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OVERALL REPLY: We thank the Reviewer for the extensive review and take the opportunity 

to clarify some important points of our approach, while responding to the criticisms made. We 

provide detailed responses to specific comments below, but we thought it helpful to summarise 

the key point here: our manuscript introduces a new evapotranspiration component into a 

previously developed large-scale hydrological model for karst areas (Hartmann et al., 2015, 

GMD). We are therefore following an approach to large-scale hydrological modelling that has 

been widely used for climate change impact studies (e.g. Beyene et al., 2010; Sperna Weiland et 

al., 2012; Gosling et al., 2017). The Reviewer focuses on the use of land surface models to the 

same issue, which is an alternative approach currently taken to simulate climate and land cover 

change impacts on hydrological variables. However, we are not attempting to build a land surface 

model here, but rather to advance a hydrological model for large-scale applications. Indeed, we 

ourselves have argued in the past that these two communities should come closer together and 

learn from each other (Archfield et al., 2015, WRR). 

We provide below a point-by-point reply to the comments of the Reviewer with additional 

references to previous studies that help us support our modelling choices (see list of references 

at the end of this report). We have found it difficult to address some of the Reviewers’ specific 

comments, because he/she did not provide any reference to support his/her statements.   

 

 

COMMENT 1: The paper proposed by Sarrazin et al. aims at adding a new evaporation formulation 

to the recharge model VarKarst which specialises on the hydrology of karst systems. The aim of this 

development is to make the model suitable for exploring the impact of climate and land surface changes 

on these very sensitive hydrological structures. The main themes of these improvements are to be 

applicable at the large scale and to be parsimonious.  

I believe this model fails on both accounts for a simple reason, the authors have neglected the fact that 

evaporation is strongly controlled by the diurnal cycle of radiation and atmospheric processes. One of 

the main consequences of climate change is to modify the diurnal cycle at the surface and in the 

atmosphere. Thus the application of V2Karst to climate change is bound to produce unrealistic 

sensitivities. The model would be more parsimonious and more robust (because based on stronger 

physical grounds) if it would explicitly represent the diurnal cycle.  

 

REPLY 1: Our model is in line with widely published approaches to climate change assessment 

using large-scale hydrological models (e.g. Beyene et al., 2010; Sperna Weiland et al., 2012; 

Gosling et al., 2017), that all neglect the diurnal cycle and apply hydrological models at a daily 

time step. We provide further details on this issue in the reply to the reviewer’s COMMENT 3 

(Penman-Monteith equation) and 9 (canopy interception). We agree that there is indeed a strong 

need for better comparison studies to understand how neglected processes (e.g. of diurnal cycles) 

affect climate change impact studies, but this is beyond the scope of the study presented here.  

 

Moreover, the reviewer wrote “One of the main consequences of climate change is to modify the 

diurnal cycle”. We agree that global average radiative forcing is projected to increase (IPCC, 

2013; Van Vuuren et al., 2011), and average land surface air temperature is documented to have 

already increased globally (IPCC, 2013, Chapter 2 p187-188 for a global assessment, 2014, 

Chapter 23 p1275-1276 for an assessment for Europe) and is projected to further increase (IPCC, 

2013, Chapter 12 p1062-1064 for a global assessment, 2014, Chapter 23 p1276 for an assessment 

for Europe). However, to our knowledge, changes in the diurnal cycle appear to be much more 

uncertain. Changes in temperature are more documented, possibly because the historical 

temperature record is more accurate than the other climate variables (Allen and Ingram, 2002). 



2 
 

We are aware of multiple studies that analysed the past changes in diurnal temperature range (i.e. 

difference between minimum and maximum daily temperature). A summary of these studies is 

provided in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

(IPCC, 2013). They overall indicate that decreases in diurnal temperature range have been 

observed, but these decreases were found to be smaller than changes in average temperature 

(IPCC, 2013, Chapter 2, p188). Moreover, some studies suggest that these apparent changes in 

diurnal temperature range may be attributed to non-climatic factors (IPCC, 2013, Chapter 2, 

p188). In this regard, a more recent study points out that the drivers of the past observed changes 

in diurnal temperature ranges are still not well understood (Davy et al., 2017). Additionally, it 

has been shown that climate models involved in the Coupled Model Intercomparison Project 

Phase 5 (CMIP5, scientific basis for the IPCC fifth Assessment Report) are reproducing poorly 

the past observed changes in diurnal temperature range (Lewis and Karoly, 2013), which suggests 

that future projections in diurnal temperature range have large uncertainties.  

 

COMMENT 2:Furthermore this enhancement of VarKarst neglects 30 years in the developments of 

land surface models. These models do not represent hydrological processes and even less karst systems, 

and are rightfully criticized for this. But they have specialized on the surface/atmosphere exchanges 

and in particular the simulation of evaporation, vegetation processes and infiltration. At no moment do 

the authors refer to developments in one of the three leading land surface models ( JULES, ORCHIDEE 

and CLM) or their application to the 4 FLUXNET stations used here. A simple Google search would 

have shown to the authors that these open-access codes (Thanks in great part to GMD !) perform much 

better on these sites and do not require the tuning of so many parameters. Furthermore they are 

designed to be applicable at the large scale.  

I would recommend to reject the paper and encourage the authors to download one of the above 

mentioned land surface models and couple it to VarKarst. This would produce a model for these 

sensitive hydrological regions which is much more robust and produces more credible result for the 

impact of climate and land-cover changes. I am sorry to have to make such a harsh recommendation to 

GMD and in the following I will detail where I believe the basic assumptions of the authors to be wrong 

and where the usage of developments made for land surface models would help. 

