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Abstract. Dynamic global vegetation models (DGVMs) are used for studying historical and future 

changes to vegetation and the terrestrial carbon cycle. JULES (the Joint UK Land Environment 15	

Simulator) represents the land surface in the Hadley Centre climate models and in the UK Earth 

System Model.  Recently the number of plant functional types (PFTs) in JULES were expanded 

from 5 to 9 to better represent functional diversity in global ecosystems. Here we introduce a more 

mechanistic representation of vegetation dynamics in TRIFFID, the dynamic vegetation component 

of JULES, that allows for any number of PFTs to compete based solely on their height, removing 20	

the previous hardwired dominance hierarchy where dominant types are assumed to outcompete 

subdominant types.  

 

With the new set of 9 PFTs, JULES is able to more accurately reproduce global vegetation 

distribution compared to the former 5 PFT version. Improvements include the coverage of trees 25	
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within tropical and boreal forests, and a reduction in shrubs, which dominated at high latitudes. We 

show that JULES is able to realistically represent several aspects of the global carbon cycle. The 

simulated gross primary productivity (GPP) is within the range of observations, but simulated net 

primary productivity (NPP) is slightly too high. GPP in JULES from 1982-2011 is 133 PgC yr-1, 

compared to observation-based estimates between 123±8 (over the same time period) and 150-175 30	

PgC yr-1. NPP from 2000-2013 is 72 PgC yr-1, compared to satellite-derived NPP of 55 PgC yr-1 

over the same period and independent estimates of 56.2±14.3 PgC yr-1. The simulated carbon stored 

in vegetation is 542 PgC, compared to an observation-based range of 400-600 PgC. Soil carbon is 

much lower (1422 PgC) than estimates from measurements (>2400 PgC), with large 

underestimations of soil carbon in the tropical and boreal forests.  35	

 

We also examined some aspects of the historical terrestrial carbon sink as simulated by JULES. 

Between the 1900s and 2000s, increased atmospheric carbon dioxide levels enhanced vegetation 

productivity and litter inputs into the soils, while land-use change removed vegetation and reduced 

soil carbon. The result is a simulated increase in soil carbon of 57 PgC but a decrease in vegetation 40	

carbon of 98 PgC. The total simulated loss of soil and vegetation carbon due to land-use change is 

138 PgC from 1900-2009, compared to a recent observationally-constrained estimate of 155±50 

PgC from 1901-2012. The simulated land carbon sink is 2.0±1.0 PgC yr-1 from 2000-2009, in close 

agreement to estimates from the IPCC and Global Carbon Project. 

 45	

1. Introduction 

Dynamic global vegetation models (DGVMs) are used for predicting changes in vegetation 

distribution and carbon stored in the terrestrial biosphere (Prentice et al., 2007; Fisher et al., 2014). 

When coupled to climate models, these tools enable the study of interactions between climate 

change, land use patterns, and the terrestrial carbon cycle. Typically, DGVMs either group the 50	

world’s vegetation types into plant functional types (PFTs), or aggregate vegetation sharing a 
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common biogeography into biomes (Woodward, 1987; Running and Gower, 1991; Prentice et al., 

1992). A move towards a PFT approach recognized the differential response of plant function to 

rapid future climate change (Foley et al., 1996; Sitch et al., 2003). However, due to data limitations 

these models were handicapped in the number of PFTs they could define and differentiate.  55	

 

JULES (Best et al., 2011; Clark et al., 2011) is a DGVM that represents the land surface in the UK 

Hadley Centre family of models (e.g. the UK Earth System Model in the 6th phase of the Coupled 

Model Intercomparison Project, CMIP6, and the HadGEM2 models in CMIP3 and CMIP5). Within 

JULES, TRIFFID (Top-down representation of Interaction of Foliage and Flora Including 60	

Dynamics; Cox, 2001) predicts changes in the carbon content of vegetation and soils, and 

vegetation competition. Since its creation in the late 1990’s, competition in TRIFFID was limited to 

between five PFTs (broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs). Under this 

approach, each PFT competed with other PFTs based on a prescribed hierarchy, where dominant 

PFTs were assumed to outcompete subdominant PFTs. The proliferation of new ecological data 65	

over the past decade has provided the opportunity to improve TRIFFID and the entire JULES model 

on a range of scales: for example, the TRY database stores detailed information on plant traits that 

are important for the processes of photosynthesis and respiration (Harper et al., 2016), while on the 

global-scale new vegetation maps enable improved analysis of predicted plant distributions (e.g. 

(Poulter et al., 2015). Exploitation of these new datasets allow a more detailed representation of 70	

vegetation distribution and the terrestrial carbon cycle, and improve the biophysical characterization 

of the land-surface in climate models (e.g. albedo implications of deciduous versus evergreen 

phenology in boreal forests). 

 

The physiology of JULES was recently updated to include the following leaf traits: leaf mass per 75	

unit area, leaf nitrogen per unit mass, and leaf lifespan. An iterative process of development and 

evaluation with JULES resulted in an improved representation of gross and net primary productivity 
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(GPP and NPP, respectively) based on an expanded set of PFTs (Harper et al., 2016). The new 

PFTs were also used in the development and evaluation of a new fire module in JULES (INteractive 

Fire and Emission algoRithm for Natural envirOnments, or INFERNO; Mangeon et al., 2016). 80	

However, given the primary focus on improved physiology, the Harper et al. (2016) study adopted a 

prescribed vegetation distribution based on satellite data. Here we present developments in the 

representation of vegetation dynamics in TRIFFID and include an evaluation of the expanded set of 

PFTs on simulated global vegetation distribution, and associated global carbon stocks and fluxes. 

This paper aims to demonstrate the overall performance of the new version of JULES in offline (not 85	

coupled to a climate model) simulations compared to both independent data sources and a previous 

version of the model. 

 

2. Methods 

2.1 JULES and TRIFFID 90	

JULES simulates the processes of photosynthesis, autotrophic and heterotrophic respiration, and 

calculates the turbulent exchange of CO2, heat, water, and momentum between the land surface and 

the atmosphere (Cox et al., 1998; Best et al., 2011; Clark et al., 2011). Vegetation dynamics are 

simulated by TRIFFID. Recently, new PFTs were added to JULES (Harper et al., 2016) (Table 1), 

which required updates to the TRIFFID competition scheme, described below. In this paper, we 95	

compare two versions of JULES: JULES-C1 and JULES-C2 based on JULES version 4.6. The 

former is a configuration of JULES with five PFTs as described in Harper et al. (2016) (called 

JULES5 in that paper) and as used in the TRENDY multi-DGVM synthesis project (Sitch et al., 

2015). The latter (JULES-C2) is the new version, with 9PFTs and vegetation dynamics and updates 

described in Sections 2.2-2.3.  100	

 

