Anonymous Referee #2 comments and response

We would like to thank the reviewer very much for the time and effort put into reviewing our
manuscript. A point-by-point reply (in blue) to each comment (in black) by Referee #2 are given
below. Specific changes in the manuscript are written in blue italics.

This work makes modifications to a well-known and widely used glacial flow model
Elmer-Ice to allow an approximation to the nonlinear Stokes problem — the Shallow
Shelf Approximation — to be solved for a large proportion of the floating part of the
domain, in such a way that the two solves are consistent with respect to the force
balance. The significance of such a modification is the expense involved with the stokes
solve. Not only does it have more degrees of freedom, but it leads to a problem which
in the variational sense is a saddle-point and not a minimization problem, leading to
difficulty in discretisation; and, though it is not flagged by the authors, there is an extra
complication in solving for ice shelves, as a floatation condition cannot be assumed,
allowing for oscillation and instability in the vertical momentum condition that must be artificially
damped. The work is a nice follow-on slash complement to two other works

in the literature: Seroussi et al 2012, which couples together different approximations

to the FS problem in a diagnostic setting; and Ahlkrona et al 2016, which dynamically
couples FS to SIA in an evolving ice sheet, and is deserving of publication.

We would like to thank you very much for the time and effort you put into reviewing our
manuscript.

i only have 2 general comments:

1) My one general comment is that the underlying premise seems to be that this
method will reduce computational resource requirements. The reduction in the test
cases seems to be low; but this is explained in the discussion, and I am not presently
commenting on this. It is rather that presumably this coupling is meant to be applied
to regional and continental scale simulations of marine ice sheets. As SSA is only
solved on the shelf, the savings are limited by the portion of the domain covered by ice
shelves. Quick googling tells me that ice shelves currently represent 10% of Antarctic
total area — significantly less than in the test simulations in the paper. So how much
more efficient is such a coupling meant to be compared to FS only continental simula-
tions?

When considering the coupling with ISCAL, the gain by having FS-SSA is not just 10% because
much of the interior can be modeled with SIA, such that the area left with FS are mainly (around)
ice streams and shelves. Also, we are aiming for paleo-simulations, which may have larger ice shelf
in the cold period.

We agree that this was not explained in the manuscript yet and have added it to the introduction:
“The extent of present-day ice shelves is limited to approximately 10 % of the area of Antarctica
(Rignot et al., 2013). Therefore, one may question the reduction of computational work by applying
SSA to model ice shelves in continental scale simulations of marine ice sheets. However, the
coupling is targeted to conducting paleo-simulations, for which much larger ice shelves have been
present (Jakobsson et al., 2016; Nilsson et al., 2017). Besides that, the new FS-SSA coupling can be
combined with ISCAL. Then, a large part of the interior of a marine ice sheet will be modelled with
SIA, such that the FS domain will be restricted to ice streams and areas around the grounding line,
when SSA is applied to the ice shelves.”

But I am curious about the issue that i bring up in my first paragraph, but was



not addressed. Durand et al 2009 discusses their approach to prevent instability in the
vertical due to ice shelves not being in floatation (they added a degree of implicitness
to the velocity solver — their eqn 15). I have wondered if this potential instability affects
the solution of FS for a marine ice sheet, and possibly artificially enforces archimedean
floatation. I would be curious to know about how your coupling affects this issue ,i.e.
the need for the "fix" — could you remove the fix for your coupled experiments?

We have not tried to remove the fix for our coupled experiments. In Elmer/Ice, the Stokes and
surface evolution equations are coupled by explicit time stepping, because we only solve the
coupled system once per each time step. To solve the fully coupled system implicitly is very costly
and unnecessary in most of the cases in ice sheet simulation.

One exception is the flotation, since it is a fast process compared to the dynamics of the upper
surface of the ice. As you mention, the term added in Durand et al 2009 indeed behaves as an
implicit time stepping for the motion of the lower ice surface in contact with water. In this case, it is
not an additional term, but the whole eq (15) is an approximation of the surface equation. One can
show that by taking the time step sufficiently small, the error in the position of the lower ice surface
is as small as we wish in Elmer/Ice and therefore we have not tried to remove it.

2) There is not much discussion on how the FS and SSA domains are updated dynam-
ically (node reassignment etc). Although you touch on it in the discussion, i would like
to see a subsection in the methods section briefly detailing this, even if it makes use of
already-existing frameworks. Apologies if such text is there and i overlooked it.