 

REPLY 2: For clarity, we have structured our reply in three parts: (1) we explain why we chose 

to develop V2karst as an evolution of a parsimonious hydrological model, rather than using more 

complex land surface models, (2) we attempt to compare the performance of V2Karst and land 

surface models at the four FLUXNET sites used in our study and (3) we specify the changes that 

we intend to introduce in the revised version of the manuscript to clarify these points. We do not 

discuss V2karst representations here, as we will explain them more specifically in REPLY 3 

(Penman-Monteith equation), REPLY 6 (soil water balance), and REPLY 9 (interception). 

 

1. Reasons for developing a parsimonious hydrological model 

 

Land Surface Models are undeniably crucial tools because they include state-of-the-art scientific 

understanding of moisture and energy processes. However, parallel to the development of land 

surface models, a wealth of studies have drawn attention to the problem of dealing with model 

complexity in the context of natural systems. In fact, in natural systems, controlled 

experimentation to ascertain model formulations is not possible and model components and 

parameters tend to be poorly defined, especially at large-scales, because of a lack of data and 

knowledge (e.g. Young et al., 1996; Abramowitz et al., 2008; Beven and Cloke, 2012; IPCC, 

2013, Chapter 9, pp790-791; Hong et al., 2017; Haughton et al., 2018). For example, Beven and 
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Cloke (2012) highlight the fact that more complex models do not necessarily produce more robust 

predictions, presumably because of our lack of knowledge of natural processes and because of 

the uncertainty in estimates/observations of the variables needed to run such complex models. 

Therefore, regarding future modelling challenges, Beven and Cloke (2012) have argued that 

understanding which parameterisation may be more appropriate and assessing model 

uncertainties may be more relevant than further increasing the detail of process representation.  

 

A recent study published in GMD (Haughton et al., 2018) argues that: “In general, numerical 

LSMs [Land Surface Models] have become increasingly complex over the last 5 decades, 

expanding from basic bucket schemes to models that include tens or even hundreds of processes 

involving multiple components of the soil, biosphere, and within-canopy atmosphere. Model 

components may have been added on to existing models without adequate constraint on 

component parameters (Abramowitz, 2013) or without adequate system closure (Batty and 

Torrens, 2001). New component parameters may be calibrated against existing model 

components, leading to problems of equifinality (Medlyn et al., 2005), non-identifiability 

(Kavetski and Clark, 2011), and epistemological holism (Lenhard and Winsberg, 2010). These 

problems can often only be overcome by ensuring that each component is itself well constrained 

by data and numerically stable. As noted earlier, these conditions rarely exist for any given 

component.” In fact, although land surface models have a strong physical basis, they also include 

many empirical functions that are typically difficult to constrain (Mendoza et al., 2015). More 

critically, the fact that land surface models include a large number of parameters (many of which 

hard-coded, as highlighted in Cuntz et al. (2016) or Mendoza et al. (2015)) hampers an exhaustive 

assessment of uncertainty and sensitivity of model predictions (Young et al., 1996). We further 

discuss the issue of parameter estimation in land surface models in REPLY 15. Moreover, the 

study by Haughton et al. (2018, GMD) shows that land surface models can be outperformed by 

simple empirical models, in line with the results of previous studies conducted within the Land 

Surface Model Benchmarking Evaluation Project (PLUMBER, Best et al., 2015). 

 

Importantly, land surface models simulate a large range of different fluxes (e.g. sensible heat, 

latent heat, ground heat flux, radiation, runoff, CO2) and the sensitivity of model parameters has 

been reported to vary depending on the simulated flux considered (Cuntz et al., 2016; Rosero et 

al., 2010; Rosolem et al., 2012). For instance, Cuntz et al. (2016) showed that a large number of 

parameters of the Noah land surface model are non-influential or have a very small influence on 

total simulated runoff. This means that parts of the land surface models may be simplified when 

the objective is to simulate hydrological variables. In this sense, Hong et al. (2017) highlighted 

the fact that model development should account for the model intended uses.  

 

V2Karst aims to simulate seasonal and annual groundwater recharge, because these variables are 

appropriate to characterise the amount of renewable groundwater, and hence the amount of 

groundwater available to human consumption and ecosystems (e.g. Scanlon et al., 2006; Döll and 

Fiedler, 2008; Wada et al., 2012). As generally done in hydrological models (Table A1 of our 

manuscript), V2Karst focuses on solving the water balance, while it does not solve the energy 

balance, as land surface models do. In fact, V2Karst is not meant to be used for assessing the 

energy fluxes (radiation, sensible heat, latent heat and ground heat flux). An additional 

motivation for us not to solve the energy balance is that its inclusion increases model complexity 

and computational cost tremendously, which makes it difficult to perform a full uncertainty and 

sensitivity analysis to assess the adequateness of the different model components. By focusing 

on the water balance instead and by using parsimonious representations, we enable all 
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components of V2Karst to be subject to uncertainty and sensitivity analysis, as we have explained 

in Sect. 2.1 p4 L16- p5 L7 in our manuscript. 

 

2. Performance of Land Surface Models at the four FLUXNET sites  

 

We are not aware of studies that would allow us to directly infer that JULES, ORCHIDEE and 

CLM have better performance compared to V2Karst at the four FLUXNET sites, as stated by the 

reviewer. We found six studies in which the JULES, ORCHIDEE, CLM or Noah land surface 

models were applied at some of the FLUXNET sites we have used (Anav et al., 2010; Davin et 

al., 2011; Zhao et al., 2012; Kuppel et al., 2012; Van den Hoof et al., 2013; Chaney et al., 2016). 

In the following paragraphs, we explain in detail that either the results of these studies cannot be 

compared to our results, or that the performance of the land surface models appears to be similar 

to or slightly inferior to those of V2Karst. 

 

The results of four of these studies cannot be compared with our results. The study by Chaney et 

al. (2016) does not specifically report performance results for any of the four FLUXNET sites. 

