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gmd-2017-302:  Global sensitivity and uncertainty analysis of an atmospheric chemistry transport 

model: the FRAME model (v. 9.15.0) as a case study 

by Aleksankina et al. 

 

Response to reviewer #1 

 

This paper presents a very useful approach for quantification of the impact of emissions uncertainty on 

modelled concentrations and deposition of sulphur and nitrogen species. The material is presented 

clearly and the conclusions are supported by the results presented. I have a few minor comments about 

the methods section, where I think some further details would be useful. 

 

Response: We thank the reviewer for their very positive comments on the usefulness and presentation of 

our work.  

 

 

(1) The annual average wind rose and wind speed used to calculate trajectories in the FRAME model 

are generated from WRF - what period was used to generate these trajectories, what resolution was 

WRF run at, what version of WRF was used and what meteorology was used to drive WRF at the 

boundaries?  

 

Response: The following expanded text and additional citation has now been added to the end of the 

first paragraph of Section 2.1. 

“The trajectories are defined by an annual wind rose and annually-averaged wind speed generated for 

year 2012 from the output of the Weather Research and Forecast model (www.wrf-model.org) 

(Skamarock et al., 2008) version 3.7.1. The model was run at a 5 km resolution over the UK with 

boundary and initial conditions initialised by the National Centers for Environmental Prediction Final 

Global Forecast System (NCEP-GFS-FNL) data (https://rda.ucar.edu/datasets/ds083.2/).” 

 

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., 

Wang, W. and Powers. J. G. (2008) A description of the advanced research WRF version 3. NCAR 

technical note NCAR/TN-475+STR, 10.5065/D68S4MVH. 

 

 

(2) More detail of the inorganic chemistry scheme in FRAME and information on the type of inorganic 

aerosol module used, with references for both of these. 

 

Response: The following expanded text and additional citation is now included in Section 2.1. 

“The chemical scheme is described in Fournier et al. (2004) and includes gaseous and aqueous-phase 

oxidation reactions and conversion of the gases NH3, SO2, and NOx to particulate matter (NH4+, NO3
-, 

SO4
2-). NH4NO3 is formed by the equilibrium reaction between HNO3 and NH3 and nitrate aerosol also 

arises by the deposition of HNO3 onto sea salt or large particles. H2SO4 reacts with NH3 to form 

https://rda.ucar.edu/datasets/ds083.2/
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(NH4)2SO4. The aqueous phase reactions include the oxidation of S(IV) by O3 and the metal catalysed 

reaction with O2.” 

 

Fournier, N., Dore, A. J., Vieno, M., Weston, K. J.,  Dragosits, U. and Sutton, M. A. (2004) Modelling 

the deposition of atmospheric oxidised  nitrogen  and sulphur to the United Kingdom using a multi-

layer long-range transport model. Atmos. Env. 38, 683-694. 

 

 

(3) The approach taken to the representation of the emission uncertainty (varying the emissions in all 

grid boxes by the same fraction in each run) is justified in the context of this study. However, it does 

mean that several important aspects of emissions uncertainty are not included. In particular any 

uncertainties in the spatial distribution or height of emission are not captured. There are also 

important sources of emission related uncertainty that FRAME cannot capture such as uncertainty 

in diurnal or seasonal cycles of input. These limitations should be noted here. 

 

Response: Thank you for these additional limitations we should highlight. The following text has been 

added to Section 2.2 where we describe the uncertainties in total annual emissions. 

“It is also acknowledged that a number of other aspects of emissions uncertainty are not included. For 

example, the FRAME model cannot capture uncertainty in assigned seasonal and diurnal cycles in 

emissions. Uncertainties in the spatial distributions or in height of elevated emissions are also not 

included.” 

 

An additional reminder of other emissions uncertainties has also been added at the start of Section 3.2 

when presenting the results of the uncertainty propagation.  

 

 

(4) Finally, it would be interesting to see the impact of these uncertainties on the secondary inorganic 

aerosol mass. This may be beyond the scope of this study, but concentrations of PM2.5 are highly 

relevant for air quality forecasting and policy relevant research. If the results are available, it 

would be a valuable addition to this study. 

 

Response: We agree this is an important policy-relevant question. We used the FRAME model in this 

work as a ‘proof of concept’ for this global sensitivity approach. We are currently applying our methods 

to the more sophisticated EMEP4UK atmospheric chemistry transport model 

(www.emep4uk.ceh.ac.uk), which incorporates simulation of all PM components, including a more 

advanced formulation of the formation of secondary inorganic and organic aerosols, and VOC-NOx-

ozone chemistry, and will be reporting on the findings from this model in other papers being prepared.   
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gmd-2017-302:  Global sensitivity and uncertainty analysis of an atmospheric chemistry transport 

model: the FRAME model (v. 9.15.0) as a case study 

by Aleksankina et al. 

 

 

Response to reviewer #2 

 

The paper seeks to estimate the uncertainty and sensitivity of multiple atmospheric chemistry transport 

model output with respect to three uncertain inputs. The author use optimised Latin hypercube design to 

sample from the computationally expensive computer model and use three different methods to 

summarise the uncertainty and sensitivity of various outputs to the uncertain inputs.  

In general I found the paper well written and easy to follow but I don’t follow the reasoning of the two 

sensitivity measures and the difference between the two. My concerns lie in the choice of methods used 

to assess the uncertainty and sensitivity in the outputs and my comments are focussed in this direction. 

 

Response: We thank the reviewer for their time spent reviewing our paper and their positive comments 

on its presentation. We respond to the latter part of the comment as they arise point-by-point below. 

 

 

Method 1 - RC 

(1) The first method uses regression to estimate the coefficients of a linear model in order to assess 

output sensitivity to each model input. Regression is not considered to be a particularly good way to 

estimate global sensitivity measures (since they are not very robust) and the ‘main effects’ that the 

authors refer to would normally be associated with a variance-based sensitivity analysis. Can the 

authors say more about why they feel this is a more appropriate method to use than variance-based 

sensitivity or what they are trying to capture that is different? In any case, I don’t think the authors 

should use the term ‘main effects’ for regression coefficients due to their common use elsewhere. 

 

Response: We follow the suggested practices for global sensitivity analysis of Saltelli and Annoni 

(2010) who state that multiple linear regression is a suitable approach particularly if there is no 

substantial deviation from the linearity present in the model, as is the case for our FRAME model 

analysis here. We use variance-based sensitivity measures in the second part of our analyses where we 

investigate uncertainty apportionment, whereas in the first part of our work we were seeking 

information in overall trends of model response to changes in input emissions. 

 

We agree that the terminology ‘main effects’ can be ambiguous. Therefore, as we had only referred to 

the term once in the paper we have removed it from that sentence, which now reads (p 7, line 7): “RC is 

a first-order sensitivity measure and it quantifies the average response of model output to varying a 

model input Xi when all inputs are allowed to vary.” 

 

Saltelli, A. and Annoni, P.: How to avoid a perfunctory sensitivity analysis, Environ. Model. Softw., 

25(12), 1508–1517, doi:10.1016/j.envsoft.2010.04.012, 2010. 
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(2) A 100 point Latin hypercube design has been used to vary the parameters within +/- 

40% for the regression. I don’t understand the reasoning behind these ranges when this is way beyond 

those considered plausible by the UK Informative Inventory. Can the authors justify this better and say 

why the regression doesn’t follow the emissions uncertainties? 

 

Response: The purpose for extending the range of variation for the emission input variables (beyond the 

range suggested by the reported uncertainties) was to test the overall model response to changes in 

emissions. Here the aim was to learn about the model; whether there is possibility of non-linearities or 

interaction terms being present in the model response.  

