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Abstract: A multilayer approach is set up for local gravity field modeling recovery based on the ideain the framework 

of multi-resolution representation, where the gravity field is parameterized as the superposition of the multiply layers 15 

of Poisson wavelets located at the different depths beneath the topography merging heterogeneous gravity data. 

Different layers of Poisson wavelets’ grids are formed designed to recover the signals at various levels, where the 

shallow and deep layers mainly capture the short- and long-wavelength signals, respectively. The depths of these layers 

beneath the topography are linked to the locations that the different anomaly sources locate, estimated by the wavelet 

decomposition and power spectrum analysis. For testing the performance of this approach, a gravimetric quasi-geoid 20 

over the North Sea in Europe called QGNSea V1.0 is computed and compared with other existing models. The results 

show that the multilayer approach outperforms fits the gravity data better than the traditionally used single-layer one in 

high-frequency bands, and the former fit the gravity data better, especially in regions with a tendency toward 

topographical variation. A Akaike information criterion (AIC) test demonstrates that the multilayer model gives a 

smaller AIC value, reaches a better balance between the goodness of fit of data and the simplicity of the model. 25 

Moreover, tThe evaluation with independent GPS/leveling data tests the ability of realistic extrapolation of regional 

models computed from different approaches, showing that the accuracies of QGNSea V1.0 modeled from the 

multilayer approach are improved by 0.4 cm, 0.9 cm and 1.1 cm in the Netherlands, Belgium and parts of Germany, 

respectively, compared to the original solution computed from the single-layer approach. Further validation with 
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existing models shows QGNSea V1.0 has the best quality, which may be beneficial for studying the ocean circulation 

between the North Sea and its neighbouring waters. 

1. Introduction 

Knowing of earth’s gravity field at regional scales is crucial for a variety of applications in geodesy. It not only 

facilitates the use of Global Satellite Navigation System to determine orthometric/normal heights in geodesy and 5 

surveying engineering, but also plays a fundamental role in in oceanography and geophysics.   

 

Regional gravity field determination is typically implemented within a framework of remove-compute-restore 

methodology (RCR) (Sjöberg, 2005), where the long-wavelength signals are often recovered by satellite-only global 

geopotential models (GGMs) derived from the dedicated satellite gravity missions, such as the GRACE (Gravity Field 10 

and Climate Experiment) (Tapley et al., 2004) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) 

(Rummel et al., 2002). Middle- and short-wavelength signals are extracted from the locally distributed gravity-related 

measurements (Wang et al., 2012; Wu et al., 2017c). Spherical radial basis functions (SRBFs) are of great interest for 

gravity field modeling at regional scales over years (Eicker et al., 2013; Naeimi et al., 2015). Typically, the 

widely-used SRBFs method is implemented by the so-called single-layer approach, i.e., the parameterization of gravity 15 

field is only based on a single-layer of SRBFs’ grid (Wittwer, 2009; Bentel et al., 2013; Slobbe, 2013; Wu et al., 

2017c). However, one layer of SRBF’s parameterization may be only sensitive to parts of signals’ spectrum and reduce 

the quality of the solution.  

 

 20 

 

It has been suspected for long that if the single-layer approach can extract the full information of local gravity data, 

and the multi-resolution representation (MRR) method with SRBFs has been investigated over the recent years 

Contrary to the single-layer approach, SRBFs are also of special interest for multi-resolution representation (MRR) for 

merging different spectral contents of complementary observations techniques (Freeden et al., 1998; Fengler et al., 25 

2004, 2007). The motivation behind this is the feasibility to compute the signals at different scales independently, and 

the ability to identify the certain geophysical features at the different spectral bands (Wittwer, 2009). Freeden and 

Schreiner (2006) proposed a multi-scale approach based on the locally supported wavelets for determining the regional 
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geoid undulations from the deflections of the vertical. Freeden et al. (2009) demonstrated that the multi-scale approach 

using spherical wavelets provided local fine-structured features such as those caused by plumes, which allowed a 

scale- and space-dependent characterization of this geophysical phenomenon. Schmidt et al. (2005, 2006, 2007) 

developed a multi-representation method for static and spatiotemporal gravity field modeling through SRBFs, where 

the input gravity signals were decomposed into a certain number of frequency-dependent detail signals, and concluded 5 

that this approach could improve the spanning fixed time intervals with respect to the usual time-variable gravity fields. 