The study by Davin et al. (2011) analysed a full Regional Climate Model including the CLM 

model and did not present performance results regarding latent heat and soil moisture 

simulations, which are the two variables we analysed in our manuscript. The study by Kuppel et 

al. (2012) did not analyse the bias or the correlation coefficient between measured and simulated 

latent heat/evapotranspiration, while these two metrics were used in our analyses (Sect 4.1 of our 

manuscript). In fact, both metrics are important to characterise the hydrological performance of 

the recharge model, since the bias assesses the performance in reproducing the overall water 

balance, while the correlation coefficient assesses the consistency between the temporal pattern 

of simulated and observed latent heat/evapotranspiration. Finally, the study by Anav et al. (2010) 

did not report quantitative performance metrics for the individual sites. 

 

In the two “comparable” studies ( Zhao et al., 2012; Van den Hoof et al., 2013), land surface 

models show similar or slightly inferior performance compared to V2Karst, although it is difficult 

to make a fair comparison because the time periods analysed were not the same as in our 

manuscript. Zhao et al. (2012) assessed the squared correlation coefficient 𝑅2 between monthly 

observed and simulated latent heat at the French 2 site (Puéchabon) using the ORCHIDEE model 

and local forcing data. They found a value of 𝑅2 of 0.59, i.e. a correlation coefficient of √0.59 =

0.77 (Zhao et al., 2012, fourth row in Figure 6). This is comparable to the performance of the 

V2Karst model, since we identified simulations for which the correlation coefficient between 

monthly simulated and observed ET was higher than 0.77 (Figure 4 in our manuscript). We wish 

to mention that there appears to be a mistake in the labels in Figure 6 in Zhao et al. (2012) and 

therefore we are not completely sure we have read the figure correctly.  Finally,  in Van den Hoof 

et al. (2013), the JULES model was tested at the German site (Hainich) using local forcing data. 

The bias between observed and simulated evapotranspiration for the best performing version of 

the model is around 29% (this percentage is inferred from Figure 2.b in Van den Hoof et al. 

(2013), which reports that the mean annual observed ET is 280 mm.y-1 and the simulated mean 

annual ET is 360 mm.y-1). The bias is therefore above the limit of acceptance of 20% that we 

have used in our manuscript. Van den Hoof (2013) did not provide the monthly correlation values 

for individual sites, but we can infer that, for the German site, the monthly correlation coefficient 

is between 0.7 and 1 (Van den Hoof et al., 2013, Figure 5.b), which is comparable to our study. 

 



5 
 

3. Changes in the revised version of the manuscript 

 

Based on the Reviewer’s comment, we realise that in our manuscript we have not stated clearly 

enough our philosophy in developing V2Karst in line with other large-scale hydrological models. 

We will clarify this point in the introduction p4 L3-11 (in the paragraph that states the objectives 

of the study). We agree that for completeness our manuscript should also refer to the literature 

on land surface modelling. In the revised version of our manuscript we will thus include a 

discussion of the ET components of land surface models in Sect. 2.1. However, we would avoid 

including a comparison between the performance of the V2Karst model and other land surface 

models at FLUXNET sites because, as shown in our point (2) above, it is difficult to make a fair 

comparison between different studies that used different metrics and different time periods to 

evaluate the models. 

 

COMMENT 3: Rational to explicitly represent land cover properties :  

 It is laudable for the authors to use the Penman-Monteith formulation for potential evaporation. But 

should they have paid attention to its derivation, they would have noted that it only provides potential 

evaporation over a infinitesimal time intervals as it assumes that atmospheric variables and surface 

states do not evolve through other processes. A constant Rn(t) or ra,can(t) over the course of the day is 

a very unsatisfactory assumption, especially under a changing climate. Because of very contrasted 

impact of changing atmospheric composition on long-wave and short-wave radiation, we can encounter 

the same Rn but with very different radiation balance, turbulent fluxes and surface temperatures. The 

authors will find in the literature a number of paper which examine the impact of climate change on 

the different potential evaporation formulation. They all recommend to use sub-diurnal solutions 

because of the modified diurnal dynamics.  

 

REPLY 3: We are aware of the fact that the Penman-Monteith equation has been determined 

over an infinitesimal time step (e.g. Shuttleworth, 2012) and that, therefore, using sub-daily rather 

than daily time step for the calculation of the equation provides conditions that are closer to its 

theoretical derivation. Nevertheless, Penman-Monteith equation has been shown to be applicable 

at daily time step and is widely used at daily time step. 

 

In particular, Allen et al. (2006) commented on applications of the Penman-Monteith reference 

crop framework, that was designed by the Food and Agriculture Organization of the United 

Nations (FAO) and the American Society of Civil Engineers (ASCE). The framework has 

standardised the use of the Penman-Monteith equation for both hourly and daily time step (Allen 

et al., 1998; Walter et al., 2005) with a focus on agricultural crop. Allen et al. (2006) stated the 

following: “The favorable performance of the PM equation in many studies, when applied with 

24-h (and even monthly) time steps, is somewhat surprising, since the formulation of the 

combination equation (combined energy balance and aerodynamic components) theoretically 

requires weather inputs on a nearly instantaneous basis. The general consistency and accuracy 

of the PM method for 24-h time steps speaks to the combination equation’s robustness in 

estimating evaporative behavior given a particular set of meteorological conditions.” More 

recent papers still support both hourly and daily applications of the Penman-Monteith reference 

crop framework (e.g. Pereira et al., 2015). The daily framework has been included for instance 

in an R package for simulating evapotranspiration at daily time step (Guo et al., 2016).  