2.2 Vegetation dynamics and new height-based competition 
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Within TRIFFID, carbon acquired through NPP is allocated to either spreading (in other words 

increasing fractional coverage of a PFT in a grid cell) or growth (increasing height). The time 

evolution of fractional coverage of each PFT i (νi) is calculated as: 105	

!!!
!!!
!" = !!Π!!∗ 1− !!"!!! − !!!!∗!!!        (1) 

where CV is the vegetation carbon (kgC m-2), Π is the accumulated NPP between calls to TRIFFID 

(kgC m-2 (360 d)-1), ν* is the maximum of the actual fraction and a “seeding fraction” (0.01), and γν 

is a PFT dependent parameter representing large-scale disturbance (360 d)-1. In the present study, 

TRIFFID ran on a daily time step. The fraction of NPP allocated to spreading, λ, is a function of the 110	

balanced LAI, Lbal, which is the seasonal maximum of LAI based on allometric relationships (Cox, 

2001): 

! =
1                           !"# !!"# > !!"#

!!"#!!!"#
!!"#!!!"#

        !"# !!"# < !!"# ≤ !!!"
0                           !"# !!"# ≤ !!"#

       (2) 

and the fraction allocated to growth is (1-λ). The PFT-dependent parameters Lmax and Lmin 

determine the balanced LAI at which plants allocate 100% of NPP toward expanding PFT coverage 115	

(spreading: Lbal � Lmax) or 100% toward vertical plant growth (Lbal < Lmin). 

 

Competition for space in the grid cell between PFT i and the other PFTs is represented by the 

matrix cij, which represents a dominance hierarchy where height is the most important factor as it 

determines access to light. Effectively, the (1-Σcij νj) term in Eq. 1 is the space available to PFT i. In 120	

the original version of TRIFFID, trees were assumed to dominate shrubs, and shrubs were assumed 

to dominate grasses (Cox, 2001). Within tree (broadleaf and needle-leaf) and grass (C3 and C4) 

PFTs, there was co-competition and cij was calculated as a function of vegetation height for the two 

competing PFTs: 

!!" = !

!!!"# !"∗!!!!!!!!!!

          (3) 125	
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We made two changes to the original TRIFFID: first we removed the hard-wired dominance 

hierarchy (trees>shrubs>grasses) to allow for a generic number of PFTs. The dominancy hierarchy 

is now completely height-based, so that the tallest PFTs get the first opportunity to take up space in 

a grid cell. Second we removed co-competition, so that cij is either 1 or 0. This simplifies the 130	

equilibrium solution for vegetation coverage (Section 3.2). When PFT i is dominant, cij = 0 and PFT 

i is not affected by PFT j; when type j is dominant, cij = 1 and PFT i does not have access to the 

space occupied by PFT j (νj).  

 

2.3 Updated parameters for JULES-C2 135	

Although the version of JULES described in this paper is similar to that described previously by 

Harper et al. (2016), there are four differences, which are summarized here. Impacts of the new 

equations for leaf, root, and stem nitrogen are discussed in detail in the Supplemental Material. 

 

2.3.1 Allometric parameters 140	

At the end of a TRIFFID timestep, the portion of NPP allocated toward growth increases the carbon 

content of leaves, roots, and wood. Both leaf and root carbon is linear with the balanced LAI, while 

total wood carbon (Cwood) is proportional to Lbal based on the power law (Enquist et al., 1998): 

!!""# = !!" ∗ !!"#!!"           (4) 

The parameter awl is a PFT-dependent coefficient relating wood to leaf carbon (units of kgC m-2 per 145	

unit LAI), and bwl is a parameter equal to 5/3 (Cox, 2001). Previously, awl was 0.65 for trees, 0.005 

for grasses, and 0.10 for shrubs. After carbon pools are updated, canopy height is calculated from 

Eq. (5): 

 ℎ = !!""#
!!"!!"

∗ !!"
!!""#

!/!!"
             (5) 

The derivation of Eq. (5) is based on the assumption that total wood carbon is proportional to 150	

carbon in respiring stemwood (S), which itself is proportional to leaf area and canopy height (h) 
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based on the live stemwood coefficient, ηsl (= 0.01 kgC m-1 (m2 leaf)-1, derived from Friend et al. 

(1993)): 

!!""# = !!"!           (6) 

! = !!"ℎ ∗ !!           (7) 155	

In Eq. (6), aws is the ratio of total wood carbon to respiring stem carbon, it was previously 10.0 for 

trees and shrubs and 1.0 for grasses, but this varies significantly with tree species: at least between 5 

and 20 according to Friend et al. (1993). These ratios are relatively invariant with tree size and age 

within tree species or functional types, consistent with allometric relationships (e.g. Niklas and 

Spatz, 2004) and “pipe model” relationships between leaf-area and stem-area (e.g. Ogawa, 2015). 160	

As shown in the Results, there was a low vegetation carbon bias in JULES-C1, especially in regions 

dominated by broadleaf trees and shrubs. To increase vegetation carbon in areas where the model 

was lower than observed, we increased awl and aws, while keeping their ratio constant, to the values 

given in Table 2. Changing awl alone would affect the competitiveness of a PFT because it also 

affects plant height, h.  165	

 

2.3.2 Soil respiration 

JULES soil carbon is modelled with the Roth-C carbon model (Jenkinson, 1990; Coleman and 

Jenkinson, 2014). There are four pools: decomposable plant material (DPM), resistant plant 

material (RPM), microbial biomass (BIO), and humus (HUM). Respiration from each pool is 170	

calculated based on soil temperature (Tsoil), moisture content (s), vegetation cover (ν), and a pool-

dependent turnover rate (κi): 

!! = !! ∗ !! ∗ !! !!"#$ ∗ !! ! ∗ !!(!)         (8) 

The turnover rates for the four soil carbon pools are 10 yr-1 for DPM, 0.3 yr-1 for RPM, 0.66 yr-1 for 

microbial biomass, and 0.02 yr-1 for humus (Coleman and Jenkinson, 2014). These are based on 175	

experiments on the decomposition of 14C labelled ryegrass over a 10-year period under field 

conditions (~9.3°C and > 20 mm of water) (Jenkinson, 1990). For both JULES-C1 and JULES-C2 
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in this paper, a Q10 formulation was used for FT (Eq. 65 in Clark et al., 2011). However, only a 

fraction of respired carbon actually escapes to the atmosphere to represent the protective effect of 

small particles: 180	

!!"#$→!"#$% = (1− !!) !!!"#$$%
!!!           (9) 

where 

!! = 1/[4.0895+ 2.672 ∗ !!!.!"#$∗!"#$%&#']        (10) 

Until version 4.6, JULES used a global clay fraction of 0.23 for this equation, which was based on 

the clay content at the site where the Roth-C model was calibrated. Now JULES uses a 185	

geographical variation of clay content based on the clay ancillary from the HadGEM2-ES CMIP5 

simulations. All versions of the model presented in this study implement the global maps of clay.  

 

2.3.3 Root and Stem Nitrogen 

Third, new equations for root and stem nitrogen content (Nroot and Nstem, respectively) were added 190	

using updated data from the TRY database (Harper et al., 2016): 

!!""# = !! ∗ !! ∗ !"# ∗ !!"#              (11) 

!!"#$ = !!" ∗ ℎ ∗ !!"# ∗ !!" !
!!"

