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Abstract: A multilayer approach is set up for local gravity field recovery in the framework of multi-resolution
representation, where the gravity field is parameterized as the superposition of the multiply layers of Poisson wavelets
located at the different depths beneath the topography. Different layers are designed to recover the signals at various
levels, where the shallow and deep layers mainly capture the short- and long-wavelength signals, respectively. The
depths of these layers beneath the topography are linked to the locations that different anomaly sources locate,
estimated by the wavelet decomposition and power spectrum analysis. For testing the performance of this approach, a
gravimetric quasi-geoid over the North Sea in Europe called QGNSea V1.0 is computed and compared with other
existing models. The results show that the multilayer approach fits the gravity data better than the traditionally used
single-layer one, especially in regions with topographical variation. A Akaike information criterion (AIC) test
demonstrates that the multilayer model gives a smaller AIC value, reaches a better balance between the goodness of fit
of data and the simplicity of the model. Moreover, the evaluation with independent GPS/leveling data tests the ability
of realistic extrapolation of regional models computed from different approaches, showing that the accuracies of
QGNSea V1.0 modeled from the multilayer approach are improved by 0.4 cm, 0.9 cm and 1.1 cm in the Netherlands,
Belgium and parts of Germany, respectively, compared to the solution computed from the single-layer approach.
Further validation with existing models shows QGNSea V1.0 has the best quality, which may be beneficial for

studying the ocean circulation between the North Sea and its neighbouring waters.
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1. Introduction

Knowing of earth’s gravity field at regional scales is crucial for a variety of applications in geodesy. It not only
facilitates the use of Global Satellite Navigation System to determine orthometric/normal heights in geodesy and

surveying engineering, but also plays a fundamental role in in oceanography and geophysics.

Regional gravity field determination is typically implemented within a framework of remove-compute-restore
methodology (RCR) (Sjcherg, 2005), where the long-wavelength signals are often recovered by satellite-only global
geopotential models (GGMs) derived from the dedicated satellite gravity missions, such as the GRACE (Gravity Field
and Climate Experiment) (Tapley et al., 2004) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer)
(Rummel et al., 2002). Middle- and short-wavelength signals are extracted from the locally distributed gravity-related
measurements (Wang et al., 2012; Wu et al., 2017c). Spherical radial basis functions (SRBFs) are of great interest for
gravity field modeling at regional scales over years (Eicker et al., 2013; Naeimi et al., 2015). Typically, the
widely-used SRBFs method is implemented by the so-called single-layer approach, i.e., the parameterization of gravity
field is only based on a single-layer of SRBFs’ grid (Wittwer, 2009; Bentel et al., 2013; Slobbe, 2013; Wu et al.,
2017c).

It has been suspected for long that if the single-layer approach can extract the full information of local gravity data,
and the multi-resolution representation (MRR) method with SRBFs has been investigated over the recent years
(Freeden et al., 1998; Fengler et al., 2004, 2007). Freeden and Schreiner (2006) proposed a multi-scale approach based
on the locally supported wavelets for determining the regional geoid undulations from the deflections of the vertical.
Freeden et al. (2009) demonstrated that the multi-scale approach using spherical wavelets provided local
fine-structured features such as those caused by plumes, which allowed a scale- and space-dependent characterization
of this geophysical phenomenon. Schmidt et al. (2005, 2006, 2007) developed a multi-representation method for static
and spatiotemporal gravity field modeling through SRBFs, where the input gravity signals were decomposed into a
certain number of frequency-dependent detail signals, and concluded that this approach could improve the spanning
fixed time intervals with respect to the usual time-variable gravity fields. Chambodut et al. (2005) set up a multi-scale
method for magnetic and gravity field recovery using Poisson wavelets, and created a set of hierarchical meshes

associated with the wavelets at different scales, where a level of subdivision corresponded to a given wavelet scale.
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Panet et al. (2011) extended the approach developed by Chamboudt et al. (2005), and applied a domain decomposition
approach to define the hierarchical subdomains of wavelets at different scales, which allowed to split a large problem
into smaller ones. These results show the multi-scale approach with SRBFs has a good prospective in gravity field
recovery, however, to our knowledge, no direct comparisons have been made between the single-layer approach and
multi-scale one regarding the performances in local gravity field recovery. Besides, the existing multi-scale methods
mainly construct the multi-scale framework in a mathematical sense, where no explicit geophysical meanings are
investigated. In this study, inspired by the power spectral analysis of local gravity signals, we develop a new
parameterization of SRBFs network in the framework of the MRR idea, i.e., the so-called multilayer approach; and the
multiply layers are linked to the anomaly sources at different depths beneath the topography, which aim at recovering
the signals at different levels. In this way, the parameterization of multi-scale method can be linked to the different
anomaly sources at different depths. Moreover, the performances of the multilayer approach and traditionally-used
single-layer one are directly compared in this study, where the advantages and disadvantages of different methods are

analyzed.

The structure of the manuscript is as follows: the data in a study area in Europe are firstly described in Section 2. Then,
the multilayer approach based on the MRR representation is introduced, and the wavelet decomposition and power
spectrum analysis are applied for constructing the networks of Poisson wavelets with the multilayer approach. In
addition, the function model based on the multilayer approach is set up, and the method for unknown coefficients of
Poisson wavelets is introduced. We construct the multilayer model in section 3, and compare the performances of
different approaches. Finally, the gravimetric quasi-geoid over the North Sea called QGNSea V1.0 is modeled by the
multilayer approach and compared with other models for cross validations. We summarize the main summaries and

conclusions of this study in section 4.