The range of +/- 40% was chosen because it encompasses the range of variations in input emissions 

used for future scenario simulations with the FRAME model, as well as incorporating emission 

reductions applied for the generation of source-receptor relationships for integrated assessment 

modelling. For example, linearity in the model response to emissions changes is assumed when 

estimating response to different scenarios, hence it is important to check that this assumption is valid 

when emissions are varied within a certain range from their nominal value. The sentence in the Methods 

section has been extended as follows (p5 line 12):  

“This range was chosen to test the overall model response to changes in emissions (for example to 

identify non-linearities) as it encompasses the range of variations in input emissions used for future 

scenario simulations with the FRAME model, as well as incorporating emission reductions applied for 

the generation of source-receptor relationships for integrated assessment modelling.” 

 

 

(3)  It is recognised that the regression coefficients are only likely to be meaningful if the model is 

linear, as measured here by Rˆ2. Has Rˆ2 been calculated for all model gridboxes? It’s not clear 

from the reporting of the value that it is calculated everywhere – I assume it must be as their needs 

to be a regression model at every grid box. How big does Rˆ2 need to be for the regression 

coefficients to be useful? 

 

Response: Yes, R2 was calculated for all grid cells, as specified in the following sentences in the 

Methods section (p5, line 16): “For each model grid cell, and for each model output variable, a multiple 

linear regression was performed using the data from the n = 100 model runs.”  

Also to make it clearer, the phrase “(for every grid cell)” has also been added to the following sentence 

(p5, line 21): “The coefficients of determination (R2) were evaluated for each fitted model (for every 

grid cell) to identify if a significant level of non-linearity in the input-output relationship was present.” 

 

The R2 value is the fraction of the variance of the model output that is explained by the regression 

model, therefore the closer the R2 value to 1 the better. The choice of the cutoff value for R2 is arbitrary. 

We would suggest that values of R2 >0.95 indicate substantial linearity and therefore that regression 

coefficients of such regression models can be used to link changes in the inputs to the model output 

response. In the case of our work with the FRAME model, on average there is 2% of variance 
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unexplained by multiple linear regression (4% for HNO3), indicating that non-linearity or interaction 

terms did not make substantial contributions to the variation in the output for the range of input 

emissions investigated here.  

 

 

(4) What happens to the regression coefficients when the intercept term is not included in the model? 

 

Response: In the case of perfectly linear response of the FRAME model to changes in the input 

emissions, multiple linear regression should predict the same model output values for the baseline case 

as the values produced by the baseline FRAME simulation. If predicted and simulated baseline values 

are the same then the fractional change relative to the baseline value is 0 for both the inputs and the 

outputs and the intercept term does not appear in the multiple regression model. For the multiple linear 

regression models fitted to the data with the input variation ranges corresponding to the uncertainty 

ranges (± 4%, ± 10% and ± 20% ranges, for SO2, NOx and NH3) the intercept values were on average 0 

(when rounded to two decimal places). Hence, not including the intercept terms would not change the 

regression coefficients. For the multiple linear regression models fitted to the data with the input 

variation range of ±40% the intercept values were found to have on average small negative values. This 

could indicate that some non-linearity in the model response occurs as we move away from the nominal 

values towards the edges of the input range. However, this non-linearity is not sufficient to make 

multiple linear regression unsuitable for this analysis.  

 

  

(5) In the text line 12 it is stated that the RC ‘can be interpreted as the response of an output to a unit 

change in a particular input when all others are allowed to vary’ but in line 25 ‘RC quantifies the 

effect of varying a model input X_i alone’. These are contradictory and line 25 is a better 

description of method 3 (although this section is discussed later). 

 

Response: We agree that the second description was not correct. As per our response to the related 

comment (1) above we have changed the second of these sentences to now read (p7, line 7): “RC is a 

first-order sensitivity measure and it quantifies the average response of model output to varying a model 

input Xi when all inputs are allowed to vary.” 

 

 

Method 2 – uncertainty propagation 

(6) The second method propagates the uncertainty in the emissions to the output using the estimated 

uncertainties from the UK Informative Inventory Report. Please make it clearer that a new sample 

has been created here. 

 

Response: We emphasise that a new LHS sample is created by modifying the text on p5 line 23-24 to: 

“For the uncertainty propagation, the input sampling space was constrained to the specific uncertainty 

ranges assigned to the emissions of SO2, NOx and NH3 in the UK Informative Inventory Report (Misra 

et al., 2015) with a new LHS sample n = 100.” 
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(7) On line 25 the authors state that the uncertainty is calculated as half the 95% CI relative to the 

mean value. Half the 95% CI gives 2 \sigma – why is this used as opposed to \sigma? Can’t \sigma 

be calculated directly from the data as I assume it is used to calculate the 95% CI in the first place?  

 

We followed guidelines for uncertainty reporting as recommended by:  

 

IPCC: IPCC Guidelines for National Greenhouse Gas Inventories, General Guidance and Reporting. 

[online] Available from: https://www.ipcc-

nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_3_Ch3_Uncertainties.pdf, 2006 

 

and 

 

Pulles, T. and Kuenen, J.: EMEP/EEA air pollutant emission inventory guidebook. [online] Available 

from: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016, 2016. 

  

Either σ, 2σ or a confidence interval is equally suitable for presenting uncertainty where the resulting 

probability distribution function of the variable of interest is symmetrical (as is the case for FRAME 

outputs) and we chose the latter. Of course it is always important to specify which is being used, as we 

have done.  (When the PDF is not symmetrical then upper and lower limits of the confidence interval 

can be specified separately to indicate the resulting uncertainty.) 

 

 

(8) It would be helpful to see the emissions maps – even if just in the supplementary material. 

 

Response: Emission maps for SO2, NOx and NH3 have been added to the Supplementary Material 

(Figure S1).  

 

 

Method 3 - SRC 

(9) I need some more convincing that the SRCs calculated here are the same as the measures from 

Saltelli 2008 – can you expand this? It is these measures that are normally be referred to as the 

main effects. 

 

Response: Sections 1.2.5-1.2.8 in the following reference provides the algebraic demonstration that 

standardised regression coefficients can be equated to first-order sensitivity indices where the model 

under investigation is linear (as is the case for our work here), i.e. that the following is true. 
 

𝑆𝑋𝑖 =
𝑉𝑋𝑖

(𝐸𝑋~𝑖
(𝑌|𝑋𝑖))

𝑉(𝑌)
= 𝛽𝑋𝑖

2  
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The equation holds for linear models with 𝑆𝑋𝑖  being a model-free generalisation. For non-linear 

models 𝛽
𝑋𝑖
2

 (SRC) differs from𝑆𝑋𝑖  . 

 

Additionally, it is demonstrated by Borgonovo (2006) that variance-based sensitivity measure coincides 

with SRC for a linear model with first-order terms. 

 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. and Tarantola, 

S. (2008) Global Sensitivity Analysis. The Primer, John Wiley & Sons, Ltd, Chichester, UK. 

 

Borgonovo, E.: Measuring uncertainty importance: Investigation and comparison of alternative 

approaches, Risk Anal., 26(5), 1349–1361, doi:10.1111/j.1539-6924.2006.00806.x, 2006. 

 

(10) What is the Rˆ2 for these new regression fits and how were sigma_i and sigma_Y derived? 

sigma_i is stated as the standard deviation of the input – it should be the standard deviation of the 

output given uncertainty in the input. 

