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Abstract. We investigate the application of clustering algorithms to represent sub-grid scale variability in soil texture for use

in a global-scale terrestrial ecosystem model. Our model, the coupled Canadian Land Surface Scheme - Canadian Terrestrial

Ecosystem Model (CLASS-CTEM), is typically implemented at a coarse spatial resolution (ca. 2.8◦ × 2.8◦) due to its use as

the land surface component of the Canadian Earth System Model (CanESM). CLASS-CTEM can, however, be run with tiling

of the land surface as a means to represent sub-grid heterogeneity. We first determined that the model was sensitive to tiling5

of the soil textures via an idealized test case before attempting to cluster soil textures globally. To cluster a high-resolution

soil texture dataset onto our coarse model grid, we use two linked algorithms (OPTICS (Ankerst et al., 1999; Daszykowski

et al., 2002) and Sander et al. (2003)) to provide tiles of representative soil textures for use as CLASS-CTEM inputs. The

clustering process results in, on average, about three tiles per CLASS-CTEM grid cell with most cells having four or less tiles.

Results from CLASS-CTEM simulations conducted with the tiled inputs (Cluster) versus those using a simple grid-mean soil10

texture (Gridmean) show CLASS-CTEM, at least on a global scale, is relatively insensitive to the tiled soil textures, however

differences can be large in arid or peatland regions. The Cluster simulation has generally lower soil moisture and lower overall

vegetation productivity than the Gridmean simulation except in arid regions where plant productivity increases. In these dry

regions, the influence of the tiling is stronger due to the general state of vegetation moisture stress which allows a single tile,

whose soil texture retains more plant available water, to yield much higher productivity. Although the use of clustering analysis15

appears promising as a means to represent sub-grid heterogeneity, soil textures appear to be reasonably represented for global

scale simulations using a simple grid-mean value.
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1 Introduction5

Representation of sub-grid variability is a challenging problem in large-scale modelling applications such as Earth System

Models (ESMs). ESMs are commonly run at relatively coarse spatial resolutions due to the computational costs associated

with these complex models. The terrestrial component of an ESM is also generally tied to the grid cell size or truncation

level of the atmosphere, making it difficult to resolve smaller scale processes. Heterogeneity in precipitation, vegetation, soils

(Boone and Wetzel, 1999), topography, and snow cover (Nitta et al., 2014) on spatial scales much smaller than model grid cells10

can cause surface fluxes to vary non-linearly across a grid cell. To address this issue, several modelling groups have adopted

either a tiling approach, in which each grid cell is divided into a mosaic of tiles with a different tile given for each landscape

feature (Avissar and Pielke, 1989; Koster and Suarez, 1992; Essery et al., 2003), or a statistical approach whereby the sub-grid

heterogeneity is represented by a probability density function (e.g. Famiglietti and Wood (1994); Pielke et al. (1991); Boone

and Wetzel (1999)).15

The division of a grid cell into tiles has been attempted for characteristics such as hydrological parameters (Wood et al.,

1992; Arora et al., 2001), vegetation present (Molod and Salmun, 2002; Li and Arora, 2012; Melton and Arora, 2014; Ke

et al., 2013), land cover change (Landry et al., 2016), precipitation (Arora et al., 2001), elevation (Ke et al., 2013), land surface

properties (Avissar and Pielke, 1989), and maximum infiltration (Decharme and Douville, 2005). Many of these reports that

tiled the land surface used relatively easily observed, and hence classified, characteristics of the landscape, i.e. vegetation20

presence/absence, elevation band, vegetation type, etc. To our knowledge the tiling of soil texture has never been reported. We

hypothesize that the use of tiled soil textures, rather than taking simple grid-mean values, will result in more realistic model

simulations due to the non-linear influence of soil texture on soil hydrological and thermal characteristics. Soil moisture is

one of the most important determinants for partitioning of surface fluxes of moisture and heat from net radiation (Shao and

Henderson-Sellers, 1996) and precipitation into evapotranspiration and total runoff (Dirmeyer et al., 1999), as well as having25

a strong influence on vegetation productivity, and the terrestrial carbon cycle, which is of primary interest here. Soil texture

influences on plant productivity and community structure should be especially strong in regions with low water availability as

has been observed in semi-arid and arid regions (Archer et al., 2002; Hook and Burke, 2000; English et al., 2005).

To test our hypothesis, we use clustering algorithms on a recently released high-resolution soil textural dataset. Clustering

analysis searches for patterns in datasets based upon their natural structure or grouping. Some examples of clustering analysis in30

the Earth system sciences includes remote determination of inundated areas (Prigent et al., 2001), land use management zones

(Li et al., 2007), ecoregion delineation (Kumar et al., 2011), and fire regimes (Archibald et al., 2013). Given high-resolution

soil textural information, a clustering analysis can determine regions of similar soil textures (e.g. river valleys, mountainous
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slopes) that are smaller than the size of ESM grid cells. The soil textures of these distinct regions can then be used as a tile to

allow representation of this sub-grid heterogeneity in the model without requiring a smaller model grid. It is possible that some

small areas or rare soil-type combinations may behave as ’hotspots’ of hydrological or ecological importance. Determining

their locations on a global-scale would be challenging and likely only possible through expert assessments, which is not

practical given the large number of land grid cells in an ESM (generally >2000). The advantage of clustering analysis is that it5

provides an algorithm-based approach that can be applied globally. Newman et al. (2014) used k-means clustering analysis to

determine tiles based, primarily, on the vegetation types present and thus were able to provide the k term (number of clusters)

a priori. In clustering soil texture it is desirable to allow the number of soil clusters to vary per grid cell and not be specified a

priori. This allows us to optimize the number of tiles based on our considerations of adequate representation of heterogeneity

and computational cost of additional tiles. Our study thus presents two new approaches: the use of a clustering algorithm to10

determine tiles that does not require a priori information on the number of tiles per gridcell and using tiled soil texture to

represent sub-grid heteorogeneity.

In the following sections we, i) introduce CLASS-CTEM and the clustering algorithms (Section 2), ii) evaluate the soil

textural tiles found by the clustering algorithms and the resulting CLASS-CTEM outputs against simulations that use a simple

grid cell mean soil texture and against an observation-based dataset of gross primary productivity (Section 3), and iii) discuss15

these results and give conclusions for the utility of this approach (Section 4).