2. Data and method

2.1. Study area and data

A local region in Europe is chosen as a case study, which covers an area of 49N-61<N latitude and -6E-10E
longitude, including the mainland of the Netherlands, Belgium, and parts of the North Sea, UK, Germany and France.
Point-wise terrestrial and shipborne gravity anomalies are incorporated for testing the approach we developed in this
study, which were provided by different institutions, see Slobbe et al. (2014). The details for data pre-processing
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procedures can be referred to Wu et al. (2017c), where crossover adjustment and low-pass filter were applied to
remove systematic errors and reduce high-frequency noise, respectively, and datum transformations were performed
on all the data. Moreover, the satellite-only reference model called GOCOO05s with a full degree and order (d/o) of 280
(Mayer-Gur et al., 2015) and RTM corrections were removed from the original observations to decrease the signal
correlation length and smooth the data within the framework of remove-compute-restore (RCR) framework. The
details for the RTM reduction and residual gravity data can be found in Wu et al. (2017c).

2.2. Multilayer approach

According to Schmidt et al. (2006, 2007), the multi-resolution representation (MRR) of the Earth’s potential T (Z) on

position Z is expressed as

|
T(2)=T(2)+2t(2)+5(2) )

i=1
whereT () is the disturbing potential in this study, T (z)means a reference model, e.g., a global geopotential model
(GGM) computed from spherical harmonics;5(z)represents the unmodeled signals; | is the number of levels

(resolutions); t; (Z)is the detailed signal of leveli, and the higher the level valueiis, the finer are the structures

extractable from the input data; t; (Z) is computed as the a linear combination of SRBFs (Schmidt et al., 2007)

ti(Z)ZZIBi,klPi(Z’yi,k) )

k=1

where V' (z, y)is the SRBF, K;and /3, are the number and unknown coefficient of SRBF at leveli, respectively,

and y; , is the position of SRBF at this level.

We work with the RCR technique, and the reference GGM and RTM corrections are removed from the original data to
decrease the signal correlation length and smooth the data (Omang and Forsberg, 2000). Then, only the residual gravity

potential T (Z) is parameterized by SRBFs using the MRR approach. Neglecting the unmodeled signals, the residual
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potential is expressed as a series of the detailed signals at different levels when combining Eq.(1) and Eq.(2)

I K

T (2)=2 2 8. (2.y,,) €)

i=1 k=1
where ¥, is computed as the difference of the spherical scaling functions with low-pass filter characteristics between

the consecutive levels i+1and i, but also can be expressed as the SRBF has the band-limited properties in the
frequency domain (Schmidt et al., 2007). In this study, YV is chosen as the Poisson wavelet with band-limited

properties (Chambodut et al., 2005), and its full definition can be found in Holschneider and Iglewska-Nowak (2007).

Poisson wavelets can also be identified as the multipoles inside the Earth, and the scales of Poisson wavelets can be
linked to their depths, which are the key issues that determine their properties in space and frequency domain
(Chambodut et al., 2005). The detailed signal at level 1 in Eq.(2) can be estimated by a linear combination of Poisson
wavelets located at a specific depth. Poisson wavelets at depths demonstrate different properties in the frequency
domain, as the depths going shallower, the scales decrease, and their spectrums shift towards the high degrees of the
spherical harmonics (SH) and become more sensitive to the local features of signals with high-frequency properties,
and vice versa (Chambodut et al., 2005). These properties are crucial for local gravity field modeling. First, the
residual disturbing potential is typically the band-limited signal within the RCR framework, and Poisson wavelets with
band-pass filter characteristics are preferable for band-limited signal recovery (Bentel et al., 2013). Moreover, Poisson
wavelets at different depths can be linked to the detailed signals at various levels, which are sensitive to different

spectral contents of input signals, and can be used for multi-resolution representation.

Rather than using the name of MRR, we interpret Eq.(3) as the multilayer approach considering Poisson wavelets at
different depths have various characteristics, and the different layers are corresponding to the Poisson wavelets’ grids
at various depths. We place Poisson wavelets on the Fibonacci grids under the topography, and keep these grids
parallel with the topography (Tenzer et al., 2012). Instead of associating the Poisson wavelets at different depths to the
hierarchical meshes with various levels (Chambodut et al., 2005), we apply a wavelet analysis approach to estimate the
depths of multiply layers, inspired by the power spectrum analysis of the residual gravity field. The power spectrum
analysis of local gravity signals show the gravity signals are the superposition of the contributions generated from the

anomaly sources at different depths; and the signals originated from different anomaly sources have heterogeneous
5
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spectral contents (Spector and Grant, 1970; Syberg, 1972; Xu et al, 2018). Since Poisson wavelets at different depths
are sensitive to signals with heterogeneous frequency characteristics, we put Poisson wavelets’ grids at the locations
where the anomaly sources situate. In this manner, the contributions from the anomaly sources at various depths can be

estimated by different layers.

In order to separate the contributions stemmed from different anomaly sources, the wavelet multi-scale analysis, which
is an excellent approach to extract the signals at different scales, is applied to decompose the gravity data Ag into
wavelet approximation A, and a number of wavelet details D, (w=1,2,3,---,W)at different scales (Jiang et al.,
2012; Audet, 2013; Xu et al., 2017)

W
Ag=A,+>.D, (4)
w=1

where W is the maximum order for decomposition, A, is the regional anomaly caused by deep and large-scale

geological bodies, and D, is the local anomaly originated from shallow and small-scale heterogeneous substances.

Wavelets analysis generates low-order wavelet details that are invariant with the decomposition order, and only the
high-order wavelet details and corresponding wavelet approximation change with the decomposition order. Based on

this property, we can choose the proper decomposition order to derive the desirable solutions.