 

The Penman-Monteith equation is widely used at daily time step. Among its applications, we can 

cite the Moderate Resolution Imaging Spectroradiometer (MODIS) Evapotranspiration product 
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(Mu et al., 2011; Running et al., 2017). Furthermore, the Penman-Monteith equation is 

implemented in the large-scale hydrological models PCR-GLOBWB, MacPDM and VIC (these 

models are reviewed in Table A1-A3 of our manuscript). These models have been applied at 

daily time step in climate change impact studies. For instance, Gosling and Arnell (2016) used 

MacPDM, Sperna Weiland et al. (2012) used PCR-GLOBWB and Beyene et al. (2010) used VIC 

at daily time step. These three hydrological models are also included in the Inter-Sectoral Impact 

Model Intercomparison Project (ISI–MIP, Warszawski et al., 2014) that aims to assess the impact 

of climate change. In that context, daily simulations of PCR-GLOBWB, MacPDM and VIC are 

analysed for instance by Gosling et al. (2017). 

 

Given all the above, we think that applying the Penman-Monteith equation at daily time step is 

one possible choice that is consistent with a wide range of published studies. The direct 

comparison between running models for hydrological projections at daily or sub-daily 

resolutions, while considering the uncertainties present in the different projections (as discussed 

in Beven and Cloke, 2012), would indeed be very interesting but beyond the scope of our study. 

 

Our manuscript refers to other hydrological models that applied the Penman-Monteith equation 

at a daily time (Table A2). Additionally, in the revised version of the manuscript, p12 when 

discussing the Penman-Monteith equation, we will refer to Allen et al. (2006) (see above citation) 

to further justify the use of the Penman-Monteith equation at a daily time step. 

 

COMMENT 4: The parsimony of our representation of nature if not for us to choose. We have to prove 

that certain simplifications in the representation of surface processes are valid for the application we 

envisage. The authors aim to develop a model valid at the large scale, for climate and land surface 

change. Is it then reasonable to assume that over the course of a day ra,can does not change ? I think 

the development of land surface models has shown that one cannot neglect the diurnal dynamic of the 

opening of the stomata, the soil moisture stress or the dependence of stomatal resistance to atmospheric 

CO2 concentration. If the authors believe that they have found a way to represent with a single daily 

value these complex processes and their interaction with the environment they should let the world 

know as it would allow land surface models to be simplified.  

 

REPLY 4: We explain in REPLY 1 and 2 why we have chosen to include a parsimonious process 

representation in V2Karst, which is in line with well-established large-scale hydrological 

modelling studies on climate change impacts. An in-depth comparison with land surface models 

would be interesting, but it is beyond the scope of our work here.  

 

The evaluation of the Penman-Monteith equation, which requires the specification of the 

aerodynamic resistance ra_can, is well documented at a daily times step (see REPLY 3). 

Our representation does include soil moisture stress using a linear function of soil moisture which 

multiplies the potential evapotranspiration rate (Eq.(7) p10, and Eq.(8) p11 of our manuscript). 

This formulation is similar to the previous version of the model (VarKarst, Hartmann et al., 2015) 

and to other hydrological models (Table A2 of our manuscript).  

 

V2Karst neglects the dependence of the stomatal resistance on atmospheric factors such as 

temperature, radiation, humidity and CO2 concentration, as implemented for instance in Ball-

Berry (Sellers et al., 1996) and Jarvis-Stewart (Jarvis, 1976; Stewart, 1988) schemes. Stomatal 

resistance is assessed as a function of a minimum stomatal resistance (which is a parameter of 

the model) and the leaf area index (Eq.(13) p13). This formulation is similar to the hydrological 
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model MacPDM (Table A2) that has been applied in climate impact studies (e.g. Gosling and 

Arnell, 2016) as already reported in REPLY 3. Compared to MacPDM, V2Karst also includes 

the dependence of the stomatal resistance on the leaf area index, although we recognise that this 

approach is still a strong simplification of stomatal processes. The reason for our choice comes 

from the fact that the value of the stomatal resistance is poorly characterised for large-scale 

applications, because few ground measurements of stomatal resistance are available (some are 

reported in  Breuer et al. (2003) and Körner et al. (1995)). Moreover, the temporal variability of 

stomatal resistance makes its measurements particularly difficult to interpret (Breuer et al., 2003) 

and therefore to use in modelling applications. We have discussed the lack of ground 

measurements of stomatal resistance (and more generally of vegetation properties) in Sect. 2.1 

p4 L20 and in Sect S1 of our supplementary material. The Ball-Berry and Jarvis-Stewart 

parameterisations of stomatal resistance significantly increase model complexity and in particular 

introduce several empirical parameters, whose values are uncertain because of the lack of 

stomatal resistance measurements. The constant value of the stomatal resistance implemented in 

V2Karst allows us to lump all the uncertainties around stomatal resistance estimation into a single 

parameter, that we can include in our uncertainty and sensitivity analysis. In this way, we can 

easily analyse the impact of the value of the stomatal resistance on simulated recharge. We 

obviously do not claim to “have found a way to represent with a single daily value these complex 

processes and their interaction with the environment”, but simply to have included in our model 

a simple approach to control the overall impact of this variable on recharge predictions.   

The temporal behaviour of the stomatal resistance could be investigated in V2Karst in future 

studies. However, we believe that, as a first version of the model, such in-depth investigation is 

beyond the scope of this study. 

 

 

COMMENT 5: In their rational for their modelling strategy they only mention one land surface model 

: ISBA in its 1998 version. This is not up to date. Even ISBA has evolved since then and does not use 

any more a Jarvis type parametrisation. It now also uses a Ball-Berry type formulation which balances 

carbon uptake and transpiration. Please note that ISBA operates at sub-diurnal time steps.  

 

REPLY 5: The Reviewer is right, the description of the ISBA model is not up-to-date. In the 

revised version of the manuscript, we will refer to the new version of the ISBA model in Sect. 

2.1 when briefly discussing the representation of ET in land surface models (as mentioned in 

REPLY 2). 