2 Methods

2.1 CLASS-CTEM

All simulations were run with the Canadian Land Surface Scheme (CLASS v. 3.6; Verseghy (2012)) coupled to the Canadian

Terrestrial Ecosystem Model (CTEM v.2; Melton and Arora (2016)). Together CLASS-CTEM forms the land surface compo-20

nent of the Canadian Earth System Model (CanESM), but the simulations presented here were performed off-line to permit

easier interpretation.

CLASS operates at a half-hour timestep and performs the land surface water and energy balance calculations. In simulating

the energy balance of the land surface and its interactions with the atmosphere, CLASS uses vegetation attributes such as leaf

area index (LAI), canopy mass, rooting depth, and vegetation height. The temperature, and liquid and frozen water contents25

of three soil layers, of 0.1, 0.25, and 3.75 meters thickness, are determined prognostically. The CLASS parameterization for

mineral soils follows that of Cosby et al. (1984) and Clapp and Hornberger (1978) (see Appendix). Organic soils, defined

as those cells having an organic matter weight percent greater than 30, are modelled as peat following Letts et al. (2000).

The daily mean soil temperature, soil moisture, and net radiation from CLASS are passed to CTEM at the end of each day.

CTEM then calculates the vegetation and carbon dynamics. While most of CTEM operates on a daily timestep, the carbon30

assimilation from photosynthesis and canopy conductance occur on the CLASS timestep. CTEM calculates the carbon uptake

and respiratory costs of nine plant functional types (PFTs) which map directly to four PFTs that CLASS uses. The CLASS

PFTs (with corresponding CTEM PFTs in parentheses) are needleleaf tree (needleleaf evergreen and needleleaf deciduous),
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broadleaf tree (broadleaf evergreen, broadleaf cold deciduous, and broadleaf drought/dry deciduous), crop (photosynthetic

pathway C3 and C4), and grass (C3 and C4). CTEM tracks carbon flow through the leaves, stem and roots of the living plants

and the litter and soil C for the detrital pools. For global simulations, CLASS-CTEM is typically run at a grid cell resolution

of approximately 2.8◦ by 2.8◦ corresponding to a grid cell size of ca. 98 000 km2 at the equator and ca. 49 000 km2 at 45◦

latitude. CLASS-CTEM has been validated against observation-based datasets from site-level to global (e.g. Peng et al. (2014);5

Melton et al. (2015); Melton and Arora (2016)).

2.1.1 CLASS-CTEM simulation details

The simulations were forced with version 7 of the Climate Research Unit-National Centers for Environmental Prediction

(CRU-NCEP) meteorological dataset covering 1901 - 2015 (Viovy, 2016). The meteorological inputs are disaggregated from

6 hourly to half-hourly as laid out in Melton and Arora (2016). To spin up the model, the climate years 1901 – 1925 were10

repeatedly cycled over until the model reached equilibrium (which is defined by the net biome production simulated to be less

than 0.1% of net primary productivity). During the spinup, the land cover and population densities (used by the fire disturbance

scheme) were set to that of year 1850 with a global atmospheric CO2 concentration of 284.87 ppm. After the spinup, the

transient simulation ran from 1851 to 2015 with atmospheric CO2 concentrations from Meinshausen et al. (2011). The land

cover is derived from the Global Land Cover 2000 (GLC2000) data set for year 2000 (Bartholomé and Belward, 2005). The15

GLC2000 data is then mapped to the corresponding CTEM PFTs and we use the HYDE v. 3.1 data set (Hurtt et al., 2011) to

change crop area with time. The distribution of the C3 and C4 photosynthetic types for the crops and grasses is based upon

Still et al. (2003). To run from 1851 - 2015, the climate was cycled over twice from 1901 – 1925 for the years 1851 – 1900,

then allowed to run freely from 1901 - 2015. All simulations had land use change impacts (prescribed changes in crop cover

from 1851 - 2015) as well as fire disturbance.20

2.2 High-resolution Soil Texture Dataset

The Global Soil Dataset for use in Earth System Models (GSDE) (Shangguan et al., 2014) is available at 5 arc minute resolution

from http://globalchange.bnu.edu.cn/research/soilw (Accessed July 23rd, 2015). GSDE has eight soil layers of depths: 4.5,

9.1, 16.6, 28.9, 49.3, 82.9, 138.3, and 229.6 cm. CLASS-CTEM’s requirements for soil textural information include weight

percent sand, clay, and organic matter (OM) as well as soil depth (Verseghy, 2012). We retain CLASS-CTEM’s typical soil25

configuration of three soil layers with layer bottom depths of 10 cm, 35 cm, and 410 cm. The soil silt weight percent is found

taking the remainder of 100% - sand - clay.

In each GSDE 5 arc minute grid cell, the soil textural values for depths of 4.5 and 9.1 cm were averaged for the clustering of

model soil layer 1. Model layer 2 spanning 10 – 35 cm is assumed to be representable by the mean of GSDE layers 16.6 and

28.9 cm and the bottom model layer spanning 35 – 410 cm by the mean of GSDE layers 49.3, 82.9, 138.3, and 229.6 cm.30

GSDE does not contain information about soil depth thus the model default soil depth for each grid cell was used (Zobler,

1986). CLASS-CTEM assumes that any part of the ground column below the soil depth is bedrock and simulates water flow
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only in the soil part of the ground column, while the temperature dynamics are simulated over both the soil and bedrock

sections.

2.3 Clustering Analysis

Clustering analysis is primarily a tool for database mining in the information sciences but it has had applications in the earth

sciences, predominantly for spatial pattern analysis of remote sensing databases (e.g. Prigent et al. (2001); Archibald et al.5

(2013)). For the purpose of representing the spatial heterogeneity of soil textures, a clustering analysis algorithm ideally would

independently identify the number of clusters without requiring per-grid cell information, beyond the high resolution soil

textural information. After a literature survey, we chose the Ordering Points to Identify the Clustering Structure (OPTICS)

algorithm (Ankerst et al., 1999; Daszykowski et al., 2002). OPTICS is a density-based clustering algorithm where clusters are

determined to be areas of higher density than the rest of the dataset. Data points in more sparse regions are considered to be10

noise. Another common clustering algorithm, k-means was not used as it requires the number of clusters as an input parameter

and while there are techniques to diagnostically estimate the number of clusters, they are often ambiguous and their results can

differ greatly depending on technique chosen (Chiang and Mirkin, 2010).