The decomposed signals reveal the features of geological bodies, the average depths of which can be estimated from
the power spectral analysis (Spector and Grant, 1970; Syberg, 1972; Cianciara and Marcak, 1976; Xu et al., 2018)
1 AlnR”

= w=12.- W (5)
Ar Ak,

whereh,, is the average depth of anomaly source corresponding to wavelet detail D, ; In P, " is the logarithmic power

spectrumof D,;AInR"™ and Ak, are the change rates for In P, " and radial wave numberK,, , respectively.
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In this study, terrestrial and shipborne gravity anomalies are merged for modeling. Gravity anomaliesAg and

quasi-geoid height ¢ are related to the disturbing potential based on the multilayer approach as follows:

N 21 (7). T (2)
20 ()75
=izl_1“k_il,3i‘k —%\Pi(z,yi,k)—%‘Pi(z,yivk)J (6)
‘(- T;s((zz)) :.Izl:‘lﬁ'k ‘Pi;z(z?,k)

where ¥ is the normal gravity value.

We suppose the observational errors are white noises with zero mean, and the gravity field model using the multilayer
approach is written as the standard Gauss-Markov model

Ij —ej = ij, E{ej}zo, D{ej}ij =GJ'2Q]' :szpj_l’ j=1,2,"',J (7)

where X is the K x1vector of unknown coefficients, including the unknown parameters of Poisson wavelets of all the
!
layers, i.e., X:I:ﬂl,11ﬂl,2""vﬂl,+<1’ﬂz,vﬂz,z"":ﬂz,Kz1"'aﬁ|,1’/3|,21""ﬂ|,|<|:I cand K=K +K, +--+K,;

A, is the m; xK design matrix of group ], Ij is the m; x1 corresponding observation vector, €;is the
m; x Lvector of corresponding stochastic errors, m; is the number of observations in group j,and J is the number
of observation groups. E{}and D{-}are the expectation and dispersion operators, respectively. Cj is the error

variance-covariance matrix of group j, and af ,Q ;and Pj are the variance factor, cofactor matrix, and weight matrix

of group J , respectively.

Data in different groups are assumed to be independent, and the weight matrix PJ. is supposed to be the scaled diagonal

matrix with white noise properties since it is usually difficult to acquire the realistic full error variance-covariance
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matrix in real-life measurements. Point-wise data can be directly combined for modeling through the functional
described above. However, the heterogeneous characteristics of the data, in terms of spatial coverages and noise
properties, may result in an ill-conditioned normal matrix (Panet et al., 2011). We apply the first-order Tikhonov
regularization for tackling the ill-conditioned problem (Kusche and Klees, 2002; Wu et al., 2017a). For a
given & (regularization parameter) and x (regularization matrix), the least-squares solution of Eq.(7) is (Klees et al.,

2008):
-1

J J
, 1 1
R = Z(?Aj PJ-AJ-J-l-aK Z‘{?Aj lej] 8)

=1 =1

J

]

Moreover, we use the Monte-Carlo variance component estimation (MCVCE) to estimate the appropriate variance
factors of different observation groups and the regularization parameter (Koch and Kusche, 2002; Kusche, 2003; Wu et

al., 2017c).

3. Numerical results and discussion

3.1. Wavelet analysis of local gravity signals

In order to determine the depths of different layers, the residual gravity data are decomposed into the signals at
different scales based on wavelet analysis. The spline interpolation is used to compute the gridded data, and Coif3
basis functions are chosen for wavelet decomposition (Xu et al., 2017). The preliminary maximum order for wavelet
decomposition is arbitrarily chosen to some extent, however, since the low-order details are invariant with the increase
of decomposition order, we can preliminarily choose a predefined order and implement the wavelet decomposition,
and analyze the derived details. If there are still details that are useful for constructing the multilayer model haven’t
been separated, we need to increase the decomposition order until all the useful details have been extracted; otherwise,
we truncate to a specific order, and compute the wavelet details and approximation to construct the multiply layer’s
parameterization. By trial and errors, the preliminary order for decomposition is chosen as nine, and Figure 1 shows
the derived wavelet details (the corresponding statistics are provided in Table 1). With the increase of decomposition
order, more long-wavelength features occur. More specifically, the low-order details demonstrate the high-frequency
signals stemmed from the shallow and small-scale substances; while, the high-order ones with long-wavelength

patterns reflect the anomalies caused by deep and large-scale geological bodies. It is noticeable that the 1st- and
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2nd-order details (i.e., D, and D, ) are seems dominated by the high-frequency signals correlate strongly with the local

topography (the local digital terrain model (DTM) can be seen in Figure 1 in Wu et al. (2017c)). We mainly attribute
this to the uncorrected topographical signals in RTM corrections, which is mainly due to the inaccuracy of the density
parameters in RTM and limitations of DTM both in terms of spatial resolution and precision. As a result, the
high-frequency signals originated from local topography variation cannot thoroughly recovered from RTM reduction,
and consequently, the uncorrected signals leak into the 1st- and 2nd-order details. To avoid these high-frequency errors
propagating into the final solution, we neglect these two wavelet details in designing the multiply layers’ networks.

