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Abstract: A multilayer approach is set up for local gravity field recovery in the framework of multi-resolution 

representation, where the gravity field is parameterized as the superposition of the multiply layers of Poisson wavelets 15 

located at the different depths beneath the topography. Different layers are designed to recover the signals at various 

levels, where the shallow and deep layers mainly capture the short- and long-wavelength signals, respectively. The 

depths of these layers beneath the topography are linked to the locations that different anomaly sources locate, 

estimated by the wavelet decomposition and power spectrum analysis. For testing the performance of this approach, a 

gravimetric quasi-geoid over the North Sea in Europe called QGNSea V1.0 is computed and compared with other 20 

existing models. The results show that the multilayer approach fits the gravity data better than the traditionally used 

single-layer one, especially in regions with topographical variation. A Akaike information criterion (AIC) test 

demonstrates that the multilayer model gives a smaller AIC value, reaches a better balance between the goodness of fit 

of data and the simplicity of the model. Moreover, the evaluation with independent GPS/leveling data tests the ability 

of realistic extrapolation of regional models computed from different approaches, showing that the accuracies of 25 

QGNSea V1.0 modeled from the multilayer approach are improved by 0.4 cm, 0.9 cm and 1.1 cm in the Netherlands, 

Belgium and parts of Germany, respectively, compared to the solution computed from the single-layer approach. 

Further validation with existing models shows QGNSea V1.0 has the best quality, which may be beneficial for 

studying the ocean circulation between the North Sea and its neighbouring waters. 
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1. Introduction 

Knowing of earth’s gravity field at regional scales is crucial for a variety of applications in geodesy. It not only 

facilitates the use of Global Satellite Navigation System to determine orthometric/normal heights in geodesy and 

surveying engineering, but also plays a fundamental role in in oceanography and geophysics.   

 5 

Regional gravity field determination is typically implemented within a framework of remove-compute-restore 

methodology (RCR) (Sjöberg, 2005), where the long-wavelength signals are often recovered by satellite-only global 

geopotential models (GGMs) derived from the dedicated satellite gravity missions, such as the GRACE (Gravity Field 

and Climate Experiment) (Tapley et al., 2004) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) 

(Rummel et al., 2002). Middle- and short-wavelength signals are extracted from the locally distributed gravity-related 10 

measurements (Wang et al., 2012; Wu et al., 2017c). Spherical radial basis functions (SRBFs) are of great interest for 

gravity field modeling at regional scales over years (Eicker et al., 2013; Naeimi et al., 2015). Typically, the 

widely-used SRBFs method is implemented by the so-called single-layer approach, i.e., the parameterization of gravity 

field is only based on a single-layer of SRBFs’ grid (Wittwer, 2009; Bentel et al., 2013; Slobbe, 2013; Wu et al., 

2017c).   15 

 

It has been suspected for long that if the single-layer approach can extract the full information of local gravity data, 

and the multi-resolution representation (MRR) method with SRBFs has been investigated over the recent years 

(Freeden et al., 1998; Fengler et al., 2004, 2007). Freeden and Schreiner (2006) proposed a multi-scale approach based 

on the locally supported wavelets for determining the regional geoid undulations from the deflections of the vertical. 20 

Freeden et al. (2009) demonstrated that the multi-scale approach using spherical wavelets provided local 

fine-structured features such as those caused by plumes, which allowed a scale- and space-dependent characterization 

of this geophysical phenomenon. Schmidt et al. (2005, 2006, 2007) developed a multi-representation method for static 

and spatiotemporal gravity field modeling through SRBFs, where the input gravity signals were decomposed into a 

certain number of frequency-dependent detail signals, and concluded that this approach could improve the spanning 25 

fixed time intervals with respect to the usual time-variable gravity fields. Chambodut et al. (2005) set up a multi-scale 

method for magnetic and gravity field recovery using Poisson wavelets, and created a set of hierarchical meshes 

associated with the wavelets at different scales, where a level of subdivision corresponded to a given wavelet scale. 
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Panet et al. (2011) extended the approach developed by Chamboudt et al. (2005), and applied a domain decomposition 

approach to define the hierarchical subdomains of wavelets at different scales, which allowed to split a large problem 

into smaller ones. These results show the multi-scale approach with SRBFs has a good prospective in gravity field 

recovery, however, to our knowledge, no direct comparisons have been made between the single-layer approach and 

multi-scale one regarding the performances in local gravity field recovery. Besides, the existing multi-scale methods 5 

mainly construct the multi-scale framework in a mathematical sense, where no explicit geophysical meanings are 

investigated. In this study, inspired by the power spectral analysis of local gravity signals, we develop a new 

parameterization of SRBFs network in the framework of the MRR idea, i.e., the so-called multilayer approach; and the 

multiply layers are linked to the anomaly sources at different depths beneath the topography, which aim at recovering 

the signals at different levels. In this way, the parameterization of multi-scale method can be linked to the different 10 

anomaly sources at different depths. Moreover, the performances of the multilayer approach and traditionally-used 

single-layer one are directly compared in this study, where the advantages and disadvantages of different methods are 

analyzed. 

 

The structure of the manuscript is as follows: the data in a study area in Europe are firstly described in Section 2. Then, 15 

the multilayer approach based on the MRR representation is introduced, and the wavelet decomposition and power 

spectrum analysis are applied for constructing the networks of Poisson wavelets with the multilayer approach. In 

addition, the function model based on the multilayer approach is set up, and the method for unknown coefficients of 

Poisson wavelets is introduced. We construct the multilayer model in section 3, and compare the performances of 

different approaches. Finally, the gravimetric quasi-geoid over the North Sea called QGNSea V1.0 is modeled by the 20 

multilayer approach and compared with other models for cross validations. We summarize the main summaries and 

conclusions of this study in section 4.   

2. Data and method 

2.1. Study area and data  

A local region in Europe is chosen as a case study, which covers an area of 49°N-61°N latitude and -6°E-10°E 25 

longitude, including the mainland of the Netherlands, Belgium, and parts of the North Sea, UK, Germany and France. 