Thanks for pointing this out, indeed the manuscript will improve by adding more information on the
technical implementation of the coupling, this information is added to Sect. 3.3 The algorithm:
“First, the shortest distance d to the grounding line is computed for all nodes in the horizontal
footprint mesh at the ice shelf base. Then, a mask is defined that describes whether a node is in
Q_FS, Q_SSA or at the coupling interface x_c , based on the user defined d_GL . Technically, the
domain decomposition is solved by the use of passive elements implemented in the overarching
Elmer code (Rdback et al., 2016), which allow for deactivating and reactivating of elements.

An element in Q_FS is declared passive for the SSA solver, such that is not included in the global
matrix assembly of A_SSA , and vice-versa.

An element may switch from Q_SSA to Q_FS , for example during grounding line advance. Then,
the coupled iteration either starts with the initial condition for u_FS if the element is in Q_FS for
the first time, or the latest u_FS (t) computed in this element, before it switched to SSA.”

p2110: MISMIP3D
It is called MISMIP3d in the title of the paper (Pattyn et al., 2013).

p3 line 7: strain rate tensor
Changed.

p3 19: here they are just the Stokes equations. ("Full Stokes" arose because glaciolo-
gists realised the equations they had been solving for years were an approximation to
Stokes with power-law rheology)

Since our main target public are glaciologists we will keep it like that.

eq 4: your notation for the the 2nd invariant of tensors (in this case D) is a bit subtle,
you might consider something else — this is simply a suggestion though

We have written out the 2™ invariant in velocity gradients, Eq. (5) in the revised manuscript.

p3122: "h represents the horizontal components" is a bit ambiguous, and you do not



use the subscript in eq (6)
We have rewritten 'h represents the components in the x-y plane', and have added the subscript to
Eq. (6) (Eq. (7) in the revised manuscript) as well.

eq (9): is z* a function of effective pressure, which is not defined, or of H as it appears

to explicitly be from eq (10)?

Indeed, it is a function of H, which we clarified by writing

“In line with Gladstone et al. (2017), instead of modeling N, a hydrostatic balance is assumed to
approximate z*, the dependence on H is written, z*(H).”

Section 2.3, abbreviations of two dimensions and three dimensions seem awkward,

and be clear by 2D you mean the x-z plane.

Thanks for pointing this out, we have rewritten the section concerning two and three dimensions to:
“The number of nodes in Q F S is then approximately (1 — )N h N z and in Q SSA it is 6N h,
neglecting shared nodes on the boundary. For a 3D physical domain, FS and SSA have 4 and 2
unknowns, respectively. Hence, the memory needed to store the solution with a coupled model is
proportional to 2N h (6 + 2(1 — 0)N z ). For a 2D simulation in the x-z plane, where FS has 3
unknowns and SSA only 1, the memory is proportional to Nh (6 + 3(1 — )Nz ).”

p 5122: say what 3 variables are for FS in 2D.
After rewriting of the section, this suggestion did not seem applicable anymore.

p 5123: say what you mean by stokes being a saddle-point problem as many readers

will not know what this means.

We think this it is not necessary to define a saddle-point problem here, but have rephrased:
“Furthermore, the FS equations are particularly difficult to solve. In mathematical terminology,
they pose a saddle-point problem.”

p 5123: "with all its consequences for numerical treatment" — give examples of these
consequences, with references. Most readers will not be familiar with this literature,

and others (like me) will be only familiar with some of it.

We have added “This requires special numerical treatment such as stabilization of the finite
element discretization (e.g., Helanow and Ahlkrona, 2018) and special iterative solvers for the
resulting system of linear equations (Benzi et al., 2005). By elimination of the pressure, the SSA
equations do not form a saddle-point problem.”

p 6 1 25: just \theta, not \theta Nz
Thanks, changed.

p6 1 26: say this is approximate, as it must be due to boundaries etc.
We have added that it is approximate since boundaries are neglected.

p6 1 6: by "number of unknown variables" do you mean degrees of freedom; or (u,v,w,p)

i.e. 4 versus (u,v) i.e. 2? You are saying that, per node, the former takes twice as long

to assemble in a matrix versus the latter? I find this difficult to believe in general. What

about differing orders of polynomial in the basis functions, and complexity of interaction between
DoFs of different variables?

