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Specifications Reference 

Greenhouse gases ODPs As recommended for the SPARC CCMI hindcast scenario 

REF-C1SD (Eyring et al, 2013) 

http://www.met.reading.ac.uk/ccmi/?page_id=11 

SST and SIC Hadley Centre Sea Ice and Sea Surface Temperature data 

set (HADISST, Rayner et al., 2003) 

 35 

Table S1: Overview of background conditions. 

 

Sulphur emission  Reference 

 SO2 Anthropogenic From MACC-CITY (Granier et al., 2011) for time period considered 

and as extended back to 1960 on ECCAD website 

http://eccad.sedoo.fr/eccad_extract_interface/JSF/page_login.jsf 

SO2 Biomass burning Biomass burning: GFEDv4 (http://www.globalfiredata.org/index.html) 

From MACC-CITY (Granier et al., 2011) for time period considered 

and as extended back to 1960 on ECCAD website) 

Continuously degassing volcanoes "continuous_volc.1x1" from Aerocom-I (Dentener et al., 2006) based 

on Andres and Kasgnoc (1998) which presents an average estimate of 

the contribution of silent degassing volcanoes to the global sulphur 

budget 

DMS Sea water concentration from Lana et al. (2011) is recommended 

Biogenic modeller’s choice 

OCS Concentrations are fixed at surface and equal to 510 pptv (Montzka et 

al., 2013; ASAP2006) 

 

Table S2: Overview of sulphur emission. 

 40 

Name Description 

nh_50 Passive tracer with fix surface concentration equal to 100 ppb between 30˚N and 

50˚N and equal to 0 outside of this latitudinal band, e-folding decay time of 50 days 

tr_50 Passive tracer with fix surface concentration equal to 100 ppb between 20˚S and 

20˚N and equal to 0 outside of this latitudinal band, e-folding decay time of 50 days; 

sh_50 Passive tracer with fix surface concentration equal to 100 ppb between 50˚S and 30˚S 

and equal to 0 outside of this latitudinal band, e-folding decay time of 50 days. 

AOA Passive tracer for the stratospheric mean age-of-air. Modelling groups can use their 

existing implementation or implement a tracer with a global fixed surface layer 

mixing ratio of 0 ppbv and a uniform unspecified fixed source (at all levels) 

everywhere else, which must be constant in space and time. 

ST80_25 Passive tracer to estimate the exchange from the stratosphere to the troposphere. This 

is achieved by fixing the mixing ratio above 80hPa (200ppbv) to a constant value, 

and imposing a uniform fixed 25-day exponential decay in the troposphere only. 

Volc Passive volcanic tracer for the HerSEA experiments. The tracer is initialized in the 

same way as the volcanic SO2 emission, with an initial value of 1. 

 

Table S3: Suggested passive tracers mostly following the CCM protocol (Eyring et al., 2013). 
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Long name Variable 

name 

Unit Category Comment 

grid-cell area area m2 1 
 

land fraction landf 1 1 
Please express "X_area_fraction" as the 

fraction of horizontal area occupied by X. 

surface altitude orog m 1 

"Surface" means the lower boundary of 
the atmosphere. Altitude is the (geometric) 

height above the geoid, which is the 

reference geopotential surface. 

Meteorology 

Precipitation precip kg m-2 s-1 1 
Includes all types: rain, snow, large-scale, 

convective, etc. 

surface temperature tas K 1 
 

surface air pressure ps Pa 1 
"Surface" means the lower boundary of 

the atmosphere. 

Cloud fraction clt % 1 Cloud fraction as seen from top or surface 

tropopause_air_pressure 

 
ptp Pa 2 

2D monthly mean thermal tropopause 

calculated using WMO tropopause 

definition on 3d temperature 

tropopause_air_temperature tatp K 2 See above 

tropopause_altitude ztp M 2 See above 

Budget 

Load of H2SO4 (aerosol) loadso4 kg m-2 1 
Units of the particle-phase-sulphur should 