Point-wise terrestrial and shipborne gravity anomalies are incorporated for testing the approach we developed in this 

study, which were provided by different institutions, see Slobbe et al. (2014). The details for data pre-processing 
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procedures can be referred to Wu et al. (2017c), where crossover adjustment and low-pass filter were applied to 

remove systematic errors and reduce high-frequency noise, respectively, and datum transformations were performed 

on all the data. Moreover, the satellite-only reference model called GOCO05s with a full degree and order (d/o) of 280 

(Mayer-Gürr et al., 2015) and RTM corrections were removed from the original observations to decrease the signal 

correlation length and smooth the data within the framework of remove-compute-restore (RCR) framework. The 5 

details for the RTM reduction and residual gravity data can be found in Wu et al. (2017c). 

2.2. Multilayer approach 

According to Schmidt et al. (2006, 2007), the multi-resolution representation (MRR) of the Earth’s potential  T z on 

position z is expressed as 

       
1

I

i

i

T T t 


  z z z z   (1) 10 

where  T z is the disturbing potential in this study,  T z means a reference model, e.g., a global geopotential model 

(GGM) computed from spherical harmonics;   z represents the unmodeled signals; I is the number of levels 

(resolutions);  it z is the detailed signal of level i , and the higher the level value i is, the finer are the structures 

extractable from the input data;  it z is computed as the a linear combination of SRBFs (Schmidt et al., 2007) 
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where  , z y is the SRBF, 
iK and

,i k are the number and unknown coefficient of SRBF at level i , respectively, 

and ,i ky is the position of SRBF at this level. 

 

We work with the RCR technique, and the reference GGM and RTM corrections are removed from the original data to 

decrease the signal correlation length and smooth the data (Omang and Forsberg, 2000). Then, only the residual gravity 20 

potential  resT z is parameterized by SRBFs using the MRR approach. Neglecting the unmodeled signals, the residual 
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potential is expressed as a series of the detailed signals at different levels when combining Eq.(1) and Eq.(2)   

   , ,

1 1

,
iKI

res i k i i k

i k

T 
 

 z z y   (3) 

where i is computed as the difference of the spherical scaling functions with low-pass filter characteristics between 

the consecutive levels i +1 and i , but also can be expressed as the SRBF has the band-limited properties in the 

frequency domain (Schmidt et al., 2007).  In this study,  is chosen as the Poisson wavelet with band-limited 5 

properties (Chambodut et al., 2005), and its full definition can be found in Holschneider and Iglewska-Nowak (2007).  

 

Poisson wavelets can also be identified as the multipoles inside the Earth, and the scales of Poisson wavelets can be 

linked to their depths, which are the key issues that determine their properties in space and frequency domain 

(Chambodut et al., 2005). The detailed signal at level i  in Eq.(2) can be estimated by a linear combination of Poisson 10 

wavelets located at a specific depth. Poisson wavelets at depths demonstrate different properties in the frequency 

domain, as the depths going shallower, the scales decrease, and their spectrums shift towards the high degrees of the 

spherical harmonics (SH) and become more sensitive to the local features of signals with high-frequency properties, 

and vice versa (Chambodut et al., 2005). These properties are crucial for local gravity field modeling. First, the 

residual disturbing potential is typically the band-limited signal within the RCR framework, and Poisson wavelets with 15 

band-pass filter characteristics are preferable for band-limited signal recovery (Bentel et al., 2013). Moreover, Poisson 

wavelets at different depths can be linked to the detailed signals at various levels, which are sensitive to different 

spectral contents of input signals, and can be used for multi-resolution representation.  

 

Rather than using the name of MRR, we interpret Eq.(3) as the multilayer approach considering Poisson wavelets at 20 

different depths have various characteristics, and the different layers are corresponding to the Poisson wavelets’ grids 

at various depths. We place Poisson wavelets on the Fibonacci grids under the topography, and keep these grids 

parallel with the topography (Tenzer et al., 2012). Instead of associating the Poisson wavelets at different depths to the 

hierarchical meshes with various levels (Chambodut et al., 2005), we apply a wavelet analysis approach to estimate the 

depths of multiply layers, inspired by the power spectrum analysis of the residual gravity field. The power spectrum 25 

analysis of local gravity signals show the gravity signals are the superposition of the contributions generated from the 

anomaly sources at different depths; and the signals originated from different anomaly sources have heterogeneous 
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spectral contents (Spector and Grant, 1970; Syberg, 1972; Xu et al, 2018). Since Poisson wavelets at different depths 

are sensitive to signals with heterogeneous frequency characteristics, we put Poisson wavelets’ grids at the locations 

where the anomaly sources situate. In this manner, the contributions from the anomaly sources at various depths can be 

estimated by different layers.     

 5 

In order to separate the contributions stemmed from different anomaly sources, the wavelet multi-scale analysis, which 

is an excellent approach to extract the signals at different scales, is applied to decompose the gravity data g  into 

wavelet approximation WA  and a number of wavelet details wD ( 1,2,3, ),w W at different scales (Jiang et al., 

2012; Audet, 2013; Xu et al., 2017) 

1

W

W w

w

g A D


     (4) 10 

where W is the maximum order for decomposition, WA  is the regional anomaly caused by deep and large-scale 

geological bodies, and w
D  is the local anomaly originated from shallow and small-scale heterogeneous substances. 

Wavelets analysis generates low-order wavelet details that are invariant with the decomposition order, and only the 

high-order wavelet details and corresponding wavelet approximation change with the decomposition order. Based on 

this property, we can choose the proper decomposition order to derive the desirable solutions. 15 

 

The decomposed signals reveal the features of geological bodies, the average depths of which can be estimated from 

the power spectral analysis (Spector and Grant, 1970; Syberg, 1972; Cianciara and Marcak, 1976; Xu et al., 2018) 
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where wh is the average depth of anomaly source corresponding to wavelet detail wD ; ln w

kP is the logarithmic power 20 

spectrum of wD ; ln w

kP  and wk are the change rates for ln w

kP and radial wave number wk , respectively. 
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In this study, terrestrial and shipborne gravity anomalies are merged for modeling. Gravity anomalies g  and 

quasi-geoid height  are related to the disturbing potential based on the multilayer approach as follows: 
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where  is the normal gravity value. 

