [MJ. m−2. month−1] 

and sensible heat flux 𝐻 [MJ m−2 month−1]  have similar errors. The corrected evapotranspiration estimate 

𝐸𝑎𝑐𝑡,𝑐𝑜𝑟[mm. month−1] is calculated as (Foken et al., 2012; Twine et al., 2000): 

𝐸𝑎𝑐𝑡,𝑐𝑜𝑟 =
𝑅𝑛

𝜆(1 +
𝐻
𝐿𝐸)

   (19) 

Further details on the data processing and on the analysis of the uncertainty in latent heat flux measurements are isreported 

in Sect. S4 of our Supplementary material. In particular, we showed that, while the actual value of latent heat flux can have 20 

large uncertainties, we have a much higher confidence in its temporal variations.  

Table 2 reports the simulation period and the number of monthly latent heat flux and soil moisture observations that were 

used to estimate the model parameters at the four FLUXNET sites. We extracted a continuous time series of forcing data 

covering about 10 years at the German site, 7 years at the Spanish site, 3 years at the French 1 site and 8 years at the French 2 

site, while latent heat flux and soil moisture measurements are were not available over the entire simulation time series. All 25 

model simulations were performed using a one-year warm-up period, which we found to be sufficient to remove the impact of 

the initial conditions on the simulation results (see Sect. S5 of our Supplementary material). 

 

Moreover, we corrected latent heat measurements and analysed their uncertainty. We derived two corrected estimates of 

actual ET, obtained by forcing the closure in the energy balance following (Foken et al., 2012; Twine et al., 2000), namely: 30 
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1. a corrected value that assumes that latent heat (𝐿𝐸 [MJ. m−2. month−1])  and sensible heat (𝐻 [MJ. m−2. month−1]) 

have similar errors (referred to as Bowen ratio estimate): 

𝐸𝑎𝑐𝑡,𝑏𝑜𝑤 =
𝑅𝑛

𝜆. (1 +
𝐻
𝐿𝐸)

 [mm. month−1], (17) 

2. a corrected value that assumes errors in latent heat only (referred to as residual estimate): 

𝐸𝑎𝑐𝑡,𝑟𝑒𝑠 = 𝜆. (𝑅𝑛 − 𝐻) [mm. month−1]. (18) 

An additional analysis showed that the two corrected estimates of Eq. (17-18) and the uncorrected measure of actual ET are 

well correlated at the FLUXNET sites, which gives us some confidence regarding the temporal variations in actual ET 5 

measurements, while relative errors between corrected and uncorrected estimates can be quite high (see Section S4 of our 

Supplementary material). We chose to use the Bowen ratio estimate (Eq. (17)) to calibrate the model. In fact, it is not clear 

whether one of the two turbulent fluxes may be more uncertain than the other (Foken et al., 2012). 

4. Methods  

In this study, we estimate V2Karst parameters and test the plausibility of model realisations at the FLUXNET sites (Sect. 4.1), 10 

we conduct a global sensitivity analysis of the model parameters at the FLUXNET sites to identify the model dominant controls 

and inform model calibration for future applications (Sect. 4.2) and we last, perform a set of virtual experiments to learn about 

the mechanism of recharge production in the model and its sensitivity to precipitation characteristics and land cover type (Sect. 

4.3). To test the plausibility of V2Karst predictions at FLUXNET sites, we run three sets of analyses: we first estimate the 

model parameters using actual ET and soil moisture observations available at the four sites (methods in Sect. 4.1). We then 15 

analyse the sensitivity of simulated annual recharge to the model parameters using measured forcing data to understand the 

controlling processes (Sect. 4.2). Finally, we investigate the sensitivity of simulated recharge to precipitation properties and 

land cover type in a virtual experiment to understand the controlling processes in recharge when the forcing data is varied 

more widely than observed at the study sites (Sect. 4.3). All the analyses were performed using the SAFE toolbox for global 

sensitivity analysis (Pianosi et al., 2015). 20 

4.1 Parameter estimation constraining at the FLUXNET sites using soft rules 

We investigate whether it is possible to estimate parameter values that produce plausible simulations based on information 

available at each FLUXNET site. To this end, and similarly to Hartmann et al. (2015), we use ‘soft rules’ to accept or reject 

parameter combinations based on the consistency between monthly model simulations on one side, and monthly observations 

and a priori information on model fluxes on the other side. Using soft rules instead of ‘hard rules’ (i.e. minimisation of the 25 

mismatch between observations and simulations) allows to identify a set of plausible model simulations parameter sets and 



20 

 

 

accounts for the fact that (1) the observed soil moisture is not strictly commensurate with simulated soil moisture, (2) 

observations are affected by uncertainties (see Sect. 3.2) and (3) it is not expected that V2Karst simulations closely match site-

specific data, since the model structure is based on general understanding of karst systems for large-scale applications and may 

not account for some site specificities. We define five soft rules to identify acceptable (‘behavioural’) parameter combinations: 

1. The bias between observed and simulated actual ET is below 20%: 5 

𝐵𝑖𝑎𝑠 = |
∑ (𝐸𝑎𝑐𝑡,𝑠𝑖𝑚(𝑡) − 𝐸𝑎𝑐𝑡,𝑏𝑜𝑤𝑐𝑜𝑟(𝑡))𝑡∈𝑀𝐸𝑇

∑ 𝐸𝑎𝑐𝑡,𝑏𝑜𝑤𝑐𝑜𝑟(𝑡)𝑡∈𝑀𝐸𝑇

| < 20%, (1920) 

where 𝐸𝑎𝑐𝑡,𝑠𝑖𝑚(𝑡)[mm]  is the simulated actual ET for month 𝑡  (sum of transpiration, soil evaporation and 

evaporation from canopy interception), 𝐸𝑎𝑐𝑡,𝑏𝑜𝑤𝑐𝑜𝑟(𝑡) [mm] is the Bowen ratio correction ofcorrected observed 

actual ET (Eq. (1719)), and 𝑀𝐸𝑇 is the set of months for which latent heat measurements are available. This rule 

allows to constrain the simulated water balance. 

2. The correlation coefficient (𝜌𝐸𝑇) between observed monthly actual ET (𝐸𝑎𝑐𝑡,𝑏𝑤) and simulated total actual ET 10 

(𝐸𝑎𝑐𝑡,𝑠𝑖𝑚) is above 0.6. This rule ensures that the temporal pattern of simulated ET follows the observed pattern. 

3. The correlation coefficient (𝜌𝑆𝑀) between observed monthly soil moisture (𝑆𝑀𝑜𝑏𝑠  [% soil saturation]) and 

simulated monthly soil moisture (𝑆𝑀𝑠𝑖𝑚 [m3 . m−3 soil volume]) is above 0.6. Simulated soil moisture 𝑆𝑀𝑠𝑖𝑚 for 

month 𝑡 is calculated as the average soil moisture within the root zone over all model compartments. This rule 

guarantees that soil moisture variations are consistent with observations. 15 

4. Total simulated surface runoff (𝑄𝑠𝑢𝑟𝑓) is less than 10% of precipitation, in accordance with a priori information 

on the carbonate rock sites, which attests that runoff is negligible (see section 3.1). 

5. Soil and vegetation parameter values are consistent with a priori information, i.e. they fall within constrained 

(site-specific) ranges. This rule applies to the parameters for which a priori information is available at the FLUXNET 

sites, namely ℎ𝑣𝑒𝑔 , 𝑟𝑠𝑡 , 𝐿𝐴𝐼𝑚𝑖𝑛 , 𝐿𝐴𝐼𝑚𝑎𝑥  𝑉𝑟  and 𝑉𝑠𝑜𝑖  and the constrained ranges are reported in Table 3. This rule 20 

ensures that acceptable model outputs are produced using plausible parameter values. 

For each site, we derived a sample of size 100,000 for the 15 parameters of V2Karst using Latin hypercube sampling and 

unconstrained (wide) ranges for the model parameters to explore a large range of soil and vegetation types. We applied the 

above rules in sequence to either reject or accept the sampled parameter combinations. We sampled more densely the 

constrained parameter ranges used in rule 5 so that a sufficiently large number of parameterisations remain after applying rule 25 

5. Similarly to Hartmann et al. (2015), a priori information on parameter ranges (rule 5) is applied last so that we can first 

assess the constraining of the parameter space based on information on model output only (rules 1 to 4), and then the 

consistency of this constraining with a priori information (rule 5). 

We also note that the thresholds used in rules 1 to 3 are stricter compared to the study by Hartmann et al. (2015), in which 

the threshold for the bias rule (1) was set to 75% and for the correlation rules (2 and 3) was set to 0. The reason is that in 30 
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Hartmann et al. (2015) behavioural parameter sets had to be consistent with observations at all sites within each climate zone 

defined in the study, while here we perform the parameter estimation for each site separately and therefore we expect better 

model performances. 

4.2 Parameter gGlobal sensitivity analysis of the model parameters 

We use a global sensitivity analysis called the Elementary Effect Test (Saltelli et al., 2008), also sometimes referred to asor 5 

method of Morris (Morris, 1991), . This is a global sensitivity analysis method, and therefore it permits to analyse sensitivity 

across the entire space of parameter variability space (Saltelli et al., 2008). We chose this method in particular because it is 

well suited for identifying uninfluential parameters (Campolongo et al., 2007; Saltelli et al., 2008), which is one of the 

objectives of our analysis, and because it can be easily applied to dependent parameters (in V2Karst it is assumed that 𝑉𝑒 ≤

𝑉𝑟 ≤ 𝑉𝑆,𝑛 as explained in Sect. 2.3.1).  10 

The method requires the computation of the Elementary Effects (EEs) of each parameter in 𝑛 different baseline points in 

the parameter space. The EE of the 𝑖th parameter 𝑥𝑖 at given baseline point (𝑥1
𝑗
, 𝑥2

𝑗
, … , 𝑥𝑖−1

𝑗
, 𝑥𝑖

𝑗
, … , 𝑥𝑀

𝑗
) and for a predefined 

perturbation ∆ is assessed as follows: 

𝐸𝐸𝑖
𝑗

=
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, 

(201) 

where 𝑀 is the number of parameters and 𝑦 is the model output (simulated annual recharge in our case). The sensitivity indices 

analysed in the present study are We analyse the mean of the absolute values of the EEs (denoted by 𝜇𝑖
∗) introduced in 15 

Campolongo et al. (2007), which is a measure of the total effect of the 𝑖th parameter, and the standard deviation of the EEs 

(𝜎𝑖) proposed in (Morris, 1991), which is an aggregate measure of the intensity of the interactions of the 𝑖th parameter with 

the other parameters and of the degree of non-linearity in the model response to changes in the 𝑖th parameter. 