OPTICS does not directly produce a clustering of the data but rather a hierarchical representation of the data that shows its

density-based structure. A second step, using the algorithm of Sander et al. (2003), then produces the clusters. The OPTICS15

algorithm searches a neighbourhood of a predefined radius (ε) for clusters that contain a minimum number of points (minPts).

We set ε to infinity and minPts to 5% of the number of data points in the gridcell (sensitivity to the minPts parameter is

discussed further in Section 3.3.1). The parameters for the algorithm of Sander et al. (2003) were taken directly from their

paper.

2.3.1 Application of OPTICS and the Sander et al. (2003) clustering algorithm20

The boundaries of each CLASS-CTEM grid cell (1958 total land cells) were used to determine which high-resolution GSDE

grid cells would fit within each model cell. Around 1100 GSDE cells fit within a CLASS-CTEM grid cell. From these GSDE

cells, all points that were not land (lakes, rivers, etc.) were masked out. If the CLASS-CTEM grid cell did not contain more than

100 GSDE cells (which is about 340 km2 at the equator), the CanESM soil textural information was used for that grid cell. This

occurred for four CLASS-CTEM grid cells and is a result of the land mask used by CLASS-CTEM, which is the same as in the25

CanESM where the exact placement of the land cells is determined somewhat by the needs of the ocean model. The remaining

1954 CLASS-CTEM grid cells were then individually clustered using the OPTICS and Sander et al. (2003) algorithms. The

clustering algorithms choose which GSDE grid cells are considered part of the clusters determined for each CLASS-CTEM

grid cell. GSDE grid cells that, in soil texture space, are far from regions of higher density are considered noise and excluded

from clusters (see Section 2.3 above), thus the percent of GSDE cells clustered varies between CLASS-CTEM grid cells. We30

checked the weighted mean of the clusters against the simple mean of the GSDE grid cells for each CLASS-CTEM grid cell

and if the difference between them was greater than 10% for sand, clay, or OM, we assigned that cell the simple gridmean

soil textures. This 10% limit was exceeded for 53 CLASS-CTEM grid cells, or <3% of the total. The vast majority of the
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CLASS-CTEM grid cells above this 10% limit were cells where the clustering algorithm had found only one cluster (Fig. A1).

The clustering algorithms were applied to the GSDE grid cells for the first model layer (0 – 10 cm depth). For simplicity, the

clustering found in the first layer was then applied to the layers below, i.e. we did not cluster the lower layers separately rather

we apply the clustering assignment of each GSDE grid cell from layer one to each of the lower layers. As our study is mostly

focused on the determining the impact of sub-grid soil texture on the model outputs, this simple approach is likely sufficient.5

Each cluster was assigned the same soil depth. Other model inputs like meteorological forcing and prescribed vegetation cover

was the same for each cluster, i.e. each tile within a CLASS-CTEM grid cell had the same PFT fractional coverages on each

tile (for e.g. if the CLASS-CTEM grid cell had 30% needleleaf evergreen tree, 50% C3 grass and 20% bare ground coverage,

each tile would have that same PFT distribution applied to it.).

3 Results and Discussion10

3.1 Model sensitivity to tiling

We performed a simple test to ascertain model sensitivity to soil texture, the number of soil tiles, and if this sensitivity has

a saturating number of tiles using three example sites: N.E.USA (temperate; 43.3 ◦N 92.8 ◦W), Amazon (tropical; -1.40 ◦S

56.25 ◦W) and Sudan (arid ; 12.6 ◦N 28.1 ◦E). For this test, we first ran a simulation at each test grid cell with a soil texture

of 50% sand and 50% clay. We then ran different simulations with an increasing number of tiles at each site but with the15

same proportion of sand and clay percentages for the grid cell weighted mean. These further simulations were i) two tiles each

covering half the grid cell (one with 100% sand and the other 100% clay), ii) three tiles each covering a third (one with 100%

sand, one with 50% sand and 50% clay, and the third 100% clay), iii) four tiles each covering a fourth (one with 100% sand,

one with 75% sand and 25% clay, one with 25% sand and 75% clay, and the fourth 100% clay), iv) five tiles each covering a

fifth (one with 100% sand, one with 75% sand and 25% clay, one with 50% sand and 50% clay, one with 25% sand and 75%20

clay, and the fourth 100% clay), etc. up until 20 tiles. All tiles were assigned the same vegetation, soil depth and an OM content

of 0%.

Some example carbon cycle outputs are plotted in Fig. 1. As we increase from one tile to two, the model outputs show drops

of slightly less than 10% to almost 20% for the N.E. USA and 30 to 50% at the Amazon site, but show an increase in some

variables of up to six-fold for the Sudan site. The change in the carbon outputs from the one-tile simulations then decreases and25

stabilizes, indicating that the model is not sensitive to an increasing number of tiles. The threshold number of tiles at which the

carbon outputs stabilize is around seven or eight for the N.E. USA and Amazon while the Sudan site is around 12. The Sudan

site has low productivity (NPP ca. 300 gCm−2yr−1) due to arid conditions (annual precipitation ca. 400 mm yr−1), and it

demonstrates a strong response of the carbon cycle to soil texture. Additionally, since model runtime increases proportionally

to the number of tiles (see dashed line in Sudan plot of Fig. 1), to manage computational cost only the minimum number of30

tiles that allows an adequate representation of sub-grid heterogeneity should be run.
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These results demonstrate the model should indeed be sensitive to tiling of the soil texture and that ’too many’ tiles is not

necessary, and would indeed come with a computational cost penalty. However this sensitivity test is relatively unrealistic in

its choice of soil texture for the clusters so the next section looks again at the Sudan test site as well as one in Brazil.

3.2 Site-level simulations

3.2.1 Evaluation of soil textural clusters5

We first examine example grid cells from Sudan and Brazil (Figs. 2 and 3). These sites were chosen because they are from

relatively arid regions and therefore soil moisture variations should play a role in the vegetation dynamics. Figures 2 and 3

show the high resolution GSDE grid cell textures for the top CLASS-CTEM soil layer. The clustering algorithm found three

clusters for both example grid cells. The weight percent of clay, sand and OM for each cluster can be seen in Figs. 2 and 3

and compared to the original GSDE grid cells. The joint distribution using kernel density estimation for the sand and clay soil10

contents is also shown. The clustering is able to effectively capture the distinct soil textural regions apparent in both grid cells.