 5 

We suppose the observational errors are white noises with zero mean, and the gravity field model using the multilayer 

approach is written as the standard Gauss-Markov model 

2 2 1, { } 0, D{ } , 1,2, ,j j j j j j j j j jE j J        l e A x e e C Q P   (7) 

where x is the 1K  vector of unknown coefficients, including the unknown parameters of Poisson wavelets of all the 

layers, i.e., 
1 21,1 1,2 1, 2,1 2,2 2, ,1 ,2 ,, , , , , , , , , , , ,

IK K I I I K        
   x , and

1 2 IK K K K    ; 10 

jA is the jm K  design matrix of group j , jl is the 1jm   corresponding observation vector, je is the 

1jm  vector of corresponding stochastic errors, jm is the number of observations in group j , and J  is the number 

of observation groups. {}E and {}D are the expectation and dispersion operators, respectively. jC is the error 

variance-covariance matrix of group j , and 
2

j ,
jQ and

jP are the variance factor, cofactor matrix, and weight matrix 

of group j , respectively. 15 

 

Data in different groups are assumed to be independent, and the weight matrix
jP is supposed to be the scaled diagonal 

matrix with white noise properties since it is usually difficult to acquire the realistic full error variance-covariance 
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matrix in real-life measurements. Point-wise data can be directly combined for modeling through the functional 

described above. However, the heterogeneous characteristics of the data, in terms of spatial coverages and noise 

properties, may result in an ill-conditioned normal matrix (Panet et al., 2011). We apply the first-order Tikhonov 

regularization for tackling the ill-conditioned problem (Kusche and Klees, 2002; Wu et al., 2017a). For a 

given (regularization parameter) and (regularization matrix), the least-squares solution of Eq.(7) is (Klees et al., 5 

2008): 
1

2 2
1 1

1 1
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J J
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Moreover, we use the Monte-Carlo variance component estimation (MCVCE) to estimate the appropriate variance 

factors of different observation groups and the regularization parameter (Koch and Kusche, 2002; Kusche, 2003; Wu et 10 

al., 2017c).  

3. Numerical results and discussion 

3.1. Wavelet analysis of local gravity signals 

In order to determine the depths of different layers, the residual gravity data are decomposed into the signals at 

different scales based on wavelet analysis. The spline interpolation is used to compute the gridded data, and Coif3 15 

basis functions are chosen for wavelet decomposition (Xu et al., 2017). The preliminary maximum order for wavelet 

decomposition is arbitrarily chosen to some extent, however, since the low-order details are invariant with the increase 

of decomposition order, we can preliminarily choose a predefined order and implement the wavelet decomposition, 

and analyze the derived details. If there are still details that are useful for constructing the multilayer model haven’t 

been separated, we need to increase the decomposition order until all the useful details have been extracted; otherwise, 20 

we truncate to a specific order, and compute the wavelet details and approximation to construct the multiply layer’s 

parameterization. By trial and errors, the preliminary order for decomposition is chosen as nine, and Figure 1 shows 

the derived wavelet details (the corresponding statistics are provided in Table 1). With the increase of decomposition 

order, more long-wavelength features occur. More specifically, the low-order details demonstrate the high-frequency 

signals stemmed from the shallow and small-scale substances; while, the high-order ones with long-wavelength 25 

patterns reflect the anomalies caused by deep and large-scale geological bodies. It is noticeable that the 1st- and 
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2nd-order details (i.e.,
1D and 2D ) are seems dominated by the high-frequency signals correlate strongly with the local 

topography (the local digital terrain model (DTM) can be seen in Figure 1 in Wu et al. (2017c)). We mainly attribute 

this to the uncorrected topographical signals in RTM corrections, which is mainly due to the inaccuracy of the density 

parameters in RTM and limitations of DTM both in terms of spatial resolution and precision. As a result, the 

high-frequency signals originated from local topography variation cannot thoroughly recovered from RTM reduction, 5 

and consequently, the uncorrected signals leak into the 1st- and 2nd-order details. To avoid these high-frequency errors 

propagating into the final solution, we neglect these two wavelet details in designing the multiply layers’ networks. 

Moreover, with the order increasing to nine, we notice 9D  obviously reveal the large-scale signals with the 

wavelengths of hundreds of kilometers. Given that the mean distance between the data in this target area is 

approximately several kilometers and the spatial resolution of the applied GGM (i.e., GOCO05S) is roughly 72 km, the 10 

spectral contents of the residual signals need to be recovered is roughly between several kilometers and tens of 

kilometers within the RCR framework, i.e., approximately between degree 250 to 3000 in terms of spherical 

harmonics’ representation. While, the spectral contents of the 9th-order details exceed the frequency bands of the 

signals need to be modeled, and the maximum order for wavelet decomposition is truncated to eight. In this manner, 

the third- to eighth-order ( 3D - 8D ) wavelet details and the final approximation ( 8A ) (see the information in Figure 2 15 

and Table 2) are applied for constructing the multilayer model, consists of seven layers at various depths. 
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Figure 1. Wavelet details at various scales. (a)
1

D , (b)
2

D , (c)
3

D , (d)
4

D , (e)
5

D , (f)
6

D , (g)
7

D , (h)
8

D , and (i)
9

D . 