Moreover, with the order increasing to nine, we notice D, obviously reveal the large-scale signals with the

wavelengths of hundreds of kilometers. Given that the mean distance between the data in this target area is
approximately several kilometers and the spatial resolution of the applied GGM (i.e., GOCOQ5S) is roughly 72 km, the
spectral contents of the residual signals need to be recovered is roughly between several kilometers and tens of
kilometers within the RCR framework, i.e., approximately between degree 250 to 3000 in terms of spherical
harmonics’ representation. While, the spectral contents of the 9th-order details exceed the frequency bands of the
signals need to be modeled, and the maximum order for wavelet decomposition is truncated to eight. In this manner,

the third- to eighth-order ( D, - Dy ) wavelet details and the final approximation ( A;) (see the information in Figure 2

and Table 2) are applied for constructing the multilayer model, consists of seven layers at various depths.
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Table 1. Statistics of different wavelet details (units: mGal)
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max min  mean sd
D, 223 -278 0.00 0.20
D, 452 -557 0.00 0.32
D, 19.27 -16.26 0.00 2.30
D, 2171 -17.46 0.00 3.18
D, 1538 -16.47 0.00 3.80
D, 1060 -9.72 0.00 275
D, 443 -333 000 0095
D, 123 -152 0.00 0.34
D, 066 -045 0.00 0.18
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Table 2. Statistics of wavelet approximation (units: mGal).

max min  mean sd

0.83 -1.70 -0.41 0.32

3.2. Key parameters of Poisson wavelets

The order of Poisson wavelets is fixed at 3 to achieve a good compromise between the localization in space and
frequency domain (Panet et al., 2011). In addition, the depth and number of Poisson wavelets are the crucial points
affecting the solution quality (Klees et al., 2008). Poisson wavelets belong to different layers are placed on the
Fibonacci grids at various depths beneath the topography, and the power spectrum analysis is applied to estimate the
depths. As shown in Figure 3, the green curves show the radially averaged logarithm power spectrums of signals at
different scales, and the red straight lines represent the slopes of the spectrums, indicate the depths of corresponding
layers. The red lines represent rates of change for logarithmic power relative to wave number, estimated by a
autoregressive method; and the starting point and terminal point of the red lines are the inflection points of the curves,
recognized according to the trend of the curves (Xu et al., 2018). The layers go deeper as the scales increase, and the
shallow layers reflect the small-scale signals, while the deep ones recover the long-wavelength information. Table 3
provides the estimated depths of different layers, limited between 4 and 60 km. The shallowest layer locates 4.5 km
underneath the topography, while the depth of the deepest one is approximately estimated as 59.2 km. It is noticeable
that the thickness of sediments in this area is approximately 2~4 km, and the thickness of the upper-middle crust is
roughly 15~20 km (Artemieva and Thybo, 2013). Thus, the first four layers (layerl, layer2, layer3 and layer4) locate

between the sediments and upper-middle crust, and the corresponding wavelet details (D, , D,, D, and D,) display as
the small-scale patterns due to the highly heterogeneous structure of the crust. The distributions of D, and D, (with

the average depths of 4.5 km and 9.2 km, respectively) on land are more dispersed than that in the ocean, demonstrate
that the tectonic structure underneath the land is more complex than that beneath the ocean in the upper crust.
Moreover, the gravity anomalies in the northern of North Sea are more dispersed than those in the central and southern
of North Sea, which is consistent with that the Viking Graben and basin are located in the northern and southern of
North Sea, respectively, e.g., see Fichler and Hospers (1990), and Blundell et al. (1991). The mean source depths of

D, and D, are 13.7 km and 19.6 km, respectively, correspond to the depths of the middle crust. The gravity

12
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anomalies during these two layers present apparent positive-negative alternating patterns, which may be interpreted as
the crustal shearing and extrusion (Blundell et al., 1991; Ziegler and Dé&zes, 2006). While, the last three layers (layer5,
layer6, and layer7) are supposed to be located between the Moho surface and upper mantle considering the Moho

depth in this region is approximately 25~30 km (Grad and Tiira, 2009), and the corresponding details (D, , D,and A, )
become smoother and more long-wavelength signals occur. D, with the mean source depth of 27.0 km primarily
reflects the Moho undulation. The distribution of positive-negative alternating gravity anomalies in D, is nearly

south-north oriented, which is in agreement with the features of the Moho relief in this area (Fichler and Hospers, 1990;

Ziegler and Dezes, 2006). The average source depths of D, and A, are 32.3 km and 59.0 km, respectively,

correspond with the depth of the upper mantle, indicate that the density distribution of the upper mantle is relatively

smooth. Overall, these decomposed gravity anomalies can reveal the tectonic structure of study area at different depths.

13
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Table 3 Depths of multiply layers beneath the topography (Units: km).
layerl 4.5

layer2 9.2

layer3 13.7

layer4 19.6

layer5 27.0

layer6 32.3

layer7 59.2

As mentioned above, different layers are designed to recover the wavelet details and approximation at different scales,
and a trial-and-error approach is used to estimate the number of Poisson wavelets of each layer (Wittwer, 2009). For a
specific layer with the fixed depth, we predefine different number of Poisson wavelets to form a certain humber of
Fibonacci grids. Then, the signals reconstructed from these grids are compared with the true values, i.e., ones derived
from wavelet decomposition, and the parameter that derives the smallest differences between the modeled and true
signals is consider as the optimal one. By trail and errors, the spatial resolutions of Fibonacci grids (mean distance
between Poisson wavelets) are changed from 20 to 14 km with a step of 1 km. Table 4 shows the accuracies of the
solutions derived from different Fibonacci grids of multiply layers, and we take the situation of the first layer for
instance. With the increase of Poisson wavelets, the SD value of the differences between the reconstructed and true
signals decreases gradually to 0.12 mGal when the spatial resolution of the grid increase to 16 km. Since then, no
significant improvements occur with incorporating more Poisson wavelets. Moreover, introducing more Poisson
wavelets increases the overlapping between them, which may lead to the highly-conditioned normal matrices, and the
associated heavy regularization may decrease the solution quality (Wu et al., 2017b). The optimal mean distance
between Poisson wavelets of the first layer is estimated as 16 km. Similarly, the spatial resolutions for the rest layers

can be determined in this way, see Table 4.