Chambodut et al. (2005) set up a multi-scale method for magnetic and gravity field recovery using Poisson wavelets, 

and created a set of hierarchical meshes associated with the wavelets at different scales, where a level of subdivision 

corresponded to a given wavelet scale. Panet et al. (2011) extended the approach developed by Chamboudt et al. 

(2005), and applied a domain decomposition approach to define the hierarchical subdomains of wavelets at different 10 

scales, which allowed to split a large problem into smaller ones. These results show the multi-scale approach with 

SRBFs has a good prospective in gravity field recoverymodeling using heterogeneous data, however, to our knowledge, 

no direct comparisons have been made between the single-layer approach and multi-scale one regarding the 

performances in local gravity field recovery. Besides, the existing multi-scale methods mainly construct the multi-scale 

framework in a mathematical sense, where no explicit geophysical meanings are investigated.. In this study, inspired 15 

by the power spectral analysis of local gravity signals, we develop a new parameterization of SRBFs network in the 

framework of the MRR idea, i.e., the so-called multilayer approach; and the multiply layers are linked to the anomaly 

sources at different depths beneath the topography, which aim at recovering the signals at different levels. In this way, 

the parameterization of multi-scale method can be linked to the different anomaly sources at different depths. 

Moreover, the performances of the multilayer approach and traditionally-used single-layer one are directly compared 20 

in this study, where the advantages and disadvantages of different methods are analyzed.  

However, differing from these methods mentioned above, we propose a multilayer approach, inspired by the power 

spectral analysis of local gravity observations, which indicates the gravity signals are the sum of the contributions 

generated from the anomaly sources that locate at different depths.    

 25 

The structure of the manuscript is as follows: the heterogeneous data in a study area in Europe are firstly described in 

Section 2. Then, the multilayer approach based on the MRR representation is introduced, and the wavelet 

decomposition and power spectrum analysis are applied for estimating the depths of various layers beneath the 

topographyconstructing the networks of Poisson wavelets with the multilayer approach. In addition, we set up the 
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function model based on the multilayer approach is set up, and the method for unknown coefficients of Poisson 

wavelets is introduced and combine the different types of gravity data. We construct the networks of multiply 

layersmultilayer model in section 3, and compare the performances of different approaches. Finally, the gravimetric 

quasi-geoid solution over the North Sea called QGNSea V1.0 is modeled by the multilayer approach and compared 

with other existing models for evaluating the additional values introduced by this approachcross validations. We 5 

summarize the main summaries and conclusions of this study in section 4.   

2. Data and method 

2.1. Study area and data  

A local region in Europe is chosen as a case study, which covers an area of 49°N-61°N latitude and -6°E-10°E 

longitude, including the mainland of the Netherlands, Belgium, and parts of the North Sea, UK, Germany and France. 10 

Point-wise terrestrial and shipborne gravity anomalies are incorporated for testing the approach we developed in this 

study, which were provided by different institutions, see Slobbe et al. (2014). The details for data pre-processing 

procedures can be found inreferred to Wu et al. (2017b2017c), where crossover adjustment and low-pass filter were 

applied to remove systematic errors and reduce high-frequency noise, respectively, and datum transformations were 

performed on all the data. Moreover, the satellite-only reference model called GOCO05s with a full degree and order 15 

(d/o) of 280 (Mayer-Gürr et al., 2015) and RTM corrections were removed from the original observations to decrease 

the signal correlation length and smooth the data within the framework of remove-compute-restore (RCR) framework., 

and tThe details for the RTM reduction and residual gravity data could can be found in Wu et al. (2017b2017c). 