Table 1. Statistics of different wavelet details (units: mGal) 
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 max min mean sd 

1
D  2.23 -2.78 0.00 0.20 

2
D  4.52 -5.57 0.00 0.32 

3
D  19.27 -16.26 0.00 2.30 

4
D  21.71 -17.46 0.00 3.18 

5
D  15.38 -16.47 0.00 3.80 

6
D  10.60 -9.72 0.00 2.75 

7
D  4.43 -3.33 0.00 0.95 

8
D  1.23 -1.52 0.00 0.34 

9
D  0.66 -0.45 0.00 0.18 

 

Figure 2. Wavelet approximation
8

A . 
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Table 2. Statistics of wavelet approximation (units: mGal). 

max min mean sd 

0.83 -1.70 -0.41 0.32 

 

3.2. Key parameters of Poisson wavelets  

The order of Poisson wavelets is fixed at 3 to achieve a good compromise between the localization in space and 

frequency domain (Panet et al., 2011). In addition, the depth and number of Poisson wavelets are the crucial points 5 

affecting the solution quality (Klees et al., 2008). Poisson wavelets belong to different layers are placed on the 

Fibonacci grids at various depths beneath the topography, and the power spectrum analysis is applied to estimate the 

depths. As shown in Figure 3, the green curves show the radially averaged logarithm power spectrums of signals at 

different scales, and the red straight lines represent the slopes of the spectrums, indicate the depths of corresponding 

layers. The red lines represent rates of change for logarithmic power relative to wave number, estimated by a 10 

autoregressive method; and the starting point and terminal point of the red lines are the inflection points of the curves, 

recognized according to the trend of the curves (Xu et al., 2018). The layers go deeper as the scales increase, and the 

shallow layers reflect the small-scale signals, while the deep ones recover the long-wavelength information. Table 3 

provides the estimated depths of different layers, limited between 4 and 60 km. The shallowest layer locates 4.5 km 

underneath the topography, while the depth of the deepest one is approximately estimated as 59.2 km. It is noticeable 15 

that the thickness of sediments in this area is approximately 2~4 km, and the thickness of the upper-middle crust is 

roughly 15~20 km (Artemieva and Thybo, 2013). Thus, the first four layers (layer1, layer2, layer3 and layer4) locate 

between the sediments and upper-middle crust, and the corresponding wavelet details (
3

D ,
4

D ,
5

D and
6

D ) display as 

the small-scale patterns due to the highly heterogeneous structure of the crust. The distributions of 
3

D  and 
4

D  (with 

the average depths of 4.5 km and 9.2 km, respectively) on land are more dispersed than that in the ocean, demonstrate 20 

that the tectonic structure underneath the land is more complex than that beneath the ocean in the upper crust. 

Moreover, the gravity anomalies in the northern of North Sea are more dispersed than those in the central and southern 

of North Sea, which is consistent with that the Viking Graben and basin are located in the northern and southern of 

North Sea, respectively, e.g., see Fichler and Hospers (1990), and Blundell et al. (1991). The mean source depths of 

5
D  and 

6
D  are 13.7 km and 19.6 km, respectively, correspond to the depths of the middle crust. The gravity 25 
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anomalies during these two layers present apparent positive-negative alternating patterns, which may be interpreted as 

the crustal shearing and extrusion (Blundell et al., 1991; Ziegler and Dèzes, 2006). While, the last three layers (layer5, 

layer6, and layer7) are supposed to be located between the Moho surface and upper mantle considering the Moho 

depth in this region is approximately 25~30 km (Grad and Tiira, 2009), and the corresponding details (
7

D ,
8

D and
8

A ) 

become smoother and more long-wavelength signals occur. 
7

D  with the mean source depth of 27.0 km primarily 5 

reflects the Moho undulation. The distribution of positive-negative alternating gravity anomalies in 
7

D  is nearly 

south-north oriented, which is in agreement with the features of the Moho relief in this area (Fichler and Hospers, 1990; 

Ziegler and Dèzes, 2006). The average source depths of 
8

D  and 
8

A  are 32.3 km and 59.0 km, respectively, 

correspond with the depth of the upper mantle, indicate that the density distribution of the upper mantle is relatively 

smooth. Overall, these decomposed gravity anomalies can reveal the tectonic structure of study area at different depths. 10 
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Figure 3. Power spectrum analysis of various wavelet signals. (a)
3

D , (b)
4

D , (c)
5

D , (d)
6

D , (e)
7

D , (f)
8

D , and (g)
8

A . 

The green curves are the radially averaged logarithm power spectrums, and the red straight lines represent rates of 

change for logarithmic power relative to wave number.. 

 5 
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Table 3 Depths of multiply layers beneath the topography (Units: km). 

layer1 4.5 

layer2 9.2 

layer3 13.7 

layer4 19.6 

layer5 27.0 

layer6 32.3 

layer7 59.2 

 

As mentioned above, different layers are designed to recover the wavelet details and approximation at different scales, 

and a trial-and-error approach is used to estimate the number of Poisson wavelets of each layer (Wittwer, 2009). For a 

specific layer with the fixed depth, we predefine different number of Poisson wavelets to form a certain number of 5 

Fibonacci grids. Then, the signals reconstructed from these grids are compared with the true values, i.e., ones derived 

from wavelet decomposition, and the parameter that derives the smallest differences between the modeled and true 

signals is consider as the optimal one. By trail and errors, the spatial resolutions of Fibonacci grids (mean distance 

between Poisson wavelets) are changed from 20 to 14 km with a step of 1 km. Table 4 shows the accuracies of the 

solutions derived from different Fibonacci grids of multiply layers, and we take the situation of the first layer for 10 

instance. With the increase of Poisson wavelets, the SD value of the differences between the reconstructed and true 

signals decreases gradually to 0.12 mGal when the spatial resolution of the grid increase to 16 km. Since then, no 

significant improvements occur with incorporating more Poisson wavelets. Moreover, introducing more Poisson 

wavelets increases the overlapping between them, which may lead to the highly-conditioned normal matrices, and the 

associated heavy regularization may decrease the solution quality (Wu et al., 2017b). The optimal mean distance 15 

between Poisson wavelets of the first layer is estimated as 16 km. Similarly, the spatial resolutions for the rest layers 

can be determined in this way, see Table 4. 