 

Response: By definition, standardised regression coefficients (SRCs) are linear regression coefficients 

multiplied by the ratio of standard deviation of predictor (input) to standard deviation of dependent 

variable (output) as shown in Eq. 2 in the paper. For the multiple linear regression performed for the 

sample with “narrower” ranges in inputs (i.e. reflecting the NAEI estimates of uncertainty in each input 

variable), the R2 values were found to be higher than for the analyses using the ± 40% input variation 

ranges. The median R2 values were as follows: lowest 0.992 (HNO3) highest 1.000 (NOx), other output 

variables 0.996-0.999. This indicates that for smaller deviations from the nominal values of emissions 

the model response is even closer to linear.  

 

 

(11) I would also expect the measures here to follow the regression coefficients more closely given 

the linearity in the model. This measure is giving different information to the RC and I don’t fully 

understand what that difference is and why the results are different. 

 

Response: We assume that in this question the reviewer is asking whether values of SRCs squared 

should follow same spatial pattern as RCs. The distinction between RCs and SRCs is made in the 

Methods section (p5). RC, as defined in the paper, enables estimation of the response of the model 

output to a relative change (within  40% range) in one or multiple emission inputs. So it can be 

interpreted as a scaling coefficient applied to the input to get to the output. The sign of RC indicates if 

the input-output relationship is direct or inverse. The value of RC depends on the units of inputs and 

outputs. SRC is unit-independent. SRC squared is used to apportion uncertainty and its value depends 

not only on the model response to the change in the input, but also the magnitude of variation assigned 

to that input. For example, the input may be assigned a large uncertainty, but if it is not influential, it 

will not affect output uncertainty. Hence SRCs squared (here the same as first-order sensitivity indices 
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because the model is linear) indicate the extent to which a particular input with a particular uncertainty 

assigned to it drives uncertainty in the model output.  

 

 

(12) I think the authors should consider using generalised additive modelling here to calculate the 

main effects following Strong M, Oakley JE, Brennan A. Estimating multiparameter partial 

Expected Value of Perfect Information from a probabilistic sensitivity analysis sample: a non-

parametric regression approach. Medical Decision Making, 2014;34(3):311-26 particularly Eq 6 

and 8. 

 

Response: The abovementioned paper suggests the use of a nonparametric regression (GAM and 

Gaussian process) approach to estimate the partial expected value of perfect information (EVPI). This is 

a good suggestion for models that show non-linear and/or non-monotonic trends in the input-output 

relationships. In general GAM and other non-parametric models can be used as an emulator to estimate 

the model output at any point in the input space, allowing Monte Carlo estimation of the variance-based 

sensitivity indices and/or re-estimation of uncertainty in the output when different ranges of uncertainty 

are assigned to the inputs.  

 

Technically, a linear regression model can be considered as an emulator as well because it enables 

estimation of model response at any point in the input space. This would allow for example the 

calculation of first-order sensitivity indices using the approach described by Saltelli et al. (2010). In the 

case of the FRAME model, multiple linear regression is sufficient because R2 values indicate that for all 

FRAME output variables the total variation in the output is sufficiently explained by the fitted model. 

Moreover, SRCs squared can be equated to first-order sensitivity indices for a linear model, which 

eliminates the need for further re-sampling and calculations.  

 

To acknowledge the fact that emulators can be used for computationally expensive models with non-

linear/non-monotonic response to changes in the inputs, the text at the end of the Methods section has 

been modified and extended (with additional citations) as follows (p6, line 13-17): 

“For the case of non-linear models, variance decomposition methods are described in more detail 

elsewhere (Homma and Saltelli, 1996; Saltelli, 2002; Saltelli et al., 2010; Sobol’, 1993). In the case 

where a large number of model simulations is not possible an emulator based approach can be used for 

the uncertainty and sensitivity analysis (Blatman and Sudret, 2010; Lee et al., 2011; Shahsavani and 

Grimvall, 2011; Storlie and Helton, 2008).” 

 

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based 

sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer 

Physics Communications, 181(2), 259–270. https://doi.org/10.1016/j.cpc.2009.09.018 

 

Blatman, G. and Sudret, B.: A comparison of three metamodel-based methods for global sensitivity 

analysis: GP modelling, HDMR and LAR-gPC, Procedia - Soc. Behav. Sci., 2(6), 7613–7614, 

doi:10.1016/j.sbspro.2010.05.143, 2010. 

https://doi.org/10.1016/j.cpc.2009.09.018
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Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W. and Spracklen, D. V.: Emulation of a complex 

global aerosol model to quantify sensitivity to uncertain parameters, Atmos. Chem. Phys., 11(23), 

12253–12273, doi:10.5194/acp-11-12253-2011, 2011. 

 

Shahsavani, D. and Grimvall, A.: Variance-based sensitivity analysis of model outputs using surrogate 

models, Environ. Model. Softw., 26(6), 723–730, doi:10.1016/j.envsoft.2011.01.002, 2011. 

 

Storlie, C. B. and Helton, J. C.: Multiple predictor smoothing methods for sensitivity analysis: 

Description of techniques, Reliab. Eng. Syst. Saf., 93(1), 28–54, doi:10.1016/j.ress.2006.10.012, 2008. 

 

 

(13) The references should be expanded to include other uses of sensitivity analysis in earth science 

models. These tools are generally applicable across different types of models which is an important 

point to make. 

 

Response: We have added the following text and citations to the Introduction (p 3, line 20-22): 

“Global sensitivity and uncertainty analyses have been applied in many earth science fields such as 

hydrological modelling (Shin et al., 2013; Yatheendradas et al., 2008), ecological modelling (Lagerwall 

et al., 2014; Makler-Pick et al., 2011; Song et al., 2012), and atmospheric aerosol modelling (Carslaw et 

al., 2013; Chen et al., 2013; Lee et al., 2011).” 

 

Shin, M. J., Guillaume, J. H. A., Croke, B. F. W. and Jakeman, A. J.: Addressing ten questions about 

conceptual rainfall-runoff models with global sensitivity analyses in R, J. Hydrol., 503(2013), 135–152, 

doi:10.1016/j.jhydrol.2013.08.047, 2013. 

 

Yatheendradas, S., Wagener, T., Gupta, H., Unkrich, C., Goodrich, D., Schaffner, M. and Stewart, A.: 

Understanding uncertainty in distributed flash flood forecasting for semiarid regions, Water Resour. 

Res., 44(5), doi:10.1029/2007WR005940, 2008. 

 

Lagerwall, G., Kiker, G., Muñoz-Carpena, R. and Wang, N.: Global uncertainty and sensitivity analysis 

of a spatially distributed ecological model, Ecol. Modell., 275, 22–30, 

doi:10.1016/j.ecolmodel.2013.12.010, 2014. 

 

Makler-Pick, V., Gal, G., Gorfine, M., Hipsey, M. R. and Carmel, Y.: Sensitivity analysis for complex 

ecological models – A new approach, Environ. Model. Softw., 26(2), 124–134, 

doi:10.1016/j.envsoft.2010.06.010, 2011. 

 

Song, X., Bryan, B. A., Paul, K. I. and Zhao, G.: Variance-based sensitivity analysis of a forest growth 

model, Ecol. Modell., 247, 135–143, doi:10.1016/j.ecolmodel.2012.08.005, 2012. 
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Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., Mann, G. W., 

Spracklen, D. V., Woodhouse, M. T., Regayre, L. A. and Pierce, J. R.: Large contribution of natural 

aerosols to uncertainty in indirect forcing, Nature, 503(7474), 67–71, doi:10.1038/nature12674, 2013. 

 

Chen, S., Brune, W. H., Lambe, A. T., Davidovits, P. and Onasch, T. B.: Modeling organic aerosol from 

the oxidation of α-pinene in a Potential Aerosol Mass (PAM) chamber, Atmos. Chem. Phys., 13(9), 

5017–5031, doi:10.5194/acp-13-5017-2013, 2013. 