 

COMMENT 6: Soil water balance :  

The explanations of the evolution of moisture in the unsaturated zone is not very clear to me. It looks 

to me like a superposition of buckets with the addition of lateral flows. It has been the experience in the 

land surface model community that this simple representation of soil moisture limits the ability to 

simulate the impact of stresses on transpiration. This is particularly critical in semi-arid those 

encountered at 3 of the selected FLUXNET stations. What is the reasoning of the authors behind this 

simplification in the treatment of the unsaturated zone, apart from “parsimony” ?  

 

REPLY 6: The evolution of moisture in the saturated zone in V2Karst is the same as in VarKarst 

(Hartmann et al., 2015, GMD). This representation is supported by physical reasoning and by 

previous testing of the VarKarst model. 
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As explained in Sect. 2.3.2 p8-9, percolation from a given soil layer (𝑆𝑜𝑖𝑖) to the underlying soil 

layer (𝑆𝑜𝑖𝑘) is equal to the saturation excess in 𝑆𝑜𝑖𝑖. Percolation from the deeper (third) soil layer 

to the epikarst layer is also equal to the third soil layer saturation excess. As explained p1 L10-

11 and p8 L24 – p9 L3, the reasoning behind this simplification is that soils in karst areas typically 

have a high clay content (Blume et al., 2010), and therefore tend to have low unsaturated 

permeability (Clapp and Hornberger, 1978). Instead, saturated permeability is typically high 

because clay soil generally have cracks that can act as preferential flow pathways under wet 

conditions (Lu et al., 2016).  

 

The representation of the process of lateral flow is a feature specific to the VarKarst model, 

which, together with the explicit representation of sub-surface sub-grid heterogeneity (using 

model vertical compartments), makes the model more appropriate for karst areas than other large 

models. The adequacy of the soil water balance representation in VarKarst has been tested in 

previous studies for previous versions of the model (Hartmann et al., 2012, 2015, 2017). In 

particular, Hartmann et al. (2015, 2017) showed that there is no systematic bias in the model 

predictions, and that recharge predictions produced by VarKarst are significantly higher than 

those produced by models that do not include karst processes. Further discussion of the 

representation of diffuse and concentrated flow in V2Karst and of the testing of the previous 

versions of the model are given in our response to the first review of this manuscript (REPLY 2 

in ‘Response to Referee #1’ available at https://www.geosci-model-dev-discuss.net/gmd-2017-

315/). 

 

COMMENT 7: Evapotranspiration :  

Only one vegetation type seems to be allowed per grid-box, is this correct ? Because of the strong 

heterogeneity of the distribution of vegetation, it has been the experience of the community that a larger 

number of plant functional types is needed per grid box. The strict minimum has been found to be a low 

and a high vegetation. This simplification will be critical for the application to larger domains and in 

particular in semi-arid regions where the competition of the various vegetation types for water is 

critical.  

 

REPLY 7: We agree that, for large-scale applications, the model should be able to represent 

different vegetation types within a given simulation grid cell. The model can account for sub-

grid heterogeneity in vegetation type using a ‘tile’ approach.  

A ‘tile’ approach consists of subdividing each model grid cell in a number of independent units 

(tiles), each of which has a specific land cover (e.g. short or tall vegetation). The model can then 

be evaluated separately over each tile. The overall simulated fluxes for a given grid cell are 

computed as the area weighted average of the fluxes calculated over the tiles. The same approach 

is also used in other large-scale hydrological models, for instance in the Mac-PDM model 

(Gosling and Arnell, 2011) and in the VIC model (Bohn and Vivoni, 2016; Liang et al., 1994, 

http://vic.readthedocs.io/en/master/Overview/ModelOverview/).  

 

We will add a sentence in Sect. 6.3 (that discusses large-scale application of V2Karst) to clarify 

the fact that sub-grid heterogeneity in vegetation types can be treated following a tile approach. 
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COMMENT 8: Please explain here as well why the literature on vegetation modelling is not relevant 

for this model.  

 

REPLY 8: We are not sure which specific literature the reviewer is referring to. In Sect. 2.1 and 

Tables A1-A3 of our manuscript we have provided a detailed review of ET and vegetation 

modelling in other large-scale hydrological models. As mentioned in REPLY 2, we will also add 

a brief discussion of the ET components of land surface models in Sect. 2.1 of our revised 

manuscript.  

We are aware of the fact that our manuscript is rather long and we have already been advised by 

another reviewer to shorten it, hence we would avoid adding further details on vegetation 

modelling besides Sect. 2.1.  

 

COMMENT 9: Canopy interception :  

This is another topic where the community has acquired a rich experience which could benefit the 

authors. The representation of canopy interception at different temporal and spatial scales has been 

fiercely debated in the early 90s. Thus a number of parametrisations were developed to take into 

account the spatial and temporal variability of interception. This would be relevant here. Do the authors 

believe that a rainfall event in the evening or in the morning produces the same interception loss ? Does 

a rainfall event of 10mm/h and 100mm/h produce the same interception ? So does the assumption of 

treating these processes averaged over the day have any implication on the sensitivity of V2Karst to 

climate change ? We know that rainfall intensity and possibly also the time of day at which precipitation 

will occur will change in a warmer climate. 

 

REPLY 9: V2Karst implements a parsimonious daily interception model as done in other large-

scale hydrological models.  

 

In V2Karst, for each day, evaporation from the interception store is assessed over the vegetated 

fraction as the maximum value between daily precipitation, potential evapotranspiration and 

interception storage capacity. Our model is similar to the large-scale hydrological models 

WaterGap, PCR-GLOBWB and VIC (Table A3 in our manuscript). These models have been 

simulated at daily step to assess the hydrological impact of future changes in climate, for instance 

in Gosling et al. (2017) within the Inter-Sectoral Impact Model Intercomparison Project (ISI–

MIP, Warszawski et al., 2014), and in Döll et al. (2018) for WaterGap, in Sperna Weiland et al. 