+ 1− !
!!"

∗ ℎ!!"      (12) 

where Cm is the ratio of carbon per unit biomass (=0.4), LMA is the leaf mass per unit area for top 

of the canopy leaves, nr is the ratio of root N to root C, nsw is the ratio of stemwood N to stem C, 195	

and hwsw is the ratio of heartwood N to stemwood N. The latter is set to 0.5 based on a 

recommended range of 0.4-0.6 (Hillis, 1987). Parameters nr and nsw were calculated from the TRY 

database (Table 2). 

 

2.3.4 Leaf nitrogen distribution 200	

Fourth, updates were made to the parameter that characterizes the vertical distribution of leaf N 

through the canopy. Although these updates do not affect radiation interception through the canopy, 

they are referred to in the code as canopy radiation model 6 (“CRM6”).  JULES splits the canopy 
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into 10 layers of equal LAI increment. In CRM6, leaf N declines exponentially through the canopy, 

so that for canopy layer i, the leaf N content (Nleaf, kg N m-2) is:  205	

!!"#$! = !! ∗ !"# ∗ !!!!"∗!!         (13) 

where Nm is leaf nitrogen per unit mass at the top of the canopy and knl is a decay coefficient 

(=0.20). In JULES-C2 we update the value of knl (Lloyd et al., 2010) and include the explicit term 

for LAI (L) in Eq. (13). The mean leaf N content is: 

!!"#$ = !!∗!"#∗(!!!!!!"∗!)
!!"∗!

          (14) 210	

Plant maintenance respiration is calculated as a function of the mean leaf nitrogen content. Impacts 

of the changes to leaf, root, and wood N are described in the supplementary material.  

 

2.4 Model evaluation 

The distribution of PFTs was evaluated by first dividing the land surface into eight biomes, based 215	

on the 14 World Wildlife Fund terrestrial ecoregions (Olson et al., 2001). The map of biomes (Fig. 

SM9) acted as a mask for the results to calculate biome-scale averages, and each grid cell was 

assumed to be 100% composed of the biomes shown in Fig. SM9. For each biome, we calculated 

the average fractional coverage of each PFT, average gridbox fluxes (GPP and NPP), and average 

gridbox carbon stocks (soils and vegetation), as well as average fractional coverage of agricultural 220	

land. These biome-scaled distributions and averages were then compared to observations. For 

observed PFT distribution, we used the global vegetation distribution from the European Space 

Agency’s Land Cover Climate Change Initiative (ESA LCCCI) global vegetation distribution 

(Poulter et al., 2015; Hartley et al., 2017). To quantify the evaluation of PFT distribution, we 

calculated an error metric ε for each PFT (εi Eq. 15) and for each biome (εB Eq. 16). The former 225	

enables a ranking of PFTs in terms of their improved distributions and is weighted by biome areas. 

The latter enables a comparison between models of the vegetation distribution on a biome scale and 

implicitly includes an area weighting since all fractions in a biome sum to 1. 
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!!,!"# =
!!∗ !!,!!"#!!!,!!"#

!!
!!!

!!!
!!!

        (15) 

!!,!!"#$ =
!!,!!"#!!!,!!"#

!!"#$
!!!

!"#$         (16) 230	

In these equations, AB is the area of biome B, npft is the number PFTs (in this case 8 because C3 

and C4 grasses are combined), and νB,i is the fractional coverage of PFT i in biome B.  

 

To evaluate the carbon fluxes, we used Gross primary productivity (GPP) from the Model Tree 

Ensemble (MTE; Jung et al., 2011), and MODIS NPP from the MOD17 algorithm (Zhao et al., 235	

2005; Zhao and Running, 2010). Soil and vegetation carbon were from Carvalhais et al. (2014). In 

addition, we compared biomass stocks to the data set from Ruesch and Gibbs (2008). In all 

evaluations, we used model years corresponding to the available observation years: 1982-2011 for 

GPP, 2000-2013 for NPP, and we used a 30-year period for soil and vegetation carbon (1980-2009). 

All datasets were regridded to the model resolution of 1.25° latitude x 1.875° longitude. 240	

 

3. Model spin up and simulations 

3.1 Model simulations 

There are a total of six simulations: one using JULES-C1 and five using JULES-C2. Both versions 

of the model were run with transient climate, CO2 and land use over the historical period. The 245	

climate was from version 6 of CRUNCEP, which is a merged dataset of CRU and NCEP reanalysis 

from 1901 to 2015. Climate variables used were downwelling longwave and shortwave radiation, 

total precipitation, air temperature, specific humidity, zonal and meridional wind speeds, surface 

pressure, and a constant diffuse fraction of shortwave radiation of 0.4. The fraction of agriculture in 

each grid cell was included as fraction of crop and pasture from the harmonized dataset based on 250	

HYDE3.2 (Hurtt et al., 2011). CO2 concentration was from Dlugokencky and Tans (2013). We ran 

three additional experiments with JULES-C2 to assess the contributions of climate change, land use 
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change (LUC), and CO2 fertilization to the changes in carbon cycle components over the historical 

period (Table 5). Experiment SCLIM was forced with the transient climate from CRUNCEP-v6 to 

assess the contribution of climate change alone, while atmospheric CO2 and land use were held to 255	

pre-industrial (1860) values. In experiment SLUC,CLIM, climate and land-use changed, while CO2 was 

held constant, and in experiment SCO2,CLIM, climate and atmospheric CO2 changed, while land-use 

was held constant. For the discussion of attributing changes to these drivers we refer to the main 

experiment as SALL, which has transient climate, LUC, and CO2. The impact of LUC on the present-

day carbon cycle is given by SALL-SCO2,CLIM, and impact of CO2 fertilization is given by SALL-260	

SLUC,CLIM. A fifth simulation with JULES-C2 was done to test the model with raw climate model 

output without bias correction to assess sensitivity of PFT distribution to the climate. This 

simulation was forced with the HadGEM2-ES RCP2.6 climate and CO2. The available climate 

variables from HadGEM2-ES were downwelling longwave and shortwave radiation, stratiform rain, 

convective rain, stratiform snow, convective snow, air temperature, specific humidity, wind speed, 265	

surface air pressure, and the incoming diffuse shortwave radiation.  

 

3.2 Estimating disturbance rates 

The simulated distribution of PFTs in TRIFFID is sensitive to the large-scale disturbance parameter 

γν from Eq. (1). The parameter represents several missing processes in JULES related to 270	

disturbance-induced mortality (such as fires, pests, and wind events), and provides an estimate of 

turnover rates for the PFTs. We developed a method for quickly estimating a global value of γν for 

each PFT. Updated values of γν were necessary due to new physiology, which resulted in a new 

NPP per PFT (Π in Eq. 1), and an expanded set of PFTs. The method is based on a formula for the 

equilibrium distribution of PFTs, made possible by the removal of the hard-wired dominance 275	

hierarchy in TRIFFID. The equilibrium vegetation fractions are calculated by rearranging Eq. (1), 

meaning that for PFT i, the disturbance rate can be calculated as: 

!!! = !!Π! 1− !!"!!!"#$
!!! ∗ !