The total number of model evaluations required to compute these two sensitivity indices is 𝑛(𝑀 + 1), where 𝑛 is the number 

of baseline points chosen by the user. The baseline points and the perturbation ∆ of Eq. (2021) were determined following the 20 

radial design proposed by Campolongo et al. (2011). The baseline points were randomly selected using Latin hypercube 

sampling for the 15 parameters of V2Karst, and dropping the parameter sets that did not meet the condition 𝑉𝑒 ≤ 𝑉𝑟 ≤ 𝑉𝑆,𝑛. In 

our application, we used 𝑛 = 500 points, which means that we needed 8000 model evaluations for each sensitivity analysis 

for each of the four FLUXNET sites. We derived confidence intervals on the sensitivity indices via bootstrapping using 1000 

bootstrap resamples, and checked the convergence of the results at the chosen sample size, as suggested in Sarrazin et al. 25 

(2016).  
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4.3 Virtual experiments to analyse sensitivity to climate and land cover change 

Our last analysis consists of a set virtual experiments to investigate the sensitivity of recharge  and actual ET simulated by 

V2Karst to changes in (1) the precipitation properties,  (specifically monthly total precipitation average monhly amount and 

daily temporal distribution, i.e. frequency and intensity, which are likely to change (IPCC, 2013)) and (2) land cover 

(specifically from forest to shrub and vice versa).  5 

Virtual experiments using numerical modelspermit full control on experimental conditions, and thus to unequivocally 

attribute changes in model outputs to changes in model inputs (see e.g. Pechlivanidis et al., 2016; Weiler and McDonnell, 

2004). Several Different studies have used virtual experiments to analyse the impact of precipitation spatial and temporal 

variability on hydrologic model outputs. In fact, using historical precipitation time series or future projections only allow 

exploration of a limited range of possible realisations, which makes it difficult to disentangle the effects of different 10 

precipitation properties on model outputs. Instead, synthetic precipitation time series can be tailored to analyse the impact of 

specific precipitation characteristics, for instance precipitation spatial distribution (Pechlivanidis et al., 2016; Van Werkhoven 

et al., 2008) and precipitation temporal distribution, namely frequency and intensity (Jothityangkoon and Sivapalan, 2009; 

Porporato et al., 2004), storminess (Jothityangkoon and Sivapalan, 2009) and seasonality (Botter et al., 2009; Jothityangkoon 

and Sivapalan, 2009; Laio et al., 2002; Yin et al., 2014). 15 

 

In this study, we create a synthetic precipitation time series where the same precipitation event is periodically repeated. The 

precipitation time series is characterized by the intensity of precipitation events 𝐼𝑝  [mm . d−1] and the interval between two 

wet days 𝐻𝑝 [d] . The duration of each precipitation event here is set to one day. The average monthly precipitation 

𝑃𝑚 [mm. month−1] for an average month with 30 days is therefore equal to: 20 

𝑃𝑚 = 30.
𝐼𝑝

1 + 𝐻𝑝
 (2122) 

To determine the possible range of variation of the three variables, 𝑃𝑚, 𝐼𝑝 and 𝐻𝑝, we analysed their distributions at the four 

FLUXNET sites and over all European and Mediterranean carbonate rock areas using GLDAS data (Rodell et al., 2004) 

(distributions are reported in section S6 of our supplementary material). We found that wide but plausible ranges are: 𝑃𝑚 varies 

between 0 and 500 mm . month−1, 𝐼𝑝 varies between 0 and 200 m . d−1  and 𝐻𝑝 varies between 0 and 89 d (note that 𝐻𝑝 = 0  

means that it rains every day). We then derived a set of 2266 precipitation time series by deterministically sampling 𝑃𝑚, and 25 

𝐻𝑝 within those ranges (and consequently deriving a sampled value of 𝐼𝑝 from Eq. (2122)). We sampled more densely closer 

to the lower bound of the ranges since lower values of 𝑃𝑚 and 𝐻𝑝 are more likely to occur. For each of the precipitation time 

series so obtained, we ran the V2Karst model until the simulated fluxes reached a steady-state is reached (i.e. periodic 

oscillations of all state and flux variables) and we analyse the steady-state monthly average of recharge, transpiration, soil 

evaporation and evaporation from interception.. 30 
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The experiments are conducted at two ‘virtual sites’ that are designed based on the characteristics of the FLUXNET sites. 

Specifically, we use a virtual ‘forest site’ that has the characteristics of the German site as the baseline (i.e. its behavioural 

parameterisations for the soil, epikarst and vegetation parameters, and its climate characteristics) and a virtual ‘shrub site’ that 

has the characteristics of the Spanish site. We do not investigate the effects of varying temperature, net radiation, relative 

humidity and wind speed characteristics as we did for precipitation, because these variables are correlated (see e.g. Ivanov et 5 

al., 2007) and therefore they cannot be varied independently. We account for their overall combined effect and we vary them 

jointly to reproduce two conditions, i.e. winter (e.g. low energy for ET) and summer (high energy for ET). For winter 

(respectively summer) conditions we forced the model using constant values of temperature, net radiation, relative humidity 

and wind speed that were taken as the average values measured at the FLUXNET sites during winter (respectively summer). 

The forest site also inherits the suboceanic-submountain climate characteristics of the German site (i.e. we force the model by 10 

the average values of air temperature, net radiation, humidity and wind speed measured at that site), while the shrub site inherits 

the semi-arid climate of the Spanish site. To investigate the impact of a change in land cover at these virtual sites, we swapped 

the vegetation parameters (indicated in Table 1) between the two virtual sites.  

We do not investigate the effects of varying temperature, net radiation, relative humidity and wind speed characteristics as 

we did for precipitation, because these weather variables are correlated (see e.g.  (see e.g. Ivanov et al., 2007)) and therefore 15 

they cannot be varied independently. Instead, we account for their overall combined effect in a simple way by analysing the 

changes in sensitivity when these variables are set to winter (low energy for ET) and summer (high energy for ET) conditions. 

Table 4 reports the values of the parameters and the values of the weather variables used at the two virtual sites. 

5. Results 

5.1 Parameter estimationconstraining at FLUXNET sites 20 

In this section, we present the results of the parameter estimation at FLUXNET sites. We analyse the impact of the application 

of the soft rules defined in Sect. 4.1 on the reduction in acceptable (‘behavioural’) parameterisations (Sect. 5.1.1) and we 

examine V2Karst outputs (Sect. 5.1.2) 

5.1.1 Analysis of the constraining of the parameter space 

We first present the results of applying the soft rules defined in Sec. 4.1 at the four FLUXNET sites. Figure 3 shows that 25 

behavioural parameterisations consistent with all rules can be identified at all sites, but Ttheir number is very different from 

one site to another. Specifically, out of the initial 100,000 randomly generated parameter samples, we found 36,838 behavioural 

parameterisations at the German site, 147 at the Spanish site, 6354 at the French 1 site and 4077 at the French 2 site. From Fig. 

3, we also see that the application of each rule reduces the number of behavioural parameterisations, except for rule 4 (value 

of total surface runoff < 10% of precipitation), since all model simulations produce less than 7% of surface runoff at all sites. 30 
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This can be explained by the fact that V2Karst gives priority to recharge production over surface runoff. Therefore, the latter 

only occurs under extremely wet conditions when all model compartments are saturated. 

Figure 4 reports a parallel coordinate plot of the behavioural parameter sets and associated values of the output metrics after 

sequential application of the soft rules. The application of rules 1 to 4 does not significantly reduce the parameter ranges, but 

it only allows to discard low values of parameters 𝑉𝑟  and 𝑉𝑠𝑜𝑖  at all sites (dark blue lines in Fig. 4). Instead, the application of 5 

rule 5 (a priori parameter ranges, red black vertical lines in Fig. 4) permits a significant reduction in parameter ranges, not only 

for the parameters that are directly constrained by this rule (ℎ𝑣𝑒𝑔, 𝑟𝑠𝑡, 𝐿𝐴𝐼𝑚𝑖𝑛 , 𝐿𝐴𝐼𝑚𝑎𝑥, 𝑉𝑟  and 𝑉𝑠𝑜𝑖) but also for the spatial 

variability coefficient 𝑎. Specifically, behavioural values of parameter 𝑎 are found to be between 0 and 3.2 at the French 1 

site, between 0 and 2.8 at the French 2 site. At the Spanish site, we also observe that the behavioural simulations (red lines) 

cover more densely some portions of the ranges, specifically higher values of parameters 𝑟𝑠,𝑠𝑜𝑖 and 𝑎, and lower values of 𝑧0 10 

and 𝑉𝑒. This means that the value for these parameters is more likely to be within these sub-ranges.  

 

5.1.2 Analysis of model simulationspredictions 

In this paragraph, Wwe also analyse the repartition of the simulated water fluxes when using the behavioural parameterisations 

(Fig. 5). The top panel (Figure Fig. 5a) compares the total simulated recharge and the total actual ET, expressed in percentage 15 

of total precipitation at the four FLUXNET sites (mean and 95% confidence interval across the behavioural parameterisations). 

At the Spanish site, we present the results over two different time periods that have very different precipitation amounts, 

namely a drier period from 1 January 2006 to 31 December 2008 and a wetter period from 1 January 2009 to 30 December 

2011 (see Fig. 2). Figure 5 shows that, apart from extremely wet periods at the Spanish site, in all other cases the fraction of 

recharge (𝑄𝑒𝑝𝑖) is significantly lower than the fraction actual ET (𝐸𝑇𝑎𝑐𝑡). Figure 5b shows the partitioning of ET among its 20 

different components (transpiration, soil evaporation and interception). We observe that transpiration (𝑇𝑎𝑐𝑡) is the largest 

component at all sites, while the relative importance of evaporation from canopy interception (𝐸𝑐𝑎𝑐𝑡) and soil evaporation 

(𝐸𝑠𝑎𝑐𝑡) varies across sites. In particular, at the German site, 𝐸𝑐𝑎𝑐𝑡  is on average particularly high compared to the other sites, 

which may be partly explained by the fact that summer 𝐿𝐴𝐼 (parameter 𝐿𝐴𝐼𝑚𝑎𝑥) is higher at this densely forested site compared 

to the other sites, and therefore the summer canopy storage capacity is higher as well..  25 

Finally, Fig. 6 presents reports monthly time series of both observed variables, namely precipitation input 𝑃,  actual 𝐸𝑎𝑐𝑡,𝑐𝑜𝑟  

(in blue) and soil moisture 𝑆𝑀𝑜𝑏𝑠 (in green). It also reports simulated variables, namely recharge 𝑄𝑒𝑝𝑖 , actual ET 𝐸𝑎𝑐𝑡,𝑠𝑖𝑚 and 

soil moisture in the root zone 𝑆𝑀𝑠𝑖𝑚 (non-behavioural simulations are in grey and behavioural simulations in black).  the time 

series of monthly precipitation input (𝑃), simulated monthly recharge (𝑄𝑒𝑝𝑖), total actual ET (𝐸𝑎𝑐𝑡) and soil moisture in the 

root zone (𝑆𝑀𝑠𝑖𝑚) at the four FLUXNET sites. Observation of soil moisture and actual ET are also reported, and the blue lines 30 

correspond to the Bowen ratio corrected estimate used in rules 1-2 for parameter estimation (see Sect. 4.1). We see that the 
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soft rules allow to significantly reduce the uncertainty in model outputs at all sites. In fact, the width of the behavioural 

ensemble, i.e. the ensemble of simulations obtained by application of the rules (black lines), is much narrower than the non-

behavioural ensemble (grey lines). Simulated actual ET (𝐸𝑎𝑐𝑡,𝑠𝑖𝑚 ) is also closer to the observations (blue line) in the 

behavioural ensemble compared to the non-behavioural one. This means that the application of the soft rules and a priori 

information on parameter ranges allows not only to improve the precision of the simulated states and fluxes (reduced 5 

uncertainty ranges of the simulations), but also the accuracy of simulated actual ET (simulations close to observations). 