(2012) for PCR-GLOBWB and Beyene et al. (2010) for VIC. Past studies have shown that 

interception can be reasonably represented at a daily time scale (Savenije, 1997; De Groen and 

Savenije, 2006; Gerrits et al., 2009). 

 

We are aware of the fact that more sophisticated interception schemes have been developed, as 

reviewed for instance in (Muzylo et al., 2009). These more complex schemes include additional 

parameters compared to our formulation that includes only one parameter, namely the 

interception storage capacity. We chose to implement a simple interception scheme for large-

scale applications because (1) the physical processes and atmospheric conditions driving 

evaporation from canopy interception are still poorly understood (Van Dijk et al., 2015), (2) 

ground measurements of evaporation from interception that would be necessary to constrain 

model parameters are not available (Fatichi and Pappas, 2017; Miralles et al., 2016), and (3) 

ground measurements of canopy resistance are also sparse and affected by large uncertainties 

(Van Dijk et al., 2015).  
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We have discussed the issues arising from lack of measurements in large-scale model 

applications in our model development rationale (Sect. 2.1 p4 L19-20) and in Sect S1 of our 

supplementary material. Similar to our representation of stomatal resistance (REPLY 4), since 

the representation of interception processes can only be poorly constrained for large-scale 

applications, we chose a simple interception scheme. In this way, we can easily include the 

uncertainty in interception representation in our analyses and gain a systematic understanding of 

the impact of this uncertainty on seasonal and annual recharge predictions (our variables of 

interest). 

 

COMMENT 10: May I point out at this stage that precipitation intensification has been observed at 

the sub-diurnal range. Daily mean rainfall has not yet been too much affected by climate change. On 

the other hand, hourly precipitation rates have been increasing faster than expected from the 

Clausius-Capleyron relation. Thus, the virtual experiments experiments proposed in section 4.3 are 

not relevant for climate change. The authors are referred to the wealth of literature published on this 

topic in the last few years.  

 

REPLY 10: We have actually found evidence suggesting that daily mean rainfall has been 

affected by climate change, and therefore analysing the impact of changes in daily precipitation 

(overall mean and temporal distribution), as done in our virtual experiment, is relevant.  

The last IPCC assessment reported that many regions show a significant trend (positive or 

negative) in mean daily precipitation for the past period (IPCC, 2013 and particularly Fig. 2.33, 

reported as Figure R1 below). Additionally, a more recent study by Ye et al. (2016) found that 

an increase in mean daily precipitation intensity occurred in all seasons in the northern Eurasia 

region over the period 1966-2010. Regarding future climate, model projections indicate changes 

in seasonal precipitation and changes in the 95 percentile of daily precipitation, for instance in 

Europe (IPCC, 2014, Chapter 23, Section 23.2.2.2 and Fig. 23-2).  

 

In the revised version of the manuscript, we will clarify the fact that daily precipitation is likely 

to change in the introduction section (Sect. 1).  

 

 
Figure R1. Trend in daily precipitation intensity over the period 1951-2010. Trends were calculated 

only for grid boxes that had at least 40 years of data during this period and where data ended no earlier 

than 2003. Grey areas indicate incomplete or missing data. Black plus signs (+) indicate grid boxes 

where trends are significant (i.e., a trend of zero lies outside the 90% confidence interval).  

Source of the Figure: (IPCC, 2013, Figure 2.33) 
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COMMENT 11: Transpiration from vegetated soil :  

Transpiration does not occur from the soils (as written in the paper) but from the stomata in the 

vegetation. This is not a negligible detail. Firstly the stomata only open when daylight is present and 

thus photosynthesis can occur. During the early afternoon, once the water in contact with the roots and 

within the plant has been evaporated, transpiration declines. This is caused by the slower diffusion of 

water within the soil which limits the supply. This is known to be a critical process for transpiration 

and which will be affected by higher CO2 concentration which will lead plants to reduce the opening 

of their stomata. I guess these processes are neglected in the proposed model, why ? It would be a very 

interesting topic to see how this early afternoon depression of transpiration is affected by climate 

change for plants on karstic soils. It is bound to be different than on loamy soils for instance.  

 

REPLY 11: We agree with the reviewer that “transpiration does not occur from the soil”. In the 

revised version of the manuscript, we will correct this mistake. More specifically, p11 L1 we will 

replace ‘Transpiration from vegetated soil’ by ‘Transpiration over the vegetated fraction’. 

 

Regarding the reviewer’s comment “I guess these processes are neglected in the proposed model, 

why ?”, as explained in detail in REPLY 4, we neglect the dynamics of stomatal resistance 

because lack of observations does not allow constraining complex stomatal resistance schemes 

at a large-scale. We instead use a constant value of the stomatal resistance (scaled by the leaf area 

index) which enables us to easily analyse the effect of uncertain stomatal resistance on simulated 

recharge by including the stomatal resistance parameter in our sensitivity analysis. 

 

“How this early afternoon depression of transpiration is affected by climate change for plants on 

karstic soils” is a very interesting research question but is beyond the scope of our research. 

Again, the aim of our modelling activity here is to (reasonably, given all data and knowledge 

limitations) assess the effects of climate and land cover changes on groundwater recharge at the 

spatial and temporal scale of interest (large/regional; seasonal/annual). Our objective is not to 

assess the effect of climate variations on every specific process involved in plant transpiration. 

 

 

COMMENT 12: Sorry, the assumption “... evaporation from interception is constant throughout the 

day ...” is not valid and will change with climate and land surface type.  

 

REPLY 12: We agree with the reviewer that the justification of Eq. (11) p12 L2-3 (fraction of 

the day with wet canopy) has been expressed incorrectly, ultimately misleading the interpretation 

of our proposed approach.  