 

 

Table 4 Accuracies of solutions derived from various Fibonacci grids of different layers (Units: mGal). 20 

 20 km 19 km 18 km 17 km 16 km 15 km 14 km 
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layer1 0.43 0.34 0.21 0.16 0.12 0.12 0.12 

layer2 0.52 0.43 0.33 0.25 0.19 0.16 0.16 

layer3 0.58 0.40 0.28 0.19 0.16 0.14 0.14 

layer4 0.55 0.39 0.29 0.26 0.15 0.13 0.13 

layer5 0.38 0.26 0.17 0.14 0.10 0.10 0.10 

layer6 0.22 0.16 0.12 0.10 0.08 0.08 0.08 

layer7 0.11 0.09 0.08 0.06 0.06 0.06 0.06 

 

3.3. Regional solution and its validation 

For regional gravity field recovery, point-wise terrestrial and shipboard gravity anomalies are combined. Since there 

are no accurate information for terrestrial and shipboard data, we assume the accuracies of 2 mGal for both of these 

two types of data, and the posterior variance factors of different observation groups are estimated from MCVCE 5 

method. The weights of different observation groups, indicate their relative contributions, and play a key role in data 

combination. The estimated variance factors for terrestrial and shipboard gravity data are approximately 1.45 mGal and 

1.30 mGal through the MCVCE method, respectively, when we model the local gravity field based on the multilayer 

approach. For terrestrial data, the estimated accuracy is in good agreement with that derived by Klees et al. (2008), i.e., 

1.48 mGal for parts of the Netherlands. However, it is difficult to judge whether this estimate is realistic in other 10 

regions because of a lack of accuracy information. While, for shipboard data, the computed value of 1.30 mGal is 

smaller than the results of crossover adjustments, where the standard deviation for the residuals at the crossovers was 

approximately estimated as 2.0 mGal (Slobbe, 2013). However, this value may be too optimistic considering much of 

the shipborne data were collected decades ago without GPS navigation. The first-order Tikhonov regularization is used 

to tackle the ill-conditioned problem (Kusche and Klees, 2002; Wu et al., 2017b), and the convergent regularization 15 

parameter is approximately 
5

0.5 10


 estimated from the MCVCE method; the details for regularization parameter 

estimation and comparisons with different methods can be referred to Wu et al. (2017b).  

 

The performance of the traditionally-used single-layer is also investigated for comparison, and the parameterization of 

local gravity field based on the single-layer approach can be seen in, e.g., Klees et al. (2008) and Slobbe (2013). By 20 

trial and errors, the single layer of Poisson wavelets’ grid is located 40 km beneath the topography, and the mean 
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distance between Poisson wavelets is defined as 8.7 km (Wu et al., 2016). Figure 4 shows the normalized spectrums 

for different approaches. Considering the frequency range of the signals to be recovered in the target area is 

approximately between degree 250 to 3000 in spherical harmonics’ representation, we note the single-layer approach is 

only sensitive to parts of the signals’ spectrum, i.e., approximately between degree 300 to 1200 if we suppose half of 

the maximum value of the normalized spectrum is the criterion for determining whether it is sensitive or not within a 5 

specific frequency band. However, for the high-frequency band between degree 1200 to 3000, this approach is less 

sensitive. On the contrary, the multilayer approach effectively covers the spectrum of the local gravity signals, which is 

both sensitive to the low- and high-frequency bands. Figure 5 provides the residuals of data after least squares 

adjustment using different methods, shows the residuals derived from the multilayer approach reduce significantly in 

the whole region compared with ones obtained from the single-layer approach, especially in western parts of UK, 10 

south of Norway, and southwest of Germany, where the high-frequency signals correlated with local topography 

dominate the features of regional gravity field. We also find the improvements occurring in the ocean parts, especially 

in waters around the English Channel, Irish Sea, northwest of North Sea, and Atlantic Ocean close to northwest UK. 

The statistics in Table 5 displays the standard deviation (SD) value for the residuals of terrestrial (shipborne) gravity 

anomalies decreases by 0.39 mGal (0.36 mGal) when the multilayer approach is used. These results are reasonable 15 

since the multilayer approach contains several layers shallower than 40 km, and the spectrums of these layers shift to 

the high-frequency bands. As a result, the spectrum of the multilayer approach is more sensitive to signals with 

high-frequency properties, and consequently, the local high-frequency signals can be better fitted by the multilayer 

approach. It is also worth to mention that the analysis of data residuals can’t be treated as the only criteria for justifying 

the performances of different approaches, since these gravity data have been used for modeling purpose, and the SD 20 

values of data residuals should be regarded as the internal agreement. Besides, due to the limitation of the accuracies of 

gravity data, we can’t make conclusions too firmly only depends on the analysis of data residuals. One may also argue 

that it may be possible to derive lower data residuals if we put the Poisson wavelets’ grid shallower when the 

single-layer approach is used. However, we believe a shallower single grid may reduce the data residuals, but may not 

derive a better solution when validated against the independent control data, see the detailed discussions in Wu et al. 25 

(2016). In the following part, we introduce another high-quality independent data set, i.e., GPS/leveling data, for 

external validation, which give us more confidences with respect to the performances of different methods.  

 

It is also of interest to implement a Akaike information criterion (AIC) test for different models. Although, the 
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multilayer model fits the gravity observations better, but it also increases the level of estimated parameters. AIC 

rewards the goodness of fit of data, but also includes a penalty with the increasing of the number of estimated 

parameters. In other words, it deals with the trade-off between the goodness of fit of the model and the simplicity of 

the model. AIC value is an estimator of the relative quality of statistical models for a given set of data, providing a 

means for model selection, and the model that gives the minimum AIC value may be more preferable (Akaike, 1974; 5 

Burnham and Anderson, 2002). The definition for the AIC value can be seen in Eq.(A1) in the Appendix. Since we 

model the gravity field in the framework of least squares system, we can simply take 2 ln( / )AIC k n RSS n  for 

model comparision, where k is the number of estimated parameters in the model, n is the number of observations, 

and RSS is the residual sum of squares (RSS), see the details in the Appendix. In this study, the number of point-wise 

gravity observations used for modeling is 894649, and the numbers of estimated parameters in the multilayer and 10 

single-layer model are 47504 and 19477, respectively. The RSS values for the multilayer and single-layer model are 

computed as 
5 2

108.8527 mGal and 
6 2

101.3296 mGal , respectively, based on the data residuals after the least 

squares adjustment. Then, the AIC values for the multilayer and single-layer model are estimated as 85581 and 393400, 

respectively. Based on these statistics, we notice that the multilayer model gives a smaller AIC value, which may be 

more preferable since it reaches a better balance between the goodness of fit of data and the simplicity of the model. 15 
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Figure 4. Normalized spectrums for (a) single-layer and (b) multilayer approach. 