Another example cell with a more heterogeneous GSDE soil texture is shown in Fig. A2.

3.2.2 Influence on model outputs

The CLASS-CTEM simulated net primary productivity (NPP), heterotrophic respiration (HR), and net ecosystem productivity

(NEP) for the Sudan and Brazil example sites are shown in Figs. 4 and 5, respectively. Model outputs such as NPP, HR and15

NEP are important components of the terrestrial C cycle but they are also useful indicators of changes in soil hydrology and

thermal regimes since their calculation is influenced by the soil environment as a whole. To investigate the influence of the

clustering algorithm, the per tile results are shown alongside the model results taken at the grid-level (as a weighted mean) for

the clustering simulation (’Cluster’) and the model result if a simple mean of the GSDE soil texture for the CLASS-CTEM

grid cell was used (’Gridmean’).20

The Sudan grid cell shows relatively large differences between the three tiles determined by the clustering algorithm. The

NPP of tile C (with 36% sand, 31% clay and 2% OM) is generally very low which draws down the grid-level NPP for the

Cluster simulation, however not greatly as this tile only occupies 8% of the grid cell. The other tiles (A: 91% sand, 4% clay and

1% OM covering 62% of the grid cell and B:67% sand, 15% clay and 1% OM covering 30% of the grid cell) can also differ

greatly especially for HR and NPP. The NPP and NEP is generally higher for the Gridmean simulation while the HR is higher25

for the Cluster simulation. The different sensitivity of CLASS-CTEM’s simulated NPP and HR to each tile’s soil texture is at

least partially due to the model formulation of these processes. In CLASS-CTEM, GPP, a component of NPP, depends upon a

soil moisture stress term that uses the volumetric water content to determine the degree of soil saturation (Equations A5 - A7

in Melton and Arora (2016)) whereas the HR calculation depends on soil matric potential (Melton et al. (2015) and Equations

A33 - A36 in Melton and Arora (2016)). Soil matric potential is calculated as,30
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Ψ = Ψsat

(
θl

θp + θi

)−b

(1)

where b is the Clapp and Hornberger b term (Cosby et al., 1984), Ψsat is the soil moisture suction at saturation, and θi, θl,

θp is the volumetric ice, liquid, and pore (air) content of the soil layer, respectively. The Cluster grid-level NPP is also slightly

more variable than the Gridmean simulation and appears to respond strongly to precipitation changes in this arid grid cell.

The NPP, HR and NEP values at the Brazil test site (Fig. 5) are all higher than the Sudan test site due, in part, to the higher5

precipitation in the region. The Brazil site’s Gridmean simulation generally has similar NPP and NEP to the Cluster simulation

but higher HR. This appears to reflect the relatively similar behaviour between the three tiles determined for this location. The

largest difference between tiles is for HR which is lower for tile C (43% sand, 36% clay and 3% OM) compared to the sandier

tiles, A (91% sand, 4% clay and 1% OM) and B (67% sand, 15% clay and 1% OM).

The differences between the Cluster and Gridmean simulation for these two grid cells indicates that 1) the model is sensitive10

to soil textural differences, especially for more arid sites, and 2) the influence of clustering soil textures is not uniform and will

depend on the conditions unique to each grid cell. We next look at the influence of the clustering on global simulations.

3.3 Global simulations

3.3.1 Evaluation of soil textural clusters

On a global scale, the clustering algorithm found, on average, slightly more than three clusters per CLASS-CTEM grid cell15

(3.1 ±1.5 ; Fig. A3) with few cells having more than five clusters. The global distribution of the number of clusters and the

percent of GSDE grid cells that formed the clusters is shown in Fig. 6. The number of clusters found by OPTICS shows a lower

number of clusters in parts of the United States, Europe and China, with higher numbers generally found for South America

and part of Africa. There appears to be some dependence between the number of clusters and the original source soil map

that was incorporated into GSDE (c.f. Fig. 1 in Shangguan et al. (2014) for the distribution of source maps incorporated into20

GSDE). The regions of two original source maps, the General Soil Map of the United States (GSM) and the Soil Database

of China for Land Surface Modelling, appear to correlate well with areas of, primarily, single tiles, as determined by the

clustering algorithms. The soil textural information from these regions is of higher quality (pers. comm. W. Shangguan, 2016)

with more observations contributing to a higher spatial heterogeneity in the original maps incorporated into GSDE. This higher

spatial heterogeneity could have lead the clustering algorithms to find no distinct clustering by effectively increasing noise and25

obscuring the regions of higher density of soil textural points that indicate a cluster. The GSM map also covers Alaska but

given the sparse population and remoteness of the region, the soil textural information could be of poorer quality, and hence

lower spatial heterogeneity, for that state. Western Europe could also have higher quality soil data but it is only a sub section of

the European Soils Database. To understand if the selection of the minPts parameter caused the predominance of single tiles

in these regions, we reduced minPts from 5% to 1% of the number of data points in the gridcell. This did reduce the number30

of grid cells with only single tiles in China, the US, and Europe but it also greatly increased the number of tiles everywhere
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else (Fig. A4). The mean number of clusters found increased to 11.2 ± 5.2 with some grid cells having up to 20 cells. Since the

model is not sensitive to more than about 7 tiles (see Section 3.1), the original minPts value used appears more appropriate

for the majority of the land surface.

The percent of GSDE grid cells that were included in clusters is, on average, 57.0 ± 20.1, as not all GSDE soil textural

values are necessarily determined to fall within a cluster (as discussed in Section 2.3.1). The clustering does not, however,5

appreciably shift the simple grid-mean texture of the CLASS-CTEM grid cells (Figs A5 and A6), i.e. the raw gridmean is

similar to the weighted mean of the clusters. The spatial distribution of the percent of GSDE cells clustered is shown in Fig.