be using mass of H2SO4 

Load of SO2(g) loadso2 kg m-2 1 
 

Load of H2SO4(g) loadh2so4 kg m-2 1 
 

Load of OCS loadocs kg m-2 1 
 

Load of DMS loaddms kg m-2 2 
 

Load of H2S loadh2s kg m-2 3 
 

Load of CS2 loadcs2 kg m-2 3 
 

Removal 

dry deposition of DMS drysdms kg m-2 s-1 2 
 

dry deposition of SO2 dryso2 kg m-2 s-1 1 
 

dry deposition of H2SO4(g) dryh2so4 kg m-2 s-1 1 
 

dry deposition of H2SO4(p) dryso4 kg m-2 s-1 1 
 

sedimentation of SO4 sedso4 kg m-2 s-1 1 
 

dry deposition of H2S dryh2s kg m-2 s-1 2 
 

dry deposition of C2S dryc2s kg m-2 s-1 2 
 

wet deposition of SO2 wetso2 kg m-2 s-1 1 
 

wet deposition of H2SO4(p) wetso4 kg m-2 s-1 1 
 

wet deposition of DMS wetdms kg m-2 s-1 2 
 

wet deposition of C2S wetc2s kg m-2 s-1 2 
 

wet deposition of H2S weth2s kg m-2 s-1 2 
 

Emission 

total emission of SO2 emiso2 kg m-2 s-1 1 
 

total emission of DMS emidms kg m-2 s-1 2 
 

total emission of COS emicos kg m-2 s-1 1 If available 

total emission of DMS emih2s kg m-2 s-1 1 
 

total emission of CS2 emic2s kg m-2 s-1 3 
 

Fluxes 

So2 Flux to the tropopause flxso2 kg m-2 s-1 1 
 

H2SO4(p)Flux through the tropoause (total) flxso4t kg m-2 s-1 1 
 

H2SO4 Flux (tropopause) per size 

class/modes 
flxso4_ kg m-2 s-1 3 

 

Flux H2SO4 (p) > 5nm flxso4p150 kg m-2 s-1 2  

Flux H2SO4 (p) >150nm flxso4p150 kg m-2 s-1 2  

Flux H2SO4 (p) >250nm flxso4p250 kg m-2 s-1 2  

Flux H2SO4 (p) >550nm flxso4p550 kg m-2 s-1 2  

Flux H2SO4 (p) >750nm flxso4p750 kg m-2 s-1 2  

Flux H2SO4 (p) >1000nm flxso4p1000 kg m-2 s-1 2  
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Radiation 

AOD@386nm od386aer 1 2 
 

AOD@453nm od453aer 1 2 
 

AOD@525nm od525aer 1 1 
 

AOD@750nm od750aer 1 2 
 

AOD@870nm pd870aer 1 2 
 

AOD@1020nm od1020aer 1 1 
 

AOD@3460nm od3460aer 1 2 
 

AOD@5260nm od5260aer 1 2 
 

AOD@12660nm od5260aer 1 2 
 

Surface downwelling SW radiation rsds W m-2 1 
 

Surface upwelling SW radiation rsus W m-2 1 
 

Surface downwelling LW radiation rlds W m-2 1 
 

Surface upwelling LW radiation rldus W m-2 1 
 

Surface downwelling SW flux clear sky rsdscs W m-2 2 
 

Surface upwelling SW flux clear sky rsuscs W m-2 2 
 

Surface upwelling LW flux clear sky rldcs W m-2 2 
 

Surface diffuse SW flux rsdsdiff W m-2 2 
 

Surface diffuse SW flux clear sky rsdscsdiff W m-2 2 
 

TOA Incident rst W m-2 2 
 

TOA downwelling SW radiation rsdt W m-2 1 
 

TOA downwelling LW radiation rldt W m-2 1 
 

TOA outgoing SW radiation rsut W m-2 1 
 

TOA outgoing SW radiation clear sky rsutcs W m-2 2 
 

TOA outgoing LW radiation rlut W m-2 1 
 

TOA outgoing LW radiation clear sky rlutcs W m-2 2 
 

Total photsynthtically FLUX (PAR) tphotpar W m-2 3 
 

photsynthtically FLUX (PAR) photpar W m-2 3 
 

 

Table S4: Overview of two-dimensional variables requested for ISA-MIP following mainly the AEROCOM 

protocols: http://aerocom.met.no/protocol.html. (1) indicates mandatory variables, which are in addition shaded, (2) 

important variables but not required, (3) values which are nice to have for special diagnostic. Monthly mean output is 

satisfactory except for the meteorological values, which should be provided in daily resolution.  50 
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Long name 
Variable 

name 
Unit Category Comment 

Meteorology 

air temperature ta K 1 
Air temperature is the bulk temperature of the air, 

not the surface (skin) temperature. 

specific humidity hus 1 1 
Specific means per unit mass. Specific humidity is 

the mass fraction of water vapor in (moist) air. 

air mass airmass kg m-2 1 Vertically integrated mass content of air in layer 

pressure pfull Pa 1 Air pressure on model levels 

zonal  wind ua m/s 1 
 

meridional wind va m/s 1 
 

vertical wind wa m/s 1 
 

geopotential height Zg m 1 
 

cloud fraction clt3D % 2 
 

cloud optical depth cod3D 1 2 
 

aerosol water mmraerh2o 1 3 
 

convective updraft mass flux mcu kg m-2 s-1 3 

The atmosphere convective mass flux is the 

vertical transport of mass for a field of cumulus 

clouds or thermals, given by the product of air 
density and vertical velocity. For an area-average, 

cell_methods should specify whether the average 

is over all the area or the area of updrafts only. 