 

To test the ability of realistic extrapolation of different regional models recovered from various methods, which is 

actually comparing the predicted values derived from the regional model (e.g., model computed from the multilayer or 5 

single-layer approach) and ones derived from independent survey/measurements, we introduce GPS/leveling data in 

the Netherlands (534 points), Belgium (2707 points), and parts of Germany (213 points) as the independent validation 

data. These data are provided in terms of geometric quasi-geoid heights derived from the high-quality GPS 

measurements and leveling survey, and the overall estimated accuracy of these observed quasi-geoid heights is 

approximately at 1 cm level. It is worth to mention that these GPS/leveling data are not combined for modeling, and 10 
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their three dimensional coordinates don’t coincide with the positions of gravity data. For validating different models 

with GPS/leveling data, we need to reconstruct the regional model based on the computed Poisson wavelets’ 

coefficients and coordinates of GPS/leveling points (see Eq.(6)), and compute the gravimetric quasi-geoid heights at 

these points, which are ones predicted from the regional model. Then, we compute the standard deviation (SD) of the 

point-wise difference between GPS/leveling data and the gravimetric quasi-geoid height derived from the regional 5 

approach, which is actually external validation. The validation results demonstrate the discrepencies between the 

GPS/leveling points and quasi-geoid heights derived from the multilayer approach decrease substantially compared 

with ones computed from the single-layer approach, see Figure 6. The most prominent improvements occur in the 

northwest of Belgium, west of Germany, and eastern parts of Netherlands, which are in good agreement with the 

results for data residuals analysis demonstrated in Figure 5. As shown in Table 6, the accuracies of gravimetric 10 

quasi-geoid derived from the multilayer approach are improved by 0.4 cm, 0.9 cm and 1.1 cm in the Netherlands, 

Belgium and parts of Germany, respectively. Moreover, the mean values indicate that the solution computed from the 

multilayer approach further reduces the biases between gravimetric solution and local GPS/leveling data, with the 

magnitude of 0.8 cm, 0.7 cm, and 1.1 cm in these three regions, respectively, compared to the one modeled from the 

single-layer approach. From these results, we can see that the multilayer approach not only leads to a reduction for the 15 

data residuals, but also derives a better solution assessed by the independent control data, compared to the single-layer 

approach. For constructing the multilayer model, we consider that the gravity signals are the sum of the contributions 

generated from the anomaly sources, and different layers are designed for recovering these contributions with 

heterogeneous spectral contents. As a result, the spectrum of multilayer approach is sensitive to the frequency bands of 

local gravity signals, both in low- and high-frequency bands, and the local signals may be better recovered. We also 20 

notice that there are still biases between the regional gravimetric solutions and local GPS/leveling data, see the mean 

values in Table 6, which are mainly due to the commission errors in the GGM and uncorrected systematic errors in the 

local gravity data and leveling systems (Fotopoulos, 2005). Generally, corrector-surface (Fotopoulos, 2005; 

Nahavandchi and Soltanpour, 2006) or more complicated algorithms, like least squares collocation (Tscherning, 1978), 

boundary-value methodology (Klees and Prutkin, 2008; Prutkin and Klees, 2008), and a direct approach (Wu et al., 25 

2017a), can be applied to reduce the systematic errors and properly combine GPS/leveling data and gravimetric 

solution. However, since the target for this study is to develop a multilayer approach for gravimetric quasi-geoid 

modeling, which is served as a basic surface for further geophysical applications, e.g., study the ocean circulation and 

structure of lithosphere; while, after implementing these methods for combining local GPS/leveling and gravimetric 
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model, the derived quasi-geoid is not purely gravimetric. Besides, we only have the well distributed GPS/leveling data 

in the limited region, i.e., in Netherlands, Belgium, and parts of Germany, while in other regions, no high-quality 

control data are available. If we use the locally distributed GPS/leveling data for removing these systematic errors and 

computing the combined quasi-geoid, the final solution may be distorted in other regions, especially in the ocean parts, 

since no control data in these regions have been combined. Thus, we don’t implement these methods mentioned above 5 

for computing the combined quasi-geoid. In following study, we use the gravimetric model derived from the multilayer 

approach, which is hereafter denoted as QGNSea V1.0 (quasi-geoid over the North Sea version 1.0).  

 

Figure 5. Residuals of gravity data derived from (a) single-layer and (b) multilayer approach. 

 10 

 

Table 5 Statistics of residuals of gravity data computed from different approaches (units: mGal). 

  max min mean sd 

Single-layer approach 
Terrestrial 19.58 -16.91 0.00 1.45 

Shipborne 11.91 -17.38 0.00 1.07 

Multilayer approach 
Terrestrial 16.96 -14.90 0.00 1.06 

Shipborne 9.25 -15.96 0.00 0.71 
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Figure 6. Differences between GPS/leveling data and gravimetric quasi-geoids computed from (a) single-layer and (b) 

multilayer approach. 