6. Areas of northern Eurasia, southeastern Australia and the Prairie region of Canada appear to have lower percentages of

GSDE grid cells clustered while areas like northern Africa and the high-latitudes of Canada have higher percentages clustered

although the pattern on the whole is relatively heterogeneous.10

3.3.2 Influence on model outputs

Global totals of CLASS-CTEM outputs for tiled (Cluster) and grid-mean (Gridmean) simulations for 1996–2015, along with

observation-based estimates, are presented in Table 1. The general impact of the clustering integrated over the globe is small

for most variables. Evapotranspiration (ET), transpiration, and runoff show small differences of around 1% or less. There are

some seasonal and regional differences for ET between the Cluster and Gridmean simulations (Fig A7) but they are generally15

not statistically significant (independent two sample t-test p-level <0.01). The transpiration component of ET is relatively

unchanged globally between the Cluster and Gridmean simulations (Table 1) while changes at the gridcell level indicate a

partitioning shift between evaporation and transpiration with some arid regions showing more transpiration for the Cluster

simulations (Fig. A8 and Fig. A7). Runoff also has some seasonal differences with more grid cells significantly different

between Cluster and Gridmean simulations (Fig A9) and while the Cluster simulation has generally higher runoff, the signal20

is quite mixed. Globally, latent heat fluxes are less influenced by the tiling than sensible heat fluxes with a 0.4% difference

compared to 3.7%, respectively. Seasonal maps of latent heat fluxes show little difference between the two simulations (not

shown) while there is a general increase in sensible heat fluxes of the Cluster simulation over the Gridmean for all seasons in

arid regions (Fig. A10).

Some variables for the carbon cycle also show similar relatively small changes with the largest changes occurring for NEP25

with a 4% difference between simulations and net biome productivity (NBP) with a 5% difference. The largest difference is

observed for water use efficiency (WUE; defined as GPP / ET) with a percent absolute difference of about 33%. The higher

mean annual global WUE of the Cluster simulation is also closer to an observation-based estimate (Xue et al., 2015) than the

Gridmean simulation. The change in WUE between the two simulations will be discussed in greater detail below.

Regional differences can be much larger than the generally modest global differences found between the two simulations.30

The annual mean simulated soil moisture per soil layer shows some regions to differ by more than 20% between the Cluster and

Gridmean simulations (Fig. 7) with more grid cells showing statistically significant differences between the simulations with

increasing soil depth. The Cluster simulation has generally drier soils than the Gridmean simulation, with larger differences

visible for arid regions, such as northern Australia, the Middle East, and Mongolia (which have low soil moisture so small
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changes in absolute amounts will appear as a larger percent change than the same absolute change in a more humid region),

while the northern latitudes are wetter for some of the Canadian high north and western Siberia as well as areas of Indonesia

and other parts of Southeast Asia. These patterns are not uniform and can also differ by soil model layer as is the case in

the Saharan region where the second layer is generally wetter for the Cluster simulation than the Gridmean, but drier in the

third layer. The drier first soil layer in the Cluster simulations leads to an increase in sensible heat fluxes over the Gridmean5

simulations as seen in Fig. A10 and Table 1.

The principle regions of an increase in soil moisture for the Cluster simulation over the Gridmean are in large peatland com-

plexes such as the West Siberian Lowlands, the Hudson’s Bay Lowlands, the Mackenzie River delta, and parts of Indonesia.

These peatland regions are strongly influenced by the tiling due to the soil OM threshold above which the peat soils parameter-

ization of Letts et al. (2000) is applied (soil OM >=30%; see Section 2.1). The higher porosity, greater hydraulic conductivity10

variation with depth, and differing thermal properties all cause greater changes in soil moisture when a grid cell or tile is treated

as peat soil as opposed to a mineral soil. The differences in soil moisture appear to be relatively stable throughout the year with

relatively little seasonal variation (not shown).

Changes in soil moisture will influence vegetation through changes in water supply and water stress. The mean annual

gross primary productivity (GPP) as simulated by CLASS-CTEM is plotted in Fig. 8. An observation-based estimate (Beer15

et al., 2010) is provided for reference against the Gridmean simulation GPP. The relative percent difference between the

Gridmean and Cluster simulations can be large in arid regions while relatively small elsewhere (again with the understanding

that small absolute changes appear relatively larger for areas of low GPP than for the same absolute change in a region of

higher productivity). The areas of significant difference are similar to the regions that saw the significant changes in total

soil moisture (Fig. 7) including central Australia, Saharan Africa, and other arid regions. In these arid regions the Cluster20

simulation produces higher GPP values than the Gridmean simulation. However in these regions the soil moisture in the total

soil column was less in the Cluster simulation than the Gridmean simulation (with the exception of Saharan Africa where the

second soil layer increased in soil moisture). In non-arid regions, the general effect of the clustering was to slightly lower GPP

(resulting in a slightly smaller global GPP ; Table 1). Regions like the peatland complexes that showed significant changes

in soil moisture (Fig. 7) are already moist and rarely experience water stress thus these changes in soil moisture have little25

impact upon productivity. We investigated the temporal dynamics of GPP in the regions that differed significantly between the

Cluster and Gridmean simulations using the dataset of Jung et al. (2011), and found a small improvement in root mean square

deviation of the cluster simulation over the gridmean, but it was smaller than the uncertainty of the Jung et al. (2011) dataset

which is relatively large in these regions due to sparse observations (e.g. Fig S2 in Beer et al. (2010)) and low productivity.

To understand how lower soil moisture could lead to higher GPP, we selected a grid cell in Australia that saw a large increase30

in GPP with lower soil moisture (Fig. 9). This grid cell has five tiles determined by the clustering algorithms. Of these tiles,

the fifth (tile E; 78% sand, 12% clay, and 1% OM) has much higher productivity than the others, while only occupying 10%

of the grid cell. The higher GPP of tile E can be understood by looking at its plant available soil water, θa (m3/m3), which we

approximate using the soil’s field capacity, θfc, and wilting point, θw,
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θa = θfc − θw (2)

The GPP formulation of CLASS-CTEM is sensitive to θa (Melton and Arora, 2016) and thus enforces stomatal closing to

limit water loss during periods of low moisture availability, resulting in lower productivity. From Fig. 9, we can see tile E, on

an annual basis, generally has some plant available water while the other tiles, and Cluster weighted mean (Fig. 9 bottom right)

and the Gridmean simulation, are commonly strongly water limited resulting in higher GPP for tile E than other tiles and the5

Gridmean simulation.