!!!
        (17) 
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where npft is the number of PFTs.  

 280	

To estimate new values for γνi, we ran JULES for 60 years under present-day climate, CO2, and 

land-use, solving for the equilibrium vegetation fractions (as summarized in Section 7 of Clark et 

al., 2011). We used the simulated vegetation carbon (Cv), canopy height (to calculate the 

competition coefficients cij), and NPP for spreading (λΠ) at the end of the 60 years, together with 

the ESA LCCCI observed fraction of PFTs (νi) (Poulter et al., 2015), to solve for γνi in each grid 285	

cell. The result was a map of the γν (~disturbance rate) per PFT required to get the observed PFT 

distribution based on simulated carbon available. Based on global distributions of γν for each PFT in 

grid cells with <50% agriculture from 1950-2012, we used the median value in our simulations 

(Table 2). The new values of γν do not guarantee a perfect simulation of PFT distribution, due to the 

use of one value per PFT, and because the calculation was based on solving the equilibrium solution 290	

to Eq. (1). However, this method does result in a range of γν that make physical sense: there are low 

turnover rates for trees, high turnover rates for grasses, and moderate turnover rates for shrubs. 

 

3.3 Spinning up vegetation and soil carbon 

The vegetation fractions and soil carbon both require a long initial simulation to reach equilibrium. 295	

In a standard simulation, soil carbon spin-up needs to continue for 1,000-2,000 years after 

vegetation types have stabilized. There are two ways to speed this up: First by solving for 

vegetation fractions based on the equilibrium solution to Eq. (1); and second by using the ‘modified 

accelerated decomposition’ technique (modified-AD) (Koven et al., 2013). This results in a three-

step spin up, summarized below. Note that the first two steps used CRUNCEP-v4, which was 300	

available at the beginning of the project.  

1) Solve for steady-state vegetation fractions in TRIFFID, increasing the time step for 

TRIFFID and phenology to 5 years and 10 days, respectively. Recycle the climate from the 

first 20 years of the simulation for a total of 60 years; in this case, CRUNCEP begins in 
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1900, so we recycled the 1901-1920 climate. In the simulations with HadGEM2-ES climate, 305	

the first 20 years of climate driving data is from 1860-1879. Specify land-use and CO2 at 

their 1860 values. 

2) Modified-AD: Run TRIFFID in dynamic mode with a time step of 1 day for TRIFFID and 

phenology using accelerated soil turnover rates (Table 3). Recycle climate from the first 20 

years of the simulation for a total of 100 years. Initialize soil carbon to a global constant 310	

value of 3 kgC m-2 to avoid any unrealistic values of soil carbon calculated during step 1. 

Specify land-use and CO2 at their 1860 values. 

3) Default decomposition: As above but use the default soil carbon turnover times. We initially 

used 200 years for this phase, but later in the project version 6 of the CRUNCEP climate 

data became available, so the model was spun up an additional 200 years with the 315	

CRUNCEP-v6 data. 

4) Begin the transient simulation from 1860, using transient CO2, land-use, and climate. For 

CRUNCEP-v6, recycle the 1901-1920 climate for the first 41 years of the simulation. 

 

In the last 100 years of the spin up, soil carbon changed by -0.06% and 0.43% with the CRUNCEP-320	

v6 and HadGEM2-ES climates, respectively. These drifts are <6 PgC/100 years, or 2.8 ppm/100 

years, which is below the C4MIP spin-up requirement for drifts of less than 10 ppm per century 

(Fig. SM7). Therefore, 300 years is adequate for spinning up the model, but there is a benefit to 

using 500 years: the drift in soil carbon in the CRUNCEP-v6 climate from years 200-299 was -3.5 

PgC, compared to only -0.9 PgC from years 400-499.  325	

 

4. Results 

We analyse the results of JULES-C2 with the CRUNCEP-v6 climate against observations, and 

against two other models: JULES-C1 with CRUNCEP-v6 and JULES-C2 with HadGEM2-ES. 

Globally, the HadGEM2-ES climate has higher precipitation and incoming shortwave radiation at 330	
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the surface, but lower specific humidity than the CRUNCEP-v6 climate. The average air 

temperature is similar until the 1960s, after which CRUNCEP-v6 is slightly warmer (Fig. SM8).  

 

4.1 Predicted vegetation distribution 

We evaluate the distribution of vegetation with two methods. First, to compare JULES-C1 and 335	

JULES-C2, we aggregated the 9 PFTs into the original 5. Figure 1 shows fractional coverage in 

each grid cell of the five vegetation types and bare soil for the models and the observations 

(BT=broadleaf trees, NT=needle-leaf trees, C3=C3 grasses, C4=C4 grasses, SH=shrubs). Second, 

we calculated fractional coverage of each PFT in eight biomes based on the WWF ecoregions (Fig. 

2). The eight biomes are tropical forests (TF), extra-tropical mixed forests (MF), boreal forests 340	

(BF), tropical savannas (TS), temperate grasslands (TG), tundra (TU), Mediterranean woodland 

(Med), and deserts(D) (Figure SM9). 

 

Most carbon in a tree/shrub is stored as woody biomass. Therefore, in terms of vegetation carbon 

content, the most important distinction between plant types is between trees, grasses, and shrubs. 345	

With the CRUNCEP-v6 climate, JULES-C2 represents the distribution of these broad vegetation 

types very well (Fig. 1). There are several improvements compared to JULES-C1: for example, 

both the amount of tropical broadleaf trees in the central tropical forests and the spatial extent of 

boreal forests are more realistic in JULES-C2. The boreal forests in JULES-C1 do not extend far 

enough across the North American and Eurasian continents. Instead, large areas of shrubs dominate 350	

at high latitudes. This bias is reduced in JULES-C2, although there is an underestimation 

(overestimation) in the coverage of needle-leaf trees in northeastern Eurasia (northern Europe).  

 

Biome-scale distributions of the PFTs are shown in Figure 2, with results from JULES-C2 with 

both the CRUNCEP-v6 and HadGEM2-ES climates. Differences between JULES-C2 run with 355	

different climates are typically small, with a tendency for the climate with higher precipitation to 
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result in more trees (Fig. 3) (r2 = 0.66). Comparing the ESA vegetation fractions and CRUNCEP-v6 

climate reveals a weaker positive relationship between tree coverage and annual rainfall (r2=0.36). 

JULES is also sensitive to the specific humidity (r2=0.25) but this is not supported by the ESA 

fractions. Coverage of needle-leaf deciduous trees ranges from 16% with the CRUNCEP-v6 climate 360	

to 27% with the HadGEM2-ES climate. This PFT was developed to have a competitive advantage 

in cold, dry environments. The annual average air temperature in the boreal forests is below 

freezing but precipitation is about 50% higher in the HadGEM2-ES climate compared to the 

CRUNCEP-v6 climate (Fig. SM8). 