Moreover, the model structure is flexible enough to capture most corrected and uncorrected ET observations, since the non-

behavioural model ensemble (grey) includes most corrected and uncorrected ET values.  

From Fig. 6, we also observe that the seasonal variations in model predictions are consistent with our understanding of the 

sites over the entire simulation horizon and not only over the months for which ET and soil moisture observations are used to 10 

estimate the parameters (blue and green areas in the plot). Specifically, at the German site we find a marked seasonality of 

simulated 𝐸𝑎𝑐𝑡,𝑠𝑖𝑚 and 𝑆𝑀𝑠𝑖𝑚, with low 𝐸𝑎𝑐𝑡,𝑠𝑖𝑚 and high 𝑆𝑀𝑠𝑖𝑚 in winter, and high 𝐸𝑎𝑐𝑡,𝑠𝑖𝑚 and low 𝑆𝑀𝑠𝑖𝑚 in spring and 

summer. In fact, in winter, the energy available for ET is low and the deciduous vegetation is not able to transpire or intercept 

large amounts of precipitation, while in spring and summer more energy is available for ET and the vegetation has a higher 

value of 𝐿𝐴𝐼, and therefore ET losses can occur and deplete the soil moisture. At the other sites we observe a similar pattern 15 

for 𝑆𝑀𝑠𝑖𝑚, while 𝐸𝑎𝑐𝑡 tends to peak in spring and to be lower in summer when the ET fluxes are more water-limited than at 

the German site.  

5.2 Parameter gGlobal sensitivity analysis of the model parameters 

The sensitivity analysis results are reported in Fig. 7 and refer to the sensitivity of total simulated recharge (expressed as a 

percentage of total precipitation) to the 15 parameters of the V2Karst model. For each parameter, the plots in Fig. 7 report on 20 

the horizontal axis the absolute mean of the Elementary Effects (𝜇∗, total effect of the parameters) and on the vertical axis their 

standard deviation (𝜎, degree of linearity of the effect of the parameters). In all plots, we observe that the bootstrap confidence 

intervals of the sensitivity indices are narrow and show little overlap, which gives confidence that the sensitivity results are 

robust. Similar to the analysis of the simulated fluxes in Sect. 5.1.2 (Fig. 5), at the Spanish site we present the results for two 

different time periods with different precipitation amounts. . 25 

 

5.2.1 Global sensitivity analysis with constrained parameter ranges  

We first examine the left panels in Fig. 7, which show the sensitivity results when (ℎ𝑣𝑒𝑔 , 𝑟𝑠𝑡 , 𝐿𝐴𝐼𝑚𝑖𝑛 , 𝐿𝐴𝐼𝑚𝑎𝑥 ,  and 

𝑉𝑟) and the soil storage capacity 𝑉𝑠𝑜𝑖  are sampled within constrained ranges (Table 3), while the ranges for other parameters 

are taken from Table 1. The objective is to inform model calibration in future model applications, since such parameter ranges 30 

capture the uncertainty in parameter values left after considering site-specific information. We first note that 𝜇∗ and 𝜎 take a 

non-zero value for all parameters at all sites, which means that all parameters are influential and have a non-linear effect on 
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recharge, possibly through interactions with other parameters. The existence of parameter interactions can explain the limited 

reduction in some parameter ranges during our parameter estimation (Sect. 4.1).  

 

We observe that the spatial variability coefficient 𝑎 has by far the largest influence, followed by parameters 𝑉𝑠𝑜𝑖  and 𝑉𝑟 . In 

fact, their value of 𝜇∗ is significantly higher than the other parameters at all sites. The implication for model calibration in 5 

future applications of V2Karst is that efforts should primarily seek to reduce the uncertainty in parameters 𝑎, 𝑉𝑠𝑜𝑖  and 𝑉𝑟 . These 

three parameters also have a significantly large value of 𝜎, which indicates non-linearities in the model response to variations 

in these parameters and which is coherent with the nature of Eq. (1-2). Interestingly, parameter 𝑉𝑐𝑎𝑛 , that controls evaporation 

from interception, and 𝑟𝑠,𝑠𝑜𝑖, that controls soil evaporation, have an impact on recharge at most sites and at the Spanish site 

during wet years respectively. This shows that the processes of evaporation from interception and soil evaporation can be 10 

important for recharge simulations. 

Moreover, we observe that parameters 𝐿𝐴𝐼𝑚𝑖𝑛, 𝑧0 𝑘 and 𝑉𝑒 have a very small impact on total recharge at all sites (𝜇∗ < 3 %). 

However, Section S7 of our Supplementary material reports additional sensitivity analysis results for other model outputs and 

shows that the most influential parameters that should be the focus of the calibration strategy vary depending on the output of 

interest. In particular, parameter 𝑉𝑒 has a significant impact on the fraction of actual transpiration in total ET, and therefore on 15 

the partitioning of ET among its different components.  

5.2.2 Global sensitivity analysis with unconstrained parameter ranges  

 

We then examine The the right panels of Fig. 7, which shows the sensitivity indices when sampling parameters within 

unconstrained ranges (Table 1). This analysis allows to test the plausibility of the model structure through the assessment of 20 

the model sensitivity across a large spectrum of soil and vegetation conditions. 

The most apparent difference with respect to the previous results (Sect. 5.2.1) is that vegetation parameters (ℎ𝑣𝑒𝑔, 𝑟𝑠𝑡, 𝐿𝐴𝐼𝑚𝑖𝑛  

𝐿𝐴𝐼𝑚𝑎𝑥 and 𝑉𝑟) now have a much higher value of the sensitivity indices (both 𝜇∗ and 𝜎). More specifically, 𝐿𝐴𝐼𝑚𝑎𝑥 has a very 

high sensitivity index at all sites (𝜇∗ > 10.5%), which can be attributed to the fact that this parameter is used to calculate 

different model components. Interestingly, the seasonality of leaf area index appears to play an important role in V2Karst since 25 

𝜇∗ for 𝐿𝐴𝐼𝑚𝑖𝑛 , although always lower than 𝜇∗ for 𝐿𝐴𝐼𝑚𝑎𝑥 , stands out at all sites. 

When comparing The considerable variations in parameter sensitivities observed across sites, we see some significant 

differences, that we can be interpreted by considering their climatic differences. In fact, weWe would expect transpiration to 

be mainly energy-limited at the German site, given that it has a suboceanic-submountain climate and mainly water-limited at 

the French sites, which have a Mediterranean climate, and at the Spanish site, which has a semi-arid Mediterranean climate. 30 

SpecificallyIn this regard, the most influential parameter at the Spanish site is by far parameter 𝑎 (high 𝜇∗), which has an 

impact on the water storage in the soil and therefore on the amount of water available to sustain ET between rain events, while 
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at the German site, parameter 𝐿𝐴𝐼𝑚𝑎𝑥 , which is used to calculate PET, has the largest effect on recharge (high 𝜇∗).We also 

notice that parameters 𝑟𝑠𝑡 and ℎ𝑣𝑒𝑔, that control PET, are more influential at the German site compared to the other sites.  

Finally, we observe that, the parameters that specifically control the volume of transpiration (𝑟𝑠𝑡 and 𝑉𝑟) have a significantly 

higher value of 𝜇∗  than the parameters that specifically control soil evaporation (𝑧0 , 𝑟𝑠,𝑠𝑜𝑖  and 𝑉𝑒 ) and evaporation from 

interception (𝑉𝑐𝑎𝑛 ). Moreover, 𝑧0 , 𝑟𝑠,𝑠𝑜𝑖  and 𝑉𝑒  have a very small impact (𝜇∗ < 3 %), while parameter 𝑉𝑐𝑎𝑛  can have an 5 

important effect at the German site (𝜇∗ = 5.7 %). This suggests that transpiration is overall dominating the ET fluxes at these 

sites when exploring a wide range of soil and land cover properties and that interception is an important process under the 

climate of the German site. Additionally, we see that parameter 𝑓𝑟𝑒𝑑, that controls transpiration from the third soil layer, has 

an impact on recharge simulated at the Spanish site. 

5.3 Virtual experiments to analyse sensitivity to precipitation and land cover characteristics 10 

After showing that the V2Karst model behaves reasonably at the four FLUXNET sites, in this section we use virtual 

experiments to further learn about the sensitivity of simulated recharge to precipitation characteristics and land cover using 

virtual sites (see Sect. 4.3).  

 

5.3.1 Sensitivity of simulated fluxes to precipitation characteristics 15 

Figure 8 shows the monthly average value of simulated recharge 𝑄𝑒𝑝𝑖 , for a range of synthetic precipitation inputs with  

different values of the precipitation monthly amount 𝑃𝑚 (x-axis) and of the interval between rainy days 𝐻𝑝 (y-axis) at the 

virtual forest and shrub sites. We do not report 𝑄𝑒𝑝𝑖  values in the top right of the plots because this region corresponds to very 

intense precipitation events (higher than 200 mm.d-1) that have a very low probability of occurrence (see Sect. 4.3).  

From the top left panel of Fig. 8, we see that winter 𝑄𝑒𝑝𝑖  is mostly sensitive to 𝑃𝑚, in fact simulated recharge increases when 20 

moving along the horizontal direction from left to right, but shows little variations along the vertical direction (when 𝐻𝑝 is 

varied). This resuls result is due to the fact that actual ET is very limited in winter because of the low energy available. We 

indeed estimated that the maximum value of total ET across the different precipitation inputs is 13 mm . month−1 at the forest 

site and 35 mm month−1 mm.month-1 at the shrub site. Therefore, a large part of precipitation becomes recharge rather 

independently of its temporal distribution. 25 

From the right panel of Fig. 8, we observe a systematic reduction in summer 𝑄𝑒𝑝𝑖  compared to winter at both virtual sites. 