 

Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W. and Spracklen, D. V.: Emulation of a complex 

global aerosol model to quantify sensitivity to uncertain parameters, Atmos. Chem. Phys., 11(23), 

12253–12273, doi:10.5194/acp-11-12253-2011, 2011. 
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Abstract. Atmospheric chemistry transport models (ACTMs) are widely used to underpin policy decisions associated with the 

impact of potential changes in emissions on future pollutant concentrations and deposition. It is therefore essential to have a 

quantitative understanding of the uncertainty in model output arising from uncertainties in the input pollutant emissions. 15 

ACTMs incorporate complex and non-linear descriptions of chemical and physical processes which means that interactions 

and non-linearities in input–output relationships may not be revealed through the local one-at-a-time sensitivity analysis 

typically used. The aim of this work is to demonstrate a global sensitivity and uncertainty analysis approach for an ACTM, 

using as an example the FRAME model, which is extensively employed in the UK to generate source-receptor matrices for 

the UK Integrated Assessment Model and to estimate critical load exceedances. An optimised Latin hypercube sampling design 20 

was used to construct model runs within  40 % variation range for the UK emissions of SO2, NOx and NH3, from which 

regression coefficients for each input-output combination and each model grid (>10,000 across the UK) were calculated. 

Surface concentrations of SO2, NOx and NH3 (and of deposition of S and N) were found to be predominantly sensitive to the 

emissions of the respective pollutant, while sensitivities of secondary species such as HNO3 and particulate SO4
2-, NO3

- and 

NH4
+ to pollutant emissions were more complex and geographically variable. The uncertainties in model output variables were 25 

propagated from the uncertainty ranges reported by the UK National Atmospheric Emissions Inventory for the emissions of 

SO2, NOx and NH3 (± 4 %, ± 10 % and ± 20 % respectively). The uncertainties in the surface concentrations of NH3 and NOx 

and the depositions of NHx and NOy were dominated by the uncertainties in emissions of NH3, and NOx respectively, whilst 

concentrations of SO2 and deposition of SOy were affected by the uncertainties in both SO2 and NH3 emissions. Likewise, the 

relative uncertainties in the modelled surface concentrations of each of the secondary pollutant variables (NH4
+, NO3

-, SO4
2- 30 

and HNO3) were due to uncertainties in at least two input variables. In all cases the spatial distribution of relative uncertainty 

was found to be geographically heterogeneous. The global methods used here can be applied to conduct sensitivity and 

uncertainty analyses of other ACTMs.  
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1 Introduction 

Atmospheric chemistry transport models (ACTMs) provide scientific support for policy development. It is therefore important 

to have a quantitative understanding of the levels of uncertainty associated with model outputs (AQEG, 2015; Frost et al., 

2013; Rypdal and Winiwarter, 2001). Sensitivity and uncertainty analyses are both used in this regard. Uncertainty analysis is 5 

applied to quantify propagation of uncertainties of single or multiple inputs through to a model output, whilst sensitivity 

analysis is used to investigate input-output relationships and to apportion the variation in model output to the different inputs. 

However, due to the complexity of ACTMs the relationship between model inputs and outputs is not analytically tractable so 

both quantities must be estimated by sampling model inputs according to an experimental design and undertaking multiple 

model simulations (Dean et al., 2015; Norton, 2015; Saltelli et al., 2000; Saltelli and Annoni, 2010).  10 

Typically, model assessment studies focus on uncertainties in the model parameter values (Derwent, 1987; Konda et al., 2010; 

De Simone et al., 2014) and model-specific structure (Simpson et al., 2003; Thompson and Selin, 2012). However, for ACTMs 

the uncertainty in the model input emissions data could be dominating; for example, previous dispersion model uncertainty 

studies identified input emissions as a primary source of uncertainty in model outputs (Bergin et al., 1999; Hanna et al., 2007; 

Sax and Isakov, 2003). It is also the case that a major role of ACTMs is to estimate the impact of potential future changes in 15 

emissions on atmospheric composition (Boldo et al., 2011; Crippa et al., 2016; Heal et al., 2013; Vieno et al., 2016; Xing et 

al., 2011; Zhang et al., 2010).  

Thus the focus of this study is to demonstrate a systematic approach for quantifying model output sensitivity and uncertainty 

as a function of the variation in model input emissions. We used the Fine Resolution Atmospheric Multi-pollutant Exchange 

(FRAME) model as a case study. FRAME is a Lagrangian model that outputs, at a 5 km × 5 km horizontal resolution over the 20 

UK, annual average surface concentrations of sulphur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), nitric acid 

(HNO3), and particulate ammonium (NH4
+), sulphate (SO4

2-), and nitrate (NO3
-), together with dry and wet deposition of 

oxidised sulphur (SOy), oxidised nitrogen (NOy), and reduced nitrogen (NHx) (Dore et al., 2012; Matejko et al., 2009; Singles 

et al., 1998). The model is extensively used to provide policy support including generation of source-receptor matrices for the 

UK Integrated Assessment Model (UKIAM) and estimation of critical load exceedances (Matejko et al., 2009; Oxley et al., 25 

2013). Source receptor matrices link concentration and deposition with individual emission sources and are used to automate 

procedures to estimate the impact of future emission reduction scenarios. Integrated assessment modelling incorporates 

technical emissions abatement costs with cost-benefit analysis and source-receptor data to indicate cost-effective solutions to 

protect natural ecosystems from acidic and nitrogen deposition above defined critical thresholds and to protect human health 

from particulate concentrations (Oxley et al., 2003, 2013). 30 

FRAME uses emissions input data from the UK National Atmospheric Emissions Inventory (NAEI, http://naei.beis.gov.uk/), 

which are compiled following the international ‘Guidelines for Reporting Emissions and Projections Data under the 

http://naei.beis.gov.uk/
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Convention on Long-range Transboundary Air Pollution (United Nations Economic Commission for Europe, 2015). We used 

the uncertainties published by the NAEI in the Informative Inventory Report (Misra et al., 2015) as the foundation of the 

uncertainty propagation for the FRAME concentration and deposition outputs with respect to UK emissions of SO2, NOx, and 

NH3. The uncertainty ranges for different pollutants reported by the NAEI are estimated using a Monte Carlo technique which 

corresponds to the IPCC Tier 2 approach (IPCC, 2006). In this approach uncertainty ranges for each source for both emission 5 

factor and activity statistics are associated with a probability distribution and further used as inputs in a stochastic simulation 

which calculates output distributions of total UK emissions for each pollutant. The uncertainties are expressed as plus or minus 

half the confidence interval width relative to the estimated emissions value. 

Previously, local one-at-a-time (OAT) sensitivity analysis has been used to investigate ACTM sensitivity because it is less 

computationally demanding than global sensitivity analysis that requires a large number of simultaneous perturbations of all 10 

inputs of interest. However, there are significant disadvantages associated with OAT analysis: the interactions between the 

input parameters and non-linearities in the model response cannot be identified; additionally as the number of input parameters 

increases the fraction of parameter space investigated tends to zero (Jimenez and Landgrebe, 1998; Saltelli and Annoni, 2010). 

Therefore local OAT sensitivity analysis is only applicable when the effects of the different inputs are all independent from 

each other and model response is linear for the range of investigated inputs. Many previous publications that include ACTM 15 

sensitivity analysis use the OAT approach but fail to acknowledge its limitations (Appel et al., 2007; Borge et al., 2008; 

Capaldo and Pandis, 1997; Labrador et al., 2005; Makar et al., 2009). 