 365	

Agriculture is shown as a separate category since JULES can only grow C3 and C4 grasses in the 

agricultural fraction of grid cells. Agriculture accounts for 22-40% of all biomes except the two 

high latitude biomes (boreal forests and tundra). To compare with the ESA PFT distributions, we 

reduce the “observed” agricultural fraction (from the HYDE3.2 dataset) on grid cells where the 

prescribed agricultural fraction is greater than the coverage of ESA-observed grasses. This 370	

discrepancy between the observational datasets results in an apparent overestimation of agricultural 

fractions in some biomes. Although the agricultural fraction is prescribed, there can be bare soil on 

agricultural land if the JULES NPP is not sufficient to support vegetation (possibly due to the lack 

of irrigation in JULES). For this reason, in some biomes the agricultural fraction is underestimated 

(e.g. in temperate grasslands and deserts with JULES-C1). 375	

 

JULES-C2 tends to overestimate the observed coverage of trees by 10-12% in tropical forests and 

savannahs, and by 3-5% in Mediterranean woodlands. The overestimation of trees in the tropical 

biomes is due to too much tropical broadleaf evergreen trees (BET-Tr). For example, in the tropical 

forest biome, 31% of the biome is covered with BET-Tr in the observations compared to a 380	

simulated range of 40-44% (with the HadGEM2-ES and CRUNCEP-v6 climates, respectively). The 

simulated coverage of broadleaf deciduous trees is very realistic in the tropical savannahs. The 
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coverage of dominant tree types is also close to observed in the boreal and mixed forests, with 

needle-leaf deciduous and evergreen trees in former and broadleaf deciduous and needle-leaf 

evergreen trees in the latter. However, the coverage of broadleaf deciduous trees is underestimated 385	

by 2-6% in both biomes.  

 

Grasses are overestimated compared to observations by up to 21% in the boreal forests and tundra. 

The fractional coverage of bare soil is generally close to observed, with errors <5% for every biome 

except for tundra, where it is underestimated. In this biome, JULES-C2 produces 10-13% more 390	

shrubs and 10-21% more grass than observed. In the temperate grasslands, JULES-C2 with 

HadGEM2-ES climate overestimates the grass and needle-leaf evergreen tree coverage and 

underestimates bare soil coverage. Precipitation is almost twice as high in this biome in HadGEM2-

ES compared to CRUNCEP-v6 (Fig. SM8). Shrubs in JULES-C2 tend to do best in cold 

environments: they are underestimated in tropical and mid-latitude biomes, very well simulated in 395	

the boreal forests, but overestimated in the tundra biome.  

 

The total model biases based on bias per PFT are between 0.55-0.57 for all versions of the model 

(Table 4). The bias is an area-weighted fractional error per grid cell where the PFT exists (Eq. 15). 

The PFT biases are reduced for shrubs and grasses, but they are higher for broadleaf trees due to too 400	

many broadleaf trees in the tropics. The bias for needle-leaf trees in JULES-C2 depends on the 

climate: the bias is higher with the HadGEM2-ES climate compared to the CRUNCEP-v6 climate. 

Figure 2 also shows the bias calculated per biome for each simulation (Eq. 16). The biome biases 

are lowest in JULES-C2 with the HadGEM2-ES climate for five of the biomes, the exceptions 

being temperate grasslands, tundra, and deserts. In these biomes, the bias is lowest in JULES-C2 405	

with the CRUNCEP-v6 climate. Comparing biomes, JULES-C2 represents vegetation distribution 

better in boreal and tropical forests than in mixed forests. The tropical savannahs have the highest 

bias. 
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4.2 Terrestrial carbon cycle 410	

The patterns of gross and net primary production (GPP and NPP, respectively) simulated by JULES 

are similar to estimates derived from observations, although JULES fluxes are slightly high (Fig. 4). 

From 1982-2011, GPP is 133 PgC yr-1 and 138 PgC yr-1 according to JULES forced with 

CRUNCEP-v6 and HadGEM2-ES climate, respectively, compared to observation-based estimates 

from the same time period of 123±8 PgC yr-1 (1982-2011; Beer et al., 2010). JULES-C1 with the 415	

CRUNCEP-v6 climate produces a higher GPP (143 PgC yr-1). GPP is lower in JULES-C2 

compared to JULES-C1, and closer to observations, in the tropical biomes (savannahs and forests, 

Fig. 5a).  

 

From 2000-2013, MODIS estimates an NPP of ~55 PgC yr-1, compared to 71 and 75 PgC yr-1 in 420	

JULES with the CRUNCEP-v6 and HadGEM2-ES climates, respectively. During the same time 

period, JULES-C1 NPP is 66 PgC yr-1. On average, NPP is 54% of GPP in JULES-C2, while it is 

46% in JULES-C1. Both of these are similar to observation-based estimates that NPP should be 

roughly half of GPP. In JULES-C2, the largest overestimations of NPP occur in the tropical forests, 

savannahs, and mixed forests (Fig. 5b). JULES-C1 has high biases for GPP and NPP in tropical 425	

savannahs due to over-productive C4 grasses, and this bias is reduced in JULES-C2.  

 

Global total vegetation carbon is 542 PgC and 553 PgC in JULES-C2 with the CRUNCEP-v6 and 

HadGEM2-ES climates, respectively, which is within the range supported by observations (400-600 

PgC, Prentice et al., 2001), and is 65 PgC higher than the dataset from Ruesch and Gibbs (2008). 430	

The high bias mostly occurs in boreal and temperate forests and in tropical savannahs, where 

JULES produces more trees than observed (Fig. 5c). The spatial distribution of vegetation carbon is 

similar to observations (Fig. 4), but due to the extent of the broadleaf forests the total vegetation 

carbon in the tropical forest biome is higher than observed. However, there is large uncertainty in 
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global biomass datasets, for example the tropical savannah biome in JULES is very comparable to 435	

the data from Carvalhais et al. (2014). JULES-C1 has lower vegetation carbon (468 PgC), with the 

largest differences between the models being in the tropical forest and savannah biomes. There are 

two reasons for the increase in Cveg for JULES-C2.  First, tropical evergreen and deciduous 

broadleaf trees are more prevalent in JULES-C2 (Fig. 1). Second, the low vegetation carbon was 

previously identified as a bias and the allometric parameters awl and aws were increased for 440	

broadleaf trees (Section 2.3.1).  

 

The largest biases in JULES occur for soil carbon, which is underestimated in both the high 

latitudes and the tropics. Globally there is 1422 PgC in JULES-C2 with the CRUNCEP-v6 climate 

and 1440 PgC with the HadGEM2-ES climate, compared to 2420 PgC in observations and 1362 445	

PgC in JULES-C1. Soil carbon is the result of centuries (or longer) of litter accumulation. Woody 

PFTs contribute more resistant material to the soil, while grasses turn over carbon in a more 

decomposable form. Therefore, relatively small differences between simulations in PFT distribution 

and NPP can contribute to large differences in the soil carbon. For example, in the tropics, soil 

carbon is higher in JULES-C2 corresponding to the presence of more broadleaf trees and fewer 450	

shrubs than in JULES-C1. In addition, due to the increased productivity simulated by JULES-C2, 

the amount of carbon going into the soils through litterfall is also increased. 