Moreover, summer recharge is overall highly sensitive not only to 𝑃𝑚 but also to 𝐻𝑝, since it increases when moving along the 

vertical direction from bottom to top, i.e. when the same amount of monthly precipitation falls in less frequent but more intense 

events. This result can be explained by the fact that in summer potential ET is larger and therefore, if events are less intense, 

a larger part of the precipitation is lost via ET., while ifIf instead events are more intense, the canopy and soil stores reach 30 
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saturation. In this case, and precipitation generates a saturation excess flow to the epikarst is generated and hence more recharge 

and less ET. Moreover, in summer, 𝑄𝑒𝑝𝑖 shows a limited sensitivity to 𝑃𝑚 and 𝐻𝑝 when these quantities take low values (brown 

and red dots on the left of the plots), because only few soil compartments reach saturation under drier conditions and therefore 

little recharge can be generated. We also see that at the shrub site, 𝑄𝑒𝑝𝑖 is a significant flux (𝑄𝑒𝑝𝑖 > 5𝑚𝑚) for smaller values 

of  𝑃𝑚 and 𝐻𝑝 compared to the forest site, which may be due to the fact that at the shrub site, the soil water capacity (𝑉𝑠𝑜𝑖) is 5 

much smaller and therefore the soil compartments can reach saturation under drier conditions. 

 

5.3.2 Sensitivity of simulated fluxes to land cover change 

Finally, Fig.ure 9 reports the results of another virtual experiment similar to Fig. 8 but focusing on the impact of land cover  

change. Specifically, the panels in Fig. 9 show the variation in simulated recharge when land cover is changed from forest to 10 

shrub at the virtual forest site (and vice versa at the virtual shrub site), and more specifically, Fig. 9 reports 𝛥𝑄𝑒𝑝𝑖 = 𝑄𝑒𝑝𝑖
𝑠ℎ𝑟𝑢𝑏 −

𝑄𝑒𝑝𝑖
𝑓𝑜𝑟𝑒𝑠𝑡

. We see that in all plots 𝛥𝑄𝑒𝑝𝑖  is positive, which means that recharge is larger and therefore actual ET is lower under 

shrub compared to forest land cover for both sites. From the left panels of Fig. 9, we observe that 𝛥𝑄𝑒𝑝𝑖 is very limited in 

winter, which is expected since ET fluxes are small in winter as explained in Sect. 5.3.1.  

Instead, the right panels of Fig. 9 show that summer 𝛥𝑄𝑒𝑝𝑖 is much higher compared to winter conditions and is sensitive to 15 

both 𝑃𝑚 and 𝐻𝑝. The value of summer 𝛥𝑄𝑒𝑝𝑖  is largest when the monthly precipitation 𝑃𝑚 is high and the interval between wet 

days 𝐻𝑝 is low (green dots at the virtual forest site and dark blue dots at the virtual shrub site), because under these precipitation 

conditions the amount of moisture available for ET is maximum. Interestingly, for both virtual sites, summer 𝛥𝑄𝑒𝑝𝑖  is sensitive 

to both 𝑃𝑚 and 𝐻𝑝, but its sensitivity The sensitivity of 𝛥𝑄𝑒𝑝𝑖is highly variable across the different precipitation inputs, and 

more specifically an increase in 𝐻𝑝 can have a different effect on 𝛥𝑄𝑒𝑝𝑖 depending on the value of 𝑃𝑚 (no variation, increase 20 

or decrease in 𝛥𝑄𝑒𝑝𝑖). In fact, when 𝑃𝑚 is low, 𝛥𝑄𝑒𝑝𝑖 is always low and does not vary sensibly when 𝑃𝑚 and 𝐻𝑝 are varied 

(brown area in the left end of the plot), since recharge is always low under these precipitation conditions as shown in Fig. 8. 

For intermediate values of 𝑃𝑚, 𝛥𝑄𝑒𝑝𝑖  has a similar pattern at both sites and increases when either 𝐻𝑝 or 𝑃𝑚 increases. Instead, 

for high values of 𝑃𝑚, we see that for both sites 𝛥𝑄𝑒𝑝𝑖  decreases when 𝐻𝑝 increases and that at the virtual forest site, 𝛥𝑄𝑒𝑝𝑖 

increases when 𝑃𝑚 increases. The value of summer 𝛥𝑄𝑒𝑝𝑖  is largest when the monthly precipitation 𝑃𝑚 is high and the interval 25 

between wet days 𝐻𝑝 is low (green dots at the virtual forest site and dark blue dots at the virtual shrub site), because under 

these precipitation conditions the amount of moisture available for ET is maximum. 

Importantly, our results also show that the impact of a change in land cover can vary greatly across sites, since at the virtual 

shrub site summer 𝛥𝑄𝑒𝑝𝑖  reaches much higher values and is sensitive to 𝑃𝑚 and 𝐻𝑝 over a larger range of values of 𝑃𝑚 and 𝐻𝑝 

compared to the virtual forest site. 30 
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6 Discussion 

6.1 Plausibility of V2Karst simulations against site specific information 

We tested the model by evaluating its ability to reproduce observations at four carbonate rock FLUXNET sites, which is a 

standard approach to model testing, used for instance to test the previous version of the model VarKarst (Hartmann et al., 

2015) and large-scale ET products (Martens et al., 2017; McCabe et al., 2016; Miralles et al., 2011). We demonstrated that 5 

V2Karst is able to produce behavioural simulations consistent with observations and a priori information at FLUXNET sites. 

In addition, , and additionally that the time series of the model outputssimulated water balance components are coherent with 

our understanding of the sites. A different number of behavioural parameterisations was identified at the different sites, because 

we used the same constrains across sites. The fact thatwith the highest number of behavioural parameterisations was found at 

the more humid German site and the lowest number at the semi-arid Spanish site, which is coherent with previous findings 10 

that higher a better fit-to-observation can be obtained at wetter locations (Atkinson et al., 2002; Bai et al., 2015).  

Interestingly, the behavioural parameters sets for the French 1 site, the results of the parameter estimation allow to 

corroborate the hypothesis that root water uptake is likely to extent below the physical soil layer, as communicated by 

Guillaume Simioni (investigator of the site). In fact, we found here that behavioural values of parameter 𝑉𝑟  are higher 

thanabove 59 mm, while site-specific information indicates that the physical soil layer has a storage capacity of 49 mm (Table 15 

B1). This result further attests to the realism of V2Karst structure. 

Moreover, The results of the global sensitivity analysis of simulated recharge to the model parameters is well interpretable 

in light of the different climatic conditions at the four FLUXNET sites. Parameters that control PET and the soil water storage 

capacity generally have a large impact on simulated recharge. The interception capacity is also very important (at the German 

site). These findings are in line with the few sensitivity analysis studies of  large-scale hydrological models, (Güntner et al., 20 

2007; Werth et al., 2009),  which examined the sensitivity of continental water storage and river discharge simulated by the 

WaterGap model. The importance of the maximum leaf area index and, to a lesser extent, of the seasonality of vegetation in 

the V2Karst model is also consistent with previous studies. For example, Tesemma et al. (2015) found that assimilating year-

to-year monthly 𝐿𝐴𝐼 in the VIC model can significantly improve runoff simulations compared to using long-term average 𝐿𝐴𝐼,  

and Rosero et al. (2010) determined that 𝐿𝐴𝐼 has a large influence on simulated latent heat in the Noah land surface model. 25 

This Overall, our sensitivity analysis results therefore suggests that the model behaves sensibly and consistently with our 

understanding of the key vegetation-recharge processes we aim at reproducing.  
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6.2 Sensitivity of simulated groundwater recharge to changes in climate and vegetation characteristics in karst areas  

In this study, we investigated the sensitivity of simulated recharge to both climate and land cover change, through a global 

sensitivity analysis of the model parameters at the FLUXNET sites, and through virtual experiments using a simple synthetic 

periodic precipitation input. 

Firstly, the results of Elementary Effect Test using unconstrained (wide) ranges showed that the vegetation parameters (ℎ𝑣𝑒𝑔, 5 

𝑟𝑠𝑡, 𝐿𝐴𝐼𝑚𝑖𝑛, 𝐿𝐴𝐼𝑚𝑎𝑥  and 𝑉𝑟  and additionally 𝑉𝑐𝑎𝑛 at the German site) have a significant impact on simulated recharge at the 

FLUXNET sites, which means that simulated recharge is sensitive to changes in land cover properties. More specifically, the 

maximum leaf area index (𝐿𝐴𝐼𝑚𝑎𝑥) was highly influential at all sites, and to a lesser extent the parameter controlling the 

seasonality in 𝐿𝐴𝐼 (𝐿𝐴𝐼𝑚𝑖𝑛). This is consistent with the findings of previous studies, since (Tesemma et al., 2015) found that 

assimilating year-to-year monthly 𝐿𝐴𝐼 in the VIC model can significantly improve runoff simulations compared to using long-10 

term average 𝐿𝐴𝐼 and (Rosero et al., 2010) determined that 𝐿𝐴𝐼 has a large influence on simulated latent heat in the Noah land 

surface model. Therefore, the future potential increasing trend in global 𝐿𝐴𝐼 documented by (Zhu et al., 2016) could have a 

significant impact on the partitioning between green and blue water, including in karst areas. 

Our results are also comparable to the sensitivity analysis results obtained for the WaterGap model in (Güntner et al., 2007) 

and (Werth et al., 2009) with respect to continental water storage and additionally runoff for the latter study. These two studies 15 

are the only ones to the author knowledge that performed a parameter global sensitivity analysis including land cover 

parameters for the large-scale models of Table A1. Similar to our results, both studies found that highly influential parameters 

are parameters that control PET (Priestley-Taylor empirical coefficient in WaterGap, which is replaced by parameters 𝑟𝑠𝑡 and 

ℎ𝑣𝑒𝑔 in V2Karst), the water storage capacity in the root zone (denoted as 𝑉𝑟  in V2Karst) and at a few sites the interception 

capacity per unit of  𝐿𝐴𝐼  (denoted as 𝑉𝑐𝑎𝑛  in V2Karst). We note that the impact of parameter 𝐿𝐴𝐼  was not reported and 20 

vegetation seasonality was not considered in these two studies. 