The large changes in the global mean WUE seen in Table 1 can also be observed regionally and seasonally (Fig. A11).

Outside of arid regions the Gridmean simulation has a slightly higher WUE, although it is generally not statistically significant.

Arid regions show greatly increased WUE principally due to the higher GPP discussed previously (Fig. 8), while the increase

in evapotranspiration is muted by a compensating shift in transpiration vs. evaporation as discussed above –Thus, while the10

effect of tiling on WUE appears larger than other variables, some of the impact is simply due to how WUE is formulated (ratio

of two variables and commonly given as a global mean value, not a global sum) and its sensitivity to small changes in its

components.

The large influence of the clustering in arid regions demonstrates the impact of soil texture when water limitations are

important. In these arid regions, the amount of water in the soil column is low and thus soil textural changes that allow greater15

θa are important, while regions with plentiful moisture are much less influenced by soil texture since water stress is less

frequent and the soils generally contain sufficient water for photosynthesis. CLASS-CTEM’s pedotransfer functions could also

be limiting the influence of the tiling of soil textures. The range in θa for the Cosby et al. (1984) pedotransfer functions, as

implemented in CLASS-CTEM, for soils ranging from the most disparate USDA texture classes (’sand’ to ’silt’ to ’clay’) only

covers a θa range of 0.08. Using another pedotransfer function may cause CLASS-CTEM to have a greater sensitivity to soil20

textural changes. For example, the range in θa using the Saxton and Rawls (2006) pedotransfer functions is over double the

range of CLASS-CTEM’s implementation of Cosby et al. (1984) (θa high to low range of 0.2). Additionally, the Cosby et al.

(1984) pedotransfer functions (Fig. A12 and equations A1 - A8), while non-linear, are relatively linear in the regions of most

soil textures (Fig. A5). Additionally, the GPP moisture-stress response of CLASS-CTEM could be quite different from another

model thus the effects could be somewhat dependent upon the model used.25

4 Conclusions and Future work

Soil texture influences soil hydrology and temperature and is commonly assigned simple mean values across large grid cells.

The sub-grid heterogeneity of soil texture can be represented by tiling of the land surface. To test the sensitivity of our model,

CLASS-CTEM, to soil texture, we ran simulations of three artificial test grid cells with increasing numbers of tiles but the

same grid mean soil texture. CLASS-CTEM’s carbon cycle outputs were sensitive to the tiling with some outputs changing30

greatly, but displaying a saturating effect dependent upon the climate of the grid cell that ranged between 7 - 12 tiles. We then
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used two linked clustering algorithms (OPTICS (Ankerst et al., 1999; Daszykowski et al., 2002) and Sander et al. (2003)) to

cluster high resolution soil textures over the relatively coarse CLASS-CTEM model grid (ca. 2.8◦ by 2.8◦). After determining

the impact of this tiling at two locations, we ran global simulations using tiled soil textures against those with a simple grid

mean soil texture. The difference between the two simulations on a global scale were generally relatively small (<5%) but

could be large regionally (>20%). The areas that felt the largest impact due to the soil texture tiling were in arid or peatland5

regions. Peatland regions were more sensitive to the tiling due to the model parameterization of peatland soils, that is subject

to a minimum organic matter limit, and that could be exceeded for single tiles while the simple grid mean remained below the

limit. Arid regions saw the largest impact upon GPP due to those regions’ general state of moisture stress on the vegetation

whereas the peatland regions generally have abundant soil moisture. Tiles that retained higher levels of plant available water

in arid regions would greatly increase GPP causing the grid-level GPP to rise above that simulated when using a simple grid10

mean soil texture.

In water-limited regions, the inverse-texture hypothesis as put forth by Noy-Meir (1973) and Sala et al. (1997) predicts that

coarse-textured soils will support higher above-ground plant net primary productivity than fine-textured soils. This hypothesis

has been supported by observations across precipitation gradients (Lane et al., 1998) and we also find this in our simulations for

semi-arid and arid regions (Figs. 4, 5, and 9). The role of soil texture is even stronger on plant community composition based15

on both observations (Lane et al., 1998; Dodd et al., 2002; Dodd and Lauenroth, 1997; Fernandez-Illescas et al., 2001) and

modelling studies (Bucini and Hanan, 2007). While our model does have a parameterization for competition between plants for

ground coverage (Melton and Arora, 2016), we do not presently have shrub PFTs. As the major interactions in these regions is

between grasses and shrubs, our competition parameterization is unlikely to appropriately capture the dynamics of plant cover

due to soil texture as has been reported by observational studies.20

We suggest the following as some possible future directions for this work. First, mapping of the PFTs so the PFTs observed

for each point in the GSDE grid are assigned to the same tile as their underlying soil textures. Presently we give all tiles in

the grid cell the same composition of PFTs whereas the underlying soil conditions could lead to notable differences in what

PFTs exist in a location. Second, the Zobler (1986) soil depth dataset is markedly shallow compared to a more recent dataset

(Pelletier et al., 2016). Introducing the newer soil dataset into the clustering could allow greater distinction of clusters within a25

tile, for e.g. river valleys with deep soil columns with surrounding shallow soil uplands. Lastly, the use of different pedotransfer

functions could yield more model sensitivity to the clustering. An examination of pedotransfer functions would need to look

carefully at the impact of the function for test sites with well understood soil conditions.