Table 4 Accuracies of solutions derived from various Fibonacci grids of different layers (Units: mGal).

20km 19km 18km 17km 16km 15km 14 km

15
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layerl 043 034 021 016 012 012 0.2
layer2 052 043 033 025 019 016 0.16
layer3 058 040 028 019 016 014 0.14
layer4 055 039 029 026 015 013 0.3
layer5 038 026 017 014 010 010 0.10
layer6 022 016 012 010 0.08 0.08 0.08
layer7 011 009 008 006 006 0.06 0.06

3.3. Regional solution and its validation

For regional gravity field recovery, point-wise terrestrial and shipboard gravity anomalies are combined. Since there
are no accurate information for terrestrial and shipboard data, we assume the accuracies of 2 mGal for both of these
two types of data, and the posterior variance factors of different observation groups are estimated from MCVCE
method. The weights of different observation groups, indicate their relative contributions, and play a key role in data
combination. The estimated variance factors for terrestrial and shipboard gravity data are approximately 1.45 mGal and
1.30 mGal through the MCVCE method, respectively, when we model the local gravity field based on the multilayer
approach. For terrestrial data, the estimated accuracy is in good agreement with that derived by Klees et al. (2008), i.e.,
1.48 mGal for parts of the Netherlands. However, it is difficult to judge whether this estimate is realistic in other
regions because of a lack of accuracy information. While, for shipboard data, the computed value of 1.30 mGal is
smaller than the results of crossover adjustments, where the standard deviation for the residuals at the crossovers was
approximately estimated as 2.0 mGal (Slobbe, 2013). However, this value may be too optimistic considering much of
the shipborne data were collected decades ago without GPS navigation. The first-order Tikhonov regularization is used

to tackle the ill-conditioned problem (Kusche and Klees, 2002; Wu et al., 2017b), and the convergent regularization

parameter is approximately 0.5x107° estimated from the MCVCE method; the details for regularization parameter

estimation and comparisons with different methods can be referred to Wu et al. (2017b).

The performance of the traditionally-used single-layer is also investigated for comparison, and the parameterization of
local gravity field based on the single-layer approach can be seen in, e.g., Klees et al. (2008) and Slobbe (2013). By
trial and errors, the single layer of Poisson wavelets’ grid is located 40 km beneath the topography, and the mean
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distance between Poisson wavelets is defined as 8.7 km (Wu et al., 2016). Figure 4 shows the normalized spectrums
for different approaches. Considering the frequency range of the signals to be recovered in the target area is
approximately between degree 250 to 3000 in spherical harmonics’ representation, we note the single-layer approach is
only sensitive to parts of the signals’ spectrum, i.e., approximately between degree 300 to 1200 if we suppose half of
the maximum value of the normalized spectrum is the criterion for determining whether it is sensitive or not within a
specific frequency band. However, for the high-frequency band between degree 1200 to 3000, this approach is less
sensitive. On the contrary, the multilayer approach effectively covers the spectrum of the local gravity signals, which is
both sensitive to the low- and high-frequency bands. Figure 5 provides the residuals of data after least squares
adjustment using different methods, shows the residuals derived from the multilayer approach reduce significantly in
the whole region compared with ones obtained from the single-layer approach, especially in western parts of UK,
south of Norway, and southwest of Germany, where the high-frequency signals correlated with local topography
dominate the features of regional gravity field. We also find the improvements occurring in the ocean parts, especially
in waters around the English Channel, Irish Sea, northwest of North Sea, and Atlantic Ocean close to northwest UK.
The statistics in Table 5 displays the standard deviation (SD) value for the residuals of terrestrial (shipborne) gravity
anomalies decreases by 0.39 mGal (0.36 mGal) when the multilayer approach is used. These results are reasonable
since the multilayer approach contains several layers shallower than 40 km, and the spectrums of these layers shift to
the high-frequency bands. As a result, the spectrum of the multilayer approach is more sensitive to signals with
high-frequency properties, and consequently, the local high-frequency signals can be better fitted by the multilayer
approach. It is also worth to mention that the analysis of data residuals can’t be treated as the only criteria for justifying
the performances of different approaches, since these gravity data have been used for modeling purpose, and the SD
values of data residuals should be regarded as the internal agreement. Besides, due to the limitation of the accuracies of
gravity data, we can’t make conclusions too firmly only depends on the analysis of data residuals. One may also argue
that it may be possible to derive lower data residuals if we put the Poisson wavelets’ grid shallower when the
single-layer approach is used. However, we believe a shallower single grid may reduce the data residuals, but may not
derive a better solution when validated against the independent control data, see the detailed discussions in Wu et al.
(2016). In the following part, we introduce another high-quality independent data set, i.e., GPS/leveling data, for

external validation, which give us more confidences with respect to the performances of different methods.

It is also of interest to implement a Akaike information criterion (AIC) test for different models. Although, the
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multilayer model fits the gravity observations better, but it also increases the level of estimated parameters. AIC
rewards the goodness of fit of data, but also includes a penalty with the increasing of the number of estimated
parameters. In other words, it deals with the trade-off between the goodness of fit of the model and the simplicity of
the model. AIC value is an estimator of the relative quality of statistical models for a given set of data, providing a
means for model selection, and the model that gives the minimum AIC value may be more preferable (Akaike, 1974;
Burnham and Anderson, 2002). The definition for the AIC value can be seen in Eq.(Al) in the Appendix. Since we
model the gravity field in the framework of least squares system, we can simply take AIC = 2k + nIn(RSS / n) for
model comparision, wherek is the number of estimated parameters in the model, Nnis the number of observations,
and RSS is the residual sum of squares (RSS), see the details in the Appendix. In this study, the number of point-wise
gravity observations used for modeling is 894649, and the numbers of estimated parameters in the multilayer and

single-layer model are 47504 and 19477, respectively. The RSS values for the multilayer and single-layer model are

computed as 8.8527 x10° mGal®and 13296 x10° mGal®, respectively, based on the data residuals after the least

squares adjustment. Then, the AIC values for the multilayer and single-layer model are estimated as 85581 and 393400,
respectively. Based on these statistics, we notice that the multilayer model gives a smaller AIC value, which may be

more preferable since it reaches a better balance between the goodness of fit of data and the simplicity of the model.
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Figure 4. Normalized spectrums for (a) single-layer and (b) multilayer approach.