Secondly, the results of our virtual experiment showed that simulated recharge is sensitive not only to changes in the 

precipitation amount but also in the precipitation temporal distribution (interval between wet days) and in land cover, and that 

its sensitivity is highly dependent on the precipitation properties and on the value of the other weather variables that are used 

to calculate PET (temperature, net radiation, relative humidity and wind speed). These findings indicate that it is critical to 25 

assess the combined impact of changes in all these variables on karst groundwater recharge to gain insights on future water 

availability in karst areas. A previous study by (Hartmann et al., 2017) also found that recharge simulated with VarKarst is 

sensitive to the precipitation amount and temporal distribution (specifically intensity of heavy precipitation events), using 

historical weather time series. Here we complemented the study of (Hartmann et al., 2017) by unequivocally attributing the 

changes in recharge to changes in precipitation properties using virtual experiments. Our results are also consistent with past 30 

studies for non-karst areas that established dependencies between hydrological fluxes on one side and precipitation properties 

on the other side, using synthetic precipitation inputs (Jothityangkoon and Sivapalan, 2009; Porporato et al., 2004) and 
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observations of recharge in a semi-arid tropical region (Taylor et al., 2013) and in a seasonally humid tropical region (Owor 

et al., 2009), and comparing different approaches for the temporal disaggregation of projected monthly precipitation to daily 

values to force the WaterGap model (Weiß and Alcamo, 2011). However, to the author knowledge, no previous study had 

systematically examined the combined impact of changes in specific precipitation characteristics and in land cover on the 

water balance. 5 

 

Our results also provide valuable insights about possible vulnerabilities of karst systems. For example, the fact that 𝐿𝐴𝐼 is a 

highly influential parameter at all FLUXNET sites suggests that the increasing trend in global 𝐿𝐴𝐼 documented by Zhu et al. 

(2016) could reflect into a significant impact on groundwater recharge and the partitioning between green and blue water in 

karst areas. 10 

Variations in simulated recharge were also systematically examined under combined changing land cover type and climate 

conditions (precipitation overall amount and temporal distribution), since the model should be appropriate for climate and land 

cover change impact studies. We used virtual experiments with synthetic data because they allow to unequivocally attribute 

changes in recharge to changes in climate and land cover. Importantly, we showed that precipitation characteristics and land 

cover have an interacting effect on simulated recharge, consistently with the global and observational analysis by Kim and 15 

Jackson (2012) of non-karst areas, which revealed interactions among vegetation and climate (in particular precipitation overall 

amount) in producing recharge. We found that simulated recharge is lower (and ET is higher) for forest compared to the shorter 

vegetation type considered, i.e. shrub, which is in line with expectations and in particular previous studies in karst areas (Ford 

and Williams, 2007; Williams, 1993). We demonstrated that the overall amount and daily intensity of precipitation have a 

positive effect on simulated recharge, i.e. the higher they are the higher the recharge. This is consistent with previous 20 

observational studies, which found that heavy precipitation events enhance groundwater recharge in non-karst areas (Taylor 

et al. (2013) in a semi-arid tropical region, and Owor et al. (2009) in a seasonally humid tropical region). On the other hand, 

the modelling study by Hartmann et al. (2017) showed that heavy precipitation events can have a negative effect on recharge 

simulated by the VarKarst model in some carbonate rock areas in Europe, the Middle East and Northern Africa. However, 

Hartmann et al. (2017) analysed the sensitivity of simulated recharge using forcing data from Global Circulation Models 25 

(GCMs). Given that climate variables from GCMs show complex patterns, it might be difficult to isolate the effect of a specific 

climate property (e.g. heavy precipitation events) on the simulated fluxes, which could explain the differences between their 

findings  and ours.  

Although pPrecipitation patterns are more complex than the simple periodic variations we used here, and the steady state 

conditions may never be reached in practice. Nevertheless, we believe that performing virtual experiments similar to the ones 30 

proposed in the present study is a complementary approach to application of climate projections provided by Global Circulation 

Models (GCMs) and future land cover change scenarios (e.g. Holman et al., 2017; Hurtt et al., 2011), to understand 
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systematically assess the sensitivity of a model to changes in input characteristics, to test the soundness of the model 

sensitivities and to determine which aspects of a model input would be worth further investigating.  

6.3 Applying V2Karst over larger domains 

In this section, we first discuss the importance for large-scale applications of the new processes that we introduced in V2Karst 

and second the strategy to estimate the model parameters over large domains. 5 

 

The results of our global sensitivity analyses suggest that all newly introduced processes into V2Karst  (transpiration, soil 

evaporation, evaporation from canopy interception, vegetation seasonality and contribution of the water stored below the root 

zone to transpiration) are relevant for applications over large domains because all the parameters that control these processes 

of them can affect simulated recharge, depending on the climatic, soil and land cover conditions. Specifically, the results of 10 

our sensitivity analyses across a large range of soil and land cover conditions (wide unconstrained ranges) showed that overall 

transpiration and vegetation seasonality are important processes under the climate of the four FLUXNET sites, and additionally 

evaporation from canopy interception at all forested sites (German site and two French sites),and the contribution of water 

stored below the root zone are also important model components under the climate of the German site and Spanish site  

respectively. Moreover, the sensitivity analysis using site-specific constrained ranges revealed that the process of evaporation 15 

from canopy interception has an effect on simulated recharge at all forested sites (German site and two French sites) and that 

the process of soil evaporation has an impact on simulated recharge at the semi-arid site with sparse and short vegetation 

(Spanish site). The importance of representing canopy interception, in particular for forested land covers, was already 

mentioned in previous studies (Gerrits, 2010; Savenije, 2004) and the significance of separating transpiration and soil 

evaporation was reported in Maxwell and Condon (2016) and Wang and Dickinson  (2012). 20 

Regarding parameter estimation, the use of soft rules similar to this study and to the large-scale study of Hartmann et al. 

(2015) can be envisaged for applications over large domains. We showed that a priori information on parameter ranges is 

needed to constrain the simulations. At large-scales, a priori information on vegetation parameters can be derived from large-

scale databases of vegetation properties (more details in Sect. S1 of our Supplementary material) and a priori information on 

parameters that control the subsurface properties (𝑉𝑠𝑜𝑖) can be derived following Hartmann et al. (2015). It is also particularly 25 

important to assess the sensitivity of model parameters across the modelling domain to test the suitability of fixing model 

parameters, as done in this study at FLUXNET sites. wWe indeed found that parameters 𝑉𝑐𝑎𝑛  and 𝑟𝑠,𝑠𝑜𝑖 , that are typically fixed 

in the other large-scale models of Table A1, do have an impact on total simulated recharge at least one FLUXNET site. 

Moreover, as mentioned in Sect. 2.3, 𝑉𝑐𝑎𝑛  and 𝑟𝑠,𝑠𝑜𝑖  are understood to vary across land cover type and soil type respectively, 

even if no clear ranges of these parameters have been established across land cover and soil types respectively. Therefore, 30 

fixing these two parameters could potentially introduce large uncertainties in V2Karst simulations. Other studies have reported 

on the issue, and in particular Cuntz et al. (2016) showed that some constant parameters of the Noah-MP land surface model 
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can be highly influential for some model outputs. Finally, parameter estimation for application over large domains will need 

to account for the large variability in hydraulic properties and in recharge patterns observed across karst systems reported e.g. 

in Hartmann et al. (2014) and in Klimchouk and Ford (2000), for instance using a simplified classification of karst landscapes 

based on climate and topography as in Hartmann et al. (2015). 

 5 

We note that although soils may be absent in some karst areas (e.g. karren field in high mountain areas as reported in 

Hartmann et al., 2014), V2Karst always includes a soil layer. However, this soil layer can be very thin and have a limited 

impact on recharge. Additionally, when the simulation units have a large extent, such as 0.25°x0.25° in Hartmann et al. (2015), 

it is reasonable to assume that soil layers can always be found. 

The model can account for sub-grid heterogeneity in vegetation type using a ‘tile’ approach as in Mac-PDM (Gosling and 10 

Arnell, 2011) and VIC (Bohn and Vivoni, 2016), which consists of subdividing each model grid cell in a number of independent 

units (tiles), each of which has a specific land cover (e.g. short or tall vegetation). The model is then evaluated separately over 

each tile and the overall simulated fluxes are computed as the area weighted average of the fluxes calculated over the tiles. In 

V2Karst, each ‘tile’ includes a vegetated and non-vegetated fraction as explained in Sect. 2.3.3. 

 15 

Regarding the estimation of V2Karst parameters, in this study, we showed that the application of the soft rules based on the 

comparison between observed and simulated variables and on a priori information on parameter ranges (Sect. 4.1) allowed to 

estimate V2Karst parameters and constrain the model predictions at the four FLUXNET sites. Therefore, to confine V2Karst 

parameter ranges over a large modelling domain, future studies will investigate the application of an approach similar to the 

strategy presented in this study and in (Hartmann et al., 2015) for the VarKarst model, based on soft rules and on the grouping 20 

of the model grid cells across the application domain into typical karst-vegetation landscapes. In addition to a priori information 

on the value of the soil water capacity 𝑉𝑠𝑜𝑖  used in (Hartmann et al., 2015), a priori information on the vegetation parameters 

will also need to be derived from large-scale databases of vegetation properties (more details on these databases in Sect. S1 of 

our supplementary material). We can anticipate that the estimation of the parameters that characterise sub-surface properties 

(𝑎, 𝑉𝑠𝑜𝑖 , 𝑉𝑟) may be particularly critical, since our sensitivity analyses using site-specific constrained parameter ranges showed 25 

that these parameters have the largest impact on simulated recharge. In addition, unlike above-ground vegetation properties 

that can be more easily observed (e.g. 𝐿𝐴𝐼, vegetation height), sub-surface properties are not often well investigated. 

One question that we think is still insufficiently addressed in large-scale hydrological modelling is the issue of which 

parameters should be varied during parameter estimation and uncertainty analysis, and instead which parameters can be 

reasonably fixed to a constant value across the modelling domain to simplify the analyses. Other studies have reported on the 30 

issue, and in particular a study by (Cuntz et al., 2016) showed that some constant parameters of the Noah-MP land surface 

model can be highly influential for some model outputs. Likewise, in this study, we found that parameters 𝑉𝑐𝑎𝑛  and 𝑟𝑠,𝑠𝑜𝑖, that 

are typically fixed in the other large-scale models of Table A1, do have an impact on total recharge at least one FLUXNET 
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site. Moreover, as mentioned in Sect. 2.3, 𝑉𝑐𝑎𝑛  and 𝑟𝑠,𝑠𝑜𝑖  are understood to vary across land cover type and soil type 

respectively, even if no clear ranges of these parameters have been established across land cover and soil types respectively. 

Therefore, fixing these two parameters could potentially introduce large uncertainties in V2Karst simulations. 

The reason for the modellers’ decision to fix a given parameter could for example have been based on the finding that the 

parameter might not have been influential for a particular site at which sensitivity was analysed. However, it might be that the 5 

same parameter is influential for other systems with different characteristics since parameter sensitivity can show a high 

variability across places as suggested by this study and as further demonstrated in (Güntner et al., 2007; Van Werkhoven et 

al., 2008a). It is therefore particularly important to assess the sensitivity of model parameters across the modelling domain to 

test the suitability of fixing model parameters, as done in this study at FLUXNET sites. 