While the performance of the tiled grid cells in the arid regions is encouraging, the overall impact of tiling on the terrestrial

C cycle is relatively small and thus the use of a simple grid mean soil texture is likely sufficient for most applications. For30

large-scale applications with a special interest in arid regions, selectively tiling those regions could be useful for capturing the

impact of soil heterogeneity on plant productivity.
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5 Code availability

The python code used for the OPTICS and Sander et al. (2003) algorithms as well as the CLASS-CTEM fortran code is

available. Please email the first author for access to the git repository.
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Appendix A: CLASS-CTEM soil pedotransfer functions

Figure A12 demonstrates the non-linear relationships between soil texture and the hydrologic soil state variables. The saturated

hydraulic conductivity, Ksat (m/s; Fig. A12) is found from the weight percentage sand content, Xsand as (Cosby et al., 1984;

Verseghy, 2012) :

Ksat = 7.0556× 10−6 exp(0.0352Xsand − 2.035) (A1)5

while the pore volume, θp (m3/m3; Fig. A12), is also calculated using Xsand (Cosby et al., 1984; Verseghy, 2012) ,

θp = (−0.126Xsand + 48.9)/100.0 (A2)

The soil moisture suction at saturation, Ψsat (m; Fig. A12), uses Xsand,

Ψsat = 0.01exp(−0.0302Xsand + 4.33) (A3)

The hydraulic parameter b (unitless; also called the Clapp and Hornberger B term) is calculated, via the weight percentage10

clay content, Xclay (Cosby et al., 1984; Verseghy, 2012) as,

b= 0.159Xclay + 2.91 (A4)

The hydraulic conductivity of the soil, K (m/s), is then related to the soil’s volumetric liquid water content, θl (m3/m3) via

the Clapp and Hornberger (1978) relationship:

K =Ksat(θl/θp)(2b+3) (A5)15

In CLASS-CTEM, the field capacity of soil moisture, θfc (m3/m3; Fig. A12), is found by setting K in equation A5 to 0.1

mm/d (1.157 × 10−9 mm/s), and then solving for the liquid water content,

θfc = θp(1.157× 10−9/Ksat)
1/(2b+3) (A6)

The field capacity of the lowest permeable layer, θfc,b (m3/m3), accounts for the permeable depth of the whole overlying

soil column, zb (m), and is found via Soulis et al. (2011)20

θfc,b = θp/(b− 1)(Ψsatb/zb)
1/b[(3b+ 2)(b−1)/b − (2b+ 2)(b−1)/b] (A7)
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At the wilting point, the soil moisture suction, Ψwilt is set to 150 m. The volumetric water content at the wilting point, θw

(m3/m3) is then calculated as,

θw = θp (Ψwilt/Ψsat)
1/b (A8)

The thermal regime of the soil is also influenced by soil texture. The volumetric heat capacity of soils in CLASS-CTEM,

Cg (J/m3/K) is derived from the volume fraction (V) and volumetric heat capacity of clay and silt, Cfine, sand, Csand, and5

organic matter (OM), COM , components of the soil matrix as a weighted average:

Cg = Σ(CsandVsand +CfineVfine +COMVOM )/(1− θp) (A9)

In a similar manner, the soil thermal conductivity, τg (W/m/K), is calculated via a weighted average of the components’

thermal conductivities:

τg = Σ(τsandVsand + τfineVfine + τOMVOM )/(1− θp) (A10)10

Organic soils, defined as those cells having an organic matter weight percent greater than 30, are assigned values of Ksat,

θp, θfc, Ψsat, b, K, Cg , and τg based on peat texture following Letts et al. (2000). The model’s first soil layer is assumed to be

fibric peat, the second as hemic peat and the bottom soil layer as sapric peat.
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Table 1. Global annual values for CLASS-CTEM model outputs based on simulations using grid-mean soil textures (Gridmean) and tiled

simulations derived from the clustering analysis (Cluster). Values are an average over the period 1996 – 2015.

CLASS-CTEM Output Cluster Gridmean Percent absolute Observation-based estimate

difference

Evapotranspiration (ET; 103 km3 yr−1) 78.3 78.6 0.5 83.9±9.9 (Trenberth et al., 2011)

Transpiration (T; 103 km3 yr−1) 21.1 21.2 0.3 62±8 (Jasechko et al., 2013), 45±4.5 (Schlesinger and Jasechko, 2014)

T/ET (%) 27.0 27.0 0.1 61±15 (Schlesinger and Jasechko, 2014)

Runoff (103 km3 yr−1) 32.8 32.4 1.1 38.3 (Fekete et al., 2002)

Latent heat fluxes (W m−2) 44.9 45.2 0.4 39 ± 2 (Jung et al., 2011), 38.5 (Trenberth et al., 2009)

37 - 59 (Jiménez et al., 2011)

Sensible heat fluxes (W m−2) 25.5 24.6 3.7 41 ± 4 (Jung et al., 2011), 27 (Trenberth et al., 2009)

18 - 57 (Jiménez et al., 2011)

Water Use Efficiency (g C kg−1 water) 1.47 1.10 32.8 1.70 (Xue et al., 2015)

Gross primary productivity (GPP) (Pg C yr−1) 133.1 133.6 0.4 123 ± 8 (Beer et al., 2010)

Vegetation biomass (Pg C) 555.00 558.46 0.6 300 - 536 (Forest biomass)b

Soil carbon mass (Pg C) 1132.1 1119.6 1.1 1922c (Shangguan et al., 2014)

Area burnt (104 km2 yr−1 484 505 4.2 464 (Randerson et al., 2012)

Net ecosystem productivity (NEP) (Pg C yr−1) 4.6 4.8 4.0

Net biome productivity (NBP) (Pg C yr−1) 1.0 1.1 5.0 1.0 – 2.5d (Le Quéré et al., 2016)

Percent absolute difference is calculated as abs{100 - [(clustered value / grid-mean value) * 100]}. aValue from eight reanalyses for 2002 – 2008, except ERA-40 which was for the 1990s. bAs summarized in Kauppi

(2003). cNote this version of CLASS-CTEM does not simulate permafrost C pools. dRange of all estimates across 1990-2015 time period.
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Figure 1. Sensitivity test of CLASS-CTEM to the number of tiles (clusters) for three test grid cells. The texture of each tile as the number

of tiles increases is described in Section 3.1. GPP is gross primary productivity. All simulations were run until a new equilibrium state was

established. The increase in runtime of the model is displayed as a dashed line.
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B

A

Figure 2. Example CLASS-CTEM grid cell located in Sudan (12.6 ◦N 28.1◦E). The top panel shows the GSDE sand, clay, and organic

carbon weight percents for GSDE cells within the CLASS-CTEM grid cell. Each GSDE grid cell is 5 arc min by 5 arc min. The numbers on

the plot axes are the number of GSDE grid cells along that axis. The joint distribution using kernel density estimation for the soil sand and

clay content is shown in the centre panel. The histograms on the axes and the blue colour scaling demonstrate qualitatively the number of