To test the ability of realistic extrapolation of different regional models recovered from various methods, which is

actually comparing the predicted values derived from the regional model (e.g., model computed from the multilayer or
single-layer approach) and ones derived from independent survey/measurements, we introduce GPS/leveling data in
the Netherlands (534 points), Belgium (2707 points), and parts of Germany (213 points) as the independent validation
data. These data are provided in terms of geometric quasi-geoid heights derived from the high-quality GPS
measurements and leveling survey, and the overall estimated accuracy of these observed quasi-geoid heights is

approximately at 1 cm level. It is worth to mention that these GPS/leveling data are not combined for modeling, and
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their three dimensional coordinates don’t coincide with the positions of gravity data. For validating different models
with GPS/leveling data, we need to reconstruct the regional model based on the computed Poisson wavelets’
coefficients and coordinates of GPS/leveling points (see Eq.(6)), and compute the gravimetric quasi-geoid heights at
these points, which are ones predicted from the regional model. Then, we compute the standard deviation (SD) of the
point-wise difference between GPS/leveling data and the gravimetric quasi-geoid height derived from the regional
approach, which is actually external validation. The validation results demonstrate the discrepencies between the
GPS/leveling points and quasi-geoid heights derived from the multilayer approach decrease substantially compared
with ones computed from the single-layer approach, see Figure 6. The most prominent improvements occur in the
northwest of Belgium, west of Germany, and eastern parts of Netherlands, which are in good agreement with the
results for data residuals analysis demonstrated in Figure 5. As shown in Table 6, the accuracies of gravimetric
quasi-geoid derived from the multilayer approach are improved by 0.4 cm, 0.9 cm and 1.1 cm in the Netherlands,
Belgium and parts of Germany, respectively. Moreover, the mean values indicate that the solution computed from the
multilayer approach further reduces the biases between gravimetric solution and local GPS/leveling data, with the
magnitude of 0.8 cm, 0.7 cm, and 1.1 cm in these three regions, respectively, compared to the one modeled from the
single-layer approach. From these results, we can see that the multilayer approach not only leads to a reduction for the
data residuals, but also derives a better solution assessed by the independent control data, compared to the single-layer
approach. For constructing the multilayer model, we consider that the gravity signals are the sum of the contributions
generated from the anomaly sources, and different layers are designed for recovering these contributions with
heterogeneous spectral contents. As a result, the spectrum of multilayer approach is sensitive to the frequency bands of
local gravity signals, both in low- and high-frequency bands, and the local signals may be better recovered. We also
notice that there are still biases between the regional gravimetric solutions and local GPS/leveling data, see the mean
values in Table 6, which are mainly due to the commission errors in the GGM and uncorrected systematic errors in the
local gravity data and leveling systems (Fotopoulos, 2005). Generally, corrector-surface (Fotopoulos, 2005;
Nahavandchi and Soltanpour, 2006) or more complicated algorithms, like least squares collocation (Tscherning, 1978),
boundary-value methodology (Klees and Prutkin, 2008; Prutkin and Klees, 2008), and a direct approach (Wu et al.,
2017a), can be applied to reduce the systematic errors and properly combine GPS/leveling data and gravimetric
solution. However, since the target for this study is to develop a multilayer approach for gravimetric quasi-geoid
modeling, which is served as a basic surface for further geophysical applications, e.g., study the ocean circulation and

structure of lithosphere; while, after implementing these methods for combining local GPS/leveling and gravimetric
20
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model, the derived quasi-geoid is not purely gravimetric. Besides, we only have the well distributed GPS/leveling data
in the limited region, i.e., in Netherlands, Belgium, and parts of Germany, while in other regions, no high-quality
control data are available. If we use the locally distributed GPS/leveling data for removing these systematic errors and
computing the combined quasi-geoid, the final solution may be distorted in other regions, especially in the ocean parts,
since no control data in these regions have been combined. Thus, we don’t implement these methods mentioned above

for computing the combined guasi-geoid. In following study, we use the gravimetric model derived from the multilayer

approach, which is hereafter denoted as QGNSea V1.0 (quasi-geoid over the North Sea version 1.0).

a) e T

o
mGal

Figure 5. Residuals of gravity data derived from (a) single-layer and (b) multilayer approach.

Table 5 Statistics of residuals of gravity data computed from different approaches (units: mGal).

max  min mean sd

Terrestrial 19.58 -16.91 0.00 1.45
Single-layer approach

Shipborne 11.91 -17.38 0.00 1.07

Terrestrial 16.96 -14.90 0.00 1.06

Shipborne 9.25 -15.96 0.00 0.71

Multilayer approach
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Figure 6. Differences between GPS/leveling data and gravimetric quasi-geoids computed from (a) single-layer and (b)

multilayer approach.