7. Conclusions 10 

The objectives of the present study were (1) to develop and test an ET component with explicit representation of land cover 

processes for the large-scale karst recharge model VarKarst, so that the model can be used for combined climate and land 

cover change impact assessment at large-scales, and (2) to evaluate the mechanisms of recharge production in the model as 

well as the model sensitivity to temporal precipitation patterns and land cover using virtual experimentobservations and 

synthetic data to force the model.  15 

Many different approaches are used to represent ET in large-scale hydrologic models, and the lack of in-situ ET observations 

makes it difficult to assess and compare the performance of these different formulations. Moreover, some models use a large 

number of parameters that can be only poorly constrained by the few available observations. High model complexity also 

makes Monte Carlo simulation computationally expensive and hampers uncertainty and sensitivity analysis. The new version 

of the VarKarst model developed here, V2Karst (V1.0), is the first large-scale hydrological model to include explicit 20 

representations of both karst and land cover processes. We sought to include parsimonious process esdescriptions that are 

understood to be relevant for climate and land cover impact assessment, namely, (1) a representation of the three ET 

components (transpiration, soil evaporation in presence of sparse canopy and evaporation from canopy interception) and (2) a 

physically-based PET equation (Penman-Monteith). The model also comprises a parsimonious representation of vegetation 

seasonality. 25 

We showed demonstrated that V2Karst was able to produces plausiblecredible simulations at four carbonate rock FLUXNET 

sites, since by showing that its simulations were consistent with it reproduces observations of latent heat and soil moisture and 

a priori information at the sites, and that the parameters that dominate the model sensitivity were are in accordance with our 

perception of expected controls on recharge. Additionally, it was also shown that all newly introduced processes in V2Karst 

can have an impact on simulated recharge depending on the climate, the soil properties and the land cover.We also established 30 
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that the model has plausible sensitivities to climate and land cover changes when using virtual experiments with synthetic 

precipitation and land cover scenarios.  

Additionally, it was also shown that all newlywe showed that the newly introduced processes in V2Karst can have varyingan 

impacts on simulated recharge quantities depending on the climate, the soil properties and the land cover.  

Overall, our study demonstrates the value of a model development and evaluation process that considers both how well a 5 

model reproduces historical observations as well as how this performance is achieved. The latter is examined by using global 

sensitivity analysis to understand which processes and inputs dominate the model output. Through the proposed process we 

have a higher chance of obtaining the right results for the right reasons than by using performance analysis alone (Kirchner, 

2006). We further believe– given the lack of observations of many hydrological fluxes at large scales – that an integrated 

analysis using historical data, our expectations derived from previous studies and synthetic data (to understand model 10 

behaviour more generally) can provide a more holistic view of a model than using observations alone. 

 

Virtual experiments, using synthetic periodic precipitation inputs to force the model, allowed to characterise the sensitivity 

of simulated recharge to the precipitation temporal distribution, the precipitation amount, the seasonal conditions of the other 

climate variables and the land cover. This had been little examined in previous studies in karst areas. Our results call for a 15 

large-scale assessment of the combined impact of future changes in climate (and more specifically the precipitation amount 

10 and temporal distribution) and in land cover on groundwater recharge in karst areas. 

Importantly, our study demonstrate that global sensitivity analysis can provide valuable insights for model development, 

since it can help to determine which processes should be included in models and which parameters can be fixed to constant 

values with little impact on the simulations. Moreover, global sensitivity analysis, allows to characterise a model sensitivity to 20 

changes in climate and land cover. We therefore believe that large-scale hydrology would benefit from a more exhaustive 

evaluation of the models’ sensitivities over their application domain, since so far sensitivity analyses of large-scale models are 

very few and many of them explore a limited ranges of possible parameter combinations only. 

 

   25 
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Appendix A. Review of ET component in large-scale hydrological models 

Model ∆𝑡 

Sub-grid 

variability 

of soil 

moisture a 

Energy 

balance 

ET processes Number of 

parameters 

for ET 

estimation b 

Reference 

𝑇𝑎𝑐𝑡
𝑜𝑣𝑒𝑟 𝑇𝑎𝑐𝑡

𝑢𝑛𝑑𝑒𝑟 𝐸𝑠𝑎𝑐𝑡 𝐸𝑐𝑎𝑐𝑡 
Carbon 

cycle 

WBM daily no no yes no no no no 
3 

(minimum) 

(Federer et al., 2003; 

Vörösmarty et al., 1989; 

Vörösmarty et al., 1998) 

LaD sub-daily no yes yes no no no no 5 (Milly and Shmakin, 2002) 

WaterGap 

V2.2 
daily implicit no yes no no yes no 7 

(Döll et al., 2003; Müller 

Schmied et al., 2014) 

mHM 
daily/sub

-daily 
implicit no yes no no yes no 10c 

(Kumar et al., 2013; 

Samaniego et al., 2010, 

2018) 

LPJ daily no no yes no yes yes yes 14 
(Gerten et al., 2004; Sitch 

et al., 2003) 

Model of 

(Kergoat, 

1998)  

daily no no yes no yes yes no 15 (Kergoat, 1998) 

PCR-

GLOBWB 
daily implicit no yes no yes yes no 15 

(Van Beek and Bierkens, 

2008; Van Beek, 2008; 

Sperna Weiland et al., 

2015; Sutanudjaja et al., 

2011) 

Mac-PDM daily implicit no yes yes no yes no 16 dc 
(Arnell, 1999; Gosling and 

Arnell, 2011; Smith, 2016) 

ISBA sub-daily implicit yes yes no yes yes no 17 

(Boone et al., 1999; 

Decharme and Douville, 

2006; Noilhan and Planton, 

1989) 

GLEAM V3 daily no no yes no yes 
tall land 

cover  
no 18 ed 

(Martens et al., 2017; 

Miralles et al., 2010, 2011) 

VIC V4.2 
daily/ 

sub-daily 
implicit optional yes no yes yes no 22 

(Bohn and Vivoni, 2016; 

Liang et al., 1994) 

Table A1. Characteristics of selected large-scale models: simulation time step (∆𝑡), representation of sub-grid variability of 

soil moisture, solving of the energy balance, ET processes represented (Overstory transpiration 𝑇𝑎𝑐𝑡
𝑜𝑣𝑒𝑟 , understory transpiration 

𝑇𝑎𝑐𝑡
𝑢𝑛𝑑𝑒𝑟 , soil evaporation 𝐸𝑠𝑎𝑐𝑡 , evaporation from canopy interception 𝐸𝑐𝑎𝑐𝑡 , and carbon cycle i.e. vegetation dynamic model), 

and number of parameters for ET estimation. The models were selected based on the following criteria: (1) explicit 5 

representation of land cover properties, (2) calculation of ET and soil water balance at a daily or sub-daily time step, and (3) 

applications in previous studies over a wide range of climate and land cover types. Tables A2 and A3 present the 

parameterisations used in these models.  

a None of these models account for karst processes as done by the VarKarst model (Hartmann et al., 2015). 
b Number of parameters for a given land cover type, excluding parameters used in the representation of vegetation seasonality, 10 

carbon cycle (vegetation dynamic), sublimation from snowpack and snowmelt evaporation to make models more comparable. 
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c  Number of  parameters considering three soil layers. 
dc This number includes the parameters used for the computation of both understory and overstory (grass) transpiration. 
ed Number of parameters assuming tall vegetation (interception is considered for tall vegetation only). 

  5 
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Model 

Potential evapotranspiration (PET) 
Stress model for actual ET calculation from 

PET Formulation a Surface resistance 𝑟𝑠 
Number of 

parameters 

WBM T, SW constant when considered 0 (minimum) 
function of soil moisture which multiplies 

PET 

LaD PM constant 2 
function of soil moisture which multiplies 

PET 

WaterGap V2.2 PT not included 1 demand-supply model (Federer, 1982) 

mHM HS Not included 
1 (aspect 

correction) 

function of soil moisture which multiplies 

PET 

     

LPJ 

empirical 

formula based 

on PT 

function of 

CO2 and photosynthesis 
4 

demand-supply model for transpiration 

(Federer, 1982) and function of soil 

moisture which multiplies PET for soil 

evaporation 

Model of 

(Kergoat, 1998) 
PM 

Jarvis type (Jarvis, 1976; 

Stewart, 1988) 
10 function of soil moisture which multiplies 𝑟𝑠 

PCR-

GLOBWB 
PM 

empirical reference crop 

scheme (Allen et al., 1998) b 
2 

function of soil moisture and soil hydraulic 

properties which multiplies PET 

Mac-PDM PM constant 8 c 
function of soil moisture which multiplies 

PET 

ISBA PM 
Jarvis type (Jarvis, 1976; 

Stewart, 1988) 
8 

function of soil moisture which multiplies 𝑟𝑠 

for transpiration and PET for soil 

evaporation 

GLEAM V3 PT not included 3 d 
function of soil moisture and vegetation 

optical depth which multiplies PET 

VIC V4.2 PM 
Jarvis type (Jarvis, 1976; 

Stewart, 1988) 
12 

function of soil moisture which multiplies 𝑟𝑠 

for transpiration and PET for soil 

evaporation 

Table A2. Representation of potential evapotranspiration (PET) and stress model for actual evapotranspiration (ET) 

calculation from PET in the large-scale models of Table A1. 

a T: Thornthwaite (1948); HS: Hargreaves and Samani (1985); PT: Priestley-Taylor (1972); PM: Penman-Monteith (Monteith, 

1965); SW: Shuttleworth and -Wallace (1985). 5 
b This approach consists of calculating a value of PET for a reference grass surface with known properties and to adjust this 

potential rate using land cover specific empirical crop factors. This formulation avoids the specification of the stomatal 

resistance whose value is largely uncertain (see Sect. S1 of our supplementary material). Tabulated values of the crop factors 

for agricultural crops are provided in (Allen et al., 1998). However, the origin of the crop factor formulation for non-agricultural 

crops is not clear.  10 
c This number includes the parameters used for the computation of PET for both understory and overstory (grass). 
d Number of parameters assuming tall vegetation (interception is considered for tall vegetation only).  