Table 6 Evaluation of quasi-geoids modeled from different approaches (Units: cm). 5 

  max min mean sd 

Single-layer approach 

Netherlands 5.9 0.1 3.8 1.2 

Belgium 1.2 -13.1 -3.5 2.8 

Germany 1.2 -11.2 -3.6 2.9 

Multilayer approach 

Netherlands 4.8 0.0 3.0 0.8 

Belgium 1.2 -6.8 -2.8 1.9 

Germany 1.0 -6.7 -2.5 1.8 

 

QGNSea V1.0 is compared with a regional model called EGG08 (Denker, 2013) and other four recently published 

high-order GGMs, i.e., EGM2008 (d/o 2190) (Pavlis et al., 2012), EIGEN-6C4 (d/o 2190) (Förste et al., 2014), GECO 

(d/o 2190) (Gilardoni et al., 2015), and SGG-UGM-1 (d/o 2159) (Liang et al., 2018), for further comparisons. The 

reason for choosing these four GGMs for comparisons is that these models have relatively higher spatial resolutions 10 

and better accuracies compared to most of other available GGMs, see the information in 

http://icgem.gfz-potsdam.de/home. EGG08 is a regional gravimetric quasi-geoid model in Europe, which was 

http://icgem.gfz-potsdam.de/home
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recovered by stokes integral based on locally distributed gravity data. This model is provided in terms of gridded data 

instead of spherical harmonics, the space resolution of which is 1′ in latitude and 1.5′ in longitude, respectively 

(Denker, 2013). While, the rest four models are global geopotential models provided in terms of spherical harmonics, 

and EGM2008 was computed by merging GRACE measurements, terrestrial, altimetry-derived, and airborne gravity 

data. Since no GOCE data have been incorporated for developing EGM2008, and the recently published GGMs have 5 

been developed by combining GOCE data, which is supposed to improve the gravity field in the frequency bands 

approximately from degree 30 to 220 in spherical harmonics representation (Gruber et al., 2010). EIGEN-6C4 was 

computed by combining GRACE, GOCE, and terrestrial gravity data and other data sets; GECO was computed by 

incorporating the GOCE-only TIM R5 (d/o 250) solution into EGM2008, and SGG-UGM-1 was computed by the 

combination of EGM2008 gravity anomalies and GOCE gravity gradients and satellite-to-satellite tracking data. 10 

Differences between QGNSea V1.0 and other models are shown in Figure 7 (the boundary limits for the area are 

contracted by 0.5° in all the directions to reduce edge effects), the magnitude of which reaches decimeter level. For 

EGG08, we note the most prominent differences appear in eastern parts of the Irish Sea and center of Germany. 

Different data pre-processing procedures and methods for parameterization partly account for these differences, e.g., 

QGNSea V1.0 is recovered from the multilayer approach using Poisson wavelets and proper weights for different 15 

observation groups are estimated through MCVCE; while the spectral combination technique and spectral weights 

were implemented in EGG08 for merging heterogeneous data (Denker, 2013). Larger differences are observed 

between QGNSea V1.0 and these four GGMs, and remarkable differences show in southern of Norway, northern of the 

North Sea, eastern of the Irish Sea, and northwest of Germany; besides from the applications of different techniques 

for modeling, these differences are partly interpreted as the additional signals introduced by QGNSea V1.0, stemming 20 

from the incorporation of more high-quality gravity data. The evaluation results with GPS/leveling data displayed in 

Figure 8 and Table 7 show the gravimetric quasi-geoid inversed from the multilayer approach has the best quality, 

especially in the north of the Netherlands and western and eastern parts of Belgium. The SD value of the misfit 

between the GPS/leveling data and QGNSea V1.0 is 1.5 cm, while this value increases to 2.2 cm when EGG08 is 

validated. In contrast, the accuracies of these four GGMs are slightly worse than EGG08, which are approximately at 25 

2.6 cm levels. Compared to these GGMs, the added values introduced by the local high-quality data lead to the primary 

improvements of QGNSea V1.0. We find that these four GGMs have the comparable accuracies, where the ones 

developed by combining GOCE data and EGM2008 (i.e., GECO and SGG-UGM-1) don’t have better performances 

than EGM2008, and SGG-UGM-1 even has the slightly worse performance than EGM2008, which is especially 
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prominent in the eastern parts of Belgium, however, the possible reasons need further investigation. We also notice that 

a new Europe gravimetric quasi-geoid called EGG2015 has been computed, where the GOCE-derived GGMs were 

used as the reference models (Denker, 2015). However, this model is not publicly available, and its performance can’t 

be assessed in this local region.  

 5 

Figure 7. Difference between QGNSea V1.0 and (a) EGG08, (b) EGM2008, (c) EIGEN-6C4, (d) GECO, (e) 

SGG-UGM-1. Note that the mean differences are removed. 
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Figure 8. Evaluation of the various quasi-geoids. (a) QGNSea V1.0, (b) EGG08, (c) EGM2008, (d) EIGEN-6C4, (e) 

GECO, and (f) SGG-UGM-1. Note that the mean differences are removed. 

Table 7. Statistics of accuracy of various quasi-geoids. (units: cm). Note that the mean differences are removed. 

 max min sd 

QGNSea V1.0 5.2 -3.9 1.5 

EGG08 7.8 -9.4 2.2 

EGM2008 8.4 -10.0 2.6 

EIGEN-6C4 9.0 -11.9 2.7 

GECO 8.3 -12.8 2.6 

SGG-UGM-1 8.8 -12.7 2.7 

 5 

For further comparisons, we compute the local mean dynamic topography (MDT), which illustrates the departure of 
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the mean sea surface (MSS) from the quasi-geoid/geoid (Becker et al., 2014; Bingham et al., 2014). We compute the 

MDTs in a geodetic way, and the raw MDTs are computed as the differences between MSS and local geoid/quasi-geoid 

models, and the derived MDTs are further smoothed with a Guassian filter to suppress the small-scale signals that can’t 

be resolved from the MSS or local geoid/quasi-geoid (Andersen et al., 2013). DTU13MSS from 1993-2012 is chosen 

as the MSS, and this model is provided as the gridded data, with the spatial resolution of 1′×1′ (Andersen et al., 2013). 5 

Considering QGNSea V1.0 and EGG08 have better performances than other models compared with local GPS/leveling 

data, we only compute the local MDTs based on these two gravimetric quasi-geoids. DTU13MSS and QGNSea 