Table 6 Evaluation of quasi-geoids modeled from different approaches (Units: cm).

max min mean sd

Netherlands 59 0.1 3.8 1.2
Single-layer approach Belgium 12 -131 -35 28
Germany 12 -112 -36 29
Netherlands 4.8 0.0 3.0 0.8
Multilayer approach ~ Belgium 1.2 -68 -28 19
Germany 10 -67 -25 18

QGNSea V1.0 is compared with a regional model called EGG08 (Denker, 2013) and other four recently published
high-order GGMs, i.e., EGM2008 (d/o 2190) (Pavlis et al., 2012), EIGEN-6C4 (d/o 2190) (Fd&ste et al., 2014), GECO
(d/o 2190) (Gilardoni et al., 2015), and SGG-UGM-1 (d/o 2159) (Liang et al., 2018), for further comparisons. The
reason for choosing these four GGMs for comparisons is that these models have relatively higher spatial resolutions
and better accuracies compared to most of other available GGMs, see the information in

http://icgem.gfz-potsdam.de/home. EGGO08 is a regional gravimetric quasi-geoid model in Europe, which was
22
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recovered by stokes integral based on locally distributed gravity data. This model is provided in terms of gridded data
instead of spherical harmonics, the space resolution of which is 1’ in latitude and 1.5" in longitude, respectively
(Denker, 2013). While, the rest four models are global geopotential models provided in terms of spherical harmonics,
and EGM2008 was computed by merging GRACE measurements, terrestrial, altimetry-derived, and airborne gravity
data. Since no GOCE data have been incorporated for developing EGM2008, and the recently published GGMs have
been developed by combining GOCE data, which is supposed to improve the gravity field in the frequency bands
approximately from degree 30 to 220 in spherical harmonics representation (Gruber et al., 2010). EIGEN-6C4 was
computed by combining GRACE, GOCE, and terrestrial gravity data and other data sets; GECO was computed by
incorporating the GOCE-only TIM R5 (d/o 250) solution into EGM2008, and SGG-UGM-1 was computed by the
combination of EGM2008 gravity anomalies and GOCE gravity gradients and satellite-to-satellite tracking data.
Differences between QGNSea V1.0 and other models are shown in Figure 7 (the boundary limits for the area are
contracted by 0.5<in all the directions to reduce edge effects), the magnitude of which reaches decimeter level. For
EGGO08, we note the most prominent differences appear in eastern parts of the Irish Sea and center of Germany.
Different data pre-processing procedures and methods for parameterization partly account for these differences, e.g.,
QGNSea V1.0 is recovered from the multilayer approach using Poisson wavelets and proper weights for different
observation groups are estimated through MCVCE; while the spectral combination technique and spectral weights
were implemented in EGGO08 for merging heterogeneous data (Denker, 2013). Larger differences are observed
between QGNSea V1.0 and these four GGMs, and remarkable differences show in southern of Norway, northern of the
North Sea, eastern of the Irish Sea, and northwest of Germany; besides from the applications of different techniques
for modeling, these differences are partly interpreted as the additional signals introduced by QGNSea V1.0, stemming
from the incorporation of more high-quality gravity data. The evaluation results with GPS/leveling data displayed in
Figure 8 and Table 7 show the gravimetric quasi-geoid inversed from the multilayer approach has the best quality,
especially in the north of the Netherlands and western and eastern parts of Belgium. The SD value of the misfit
between the GPS/leveling data and QGNSea V1.0 is 1.5 cm, while this value increases to 2.2 cm when EGGO8 is
validated. In contrast, the accuracies of these four GGMs are slightly worse than EGGO08, which are approximately at
2.6 cm levels. Compared to these GGMs, the added values introduced by the local high-quality data lead to the primary
improvements of QGNSea V1.0. We find that these four GGMs have the comparable accuracies, where the ones
developed by combining GOCE data and EGM2008 (i.e., GECO and SGG-UGM-1) don’t have better performances

than EGM2008, and SGG-UGM-1 even has the slightly worse performance than EGM2008, which is especially
23



prominent in the eastern parts of Belgium, however, the possible reasons need further investigation. We also notice that
a new Europe gravimetric quasi-geoid called EGG2015 has been computed, where the GOCE-derived GGMs were

used as the reference models (Denker, 2015). However, this model is not publicly available, and its performance can’t

be assessed in this local region.
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Figure 7. Difference between QGNSea V1.0 and (a) EGGO08, (b) EGM2008, (c) EIGEN-6C4, (d) GECO, (e)
SGG-UGM-1. Note that the mean differences are removed.
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Figure 8. Evaluation of the various quasi-geoids. (a) QGNSea V1.0, (b) EGGO08, (c) EGM2008, (d) EIGEN-6C4, (e)
GECO, and (f) SGG-UGM-1. Note that the mean differences are removed.

Table 7. Statistics of accuracy of various quasi-geoids. (units: cm). Note that the mean differences are removed.