 

4.3 Transient carbon cycle  

Over the past century and according to JULES-C2, the land surface was a net sink of carbon due to 455	

an increase in soil carbon (+57 PgC) that offset a smaller decrease in vegetation carbon (-48 PgC) 

(Fig. 6). The changes in brackets are the average during 2000-2009 minus average during 1900-

1909. These changes can be attributed to climate change acting on its own, climate change plus CO2 

fertilization, or climate change plus LUC. In the experiment with climate change only (SCLIM, Table 
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5), vegetation carbon increases by 40 PgC, and there is a smaller increase in soil carbon since 460	

warming encourages decomposition.  

 

The effects of CO2 fertilization and LUC on land carbon are given by the differences between 

experiments SALL and SLUC,CLIM, and between SALL and SCO2,CLIM, respectively. Higher levels of CO2 

over the 20th century results in an additional 63 PgC of soil carbon and 49 PgC of vegetation 465	

carbon. This is due to larger increases in NPP and litterfall than heterotrophic soil respiration (Rh). 

Both NPP and Rh are 58 PgC yr-1 in 1900 in SALL. NPP increases to ~72 PgC yr-1, while Rh 

increases to 70 PgC yr-1 by the end of the simulation. Land-use change results in a loss of 14 PgC of 

soil carbon and 124 PgC of vegetation carbon. The largest reductions in vegetation carbon occur in 

the tropics and in the eastern U.S. and Europe (Fig. 6). The total land-use source simulated by 470	

JULES (138 PgC from 1900-2009) is very close to a recent estimate of total land-use and land 

cover change emissions of 155±50 PgC from 1901-2012 (Li et al., 2017). 

 

The annual sink is the net biosphere productivity (NBP), or NPP-Rh. The simulated NBP from 

2000-2009 in JULES-C2 is 2.1±1.0 PgC yr-1. The net land sink simulated by JULES is within the 475	

range of estimates from both the Global Carbon Project (1.7±0.8 PgC yr-1 over the same period, Le 

Quéré et al., 2017) and the IPCC Fifth Assessment Report (AR5) (1.5±0.7 PgC yr-1) (Table 6). The 

JULES land sink is slightly high compared to the other two estimates, but this is not the case during 

the 1980s and 1990s. Excluding LUC, JULES-C2 simulates an NBP of 3.4 PgC yr-1 in the 2000s, 

which is nearly double the natural NBP in the 1980s. The increase is due to a larger increase in 480	

simulated NPP in the experiment without land-use change relative to the increase in Rh (Fig. 6). In 

SALL, the simulated NBP fluctuates around zero until the 1970s, after which it steadily increases due 

to the fertilizing effect of atmospheric CO2. Between 1980-2009, the NBP increases by 0.08 PgC yr-

1 yr-1, due to a stronger positive trend in NPP (+0.27 PgC yr-1 yr-1) than in Rh (+0.19 PgC yr-1 yr-1). 

This increase is not seen in the experiment with preindustrial CO2.  485	
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5. Discussion and Conclusion 

Overall JULES with the new nine PFTs produces reasonable present-day distributions of 

vegetation, GPP, NPP, and vegetation carbon. The largest bias occurs for soil carbon, which is 

underestimated in regions where observations show a high soil carbon content – for example in 490	

peatlands and tundra. Global simulated GPP with JULES-C2 with observed climate is 133 PgC yr-1, 

compared to GPP derived from up-scaled flux towers (123±8 PgC yr-1; Beer et al., 2010) and GPP 

estimated from oxygen isotopes of atmospheric CO2 (150-175 PgC yr-1; Welp et al., 2011).  

 

Global NPP according to MODIS is 55 PgC, consistent with another study that evaluated present-495	

day NPP from 251 estimates in the literature and found a mean (±1 standard deviation) of 56.2 

(±14.3) PgC yr-1 (Ito, 2011). In comparison, the JULES NPP (71 PgC yr-1) is slightly too high, 

which could be reduced by incorporating recent improvements to the parameterization of leaf dark 

respiration (Huntingford et al., 2017). JULES overestimates NPP in most biomes compared to 

MODIS, with the exception of deserts and temperate grasslands (Fig. 4). The highest 500	

overestimation of NPP is in the tropical forest biome, where JULES predicts a total NPP of 21.0 

PgC yr-1 compared to 15.4 PgC yr-1 from MODIS. The MODIS algorithm estimates NPP using 

parameters derived from a DGVM (BIOME-BGC), climate, and satellite retrievals of land cover, 

fraction of absorbed photosynthetically available radiation (FPAR), and incoming radiation. 

Retrievals of reflectances like FPAR can saturate in regions with high vegetation density (Myneni 505	

et al., 2002; Lee et al., 2013), meaning that the tropical NPP from MODIS potentially has a low bias 

in tropical forests. Cloud contamination further complicates satellite retrievals of vegetation 

properties in the tropics (Cleveland et al., 2015). Future development and evaluation of carbon 

cycle models would greatly benefit from updated datasets of NPP that incorporate ground-based 

measurements from long-term networks and that provide uncertainty ranges. Regional products 510	

exist, for example the Global Ecosystems Monitoring (GEM) network 
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(http://gem.tropicalforests.ox.ac.uk/) and European National Forest Inventory (Neumann et al., 

2016), which could be combined into a global dataset.  

 

In a similar version of JULES with prescribed vegetation, simulated GPP and NPP were 128 and 62 515	

PgC yr-1, respectively (during the same time periods presented here) (Harper et al., 2016), compared 

to 133 and 71 PgC yr-1, respectively, in this study. In that study, differences in PFT-level NPP did 

not affect the overall vegetation distribution owing to the prescribed distributions used. The 

simulations presented in the current study use dynamic vegetation, allowing JULES to predict 

global vegetation distribution. Therefore, the productivity is slightly higher when JULES is allowed 520	

to predict vegetation distribution, although the previous study used older versions of CRUNCEP 

(v4) and JULES (v4.2 – see code availability).  

 

JULES-C2 predicts global biomass of 542-554 PgC, with the largest high biases occurring in the 

tropics and boreal forests. Early global estimates ranged from 400-600 PgC (Prentice et al. 2001), 525	

and the two datasets we analyzed estimate global biomass of 446-487 PgC. A more recent pan-

tropical dataset of aboveground biomass suggests even lower vegetation carbon in the tropics 

(Avitabile et al., 2015). Despite the uncertainty in global biomass and NPP datasets, the fact that 

JULES overestimates both NPP and Cveg in most biomes supports the conclusion that JULES net 

productivity is too high. It’s also possible that the allometric parameters awl and aws should be 530	

reduced following further evaluation of biomass predicted with the new PFTs. JULES tends to 

overestimate tree coverage and underestimate coverage by shrubs, which also contributes to high 

biomass. Woody trees dominate in regions where in reality shrubs form a larger proportion of the 

landscape, such as tropical savannahs and Mediterranean woodlands (Fig. 1, 2). In subtropical 

forests, the model simulates too many broadleaf trees and virtually no shrubs.  535	
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Based on these evaluations, we highlight four priorities for developments of JULES vegetation: 

interactive fires, vegetation in semi-arid environments, impacts of soil moisture stress on 

vegetation, and tundra/high latitude vegetation. Interactive fires are an important missing process. 