39 

 

 

Model 
Sparse vegetation 

formulation a 
Soil layers b 

Evaporation from canopy 

interception (𝐸𝑐𝑎𝑐𝑡) Seasonality of 

vegetation 
model 

Number of 

parameters 

WBM not included 1 layer not included 0 not included 

LaD not included 1 layer not included 0 not included 

WaterGap V2.2 not included 1 layer overflow store 3 
empirical 𝐿𝐴𝐼 

growth model 

mHM Not included 

3 layers (𝑇𝑎𝑐𝑡 from all layers 

depending on their relative 

root fractions) 

overflow store 2 

monthy values of 

canopy interception 

capacity calculated 

from monthly LAI 

LPJ 
uncoupled (vegetated 

and bare soil tiles) 

3 layers (𝐸𝑠𝑎𝑐𝑡 from shallow 

layer and 𝑇𝑎𝑐𝑡 from all layers 

depending on their relative 

root fractions) 

empirical: fraction of 

precipitation 

(Kergoat, 1998) 

2 
vegetation dynamic 

model 

Model of 

(Kergoat, 1998) 

coupled moisture 

uptake 
1 layer 

empirical: fraction of 

precipitation 

(Kergoat, 1998) 

2 

𝐿𝐴𝐼 set to zero 

during leaf-off 

season 

PCR-GLOBWB 
coupled moisture 

uptake   

2 layers (𝐸𝑠𝑎𝑐𝑡 from shallow 

layer and 𝑇𝑎𝑐𝑡 from all layers 

depending on their relative 

root fractions) 

overflow store 2 
monthly values of 

crop factors and 𝐿𝐴𝐼 

Mac-PDM 
uncoupled (overstory 

and understory tiles) 
1 layer for each tile 

Calder (Calder, 

1990) 
3 c not included 

ISBA 
coupled moisture 

uptake 

3 layers (𝐸𝑠𝑎𝑐𝑡 from two 

shallower layers and 𝑇𝑎𝑐𝑡 

from middle layer and 

capillary rise from deeper 

layer) 

overflow store 3 

monthly values of 

vegetation 

parameters 

GLEAM V3 
uncoupled (vegetated 

and bare soil tiles) 

3 layers (𝐸𝑠𝑎𝑐𝑡 from 

shallower layer and 𝑇𝑎𝑐𝑡 in 

wettest layer) 

Gash (Gash, 1979; 

Valente et al., 1997) 
7 d 

assimilation of 

vegetation optical 

depth 

VIC V4.2 
coupled moisture 

uptake 

2 layers (𝐸𝑠𝑎𝑐𝑡 from 

shallower layer and 𝑇𝑎𝑐𝑡 

from all layers depending on 

their relative root fractions) 

overflow store 3 

monthly values of 

𝐿𝐴𝐼 and assimilation 

of daily NDVI 

Table A3. Representation of sparse vegetation, soil layers, evaporation from canopy interception and seasonality of vegetation 

in the large-scale models of Table A1. 

a Uncoupled approaches consist of assessing separately the water balance for the vegetated and bare soil fractions (overstory 

and understory fractions for Mac-PDM). Therefore, this approach is based on the simplifying assumption that the vegetation 

roots do not extent beyond the surface area covered by the vegetation canopy. Instead, coupled approaches evaluate the overall 5 

water balance over both fraction, thus allowing for interactions for soil moisture uptake between vegetated and bare soil 

fractions. All models neglect aerodynamic interactions between vegetation and bare soil. This can be accounted for using for 

instance the Shuttleworth-Wallace PET equation (Shuttleworth and Wallace, 1985), which requires the specification of further 

resistance parameters compared to the Penman-Monteith equation. The Shuttleworth-Wallace equation was used anecdotally 

in the WBM model for a few applications. 10 
b 𝐸𝑠𝑎𝑐𝑡: actual soil evaporation; 𝑇𝑎𝑐𝑡: actual vegetation transpiration. 
c This number includes the parameters used for the computation of PET for both understory and overstory (grass). 
d Number of parameters assuming tall vegetation (interception is considered for tall vegetation only).  
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Appendix B. Additional information on the four carbonate rock FLUXNET sites 

Site name 
Hainich  

(German site) 

Llano de los Juanes 

(Spanish site) 

Puéchabon  

(French 1 site)Font-

Blanche  

(French 2 site) 

Font-Blanche  

(French 2 site)Puéchabon  

(French 1 site) 

General 

information 

Coordinates 
51°04′45″N, 

10°27′07″E 

36°55’56’’N,  

2°44’55’’W 

43°14′27″N,  

5°40′45″E 

43°44’29’’N,  

3°35’45’’E 

Elevation  430 m a.s.l. 1600 m a.s.l 420 m a.s.l 270 m a.s.l 

Vegetation 

Type 
Deciduous broadleaf 

trees 

Shrubs, herbs, bare soil, 

rock outcrops  

Evergreen trees (30% 

broadleaf and 70% 

needleleaf) 

Evergreen broadleaf 

trees 

Maximum 𝐿𝐴𝐼 5 m2.m-2   2.71 m2.m-2  2.2 m2.m-2  2.9 ± 0.4 m2.m-2  

Height Around 33 m 
0.5 m (average) - 1.2 m 

(maximum) 

6 m (broadleaf) and  

12 m (needleleaf)  
5.5 m 

Seasonality 
Leaves from May to 

October 

1.31 m2.m-2 (annual 

minimum) 
Not available Not available 

Rooting depth Not available 
Roots probably access 

water below the soil 

Roots probably access 

water below the soil 

4.5 m (150 mm available 

water capacity)  

Soil 

Texture Silty clay Silt loam and clay loam Sandy clay loam  
Silty clay loam and clay 

loam 

Depth 0.5 - 0.7 m 
0.1 – 0.3 m (occasionally 

up to 1.5 m) 
0.6 m (maximum) 

No clear limit between 

soil and epikarst  

Available water 

capacity a 
0.13 m3.m-3  0.25 m3.m-3   49 mm  

No clear limit between 

soil and epikarst 

Other properties 

Permeable loess layer 

of 10 -50 cm between 

soil and bedrock  

Rocky soil Rocky soil  Rocky soil  

Bedrock  Fissured and fractured 

limestone  

Karstified dolomite and 

dolines  
Karstified limestone  Karstified limestone 

Hydrology 

Surface runoff Low  Low  Low  Inexistent 

Recharge 
Large part of the water 

balance 

Diffuse and concentrated, 

high temporal variability  
Not available Not available 

Measure-

ments 

Height for 

humidity and 

temperature 

43.5 m  1.5m  16 m  12.2 m 

Height for wind 

speed 
43.5 m 2.5 m  16 m  12.2 m 

Depth for soil 

moisture 
0.05, 0.15, 0.3 m 0.15 m Not measured Not measured 

References 

(Knohl et al., 2003; 

Mund et al., 2010; Pinty 

et al., 2011), personal 

communication from 

(Alcalá et al., 2011; 

Cantón et al., 2010; 

Contreras et al., 2008; Li 

et al., 2007, 2011; Pérez-

(Ecofor, n.d.; Gea-

Izquierdo et al., 2015; 

Simioni et al., 2013), 

personal 

(Rambal, 1992, 2011; 

Rambal et al., 2003; 

Reichstein et al., 2002) 
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Martina Mund and 

Manfred Fink  

Priego et al., 2013; 

Serrano-Ortiz et al., 2007) 

communication from 

Guillaume Simioni,  

Table B1. Description of the four carbonate rock FLUXNET sites. a between wilting point and field capacity.  
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Supplementary material 

Code availability 

The code of the V2Karst model is open source and freely available under the terms of the GNU General Public License version 

3.0. The model code is written in matlab and is provided through a Github repository: 

https://github.com/fannysarrazin/V2Karst_model 5 
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Parameter Description unit Lower limit Upper limit Category   

ℎ𝑣𝑒𝑔 Vegetation height [m] 0.2 
Site 

specific 
vegetation 

𝑟𝑠𝑡 Stomatal resistance [s .m-1] 20 600 vegetation 

𝐿𝐴𝐼𝑚𝑖𝑛 
Reduction in leaf area index during the dormant 

season 
[%] 5 100 vegetation 

𝐿𝐴𝐼𝑚𝑎𝑥 Annual maximum leaf area index [m2 .m-2] 0.5 8 vegetation 

𝑉𝑟  Maximum storage capacity of the root zone  [mm] 20 500 vegetation 

𝑉𝑐𝑎𝑛 Canopy storage capacity per unit of 𝐿𝐴𝐼 [mm LAI] 0.1 0.5 vegetation 

𝑘 Beer-Lambert’s law extinction coefficient [-] 0.4 0.7 vegetation 

𝑓𝑟𝑒𝑑  Reduction factor for transpiration below the root zone [-] 0 0.15 soil 

𝑧0 Soil roughness length [m] 0.0003 0.013 soil 

𝑟𝑠,𝑠𝑜𝑖  Soil surface resistance [s .m-1] 0 100 soil 

𝑉𝑒 Maximum storage capacity of the first soil layer [mm] 5 45 soil 

𝑎 Spatial variability coefficient [-] 0 6 soil and epikarst 

𝑉𝑠𝑜𝑖𝑙 Mean soil storage capacity [mm] 20 800 soil 

𝑉𝑒𝑝𝑖 Mean epikarst storage capacity  [mm] 200 700 epikarst 

𝐾𝑒𝑝𝑖  Mean epikarst outflow coefficient [d] 0 50 epikarst 

Table 1. Description of V2Karst parameters, unconstrained ranges used in the application at the four FLUXNET sites to 

capture the variability across soil, epikarst and vegetation types, category of the parameters (which indicated whether the 

parameters depend on soil, epikarst or vegetation properties). Parameters 𝑎, 𝑉𝑠𝑜𝑖𝑙 , 𝑉𝑒𝑝𝑖 and 𝐾𝑒𝑝𝑖  were already present in the 5 

previous version of the model (VarKarst). More information on how the ranges were determined is provided in Sect. S3 of our 

supplementary material.  
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Site Simulation period (including a 

one-year warm-up period) Number of months with latent heat 

measurement for calibration 

Number of months with soil moisture 

measurement for calibration 
Start End 

German site 1 Jan. 2000 17 Dec. 2009 62 74 

Spanish site 1 Jan. 2005 30 Dec. 2011 12 12 

French 1 site 2 Jan. 2009 30 Dec. 2011 13 Not measured 

French 2 site 18 Apr. 2002 29 Jun. 2009 37 Not measured 

Table 2. Simulation period at the four FLUXNET sites, and number of months where latent heat measurements and soil 

moisture measurements are available to calibrate the model. Soil moisture measurements are not provided at the two French 

sites. 
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Parameter Unit 

German site 

(deciduous forest) 

Spanish site 

(shrubland) 

French 1 site 

(evergreen forest) 