Hence this study focuses on demonstrating the use of global methods capable of revealing non-linearity in the model response 

and the presence of interactions between inputs in addition to revealing the spatial pattern of the model response to changes in 

the input emissions. Global sensitivity and uncertainty analyses have been applied in many earth science fields such as 20 

hydrological modelling (Shin et al., 2013; Yatheendradas et al., 2008), ecological modelling (Lagerwall et al., 2014; Makler-

Pick et al., 2011; Song et al., 2012), and atmospheric aerosol modelling (Carslaw et al., 2013; Chen et al., 2013; Lee et al., 

2011). Increasing computational resource means this approach is now starting to be applied to ACTMs (Christian et al., 2017). 

In a global sensitivity analysis a sample space is created for all inputs under investigation from which a set of combinations of 

model inputs for different model runs are chosen. The sampling design for model inputs for uncertainty and sensitivity analysis 25 

must balance the needs of covering the full multidimensional input parameter space at sufficient density to allow 

characterisation of any non-linearities and interactions in the model response with a small enough number of samples for the 

total number of model runs to remain computationally tractable. Simple random sampling is conceptually the simplest 

sampling technique, but has low efficiency compared to other sampling approaches and tends to lead to clusters and gaps in 

coverage of the input space (Saltelli et al., 2008). Likewise, full or fractional factorial designs (Box and Hunter, 1961) do not 30 

allow effective exploration of the whole input space because for more than a few levels of each input the number of model 

runs becomes very large. Quasi-random sampling, of which the Sobol’ sequence (Sobol’, 1967, 1976; Sobol’ and Levitan, 

1999) is a popular choice for variance-based sensitivity analysis, may not work well when the number of sampling points is 

small (Saltelli et al., 2008). Therefore, in this work, Latin hypercube sampling (LHS) (McKay et al., 1979), which is a stratified 
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space-filling sampling technique, was used. Advances have been made to optimise the space filling properties of LHS including 

maximin sampling (Johnson et al., 1990; Morris and Mitchell, 1995) and integrated mean squared-error minimisation (Park, 

1994).  

In summary, this work demonstrates application of global uncertainty and sensitivity analysis to an ACTM using the FRAME 

model as an example.  5 

2 Methods 

2.1 Model description  

The FRAME model is a Lagrangian model that calculates annual average surface concentrations of SO2, NOx, NH3, and HNO3, 

particulate NH4
+, SO4

2-, and NO3
-, and dry and wet deposition of SOy, NOy and NHx at 5 km  5 km horizontal resolution over 

the UK (Dore et al., 2012; Fournier et al., 2002; Matejko et al., 2009; Singles et al., 1998). This spatial resolution corresponds 10 

to >10,000 model grid squares over the UK land area. The air column contains 33 vertical layers of varying thickness from 

1 m at the surface to 100 m at the top of the mixing layer. The vertical diffusion between layers is calculated using K-theory.  

The air columns move from the boundary of the domain along straight-line trajectories with varying starting angles at a 

1° resolution. The trajectories are defined by an annual wind rose and annually-averaged wind speed generated for year 2012 

from the output of the Weather Research and Forecast model (www.wrf-model.org) (Skamarock et al., 2008) version 3.7.1. 15 

The model was run at a 5 km resolution over the UK with boundary and initial conditions initialised by the National Centers 

for Environmental Prediction Final Global Forecast System (NCEP-GFS-FNL) data (https://rda.ucar.edu/datasets/ds083.2/).  

Gridded emissions of SO2, NOx, and NH3 are obtained from the UK NAEI (http://naei.beis.gov.uk/) at 1 km  1 km spatial 

resolution (maps are shown in Figure S1 in Supplementary Information). Input emissions of SO2 and NOx are split into three 

categories: UK area, point source, and shipping emissions. FRAME treats SO2 emissions as 95% SO2 and 5% H2SO4, and NOx 20 

emissions as 95% NO and 5% NO2. For NH3 emissions there are only UK area and point source categories. The NH3 emissions 

from livestock are distributed spatially according to Hellsten et al. (2008). All emissions are injected into the air column at 

different heights according to the classification of emission sources.  

The chemical scheme is described in Fournier et al. (2004) and includes gaseous and aqueous-phase oxidation reactions and 

conversion of the gases NH3, SO2, and NOx to particulate matter (NH4
+, NO3

-, SO4
2-). NH4NO3 is formed by the equilibrium 25 

reaction between HNO3 and NH3 and nitrate aerosol also arises by the deposition of HNO3 onto sea salt or large particles. 

H2SO4 reacts with NH3 to form (NH4)2SO4. The aqueous phase reactions include the oxidation of S(IV) by O3 and the metal 

catalysed reaction with O2. Modelled dry deposition is land-cover dependent and calculated using a canopy resistance model. 

Wet deposition is calculated using scavenging coefficients and it is driven by rainfall, which is modelled using a constant 

drizzle approach based on the measured spatial distribution of annual average rainfall data with the assumption of an enhanced 30 

washout rate over elevated areas. 
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A detailed evaluation of model outputs with annually averaged measurements of pollutant concentrations in air and 

precipitation concentrations is discussed elsewhere (Dore et al., 2015). In this study, all model runs were performed using 

emissions and meteorology data for the year 2012 and FRAME model version 9.15.0. 

2.2 Sensitivity and uncertainty analysis 

For both sensitivity and uncertainty analyses a Latin hypercube sampling design was chosen as it is superior to quasi-random 5 

sampling for small numbers of samples (Saltelli et al., 2008). A uniform LHS design was created using the R package 

‘lhs’(Carnell, 2016), with the sample optimised by maximising the mean distance between the design points. The LHS design 

was created for the scaling coefficients applied to the model input emissions of UK SO2, NOx and NH3 and not for the actual 

values of the input emissions. This means that emissions from all sources of a particular pollutant were varied by the same 

fraction across all grid squares in a particular model run.  10 

For the sensitivity analysis a uniform LHS sample of size n = 100 within a range of ± 40 % relative to the baseline for each of 

the three input variables was created. This range was chosen to test the overall model response to changes in emissions (for 

example to identify non-linearities) as it encompasses the range of variations in input emissions used for future scenario 

simulations with the FRAME model, as well as incorporating emission reductions applied for the generation of source-receptor 

relationships for integrated assessment modelling.  15 

Regression coefficients (RC) were used as the measure of the sensitivity of the model response, derived as follows. For each 

model grid cell, and for each model output variable, a multiple linear regression (Eq. 1) was performed using the data from the 

n = 100 model runs. To obtain the RCs (bi in Eq. 1) the model inputs Xi, and outputs Y, were substituted by corresponding 

values of fractional change relative to the baseline value. This simplifies interpretation of the resulting RCs. A RC represents 

the relative effect of changing input Xi on the output Y, e.g. RC = 0.5 signifies a 15 % reduction in the output variable value if 20 

an input is reduced by 30 %. The coefficients of determination (R2) were evaluated for each fitted model (for every grid cell) 

to identify if a significant level of non-linearity in the input-output relationship was present. 

𝑌 =  𝑏0 + ∑ 𝑏𝑖𝑋𝑖

3

𝑖=1

 (1) 

For the uncertainty propagation, the input sampling space was constrained to the specific uncertainty ranges assigned to the 

emissions of SO2, NOx and NH3 in the UK Informative Inventory Report (Misra et al., 2015) with a new LHS sample n = 100. 