The simulation without land-use change (experiment SCLIM,CO2) shows a large overestimation of 540	

biomass in the cerrado region of Brazil, where fires (in addition to human land clearing) likely limit 

vegetation coverage. Interactive fires could also help with the overestimation of trees and 

underestimation of shrubs, since shrubs occur earlier in the successional stages following a fire than 

trees. A lack of shrubs in tropical savannahs and Mediterranean woodlands also implies that future 

development of PFTs should focus on vegetation characteristic of these biomes – for example 545	

drought-tolerant shrubs with phenology that responds to moisture as well as temperature. Such 

development should also take into account uncertainties in observed vegetation distributions in 

these regions (Hartley et al. 2017). The lack of vegetation in arid environments could also be due to 

plants experiencing too much moisture-related stress as soils dry, or to soils drying too rapidly 

following a rain event. A revised parameterisation of soil moisture stress or more sophisticated 550	

vegetation hydraulics scheme would likely improve the model in these regions. Previous work also 

pointed to soil moisture stress as a likely culprit for underestimated dry season GPP at two towers in 

the Brazilian Amazon and for too low GPP at a non-irrigated maize site (Harper et al., 2016; 

Williams et al., 2017). Another large bias is the prevalence of shrubs in the tundra biome and 

therefore more tundra-specific PFTs could improve the simulation in these regions. The importance 555	

of such developments should not be understated – climate change will likely bring a widening of 

subtropical dry zones and warmer temperatures at high latitudes, so these regions will be areas of 

large changes in vegetation in the future and will play key roles the evolving carbon cycle and 

ecosystem distribution of the 21st century. 

 560	

JULES vegetation distribution and productivity fluxes seem robust to small differences in the 

climate based on the simulation with HadGEM2-ES climate, implying that different climate driving 
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datasets should not result in large differences in vegetation distribution. Global mean GPP, NPP, 

and Cveg simulated with the two different climates varies by 5%, 7%, and <1%, respectively. 

Vegetation distributions are broadly the same as well, although the extent of simulated trees is 565	

sensitive to precipitation. In contrast, simulated values of Csoil have significant variation depending 

on the climate data used, since the soil carbon accumulates over centuries and is therefore sensitive 

to small differences in vegetation distribution and productivity. Global Csoil is similar between the 

two simulations with JULES-C2, but the distribution has large regional differences (not shown). In 

the case of soil carbon, the mismatch between simulated and observed is greater than the range 570	

between simulations. 

 

Compared to the best available estimates of the annual terrestrial carbon sink, the JULES simulation 

is well within the range (2.0+1.0 PgC yr-1 from 2000-2009). However, without nutrient limitation in 

this version of the model, it’s possible that the positive trend in NBP is too high in JULES, as 575	

indicated by the large simulated increase in NBP between the 1990s and 2000s in the experiment 

without land-use change, which is not found in the IPCC AR5 or GCP results. Although simulated 

NBP in the 1980s is bounded by the estimates from GCP and IPCC, the simulated NBP in the 

2000s is higher than both constraints, indicating that either the increase in NPP is too large, or the 

response from Rh is too low. Anecdotally, the high bias in NPP (Fig. 4, 5) supports the former, but 580	

this doesn’t rule out the possibility that respiration was undersensitive to climate and CO2 over this 

period and the transient responses over the past 30 years should be further evaluated. 
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Table and Figure captions 
Table 1. The original five and new nine PFTs in JULES. 
 
Table 2. Updated parameters for vegetation carbon, and root and stem nitrogen in JULES-C2. The 
parameters are: awl relates wood to leaf carbon (kg C m-2 per unit LAI), aws is the ratio of total wood 790	
carbon to respiring stem carbon, nr is the ratio of root N to root C, nsw is the ratio of stemwood N to 
stem C, ! is the large-scale disturbance parameter (kg C m-2 360 d-1). 
 
Table 3. Turnover rates for the four soil carbon pools (RPM = resistant plant material; DPM = 
decomposable plant material; BIO = microbial biomass; HUM = humus). The factor is used to 795	
rescale soil carbon pools between the “fast” and “slow” spin ups. 
 
Table 4. Bias in PFT distribution (Eq. 15) for JULES-C2 run calculated with two different climates 
and JULES-C1 run with the CRUNCEP-v6 climate. 
 800	
Table 5. Simulated change in average fluxes and stocks from the period 1900-1909 to 2000-2009 in 
JULES-C2. Positive values indicate a gain of carbon by the land surface. 
 
Table 6. Estimates of net land sink, emissions due to land-use change, and the “residual” sink on 
land from JULES compared to two other methods. Uncertainty ranges were reported differently for 805	
each method: for JULES ±1σ indicates the interannual variability of the annual mean, the IPCC 
reported a 90% confidence interval (based on Global Carbon Project 2013) which here is converted 
to ±1σ, and GCP reported ±1σ of the decadal mean across DGVMs for Sland and ±1σ of 
bookkeeping estimates for ELUC. 
 810	
Figure 1: Fraction of land in each grid cell covered by vegetation and bare soil over the period 
2010-2014 in the ESA LC-CCI dataset (left column), and JULES-C2 with CRUNCEP-v6 climate 
(middle column), and JULES-C1 with CRUNCEP-v6 climate (right column). BL = broadleaf; NL = 
needle-leaf. 
 815	
Figure 2: Comparison of PFT distribution by biome in JULES-C2 forced with CRUNCEP-v6 and 
HadGEM2-ES climates, compared to JULES-C1 with CRUNCEP-v6 climate and to the observed 
distribution from ESA LC-CCI. The biomes are TF: Tropical Forests; MF: Temperate Mixed 
Forests; BF: Boreal Forests; TS: Tropical Savannah; TG: Temperate Grasslands; TU: Tundra; 
MED: Mediterranean Woodlands; D: Deserts. Biome distributions are shown in Fig. SM9. The 820	
black bars represent agricultural land. Model biases per biome are from Eq. (16). 
 
Figure 3: Sensitivity of simulated tree coverage in each biome to precipitation, air temperature, 
specific humidity, and shortwave radiation. Model results are from JULES with both CRUNCEP-v6 
and HadGEM2-ES climates. The observations compare the ESA LC-CCI land cover to the 825	
observed (CRUNCEP-v6) climate.  
 
Figure 4: Simulated and observed GPP, NPP, vegetation and soil carbon. Results are shown from 
JULES-C2 and JULES-C1 both with CRUNCEP-v6 climate. Sources for observations are: GPP: 
FLUXNET-derived model tree ensemble (Jung et al., 2011); NPP: MODIS17 (Zhao et al., 2005); 830	
Cveg: Ruesch and Gibbs (2008); Csoil: Carvalhais et al. (2014). 
 