This is also an approximate expression. If the order of the methods is the same and the complexity
of the interaction between the components is similar then the formula is an estimate. Changed to:
“The work to assemble the matrices grows linearly with the number of unknown variables.
Suppose that this work for FS in 3D is $4C_{FS}N_hN_z$ in the whole domain, for FS $4C_{FS}
(1-\theta)N_hN_z$ in $\Omega_{FS}$, and for SSA $2C_{SSA}\theta N_h$ in $\Omega_{SSA}$.
The coefficients $C_{FS}$ and $C_{SSA}$ depend on the basis functions for FS and SSA and the



complexity of the equations. The reduction in assembly time for the matrix is
$q_{ass}=1-\theta+C_{SSA}\theta/2C_{FS}N_z$. If $C_{FS}\approx C_{SSA}$ then the reduction
is approximately as in (16). The same conclusion holds in 2D. Therefore, the reduction of that part
is estimated to be similar to the reduction in Eq (15).”

p 61 16: is there a theoretical basis for d_{GL} — such as the estimate of the non-

hydrostatic boundary layer from Schoof (2011, JEM)? Or arbitrary?

We have no theoretical basis for d_{GL}. As mentioned in the discussion we propose that further
studies let Q SSA be determined automatically, not necessarily based on d_{GL} but for example
based on a tolerance for the vertical variation of the horizontal velocities (that should be close to
zero in order to allow for a smooth coupling to SSA) or by using a posteriori error estimates based
on the residual as derived in Jouvet (2016).

p 7 eq (17): this is an initial guess for the membrane stress at the interface, yes? Would

a better one not be \sigma_{FS} \cdot \vec{n} =\rho_w g (-z) if z<0,

i.e. the condition which would be applied if xc was a calving front? (This would be

exact in the 2D case with no buttressing seaward of x_c; and i wonder if it would

reduce iteration count in general)

Good point, probably it would reduce iterations, we have considered this initial guess during the
implementation as well. However, this would only be beneficial during the first time step, or when
the coupling interface x_c has changed position. Any other time, the algorithm will take f SSA
from the previous iteration and this will thus be a good initial guess.

p 9112: "assembly time ... almost doubles" — i think this is the issue you address in

the discussion? would be good to say that it is addressed in the discussion, as i was

confused by this when i read it.

Thanks for pointing this out, we have added “This issue is due to usage of passive elements and is
addressed in the Discussion (Sect. 5).”

p 91 15: is v velocity in the y-direction? better say so. aside from no normal flow, what

is the other BC at the lateral boundary? no stress? no flow?

We have changed $v=0$ to $u\cdot n=0$. The unset boundary conditions for remaining velocity
components, by the natural boundary condition resulting from a partial integration of the stress
divergence in the weak formulation, automatically apply a vanishing Cauchy-stress vector in that
direction. This information has been added to the Appendix, below Eq. (A3):

“Furthermore, there is a lateral boundary I"_I for Q_FS € RA3 , where the normal component also
vanishes: v|['_| -n = 0 and we assume a vanishing Cauchy-stress vector for unset boundary
conditions to velocity components, such that the integral over I'_I vanishes.”

p 11 line 8: 58% of the nodes — you mean in the projection of the grid to the x-y plane?

Yes, thanks for pointing this out, changed to “58% of the nodes in the horizontal footprint mesh are
located inside \Omega_{SSA} (6 = 0.58)”.

p 12 paragraph at line 13: found this discussion a bit difficult to follow — is there any

way the main performance points can be summarised in a table? also limited —> varied

Thanks for pointing this out, we have added a table and reduced the amount of information in this
paragraph, referring to the table instead.

p 14 discussion at line 10: if you were to make this change re: node assignment at a

lower level, how would it affect the ability to easily update the Full Stokes sub-domain?

This would not affect the ability to easily update the Full Stokes sub-domain, it would be based on
the same mask as the passive/active updates are done now (see the extra information added in Sect.
3.3, in reply to the second general comment). It was shown for ISCAL that this can be done
efficient and dynamically in Elmer/Ice (Ahlkrona et al. 2016).



p 16 line 24: you previously used A as a symbol for a matrix

Thanks, changed to B such that there is no confusion with A being previously defined as a system
matrix. However, B (or A in old version) is a matrix, with derivatives in the elements.

p 16 line 4: did you define f_{CF}?

We had only given the FS version of the boundary condition at the calving front ( Eq. (12), (13) in
the revised manuscript) and added: “f_{CF}, as in Eq. (13) but integrated over z” to the Appendix.
p 16 eq (A7) and below: suggest to use w as a test function symbol

We chose to stick to v for a test function.

p 16 eq (A9) the 1st boundary integral is over \Gamma_{SSA} not \Gamma_{SSAint}

Indeed, updated.
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