max min  sd

QGNSeaV10 52 -39 15
EGG08 78 -94 22
EGM2008 84 -100 26
EIGEN-6C4 9.0 -119 27
GECO 83 -128 26
SGG-UGM-1 88 -12.7 27

For further comparisons, we compute the local mean dynamic topography (MDT), which illustrates the departure of
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the mean sea surface (MSS) from the quasi-geoid/geoid (Becker et al., 2014; Bingham et al., 2014). We compute the
MDTs in a geodetic way, and the raw MDTs are computed as the differences between MSS and local geoid/quasi-geoid
models, and the derived MDTs are further smoothed with a Guassian filter to suppress the small-scale signals that can’t
be resolved from the MSS or local geoid/quasi-geoid (Andersen et al., 2013). DTU13MSS from 1993-2012 is chosen
as the MSS, and this model is provided as the gridded data, with the spatial resolution of 1'<1’ (Andersen et al., 2013).
Considering QGNSea V1.0 and EGGO08 have better performances than other models compared with local GPS/leveling
data, we only compute the local MDTs based on these two gravimetric quasi-geoids. DTU13MSS and QGNSea
V1.0/EGGO08 are directly combined to obtain the raw MDT. Then, a Gaussian filter with a correlation length of 6 km is
further applied to smooth the derived MDT, considering the small-scale signals that have the wavelengths shorter than
several kilometers can’t be recovered from the local gravity data, since the mean distance between gravity data is
approximately at 6~7 km level. The modeled MDTs based on QGNSea V1.0 and EGG08 are denoted as
MDTNS_QGNSea and MDTNS_EGGO08, respectively, see Figure 9, showing in good agreement with each other in
most areas over the North Sea. Prominent signals like the Norwegian coastal currents can be seen in these two MDTSs,
also see e.g., Idzanovi¢ et al. (2017), although the signals observed in MDTNS_QGNSea don’t provide a full picture of
Norwegian coastal currents due to the limited data coverage in Norway and its neighbouring ocean areas. While, in
other areas of the North Sea, the MDTs show quite smooth patterns, indicate the small change in sea surface
topography, which is consistent with Hipkin et al. (2004). However, extreme values are observed surrounding most
offshore areas, e.g., see the features over the offshore regions closed to The Wash (around 0.5V and 53N) and
Thames estuary (around 1V and 51.5N) in England, and along the coastal areas of France, Netherlands, and
Germany, which are typically identified as errors (Hipkin et al., 2004). The problems for computing geodetic MDTs in
offshore regions are twofold. First, the quasi-geoid/geoid is poorly modeled in coastal areas due to the unfavorable data
coverage, and data inconsistencies are usually observed when combining land and marine gravity surveys. Moreover,
the quality of altimetry data is dramatically reduced near the offshore areas, and associated errors in the derived MSS
propagate into the final MDT (Andersen et al., 2013). However, airborne gravity measurements provide a seamless

way for gravity measurements over land and seas, which may allay this situation (Andersen and Knudsen, 2000).
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4. Conclusions

A multilayer approach is developed for gravity field recovery at regional scales in the framework of multi-resolution
representation, where the residual gravity field is parameterized as the superposition of the multiply layers of Poisson
wavelets located at the different depths beneath the topography. Since the gravity signals is the sum of the
contributions generated from the anomaly sources at different depths, we put the multiply layers at the locations where
different anomaly sources situate. Further, wavelet decomposition and power spectrum analysis are applied for

estimating the depths of different layers.

For testing the performance of this multilayer approach, a local gravimetric quasi-geoid called QGNSea V1.0 over the
North Sea in Europe is modeled and compared with other models. Based on wavelet decomposition and power
spectrum analysis, multiply layers that situate between 4.5 km and 59.2 km underneath the topography are built to
capture the signals at different scales. The numerical results show that the multilayer approach is sensitive to the
spectrum of signals, both in the low- and high-frequency bands; while, the traditionally-used single-layer approach is
only sensitive for parts of signals’ spectrum. The comparisons with the single-layer approach show that the multilayer
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approach fits the gravity observations better, especially in the regions where the gravity signals show strong
correlations with the variation of local topography. Moreover, we introduce a Akaike information criterion (AIC) test
for different models, which is an estimator of the relative quality of statistical models for a given set of data, providing
a means for model selection in the view of statistical test. The associated results demonstrate that the multilayer model
gives a smaller AIC value, which reaches a better balance between the goodness of fit of data and the simplicity of the
model. The evaluation with independent GPS/leveling data tests the ability of realistic extrapolation of regional models
recovered from different methods, reveals the model called QGNSea V1.0 computed by multilayer approach fits the
local GPS/leveling data better, by the magnitudes of 0.4 cm, 0.9 cm and 1.1 cm in the Netherlands, Belgium and parts
of Germany, respectively, compared to the one recovered from the single-layer approach. Further comparisons with the
existing models show that QGNSea V1.0 has the best performance, which may be beneficial for investigating the

ocean circulation in the North Sea and surrounding oceanic areas.

Future work is needed for further improving the QGNSea V1.0. First, the satellite data (e.g., K-band Range Rate data
and gravity gradients) from GRACE and GOCE missions can be combined with the ground-based gravity data.
However, deeper layers than ones we use to combine surface data may be implemented to incorporate satellite
observations, since these data mainly contribute to low-frequency bands of gravity field. In addition, the stochastic
model may need to be refined. For instance, the effects on the solutions caused by the GGM’s errors may be quantified
if the full error variance-covariance matrix of the spherical coefficients is incorporated into the stochastic model. In

this way, the different data may be more properly weighted, and the solution may be further improved.
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Appendix A: Akaike information criterion

Suppose that we have a statistical model of some data, and the Akaike information criterion (AIC) value of the model

is (Burnham and Anderson, 2002)
AIC = 2k-2In(L) (A1)

where K is the number of estimated parameters in the model, and L is the maximum value of the likelihood function for

the model (Akaike, 1974; Burnham and Anderson, 2002).

For least squares fitting, the maximum likelihood estimate for the variance of a model’s residuals distributions is

9> =RSS /n (A2)

where RSS is the residual sum of squares (RSS), and n is the number of observations.
Then, the maximum value of a log-likelihood function of least square model is (Burnham and Anderson, 2002)

n n A 1
——In(27)—=In(6*) ——
5 (27) 5 @) o

RSS — —gln(RSS /n)+C (A3)

where C is a constant independent of the model.

Combining Eqg.(Al) and Eq.(A3), for least square model, the AIC value is expressed as
AIC =2k +nIn(RSS/n)+C (A4)

Since only differences in AIC are meaningful, the constantC can be ignored, and we can conveniently take
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AIC =2k +nIn(RSS / n) for model comparisons.
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