These uncertainty ranges are derived following published guidelines on quantifying uncertainties in emissions estimates 25 

(IPCC, 2006; Pulles and Kuenen, 2016). According to the guidelines, uncertainties are expressed as lower and upper limits of 

the 95 % confidence interval as a percentage of the central estimate. The assigned emissions uncertainties have ± 4 %, ± 10 % 

and ± 20 % ranges, for SO2, NOx and NH3 respectively. The probability distributions were not specified, therefore it was 

chosen to use uniform distributions for the variable ranges from which the LHS sample was created. It is also acknowledged 

that a number of other aspects of emissions uncertainty are not included. For example, the FRAME model cannot capture 30 
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uncertainty in assigned seasonal and diurnal cycles in emissions. Uncertainties in the spatial distributions or in height of 

elevated emissions are also not included. 

The uncertainty values for each grid square were calculated as a half of the 95% confidence interval relative to the mean value 

of the output as recommended in the EMEP/EEA and IPCC Guidebooks (IPCC, 2006; Pulles and Kuenen, 2016). Relative 

uncertainty values are presented here.  5 

To assess the contribution of uncertainties in the emissions of SO2, NOx and NH3 to the overall output uncertainty standardised 

regression coefficients (SRCs) were calculated as shown in Eq. 2. A multiple linear regression was performed using the data 

from the 100 model simulations for the case of constrained input sampling space. The SRCs (βi in Eq. 2) were calculated by 

multiplying the RC by the ratio between the standard deviations of the input σi, and output σY. (σY is the same for all the βi 

values for a given output variable.) 10 

𝛽𝑖 = 𝑏𝑖  
𝜎𝑖

𝜎𝑌
 (2) 

The squared value of SRC (Eq. 3) for linear additive models is equal to the ratio of variance of mean of Y when one input 

variable is fixed, 𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)), to the unconditional variance of Y, 𝑉(𝑌) (Saltelli et al., 2008). Thus SRC squared represents 

the fractional contribution of the uncertainties in the model inputs to the overall uncertainty in the output. For the case of non-

linear models, variance decomposition methods are described in more detail elsewhere (Homma and Saltelli, 1996; Saltelli, 

2002; Saltelli et al., 2010; Sobol’, 1993). In the case where a large number of model simulations is not possible an emulator 15 

based approach can be used for the uncertainty and sensitivity analysis (Blatman and Sudret, 2010; Lee et al., 2011; Shahsavani 

and Grimvall, 2011; Storlie and Helton, 2008). 

𝛽𝑖
2 =

𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖))

𝑉(𝑌)
 (3) 

3 Results and discussion 

3.1 Global sensitivity analysis 

Figure 1 summarises the distributions of the regression coefficient (RC) global sensitivity measure across all model grid cells. 20 

RCs show the sensitivity of each model output variable to the three input emissions variables (SO2, NOx and NH3), and can be 

interpreted as a magnitude of the response of an output to the unit change in a particular input when all other inputs are allowed 

to vary. The magnitude of the RCs provides useful information not only about the effect of the change in a particular input on 

a model output, but also allows input sensitivity ranking to be determined because all inputs were assigned the same range of 

variation (± 40 %). In the case where the ranges for inputs differ, standardised regression coefficients (SRCs) are used to obtain 25 

the input importance ranking instead.  

Figure 1 shows that model outputs have (i) varying sensitivities, (ii) varying relative rankings in their sensitivities to SO2, NOx 

and NH3 emissions, and (iii) that these output sensitivities to the emissions also vary spatially across the model grids, as shown 
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by the spreads in individual box plots. The annual average concentrations of particulate NH4
+, NO3

-, and SO4
2- and annual dry 

and wet deposition of SOy for the baseline model run are presented in Supplementary Information Figure S2. The actual spatial 

distributions of the RCs from Figure 1 are illustrated in Figure 2 for the example output variables of particulate NH4
+, NO3

-, 

and SO4
2-. Figure 3 shows the equivalent for the example output variables of dry and wet deposition of SOy. These five output 

variables were chosen to illustrate the spatial distribution of uncertainty and sensitivity metrics. Figures S3 and S4 in 5 

Supplementary Information show the spatial distribution of RCs for other FRAME outputs displayed in Figure 1.  

RC is a first-order sensitivity measure and it quantifies the average response of model output to varying a model input Xi when 

all inputs are allowed to vary. In this study no second, or higher, order interaction terms were quantified as their contribution 

was assumed to be negligible. This was concluded from the values of the coefficients of determination (R2) obtained from 

multiple linear regressions performed; for most output variables, values of R2 were on average > 0.98 with the exception of a 10 

slightly lower value for HNO3 (R
2 > 0.96). Hence less than 2 % (4 % for HNO3) of variance in the output could not be explained 

by the linear combination of inputs. This finding allows us to conclude that the FRAME model response is in fact fairly linear 

within the ± 40 % emission perturbation range investigated. The absence of any substantial deviations from linearity in the 

model response and absence of second or higher order interactions between input variables indicate that the current use of the 

FRAME model to produce source-receptor matrices for the use in the UK Integrated Assessment Model is not subject to undue 15 

error from varying emissions one-at-a-time. Without conducting the global sensitivity analysis it is not possible to predict a 

priori for a given model output variable either the relative sensitivities to the different input factors, such as emissions, or the 

spatial variation in these sensitivities that are illustrated in Figures 1, 2 and 3.  

 

Figure 1 Box plots of the values of regression coefficients (RC) across all UK land-based model grid squares. Boxes demarcate the 20 
median and lower/upper quartiles of the distributions; whiskers extend to 1.5 times the interquartile range. 
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Figure 2 Spatial distributions (at the 5 km × 5 km model grid resolution) of RCs for particulate NH4
+, SO4

2-, and NO3
- as a function 

of variation in input emissions of SO2, NOx or NH3. The model input emissions for which the RC quantifies the output variable 

sensitivity is given in brackets in each panel. 

 5 
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Figure 3 Spatial distributions (at the 5 km × 5 km model grid resolution) of RCs of dry (d) and wet (w) deposition of SOy as a function 

of variation in input emissions of SO2, NOx or NH3. The model input emissions for which the RC quantifies the output variable 

sensitivity is given in the brackets in each panel. 

 5 

With respect to findings from this FRAME model sensitivity analysis for particulate inorganic components in the UK context, 

Figure 1 shows that the modelled surface concentrations of particulate NH4
+ are sensitive to changes in emissions of all three 

pollutants, being similarly sensitive (on average) to emissions of NH3 and SO2, and slightly less sensitive to emissions of NOx. 

The sensitivities of NH4
+ to SO2, NOx and NH3 emission changes were found to vary substantially around the UK (top row of 

Figure 2). Sensitivity of NH4
+ to SO2 emissions is generally lowest in south-east England, and rises on moving north and west 10 

across the UK. Reductions in emissions are always associated with reductions in NH4
+. The broad geographical pattern of 

relative sensitivity across the UK of NH4
+ to NH3 emissions is approximately the reverse of that to SO2 emissions although 

with substantial spatial heterogeneity as well. Figure 2 shows that there are instances in north-west Scotland of negative RCs 

for the sensitivity of NH4
+ to NOx emissions, i.e. areas where NH4

+ increases when NOx emissions are decreased.  
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Figure 1 similarly shows that surface concentrations of particulate SO4
2- are sensitive to changes in emissions of all three of 

SO2, NOx and NH3 (most sensitive to SO2 emissions) but with a universally negative sensitivity (albeit relatively weak) to NOx 

emissions, i.e. particulate SO4
2- concentrations increase everywhere by approximately 3 % if NOx emissions are reduced by 

40 % (lower row of Figure 2). This is due to competition between HNO3 and H2SO4 to react with NH3 and form particles, i.e. 

reducing NOx emissions means NH3 is more readily available to react with H2SO4. The positive values of RCs of SO4
2- to SO2 5 

emissions are geographically fairly uniform (somewhat lower sensitivity in the eastern UK), but the relative sensitivity to NH3 

emissions is more heterogeneous and greater in the east. 