Sulfur Chemistry 

OCS vmrocs 1 1 
 

SO2 vmrso2 1 2 
 

DMS vmrdms 1 2 
 

H2S vmr h2s 1 3 
 

H2SO4 (g) vmrh2so4 1 2 
 

CS2 vmrcs 1 3 
 

SO3 vmrso3 1 2 
 

H2SO4 (p) total) mmso4r 1 1 Mass mixing ratio of sulphate mass (total) 

Mass mixing ratio of sulfate mass in each size class 

H2SO4 (p) > 5nm mmso4r5 1 2 OPC 

H2SO4 (p) >150nm mmso4r15 1 2 OPC 

H2SO4 (p) >250nm mmso4r25 1 2 OPC 

H2SO4 (p) >550nm mmso4r55 1 2 OPC 

H2SO4 (p) >750nm mmso4r75 1 2 OPC 

H2SO4 (p) >1000nm mmso4r100 1 2 OPC 

Microphysical processes 

number formation through nucleation nucpn m-3 s-1 2 
 

sedimentation of SO4 sedso4 kg m-2 s-1 2 Net downward (out-below minus in-above) 

H2SO4 condensation flux conh2so4 kg m-2 s-1 2 Net transfer into the particulate phase 

Chemistry 

N2O vmrn2o 1 3  

OH vmroh 1 1  

O3 vmro3 1 1  

HNO3 vmrhno3 1 3  

NO vmrno 1 3  

NO2 vmrno2 1 3  

N2O5 vmrn2o5 1 3  

Bulk parameters 

surface area density sad m2/m3 1 
 

effective radius reff M 1 
 

Particle numbers 

N total conccn m-3 1 number_concentration_of_ambient_aerosol_in_air 

N> 5nm conc5 m-3 2 CPC 

N>150nm conc150 m-3 2 OPC 

N>250nm conc250 m-3 2 OPC 

N>550nm conc550 m-3 2 OPC 

N>750nm conc750 m-3 2 OPC 
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Table S5: Overview of three-dimensional variables requested for ISA-MIP following mainly the AEROCOM 

protocols: http://aerocom.met.no/protocol.html. All 3D data to be provided on either host model vertical levels or 

preferably (if resources allow) on the reference pressure levels 1000, 925, 850, 700, 600, 500, 400, 300, 250,200, 150, 55 
100, 70, 50, 30, 20 & 10 hPa. If possible also on the additional pressure levels: 7, 5, 3, 2, 1 and 0.4 hPa. (1) indicates 

mandatory variables, which are in addition shaded, (2) important variables but not required, (3) values which are 

nice to have for special diagnostic. Monthly mean output is satisfactory except for the meteorological values, which 

should be provided in daily resolution. 

  60 

N>1000nm conc1000 m-3 2 OPC 

Extinction 

Aerosol extinction @386nm ec386aer m-1 2 SAGEII/III, (POAM, shipborne lidar) 

Aerosol extinction @440nm ec440aer m-1 3 
 

Aerosol extinction @525nm ec525aer m-1 1 SAGE-II 

Aerosol extinction @750nm ec750aer m-1 2 OSIRIS 

Aerosol extinction @870nm ec870aer m-1 3 
 

Aerosol extinction @1020nm ec1020aer m-1 1 SAGEII 

Aerosol extinction @3460nm ec3460aer m-1 2 HALOE 

Aerosol extinction @5260nm ec5260aer m-1 2 HALOE 

aerosol extinction @12660nm ec12660aer m-1 3 ISAMS 

Absorption 

aerosol absorption @386nm abs386aer m-1 3 SAGEII/III, (POAM, shipborne lidar) 

aerosol absorption@440nm abs440aer m-1 3 
 

aerosol absorption @525nm abs525aer m-1 2 SAGE-II 

aerosol absorption@750nm abs750aer m-1 3 OSIRIS 

aerosol absorption @870nm abs870aer m-1 3 
 

aerosol absorption @1020nm abs1020aer m-1 2 SAGE-II 

aerosol absorption @3460nm abs3460aer m-1 3 HALOE 

aerosol absorption @5260nm abs5260aer m-1 3 HALOE 

aerosol absorption @12660nm abs12660aer m-1 3 ISAMS 

asymmetry factor@525nm asy525aer 1 1 
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Volcano or region Time Latitude Longitude  Height SO2 3D 

str (kt) 

Soufriere Hills 26 Dec 1997 16 -62 16 27 

Soufriere Hills 4 Jul 1998  16 -62 16 17* 

Manam, Cerro Azul, Nyamuragira 7 Oct 1998 -5, 0,-1 144, -90,30 17,17,16 9, 21, 20 