GSDE grid cells sharing the similar soil textural space. The clustering algorithm found three clusters (labelled A, B, and C) with a fractional

area per cluster and soil texture as shown in the pie charts. The pie charts can be visually referenced to the top panel which uses the same

colour scheme, e.g. Cluster A covers 63% of the CLASS-CTEM grid cell with 91% sand, 4% clay and 1% OM. In the scatter plot the label

is placed close to the cluster value to help illustrate the cluster relation in sand-clay space.
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Figure 3. Similar to Fig. 2 for a CLASS-CTEM grid cell located in Brazil (9.8 ◦S 45.0◦W).
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Figure 4. CLASS-CTEM simulated net primary productivity (NPP), heterotrophic respiration and net ecosystem productivity (NEP; NPP –

heterotrophic respiration) for the same grid cell in Sudan as Fig. 2. The left column shows the model results per tile with soil textures listed

as percent sand/clay/OM along with the tile percent grid cell coverage. The right panel is the model results at the grid-level for the Cluster

simulation (weighted mean average of all tiles) and the Gridmean simulation (simple mean of GSDE soil textures). The annual precipitation

for this grid cell from CRU-NCEP is included for reference in the upper right plot.
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Figure 5. Same as Fig. 4 for a grid cell in Brazil (same cell as Fig. 3).
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Figure 6. Global distributions of the number of clusters (tiles) found per CLASS-CTEM grid cell (left) and the percent of GSDE grid cells

clustered per CLASS-CTEM grid cell (right).
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Figure 7. Percent difference in soil moisture per CLASS-CTEM soil layer between the Cluster and Gridmean simulations (mean of 1995–

2015). Grid cells with soil moisture below 10−5 kg m−2 were masked out to prevent instances of divide by zero and overly large relative

differences in regions of very little soil moisture. Positive values indicate the Cluster soil moisture is larger while negative values indicate the

Gridmean soil moisture is larger. Dots indicate grid cells that are statistically significant (independent two sample t-test p-level <0.01)
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Figure 8. Mean annual gross primary productivity (1982 – 2008) from an observation-based dataset (Beer et al., 2010) (top left), the

Gridmean simulation (top right), and percent relative difference between the Cluster and Gridmean simulations (bottom right). Note that

many of the regions with the largest changes in GPP between the two approaches are also regions with low GPP hence the absolute change

in GPP is generally small. Dots indicate grid cells that are statistically significant (independent two sample t-test p-level <0.01). For the

areas of significant change in GPP between the Cluster and Gridmean simulations, comparison of Cluster and Gridmean simulations against

observations was not significant after accounting for the observational uncertainty.
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Figure 9. Australian grid cell that has higher GPP for the Cluster simulation than the Gridmean simulation, but lower soil moisture. A

measure of the mean annual plant available soil water, scaled so that 1 is field capacity and 0 is wilting point, is calculated for the second

model soil layer (0.1 - 0.35 m) and is described in Section 3.3.2. The annual precipitation for this grid cell from CRU-NCEP is included for

reference in the upper right plot.
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Figure A1. Map of the number of clusters for all CLASS-CTEM grid cells where the weighted mean of the clusters was more than 10%

different than the simple mean of all GSDE grid cells within a CLASS-CTEM grid cell. These grid cells were then assigned the simple

gridmean soil texture values for all simulations (see Section 2.3.1).
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Figure A2. Similar to Fig. 2 for a grid cell in Paraguay. This figure demonstrates the clustering performance for a grid cell with a more

heterogeneous soil texture. The clustering algorithm found six clusters for this grid cell. The clusters are labelled A through F in the bottom

pie chart and middle scatter plot. In the scatter plot the label is placed close to the cluster value to help illustrate the cluster relation in

sand-clay space.
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Figure A4. Global distributions of the number of clusters (tiles) found per CLASS-CTEM grid cell when minPts (see Section 2.3) is set to

1% of the number of GSDE data points in the CLASS-CTEM gridcell. The gray regions have >8 tiles found by the clustering algorithms.
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Figure A5. Histogram of the mean clay, sand, and organic matter content for CLASS-CTEM grid cells based on the simple mean value of

all GSDE cells (green) or the weighted mean of the clusters within a CLASS-CTEM grid cell (red line).

Figure A6. Histogram of the difference between the mean clay, sand, and organic matter content for CLASS-CTEM grid cells based on the

simple mean value of all GSDE cells and the weighted mean of the clusters within a CLASS-CTEM grid cell.
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Figure A7. Percent difference in evapotranspiration (ET) between the Cluster and Gridmean simulations by season (mean of 1995–2015).

Grid cells with monthly ET of <10−5 mm water were masked out to prevent instances of divide by zero and overly large relative differences

in regions of very small evapotranspiration. Positive values indicate the Cluster simulation ET is larger while negative values indicate the

Gridmean simulation ET is larger. Dots indicate grid cells that are statistically significant (independent two sample t-test p-level <0.01)
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Figure A8. Percent difference in transpiration between the Cluster and Gridmean simulations by season (mean of 1995–2015) following

Fig.A7.
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Figure A9. Percent difference in runoff between the Cluster and Gridmean simulations by season (mean of 1995–2015) following Fig.A7.

35



DJF MAM

JJA SON

25

15

10

5

3

3

5

10

15

25

Pe
rc

en
t d

iff
er

en
ce

 re
la

tiv
e 

to
 g

rid
m

ea
n 

 [(
cl

us
te

re
d 

- g
rid

m
ea

n)
 / 

gr
id

m
ea

n]
 * 

10
0

Figure A10. Percent difference in sensible heat fluxes between the Cluster and Gridmean simulations by season (mean of 1995–2015)

following Fig.A7.
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Figure A11. Percent difference in WUE between the Cluster and Gridmean simulations by season (mean of 1995–2015). Grid cells with

monthly evapotranspiration of <10−5 mm water were masked out to prevent instances of divide by zero and overly large relative differences

in regions of very small evapotranspiration. Positive values indicate the Cluster WUE is larger while negative values indicate the Gridmean

WUE is larger. Dots indicate grid cells that are statistically significant (independent two sample t-test p-level <0.01).
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Figure A12. Relationships between soil texture and field capacity (θfc; upper left), pore volume (θp; upper right), saturated hydraulic

conductivity (Ksat; lower left), and soil moisture suction at saturation (Ψsat; bottom right) following Cosby et al. (1984) as implemented in

Verseghy (2012)
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