The sensitivity of particulate NO3
- concentrations to the emissions is more straightforward than for particulate NH4

+ and SO4
2, 

being dominated by its positive sensitivity to NOx emissions, weakly sensitive to NH3 emissions and essentially not sensitive 

at all to SO2 emissions (Figure 1 and middle row of Figure 2). The sensitivity to NOx emissions is almost unity, such that for 10 

example a 30 % reduction in NOx emissions results in almost the same 30 % reduction in surface NO3
-.  The spatial distribution 

of RCs that represent sensitivity of NO3
- concentrations to NOx (and NH3) emissions is also geographically more homogenous 

across the UK than the sensitivities of NH4
+ and SO4

2- concentrations (middle row of Figure 2).  

The concentrations of the three inorganic particulate matter components are determined by the reactions that lead to formation 

of (NH4)2SO4 and NH4NO3. Formation of the former is irreversible whilst the latter exists in reversible equilibrium with gas-15 

phase NH3 and HNO3. Changes in emissions of NH3 have an impact on formation of both (NH4)2SO4 and NH4NO3 very 

quickly, and therefore close to the source of the NH3 emissions, because it reacts directly as NH3. In contrast the influence of 

changes in SO2 and NOx emissions is not so localised. Before they influence the formation of (NH4)2SO4 and NH4NO3 these 

gases must be oxidised in the atmosphere to H2SO4 and HNO3, during which time the air is undergoing transport. The spatial 

pattern of the sensitivities of (NH4)2SO4 and NH4NO3 formation to changes in the UK precursor emissions is therefore the 20 

outcome of many interacting factors: i) the magnitude of background import of precursors from outside the UK which could 

explain lower sensitivity of inorganic particulate matter components to SO2 emissions in south-east England, ii) the magnitude 

and spatial pattern of the UK precursors, iii) the time taken for chemical oxidation in relation to atmospheric transport of air 

masses, and iv) the varying dry and wet deposition spatial patterns that remove from the atmosphere both the precursor gases 

and particulate products.  25 

In summary, the broad patterns of the sensitivity results in Figures 1, 2 and 3 can be explained as follows. The surface 

concentrations of the directly emitted pollutants NH3, NOx and SO2 are predominantly sensitive only to their respective 

emissions (Figure 1). This is also the case for the deposition of oxidised S, and of oxidised and reduced N. Dry deposition is 

dominated by the gas-phase components so the variations in the dry deposition of NHx and SOy are dominated by the variations 

in the emissions of NH3 and SOx respectively with the RC values being close to 1. For the dry deposition of NOy, both NO2 30 

and its oxidation product HNO3 are important. This is illustrated by the weaker response of dry NOy deposition to changes in 

NOx emissions. Wet deposition is a more complex process as this is dominated by washout of the particles which are the 

product of chemical reactions in the atmosphere. This explains lower values of RC for wet compared to dry deposition. 
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The considerably more ubiquitous sources of NOx emissions compared with SO2 emissions means that atmospheric 

concentrations of gaseous oxidised N are generally higher than for oxidised S so the former usually has greater influence on 

NH3 chemistry. Therefore particulate NO3
- is predominantly controlled by NOx emissions, and changes in SO2 emissions have 

very little effect on particulate NO3
-. However, because lower NOx emissions lead to lower NH4NO3 formation more NH3 is 

available which means lower NOx emissions leads to greater (NH4)2SO4 formation this explains the inverse correlation between 5 

surface concentrations of SO4
2- and NOx emissions. On the other hand, changes in NH3 emissions impact on both NO3

- and 

SO4
2- concentrations, both in a positive direction of association, but with a magnitude sensitive to the relative amounts of the 

reacting species present, which in turn depends both on the magnitudes and distances of local sources and on long-range 

transport. Likewise, the sensitivity of NH4
+ concentrations varies with all three sets of precursor emissions and with 

geographical location. The same is the case for concentrations of HNO3. This is why, aside from some broad expectations, it 10 

is not easily possible to predict the spatial patterns of the sensitivities of ACTM model output to changes in emissions and a 

formal sensitivity analysis is needed. 

3.2 Uncertainty propagation  

The global uncertainty propagation approach for FRAME output variables was based on the assigned uncertainties in the 

estimates of the total UK emissions of SO2 (± 4 %), NOx (± 10 %) and NH3 (± 20 %) (Misra et al., 2015). As explained in the 15 

Methods, the uncertainties in the input emissions were assigned uniform distributions, and no uncertainties in either the spatial 

or temporal aspects of the emissions are included. No substantial difference in the resulting model output uncertainty ranges 

was observed when the probability distributions of the input emissions were changed to normal. The distributions of the relative 

uncertainties across all model grid cells for each output are shown in Figure 4. Example maps of the spatial distributions of 

the relative uncertainties from Figure 4 for surface concentrations of particulate NH4
+, NO3

-, and SO4
2- and for dry and wet 20 

deposition of SOy are shown in Figure 5. Equivalent maps for the relative uncertainties of the other FRAME output variables 

are shown in Supplementary Information Figure S5. 
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Figure 4 Distributions of relative uncertainty values calculated for all FRAME model outputs across all model grid squares given 

the following input uncertainty ranges: ± 4 %, ± 10 % and ± 20 % in emissions of SO2, NOx and NH3 respectively. Boxes demarcate 

the median and lower and upper quartiles of the distributions; whiskers extend to 1.5 times the interquartile range. 

 5 

Figure 5 Spatial distributions (at the 5 km × 5 km model grid resolution) of the relative uncertainties in surface concentrations of 

particulate NH4
+, SO4

2-, and NO3
- and dry and wet deposition of SOy for uncertainties of ± 4 %, ± 10 %, ± 20 % in emissions of SO2, 

NOx and NH3 respectively. The uncertainty values are represented as a range of +/- the baseline value and represent the 95 % 

confidence interval. 

 10 
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Figure 4 shows that the surface concentration of NH3 is the most uncertain output (model grid median uncertainty 19.8 %). 

This is because the variation in NH3 surface concentrations is almost entirely driven by variation in NH3 input emissions 

(Figure 1) and this is the most uncertain input in the presented analysis. The uncertainty in modelled dry deposition of NH x 

likewise closely matches the assigned uncertainty in NH3 emissions (median = 18.8 %). The uncertainty in wet deposition of 

NHx is somewhat less than uncertainty in dry deposition (median = 13.4 %) because wet deposition of NHx includes some 5 

dissolved (NH4)2SO4 component which is also sensitive to other precursor emissions whose uncertainty is estimated to be 

smaller than for NH3. Surface concentrations of SO2 and the dry and wet depositions of SOy have least uncertainty (medians 

of 6.0 %, 4.8 % and 3.2 %) for the similar reason that these model outputs are predominantly sensitive to SO2 emissions (Figure 

1) which has the smallest of the input uncertainties (± 4 %).   

Relative uncertainties of particulate SO4
2- (median = 6.4 %), NO3

- (median = 8.6 %) and NH4
+ (median = 7.5 %) are fairly 10 

similar (Figure 4) even though there are substantial differences in the assigned uncertainties for emissions of SO2, NOx and 

NH3. The explanation is that PM components are sensitive to all three inputs (for NO3
- two out of three inputs) (Figure 1). 