Cameroon 31 Mar 1999 4 10 17 52* 

Soufriere Hills+ 24 Jul 1999 16 -62 17 19* 

Tungurahua+Guagua Pinch 16 Nov 1999 -1,0 -78 17 38 

Nyamuragira, Tungurahua 4 Feb 2000 -1,0 30,-78 16 23, 2* 

Mayon, Hekla, 

Vanuatu,Tungurahua 

29 Feb 2000 13,64,-16, -1 124,-20, 168,-78 16 39,1,8,35 

Ulawun (+ Miyakejima) 26 Sep 2000 -5 150 16-18 59* 

Nyamuragira 13 Feb 2001  -1 30 16 50* 

Ulawun 29 Apr 2001 -5 150 16 51 

Mayon, Lopevi 23 Jun 2001 13, -16 124, 168 16 62, 29 

Tungurahua, Soufriere Hill 7 Aug 2001 0, 16 -78, -62 16 9, 6 

Manam, Nyiragongo 14 Jan 2002 -5, -1 144, 30 17, 15 21, 12 

 

Table S6: Supplement to VolcDB1, extension of table 7 (Bingen et al., 2017) Volcanic SO2 injections into the 

stratosphere, derived from MIPAS and OMI/TOMS (Brühl et al., 2015). Updated on the basis of GOMOS, SAGE 

II(V7.00) and new MIPAS data (from UTLS mode). SO2 masses above 14km in low latitudes, above 13km in 

midlatitudes and above 12km in high latitudes. Listed altitudes and latitudes refer to the maxima in MIPAS and 65 
SAGE ‘plumes’. The given time refers to the center of the first MIPAS 5 day-period selected and not the beginning of 

the eruption. * above 15km.  

  



8 

 

References 

Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of subaerial volcanic sulfur emissions, J. 70 

Geophys. Res., 103, 25251–25261, 1998. 

Bingen, C., Robert, C. E., Stebel, K., Brühl, C., Schallock, J., Vanhellemont, F., Mateshvili N., Höpfner, M., 

Trickl, T., Barnes, J.E., Jumelet, J., Vernier, J.-P. ,Popp T, Gerrit de Leeuw, G., Pinnock, S.: Stratospheric 

aerosol data records for the climate change initiative: Development, validation and application to chemistry-

climate modelling. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2017.06.002, 2017 75 

Brühl, C., Lelieveld, J., Tost, H., Höpfner, M, and Glatthor, N.: Stratospheric sulphur and its implications for 

radiative forcing simulated by the chemistry climate model EMAC, J. Geophys. Res.-Atmos., 120, 2103–2118, 

doi:10.1002/2014JD022430, 2015. 

Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. 

J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: 80 

Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, 

Atmos. Chem. Phys., 6, 4321-4344, doi:10.5194/acp-6-4321-2006, 2006. 

Eyring, V., J.-F. Lamarque et al., Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) 

Community Simulations in Support of Upcoming Ozone and Climate Assessments, SPARC Newsletter No. 40, 

p. 48-66, 2013 85 

Grams, G. and Fiocco, G.: Stratospheric Aerosol Layer during 1964 and 1965, J. Geophys. Res., vol. 72(14), 

3523-3542, 1967. 

Granier, C., Bessagnet, B., Bond, T. C., D’Angiola, A., Denier van der Gon, H., Frost, G. J., Heil, A., Kaiser, J. 

W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, 

T., Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., Aardenne, J.,Werf, G. R., and Vuuren, D. 90 

P.: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales 

during the 1980-2010 period. Climatic Change, 109, 163-190, DOI: 10.1007/s10584-011-0154-1, 2011. 

Lana, A., Bell, T. G., Sinó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. 

S., Stefels, J., Johnson, J. E., and Liss, P. S.: An updated climatologyof surface dimethlysulfide concentrations 

and emission fluxesin the global ocean, Global Biogeochem. Cy., 25, GB1004,doi:10.1029/2010gb003850, 95 

2011. 

Montzka, S. A., Calvert, P., Hall, B. D., Elkins, J. W., Conway, T. J., Tans, P. P., and Sweeney, C.: On the 

global distribution, seasonality, and budget of atmospheric carbonyl sulfide and some similarities with CO2, J. 

Geophys. Res., 112, D09302, doi:10.1029/2006JD007665, 2007. 

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. 100 

Kaplan, Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late 

nineteenth century, J. Geophys. Res.,108 14), 4407, doi:10.1029/2002JD002670, 2003. 

SPARC: Assessment of Stratospheric Aerosol Properties (ASAP), SPARC Report No. 4, edited by: Thomason, 

L. and Peter, T., World Climate Research Programme WCRP-124, WMO/TD No. 1295, 2006. 