V1.0/EGG08 are directly combined to obtain the raw MDT. Then, a Gaussian filter with a correlation length of 6 km is 

further applied to smooth the derived MDT, considering the small-scale signals that have the wavelengths shorter than 

several kilometers can’t be recovered from the local gravity data, since the mean distance between gravity data is 10 

approximately at 6~7 km level. The modeled MDTs based on QGNSea V1.0 and EGG08 are denoted as 

MDTNS_QGNSea and MDTNS_EGG08, respectively, see Figure 9, showing in good agreement with each other in 

most areas over the North Sea. Prominent signals like the Norwegian coastal currents can be seen in these two MDTs, 

also see e.g., Idžanović et al. (2017), although the signals observed in MDTNS_QGNSea don’t provide a full picture of 

Norwegian coastal currents due to the limited data coverage in Norway and its neighbouring ocean areas. While, in 15 

other areas of the North Sea, the MDTs show quite smooth patterns, indicate the small change in sea surface 

topography, which is consistent with Hipkin et al. (2004). However, extreme values are observed surrounding most 

offshore areas, e.g., see the features over the offshore regions closed to The Wash (around 0.5°W and 53°N) and 

Thames estuary (around 1°W and 51.5°N) in England, and along the coastal areas of France, Netherlands, and 

Germany, which are typically identified as errors (Hipkin et al., 2004). The problems for computing geodetic MDTs in 20 

offshore regions are twofold. First, the quasi-geoid/geoid is poorly modeled in coastal areas due to the unfavorable data 

coverage, and data inconsistencies are usually observed when combining land and marine gravity surveys. Moreover, 

the quality of altimetry data is dramatically reduced near the offshore areas, and associated errors in the derived MSS 

propagate into the final MDT (Andersen et al., 2013). However, airborne gravity measurements provide a seamless 

way for gravity measurements over land and seas, which may allay this situation (Andersen and Knudsen, 2000).  25 
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Figure 9. Different geodetic MDTs in North Sea. (a) MDTNS_QGNSea; (b) MDTNS_EGG08. For all profiles the 

mean value has been removed. 

4. Conclusions 

A multilayer approach is developed for gravity field recovery at regional scales in the framework of multi-resolution 5 

representation, where the residual gravity field is parameterized as the superposition of the multiply layers of Poisson 

wavelets located at the different depths beneath the topography. Since the gravity signals is the sum of the 

contributions generated from the anomaly sources at different depths, we put the multiply layers at the locations where 

different anomaly sources situate. Further, wavelet decomposition and power spectrum analysis are applied for 

estimating the depths of different layers.  10 

 

For testing the performance of this multilayer approach, a local gravimetric quasi-geoid called QGNSea V1.0 over the 

North Sea in Europe is modeled and compared with other models. Based on wavelet decomposition and power 

spectrum analysis, multiply layers that situate between 4.5 km and 59.2 km underneath the topography are built to 

capture the signals at different scales. The numerical results show that the multilayer approach is sensitive to the 15 

spectrum of signals, both in the low- and high-frequency bands; while, the traditionally-used single-layer approach is 

only sensitive for parts of signals’ spectrum. The comparisons with the single-layer approach show that the multilayer 
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approach fits the gravity observations better, especially in the regions where the gravity signals show strong 

correlations with the variation of local topography. Moreover, we introduce a Akaike information criterion (AIC) test 

for different models, which is an estimator of the relative quality of statistical models for a given set of data, providing 

a means for model selection in the view of statistical test. The associated results demonstrate that the multilayer model 

gives a smaller AIC value, which reaches a better balance between the goodness of fit of data and the simplicity of the 5 

model. The evaluation with independent GPS/leveling data tests the ability of realistic extrapolation of regional models 

recovered from different methods, reveals the model called QGNSea V1.0 computed by multilayer approach fits the 

local GPS/leveling data better, by the magnitudes of 0.4 cm, 0.9 cm and 1.1 cm in the Netherlands, Belgium and parts 

of Germany, respectively, compared to the one recovered from the single-layer approach. Further comparisons with the 

existing models show that QGNSea V1.0 has the best performance, which may be beneficial for investigating the 10 

ocean circulation in the North Sea and surrounding oceanic areas. 

 

Future work is needed for further improving the QGNSea V1.0. First, the satellite data (e.g., K-band Range Rate data 

and gravity gradients) from GRACE and GOCE missions can be combined with the ground-based gravity data. 

However, deeper layers than ones we use to combine surface data may be implemented to incorporate satellite 15 

observations, since these data mainly contribute to low-frequency bands of gravity field. In addition, the stochastic 

model may need to be refined. For instance, the effects on the solutions caused by the GGM’s errors may be quantified 

if the full error variance-covariance matrix of the spherical coefficients is incorporated into the stochastic model. In 

this way, the different data may be more properly weighted, and the solution may be further improved.  

 20 
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Appendix A: Akaike information criterion 

Suppose that we have a statistical model of some data, and the Akaike information criterion (AIC) value of the model 

is (Burnham and Anderson, 2002) 

ˆ2 -2ln( )AIC k L   (A1) 15 

where k is the number of estimated parameters in the model, and L̂ is the maximum value of the likelihood function for 

the model (Akaike, 1974; Burnham and Anderson, 2002). 

For least squares fitting, the maximum likelihood estimate for the variance of a model’s residuals distributions is 

2ˆ /RSS n    (A2) 

where RSS is the residual sum of squares (RSS), and n is the number of observations. 20 

Then, the maximum value of a log-likelihood function of least square model is (Burnham and Anderson, 2002) 

2

2

1ˆln(2 ) ln( ) ln( / )
ˆ2 2 22

n n n
RSS RSS n C 


        (A3) 

where C is a constant independent of the model. 

Combining Eq.(A1) and Eq.(A3), for least square model, the AIC value is expressed as 

2 ln( / )AIC k n RSS n C     (A4) 25 

Since only differences in AIC are meaningful, the constant C can be ignored, and we can conveniently take   
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2 ln( / )AIC k n RSS n  for model comparisons. 
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