 

We do not actually make the strong assumption that “evaporation from interception is constant 

throughout the day”. We instead assess the fraction of the day with wet canopy as the fraction of 

available energy that was used to evaporate water from the interception store. This conceptual 

representation was proposed in Kergoat et al. (1998) and it was adopted in the dynamic vegetation 

model LPJ (Gerten et al., 2004; Murray, 2014) presented in Table A1-A3. In V2Karst  we revised 

this formulation, which in the referenced studies uses the fraction of daytime with wet canopy 

(hence assuming that ET fluxes occur during daytime only), by using the fraction of the entire 

day, given that night time ET fluxes have been shown to be also important ( e.g. Pearce et al., 

1980; Sugita and Brutsaert, 1991; Kelliher et al., 1992).  
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In the revised version of the manuscript, we will clarify the point by replacing the statement p12 

L2-3 (“The fraction of the day with wet canopy 𝑡𝑤𝑒𝑡(t) [−] is estimated by assuming that 

evaporation from interception is constant throughout the day ...”) by  “The fraction of the day 

with wet canopy 𝑡𝑤𝑒𝑡(t) [−] is estimated as the fraction of available energy that was used to 

evaporate water from the interception store …”. 

 

COMMENT 13: Parameter estimation :  

The proposed parameter estimation is difficult to interpret in view of the strong hypothesis made in the 

basic equations of the model. The 15 parameters of this model are so conceptual, i.e. far away from 

first physical principles, that indeed they can all be tuned. But given the large number of “tunable 

parameters” can it not be expected that the model can be made to match any dataset ? To me hveg, 

LAI(min,max) or z0 are not “tunable parameters” as they can either be measured or derived from 

turbulence theory. 

 

REPLY 13: We agree with the Reviewer that (1) the ability to identify parameter sets that 

produce predictions close to observations is a necessary but not sufficient condition for the 

plausibility of the V2Karst model and (2) some parameters of V2Karst can be derived from a 

priori information. We think that we have accounted for these two points in our methodology, as 

we explain below. 

 

Regarding (1), we agree that a model can produce reasonable predictions by ‘incorrectly’ 

activating processes to compensate for structural deficiencies. For this reason, in our evaluation 

of V2Karst, in addition to the comparison between observations and predictions (Sect. 4.1), we 

also performed two sensitivity analyses: one using measured forcing data (Sect. 4.2) and the other 

one using synthetic forcing data (Sect. 4.3). The aim of these analyses was precisely to assess 

whether the sensitivities of V2Karst outputs across sites are consistent with our understanding of 

the physical characteristics of those sites, and hence whether the model reproduces the 

observations for the right reasons by activating the appropriate controlling factors at the right 

place. In our manuscript, we have discussed the fact that the global sensitivity analysis appled to 

V2Karst showed a set of sensitivities that are interpretable in light of the different climatic 

conditions at the four FLUXNET sites (see Sect. 5.2.2 p22 and in Sect. 6.1 p25). Such use of 

sensitivity analysis as a tool for model diagnostic evaluation (verification of model structures) 

has been successfully applied already in several modelling studies (e.g. Rosero et al., 2010; 

Reusser and Zehe, 2011; Rosolem et al., 2012;  Hartmann et al., 2013). 

 

Regarding (2), we have actually used measurements at the FLUXNET sites to constrain the value 

of parameters hveg, LAI(min,max), Vr and Vsoi. As explained in Sect. 4.1, our parameter 

estimation strategy is based on the sequential application of ‘soft rules’ to identify plausible 

parameter values within an initial sample spanning over a wide range. Rules 1-4 select ‘plausible’ 

parameter sets based on their ability to produce model outputs consistent with observations, while 

the last rule (rule 5) selects the parameter sets that are consistent with a priori information about 

the sites. Constraining parameter values based on a priori information in the last step, instead of 

doing it in the first step as typical of other estimation strategies, provides us with a more stringent 

test of the adequacy of the model structure. In fact, if the parameter sets identified as plausible 

by Rules 1-4 (consistency with observations) are also plausible according to Rule 5 (a priori 

knowledge about the site), we can indeed conclude that the model ‘gives the right response for 

the right reason’. If instead some parameters sets identified as ‘plausible’ by the comparison with 



13 
 

observations (Rules 1-4) are then ruled out when including a priori information (Rule 5), this 

indicates some deficiencies in the model structure that are being ‘compensated for’ by tunable 

parameters, and points us to the model components that need improvement. In our experiment, 

presumably because too few data are available to constrain the simulations, Rules 1-4 result in 

little constraining of the parameter ranges (Figure 4, Sect. 5.1.1). However, importantly, we can 

identify parameter sets that satisfy all rules simultaneously and that are therefore consistent with 

a priori information at the site, while also producing predictions consistent with the available 

observations.  

A similar strategy was used in previous studies, and more specifically in Hartmann (2015) to 

estimate the parameters of the VarKarst model and in Rosero et al. (2010) to estimate soil and 

vegetation parameters of the Noah land surface model. 

 

In future large-scale applications of V2Karst, we envisage that parameters hveg, LAI(min,max), 

Vr and Vsoi can be a priori constrained based on grid-cell specific information about vegetation 

and karst landscape type (Vsoi was constrained based on karst landscape type in Hartmann et al. 

(2015)).  

In this sense, in Sect. 6.3, we explain that some model parameters will be estimated using a priori 

information for the different simulation grid-cells (p27 L21 – p28 L2). In the revised version of 

the manuscript, we will clarify Sect 6.3 to better convey this point. 

 

COMMENT 14: Furthermore I find that the range of values explored for these parameters (Table 3 

does not provide the limits for all 15 parameters) is much wider than realistic values I have observed. 

 

REPLY 14: Table 2 provides the wide ranges for all 15 parameters that were used to derive the 

initial parameter sample for our parameter estimation strategy. Table 3 provides the a priori 

ranges that were used for applying our soft rule 5. These ranges are defined only for those 

parameters for which site-specific a priori information was available.  