There is also wide spatial variation in the uncertainties of these PM components (Figures 4 and 5). The relative uncertainty 

values in surface concentration of HNO3 show the largest variability out of all output variables. This can be explained by the 

fact that the concentration of this species is impacted directly by both gas and particle-phase processes. The spatial pattern of 15 

the relative uncertainty values does not correlate either with the spatial pattern of emissions or rainfall, which demonstrates 

again that the uncertainties of many model outputs cannot be readily predicted because of the complexity of the atmospheric 

processes underpinning them and consequently that formal uncertainty analysis needs to be applied. 

3.2.1 Uncertainty apportionment 

Estimated uncertainty of the model output given the uncertainties in model input emissions is presented in Figures 4 and 5, but 20 

it is also of interest to know how each of the inputs contributes to the overall uncertainty individually. This was estimated by 

calculating squared standardised regression coefficients (SRCs) (Eq. 3). As an example, Figure 6 illustrates the spatial 

distributions of the fractional contributions of the SO2, NOx and NH3 emission uncertainties to the overall uncertainties in 

surface concentrations of particulate NH4
+, NO3

- and SO4
2-, for the assigned uncertainties in the input emissions, whilst Figure 

7 illustrates similar for the dry and wet deposition of SOy. The equivalent maps for the other model output variables are 25 

presented in Supplementary Information Figures S6 and S7. 

Figure 6 shows that across nearly all the UK, uncertainty in concentrations of particulate NH4
+ is mainly driven by the 

uncertainty in NH3 emissions. Uncertainty in NOx emissions contributes some uncertainty to NH4
+ concentrations, whilst the 

uncertainty in SO2 emissions makes almost no contribution. Northern Ireland is an exception; here uncertainties in NOx 

emissions contribute the most to the uncertainties in NH4
+ concentrations and perturbations in NH3 emissions have less impact. 30 

Concentrations of NH3 in Northern Ireland are some of the highest anywhere in the UK, whilst NOx emissions are not high; 

this means that NH3 will be in excess so the formation of NH4NO3 will be largely controlled by HNO3 through NOx emissions. 

The major contribution to uncertainty in particulate NO3
- derives from uncertainty in NOx emissions (Figure 6). However in 
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the east of Scotland, uncertainty in NH3 emissions contributes up to 78% of the total uncertainty. There is no contribution from 

SO2 emissions uncertainty. An important feature of the lower panel of Figure 6 is that by far the major contributor to uncertainty 

in particulate SO4
2- concentrations is the uncertainty assigned to the NH3 emissions not the uncertainty in the direct precursor 

SO2 emissions. This is because the formation of (NH4)2SO4 is irreversibly dependent on gaseous NH3 and emissions of NH3 

are much more uncertain than SO2 emissions.  5 

Figure 7 shows the spatial distribution of the squared SRC values for dry and wet SOy deposition; for these output variables 

uncertainty in NOx does not make any contribution to uncertainty in either case. In contrast to the situation for particulate SO4
2- 

concentrations shown in Figure 6, Figure 7 shows that uncertainty in dry and wet deposition of SOy is mainly driven by the 

uncertainty in the SO2 emissions. Additionally uncertainty in NH3 emissions contributes to the total uncertainty in dry and wet 

SOy deposition. The contribution to uncertainty in wet deposition is higher due to wet deposition being dominated by the 10 

washout of the particles which include products of the reactions of NH3 with oxidation products of SOx. 
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Figure 6 Spatial distributions (at the 5 km × 5 km model grid resolution) of the squared SRC values which represent the fractional 

contribution of the uncertainty in the input emissions given in brackets to the overall uncertainty in the surface concentrations of 

particulate NH4
+, SO4

2-, and NO3
-. The uncertainties in the input emissions are ± 4 %, ± 10 % and ± 20 % for SO2, NOx and NH3 

respectively.  5 
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Figure 7 Spatial distributions (at the 5 km × 5 km model grid resolution) of the squared SRC values which represent the fractional 

contribution of the uncertainty in the input emissions given in brackets to the overall uncertainty in the dry and wet deposition of 

SOy. The uncertainties in the input emissions are ± 4 %, ± 10 % and ± 20 % for SO2, NOx and NH3 respectively.  5 

4 Conclusions 

We have applied global sensitivity analysis to determine the response of concentration and deposition output variables of the 

FRAME atmospheric chemistry transport model to perturbations of UK emissions of SO2, NOx and NH3. The benefit of using 

systematic global sensitivity analysis is that all dimensions of variable input space are investigated simultaneously, which is 

important when the response to a large number of variables is of interest, so inferences can be drawn without assumptions 10 

about the model structure. For complex models such as ACTMs, for which input-output mapping is not analytically tractable, 
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it is not possible to predict output sensitivities to multiple input perturbations without conducting a global sensitivity analysis. 

Local one-at-a-time sensitivity analysis is often applied without acknowledging the shortcomings associated with it.  

In this study no substantial deviations from linearity or presence of interactions between the model input variables were 

identified for the FRAME model in response to input emission perturbations within a ±40 % range, hence regression 

coefficients obtained from multiple linear regression were chosen as a sensitivity measure. This was not predictable from a 5 

local one-at-a-time sensitivity analysis.   

Whilst sensitivity of surface concentrations of the primary precursor gases SO2, NOx and NH3 (and of deposition of S and N) 

was dominated by the emissions of the respective pollutant, the sensitivities of secondary species such as HNO3 and particulate 

SO4
2-, NO3

- and NH4
+ to pollutant emissions were more nuanced and geographically variable. The dry deposition of S and N 

showed stronger response to changes in the emissions of the respective pollutant compared to wet deposition.  10 

A global uncertainty analysis approach was used to estimate uncertainty ranges for all FRAME model output variables from 

the uncertainties assigned to the UK emissions of SO2, NOx and NH3 (± 4 %, ± 10 % and ± 20 % respectively) by the UK 

National Atmospheric Emissions Inventory. The spatial distribution of the relative uncertainty was affected by both the 

sensitivity of the model output to variations in the inputs and the magnitude of this variation (i.e. the input uncertainty range); 

NH3 was the most uncertain input and as a result the output variables sensitive to NH3 showed the highest levels of relative 15 

uncertainty in the areas most sensitive to this input. The uncertainty in the surface concentrations of NH3 and NOx and the 

depositions of NHx and NOy was shown to be due to uncertainty in a single precursor input variable, NH3 and NOx respectively. 

In contrast, the concentration of SO2 and deposition of SOy was affected by uncertainties in both SO2 and NH3 emissions. 

Likewise, the relative uncertainties in the modelled surface concentrations of each of the secondary pollutant variables (NH4
+, 

NO3
-, SO4

2-, and HNO3) were affected by the uncertainty range of at least two input variables.  20 

This work has demonstrated a methodology for conducting global sensitivity and uncertainty analysis for ACTMs. Although, 

for the FRAME model used here, the response to emission perturbations was found to be substantially linear in the investigated 

input range, the complexity of chemical and physical processes included in ACTMs means that the input-output relationships, 

in particular their spatial patterns, cannot be predicted without conducting a global sensitivity analysis. The benefit of using 

global approaches is that all dimensions of input variable space are investigated simultaneously so model input-output 25 

relationships can be quantified without the need to make strong prior assumptions about the model response to perturbations 

in the inputs of interest. 

Data availability 

The FRAME model code is not available in the public domain as the model is the intellectual property of the Centre for 

Ecology & Hydrology and is only made available to students and researchers who are collaborating directly with CEH staff. 30 

However, all the following output data are available at: https://doi.org/10.5281/zenodo.1145852. 

1) All FRAME model outputs (raw data) for both actual input uncertainty and ± 40 % input ranges. 
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2) R scripts used to calculate RCs, SRCs, and uncertainty ranges. 

3) Calculated RCs, SRCs, and uncertainty ranges for every FRAME output variable, which underpin all figures in this 

paper. 
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