French 2 site 

(evergreen forest) 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

ℎ𝑣𝑒𝑔 [m] 23.1 42.9 0.35 0.85 7.1 13.3 3.9 7.2 

𝑟𝑠𝑡
  [s .m-1] 275 400 195 350 320 455 320 455 

𝐿𝐴𝐼𝑚𝑖𝑛 [%] 5 20 34 63 80 100 80 100 

𝐿𝐴𝐼𝑚𝑎𝑥 [m2 .m-2] 3.5 6.5 1.9 3.5 1.5 2.9 2.0 3.8 

𝑉𝑟 [mm] 60 300 30 200 30 200 30 200 

𝑉𝑠𝑜𝑖  [mm] 60 400 30 300 30 300 30 300 

Table 3. Site-specific constrained parameter ranges at the four FLUXNET sites for the vegetation parameters ( ℎ𝑣𝑒𝑔 ,  

𝑟𝑠𝑡, 𝐿𝐴𝐼𝑚𝑖𝑛, 𝐿𝐴𝐼𝑚𝑎𝑥, 𝑉𝑟) and for the soil storage capacity (𝑉𝑠𝑜𝑖). More information on how the ranges were determined is 

provided in Sect. S3 of our supplementary material. Parameters are defined in Table 1.  
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V2Karst input Unit Virtual forest site Virtual shrub site 

Vegetation 

parameter 

ℎ𝑣𝑒𝑔 [m] 32.1 0.4 

𝑟𝑠𝑡 [s .m-1] 390 291 

𝐿𝐴𝐼𝑚𝑖𝑛 [%] 16 38 

𝐿𝐴𝐼𝑚𝑎𝑥 [m2 .m-2] 5.0 2.0 

𝑉𝑟 [mm] 289 151 

𝑉𝑐𝑎𝑛 [mm LAI] 0.29 0.35 

𝑘 [-] 0.53 0.45 

Soil and 

epikarst 

parameter 

𝑓𝑟𝑒𝑑 [-] 0.010 0.080 

𝑧0 [m] 0.0110 0.0045 

𝑟𝑠,𝑠𝑜𝑖 [s .m-1] 56 61 

𝑉𝑒 [mm] 11 8 

𝑎 [-] 1.8 1.9 

𝑉𝑠𝑜𝑖𝑙 [mm] 373 174 

𝑉𝑒𝑝𝑖 [mm] 396 519 

𝐾𝑒𝑝𝑖  [d] 33 15 

Weather input 

(winter) 

𝑅𝑛 [MJ .m-2 .d-1] -0.0 2.2 

𝑇 [°C] 0.1 4.9 

𝑅𝐻  [%] 89 61 

𝑊𝑆 a [m .s-1] 3.5 4.0 

Weather input 

(summer) 

𝑅𝑛 [MJ .m-2 .d-1] 10.5 12.1 

𝑇 [°C] 16.6 20.4 

𝑅𝐻  [%] 72 43 

𝑊𝑆 a [m .s-1] 2.6 3.4 

Table 4. Values of V2Karst parameters and weather variables used in the virtual experiment. Values for the virtual forest site 

and the virtual shrub site are based on the characteristics of the German FLUXNET site and Spanish FLUXNET site 

respectively. Values of the model parameters (parameters are defined in Table 1) correspond to behavioural parameterisations 

obtained when calibrating the model and values of the weather variables (𝑅𝑛  net radiation, 𝑇  temperature, 𝑅𝐻  relative 5 

humidity, 𝑊𝑆 wind speed) correspond to the average values calculated at FLUXNET sites.  

a At the virtual shrub site, 𝑊𝑆 was recalculated at a height of 43.5 m because the original measurement provided at a height of 

2.5 m at the Spanish site was too low to simulate a change of land cover to tall vegetation (forest). More details on this are 

reported in Section S4 of our supplementary material. 
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57 

 

 

 

Figure 1. Schematic representation of (a) the VarKarst model (Hartmann et al., 2015) and (b) the new version of the model 

V2Karst using six vertical compartments. Model parameters are in green (see their definition in Table 1), inputs are in blue (𝑃 

precipitation, 𝑅𝑛  net radiation, 𝑇  temperature, 𝑅𝐻  relative humidity, 𝑊𝑆  wind speed), model fluxes are in black ( 𝐸𝑝𝑜𝑡 

potential total evapotranspiration, 𝑇𝑝𝑜𝑡  potential transpiration, 𝐸𝑐𝑝𝑜𝑡  potential evaporation from canopy interception, 𝐸𝑠𝑝𝑜𝑡 5 

potential soil evaporation, 𝐸𝑎𝑐𝑡  total actual ET, 𝑇𝑎𝑐𝑡  actual transpiration, 𝐸𝑐𝑎𝑐𝑡  actual evaporation from canopy interception, 

𝐸𝑠𝑎𝑐𝑡  actual bare soil evaporation, 𝑇𝑓  throughfall, 𝑄𝑙𝑎𝑡,2→3  lateral flow from the second to the third compartment, 𝑄𝑠𝑢𝑟𝑓  

surface runoff and 𝑄𝑒𝑝𝑖  recharge) and state variables are in red. 
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Figure 2. Four carbonate rock FLUXNET sites selected for the analyses. Mean annual precipitation 𝑃̅ and mean annual 

temperature 𝑇̅ were estimated over the period 1 January 2001-17 December 2009 for the German site, 1 January 2006-31 

December 2008 for the Spanish site (dry years), 1 January 2009-30 December 2011 for the Spanish site (wet years), 1 January 

2010-30 December 2011 for the French 1 site and 1 April 2003-31 March 2009 for the French 2 site. 5 

Sources of the photos: (Pinty et al., 2011) for the German site, (Alcalá et al., 2011) for the Spanish site, http://www.gip-

ecofor.org/f-ore-t/fontBlanche.php for the French 1 site, http://puechabon.cefe.cnrs.fr/ for the French 2 site. Source of the 

carbonate rock and country map: (Williams and Ford, 2006) (country map obtained from Terraspace, Russian space agency). 
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Figure 3. Reduction in the number of behavioural parameterisations of the V2Karst model at the four FLUXNET sites, when 

applying sequentially the five soft rules defined in Sect. 4.1 (no rule: initial sample; rule 1: ET bias; rule 2: ET correlation; 

rule 3: soil moisture correlation; rule 4: runoff; rule 5: a priori information). Rule 3 could not be applied to the French sites 

where soil moisture observations are not available.  5 
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Figure 4. Parallel coordinate plots representing V2Karst behavioural parameterisations, and their corresponding simulated 

output values, identified when sequentially applying the five soft rules defined in Sect. 4.1 at (a) the German site, (b) the 

Spanish site, (c) the French 1 site and (d) the French 2 site. Parameters are defined in Table 1. 𝐵𝐼𝐴𝑆 absolute mean error 

between observed and simulated total actual ET (rule 1), 𝜌𝐸𝑇  correlation coefficient between observed and simulated total 5 

actual ET (rule 2), 𝜌𝑆𝑀 correlation coefficient between observed and simulated soil moisture (rule 3), 𝑄𝑠𝑢𝑟𝑓  surface runoff 

(rule 4). Rule 5 corresponds to application of a priori information on parameter ranges (black vertical bars). 
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Figure 5. (a) Simulated recharge (𝑄𝑒𝑝𝑖) and actual ET (𝐸𝑎𝑐𝑡) expressed as a percentage of total precipitation and (b) simulated 

actual transpiration (𝑇𝑎𝑐𝑡), actual soil evaporation (𝐸𝑠𝑎𝑐𝑡) and actual evaporation from interception (𝐸𝑐𝑎𝑐𝑡) expressed as a 

percentage of 𝐸𝑎𝑐𝑡 . The figure reports the ensemble mean and 95% confidence intervals calculated over the behavioural 

simulation ensemble of the V2Karst model at the four FLUXNET sites. Simulated fluxes were evaluated over the period 1 5 

January 2001-17 December 2009 for the German site, 1 January 2006-31 December 2008 for the Spanish site (dry years), 1 

January 2009-30 December 2011 for the Spanish site (wet years), 1 January 2010-30 December 2011 for the French 1 site and 

1 April 2003-31 March 2009 for the French 2 site. 
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Figure 6. Monthly time series of observed variables, namely precipitation input 𝑃,  actual 𝐸𝑎𝑐𝑡,𝑐𝑜𝑟  (in blue) and soil moisture 

𝑆𝑀𝑜𝑏𝑠 (in green), and monthly time series of simulated variables namely recharge 𝑄𝑒𝑝𝑖, actual ET 𝐸𝑎𝑐𝑡,𝑠𝑖𝑚 and soil moisture 

in the root zone 𝑆𝑀𝑠𝑖𝑚 (non-behavioural simulations are in grey and behavioural simulations in black)precipitation input (𝑃), 

simulated recharge (𝑄𝑒𝑝𝑖), simulated actual ET (𝐸𝑎𝑐𝑡 , which is the sum of evaporation from canopy interception, transpiration 5 

and soil evaporation), simulated soil moisture within the root zone (𝑆𝑀𝑠𝑖𝑚), and monthly observations of actual ET and soil 

moisture at (a) the German site, (b) the Spanish site, (c) the French 1 site and (d) the French 2 site. Blue and red green shaded 
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areas correspond to the periods in which observation of ET and soil moisture respectively were selected to apply the soft rules 

of Sect. 4.1 (further details on data processing in Sect. 3.2).  

 

 

Figure 7. Sensitivity indices of the V2Karst parameters (𝜇∗ is the mean of the absolute Elementary Effects and 𝜎 is the 5 

standard deviation of the Elementary Effects) for total simulated recharge (expressed as a percentage of total precipitation) at 

the four FLUXNET sites, when constrained (site-specific) parameter ranges are used (ranges of Table 3) and when 
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unconstrained ranges are used (ranges of Table 1). Sensitivity indices were computed over the period 1 January 2001-17 

December 2009 for the German site, 1 January 2006-31 December 2008 for the Spanish site (dry years), 1 January 2009-30 

December 2011 for the Spanish site (wet years), 1 January 2010-30 December 2011 for the French 1 site and 1 April 2003-31 

March 2009 for the French 2 site. 

 5 

Figure 8. Average monthly recharge (𝑄𝑒𝑝𝑖) simulated with V2Karst for different values of the average monthly precipitation 

amount 𝑃𝑚 [mm . month−1] and the interval between wet days 𝐻𝑝  [d] of the synthetic periodic precipitation input used to 

force the model at the virtual forest and shurb sites and under winter and summer conditions.  
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Figure 9. Change in monthly recharge (𝛥𝑄𝑒𝑝𝑖 = 𝑄𝑒𝑝𝑖
𝑠ℎ𝑟𝑢𝑏 − 𝑄𝑒𝑝𝑖

𝑓𝑜𝑟𝑒𝑠𝑡
) simulated with V2Karst when the land cover is set to shrub 

compared to forest for different values of the average monthly precipitation amount 𝑃𝑚  [mm . month−1] and the interval 

between wet days (𝐻𝑝  [𝑑] of the synthetic periodic precipitation input used to force the model at the virtual forest and shurb 

sites and under winter and summer conditions. 5 

 