Figure 5: Biome-averaged (a) GPP, (b) NPP, (c) Cveg, and (d) Csoil in JULES-C1 and JULES-C2 
(both with CRUNCEP-v6 climate) compared to observations. The observation sources are the same 
as in Fig. 4 except (c) compares the Cveg from Ruesch and Gibbs (2008) ("RG08") to that from 835	
Carvalhais et al. (2014) ("C14", black shapes). The biomes are TF: Tropical Forests; MF: 
Temperate Mixed Forests; BF: Boreal Forests; TS: Tropical Savannah; TG: Temperate Grasslands; 
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TU: Tundra; MED: Mediterranean Woodlands; D: Deserts (biomes in Fig. SM9). Grid cells with 
>50% agriculture have been excluded from the biome averages. 
 840	
Figure 6: Global mean gross primary productivity (GPP), net primary productivity (NPP), 
heterotrophic respiration (Rhet), net biome productivity (NBP = GPP-Rhet), vegetation carbon (Cveg), 
and soil carbon (Csoil). Global means are shown for the SCLIM,LUC, SCLIM,CO2, and SALL experiments 
summarized in Table 5.  
 845	
Figure 7: Global distribution of vegetation carbon in JULES-C2 in experiments (average from 
2000-2009) with and without transient land-use and CO2 based on the experiments summarized in 
Table 5. 
 
 850	
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5 PFTs (JULES-C1) 9 PFTs (JULES-C2) 
Broadleaf trees (BT) Tropical broadleaf evergreen trees (BET-Tr) 
Needle-leaf trees (NT) Temperate broadleaf evergreen trees (BET-Te) 
C3 grass (C3) Broadleaf deciduous trees (BDT) 
C4 grass (C4) Needle-leaf evergreen trees (NET) 
Shrubs (SH) Needle-leaf deciduous trees (NDT) 
 C3 grass (C3) 
 C4 grass (C4) 
 Evergreen shrubs (ESH) 
 Deciduous shrubs (DSH) 
Table 1. The original five and new nine PFTs in JULES. 
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 BET-Tr BET-Te BDT NET NDT C3 

grass 
C4 
grass 

ESH DSH 

awl 0.845 0.78 0.78 0.65 0.80 0.005 0.005 0.13 0.13 
aws 13 12 12 10 10 1 1 13 13 
nsw 0.0072 0.0072 0.0072 0.0083 0.0083 0.01604 0.0202 0.0072 0.0072 
nr 0.01726 0.01726 0.01726 0.00784 0.00784 0.0162 0.0084 0.01726 0.01726 
γ initial 0.005 0.005 0.005 0.007 0.007 0.20 0.20  0.05 0.05 
γ from 
Eq. 17 

0.007 0.014 0.007 0.020 0.010 0.25 0.06 0.10 0.06 

Table 2. Updated parameters for vegetation carbon, root and stem nitrogen in JULES-C2. 
The parameters are: awl relates wood to leaf carbon (kg C m-2 per unit LAI), aws is the ratio of 
total wood carbon to respiring stem carbon, nr is the ratio of root N to root C, nsw is the ratio 
of stemwood N to stem C, ! is the large-scale disturbance parameter (kg C m-2 360 d-1). 
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 RPM DPM BIO HUM 
Default (s-1) 3.17x10-7 9.6x10-9 2.1x10-8 6.4x10-10 

Accelerated (s-1) 3.17x10-7 3.17x10-7 3.15x10-7 3.2x10-7 
Factor 1 33 15 500 
Table 3. Turnover rates for the four soil carbon pools (RPM = resistant plant material; DPM 
= decomposable plant material; BIO = microbial biomass; HUM = humus). The factor is used 
to rescale soil carbon pools between the “fast” and “slow” spin ups. 
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PFT JULES-C2 

CRUNCEP-v6 
JULES-C2 
HadGEM2 

JULESC1-
CRUNCEP-v6 

Bet-Tr 0.15 0.14 0.13 (for all BT) 
BET-Te 0.017 0.015 -- 
BDT 0.063 0.049 -- 
NET 0.078 0.12 0.15 (for all NT) 
NDT 0.043 0.044 -- 
Grasses 0.088 0.096 0.11 
ESH 0.053 0.054 0.17 (for all Shrubs) 
DSH 0.054 0.056 -- 
Total bias 0.55 0.57 0.56 
Table 4. Bias in PFT distribution for JULES-C2 run with two different climates and JULES-
C1 run with the CRUNCEP-v6 climate. 
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 JULES-C2 

(SCLIM) 
JULES-C2 
(SALL) 

JULES-C2 
(SCLIM,LUC) 

JULES-C2 
(SCLIM,CO2) 

Experiment 
summary 

Transient climate 
change only  

Transient CO2, 
land-use, and 
climate change 

Transient climate 
and land-use 
change 

Transient climate 
and CO2 with 
1860 land-use 

ΔCsoil (PgC) 8  57     -6 71 
ΔCveg (PgC) 40 -48   -97 75 
Table 5. Simulated change in average fluxes and stocks from the period 1900-1909 to 2000-
2009 in JULES-C2. Positive values indicate a gain of carbon by the land surface. 
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 1980-1989 1990-1999 2000-2009 

Net land sink 

JULES-C2 (NBP in SALL) 

IPCC AR5 

GCP 2017 (Sland-ELUC) 

 

0.5±1.1 

0.1±0.6 

0.7±0.7 

 

1.1±0.8 

1.1±0.7 

1.2±0.5 

 

2.1±1.0 

1.5±0.7 

1.7±0.8 

Emissions from LUC JULES-C2 

(NBP, SCLIM,CO2-S3ALL) 

IPCC AR5: net LUC1 

GCP 2017 (ELUC)2 

 

-1.2±1.1 

-1.4±0.6 

-1.2±0.7 

 

-1.3±0.9 

-1.5±0.6 

-1.3±0.7 

 

-1.3±1.0 

-1.1±0.6 

-1.2±0.7 

Residual Land sink   

JULES-C2 (NBP in SCLIM,CO2)  

IPCC AR5  

GCP 2017 (Sland) 

 

1.7±1.1 

1.5±0.8 

2.0±0.6 

 

2.4±0.9 

2.6±0.9 

2.5±0.5 

 

3.4±1.0 

2.6±0.9 

2.9±0.8 

1 Using the bookkeeping LUC flux accounting model of Houghton et al. (2012). 
2 Bookkeeping methods 
Table 6. Estimates of net land sink, emissions due to land-use change, and the “residual” sink 
on land from JULES compared to two other methods. Uncertainty ranges were reported 
differently for each method: for JULES ±1σ indicates the interannual variability of the annual 
mean, the IPCC reported a 90% confidence interval (based on GCP 2013) which here is 
converted to ±1σ, and GCP reported ±1σ of the decadal mean across DGVMs for Sland and 
±1σ of bookkeeping estimates for ELUC. 
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