All these ranges were determined in accordance with values found in the literature. References 

and detailed explanations are given in Sect. S3 of our Supplementary material (Table S11 and 

S12 p13-15). 

 

 COMMENT 15: Land surface models also use the FLUXNET observations to “tune parameters”. But 

fewer parameters are adjusted and only those where the definition itself includes processes which are 

not modelled, i.e. are conceptual. Furthermore these parameters are specific to the plant functional 

type present at the FLUXNET station and then then transferred to the larger scale. This is the value of 

using vegetation classes in land surface models. A simple internet search for FLUXNET and the name 

of one of the leading land surface models, returns a large number of papers. Some where the models 

are simply validated and others where the observations are used to refine some vegetation parameters. 

The authors should have done that search during the development of their model.  

 

REPLY 15: We are aware of the fact that land surface models indeed typically tune a very limited 

number of model parameters. However, the results of recent studies suggest that excluding many 

parameters from calibration and uncertainty/sensitivity analysis raises a number of issues and 

that parameter estimation strategies of land surface models should be enhanced, as explained in 

the next paragraphs. 

 

Among the parameters of land surface models that are not ‘tuned’, some are considered as 

‘physical’ parameters and are commonly read from look-up tables (more specifically soil and 
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vegetation parameters are assigned based on soil texture and vegetation type respectively) or are 

set to site-specific values when measurements are available. Other parameters, which have an 

empirical basis, are set to constant values or are even hard-coded, i.e. are embedded in the model 

code as fixed values (e.g. coefficients to describe a particular shape for a curve in the model, such 

as the exponent used in the snow depletion curves for the melting season in the Noah land surface 

model as reported in Mendoza et al., (2015)). Hogue et al. (2006) highlighted the fact that many 

parameters in land surface models cannot be directly obtained from field measurements but 

through curve-fitting techniques, such as parameters controlling the soil hydraulic properties 

(derived for instance in Clapp and Hornberger, 1978).  

 

Previous studies suggest that reading parameters from look-up table or setting them to fixed value 

are not satisfying strategies. Some studies have put into questions the physical meaning of 

vegetation and soil parameters in land surface models, and therefore the fact that they can be 

assigned from look-up tables or from site measurements. Rosero et al. (2010) analysed the 

sensitivity and optimal values of different vegetation and soil parameters for different version of 

the Noah land surface model along a precipitation gradient in the southern USA. Their results 

suggest that climate strongly controls the optimal soil and vegetation parameters values, which 

means that vegetation and soil parameters do not strictly represent vegetation and soil properties 

but also account for other properties. Hogue et al. (2006) analysed the differences in optimal 

values of different vegetation and soil parameters across five different land surface models 

(BUCKET, CHASM, BATS1e, BATS2, and Noah) and for five different vegetated sites in the 

USA. They found significant differences in optimal parameter values for the same parameters 

and the same site across models, which suggests that the vegetation and soil parameters have a 

different meaning across models. Therefore, they conclude that land surface models should be 

interpreted as simplified conceptual representations of natural systems, in which parameters are 

also conceptual representations of physical properties. The incommensurability between model 

parameters and physical properties can be explained by the scale mismatch between physical 

variables that can be actually measured and model parameters that represent cell average 

properties. An additional possible explanation for this incommensurability is that models 

implement governing equations that are well established to describe the behaviour of the system 

over small scales (e.g. Darcy’s law), but that may not be valid for applications over larger 

domains (Kirchner, 2006). 

 

Moreover, it has been shown that some empirical parameters that are typically fixed to constant 

values, and in particular some hard-coded parameters, have a significant impact on model 

predictions and therefore these parameters would need to be included in the parameter estimation 

strategy, i.e. to be ‘tuned’ (Cuntz et al., 2016; Mendoza et al., 2015). 

 

The fact that land surface models include a large number of parameters that would potentially 

need to be ‘tuned’, and the limited availability of data to constrain model predictions at large-

scales (as discussed in Sect. S1 of our supplementary material, and in REPLY 4 and 9 above) 

make the calibration of land surface models particularly challenging in large-scale applications. 

How to enhance parameter estimation of land surface models is indeed still an open question (e.g. 

Chaney et al., 2016).  
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COMMENT 16: Conclusion :  

I am very sorry to have to write this review about the development of V2Karst. I know what a huge 

effort it is to develop a complex numerical model. As the authors are working in Britain, I would 

recommend that they look into the JULES land surface model. It is freely available and could be coupled 

to VarKarst to produce a very innovative tool which could indeed allow to explore the consequences of 

climate and land surface changes on water resources of karst aquifers. This need, to initiate a 

convergence between hydrological and land surface modelling, has been recognized by NERC and lead 

to the initiation of the HydoJULES program. The authors should contact the leaders of this program to 

obtain help. 

 

REPLY 16:  The V2karst V1.0 model is an extension of a large-scale hydrological 

model previously published in GMD (VarKarst, Hartmann et al., 2015) that aims to simulate 

groundwater recharge in karst areas under changing environmental boundary conditions. 

Hydrological models are widely applied to study groundwater recharge at large-scales. As we 

have stressed in REPLY 2 and 15, land surface models simulate many more fluxes than 

hydrological models (e.g. sensible heat, latent heat, ground heat flux, radiation, CO2), which 

implies that they include many more parameters that are difficult to constrain in large-scale 

applications. Since our objective is to predict seasonal and annual recharge, which is the key 

variable of interest for water resources management in karst areas, and not to assess the other 

fluxes simulated by land surface models, we chose to build on and expand a hydrological model 

instead of using a land surface model. While we acknowledge that the approach proposed by the 

Reviewer may be an alternative route to achieve our goal, we hope we have provided a 

convincing rationale for our modelling choices and we would take the opportunity to revise our 

manuscript to clarify these points. 
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