2.2. Multilayer approach 

According to Schmidt et al. (2006, 2007), the multi-resolution representation (MRR) of the Earth’s potential  T z on 20 

position z is expressed as 

       
1

I

i

i

T T t 


  z z z z   (1) 

where  T z is the disturbing potential in this study,  T z means a reference model, e.g., a global geopotential model 

(GGM) computed from spherical harmonics;   z represents the unmodeled signals; I is the number of levels 

(resolutions);  it z is the detailed signal of level i , and the higher the level value i is, the finer are the structures 25 
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extractable from the input data;  it z is computed as the a linear combination of SRBFs (Schmidt et al., 2007) 

   , ,

1

,
iK

i i k i i k

k

t 


 z z y   (2) 

where  , z y is the SRBF, 
iK and

,i k are the number and unknown coefficient of SRBF at level i , respectively, 

and
,i ky is the position of SRBF at this level. 

 5 

We work with the RCR technique, and the reference GGM and RTM corrections are removed from the original data to 

decrease the signal correlation length and smooth the data (Omang and Forsberg, 2000). Then, only the residual gravity 

potential  resT z is parameterized by SRBFs using the MRR approach. Neglecting the unmodeled signals, the residual 

potential is expressed as a series of the detailed signals at different levels when combining Eq.(1) and Eq.(2)   

   , ,

1 1

,
iKI

res i k i i k

i k

T 
 

 z z y   (3) 10 

where i is computed as the difference of the spherical scaling functions with low-pass filter characteristics between 

the consecutive levels i +1 and i , but also can be expressed as the SRBF has the band-limited properties in the 

frequency domain (Schmidt et al., 2007).  In this study,  is chosen as the Poisson wavelet with band-limited 

properties in the frequency domain (Chambodut et al., 2005), and its full definition can be found in Holschneider and 

Iglewska-Nowak (2007).  15 

 

Poisson wavelets can also be identified as the multipoles inside the Earth, and the scales of Poisson wavelets can be 

related linked to their depths, which are the key issues that determine their properties in space and frequency domain 

(Chambodut et al., 2005). The detailed signal at level i  in Eq.(2) can be estimated by a linear combination of Poisson 

wavelets located at a specific depth. Poisson wavelets at depths demonstrate different properties in the frequency 20 

domain, as the depths going shallower, the scales decrease, and their spectrums shift towards the high degrees of the 

spherical harmonics (SH) and become more sensitive to the local features of signals with high-frequency properties, 

and vice versa (Chambodut et al., 2005). These properties are crucial for local gravity field modeling. First, the 
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residual disturbing potential is typically the band-limited signal under within the RCR framework, and Poisson 

wavelets with band-pass filter characteristics are preferable for band-limited signal recovery (Bentel et al., 2013). 

Moreover, Poisson wavelets at different depths can be linked to the detailed signals at various levels, which are 

sensitive to different spectral contents of input signals, and could can be used for multi-resolution representation.  

 5 

Rather than using the name of MRR, we interpret Eq.(3) as the multilayer approach considering Poisson wavelets at 

different depths have various characteristics, and the different layers are corresponding to the Poisson wavelets’ grids 

at various depths. We place Poisson wavelets are placed on the Fibonacci grids under the topography, and keep these 

grids are also kept parallel with the topography (Tenzer et al., 2012). Instead of associating the Poisson wavelets at 

different depths to the hierarchical meshes with various levels (Chambodut et al., 2005), we apply a wavelet analysis 10 

approach to estimate the depths of multiply layers, inspired by the power spectrum analysis of the residual gravity field. 

The power spectrum analysis of local gravity signals show The green curve in Figure 1 shows the radially averaged 

power spectrum of the local gravity field using the data mentioned in sect. 2.1, the slopes of which change in different 

frequency bands (see the red straight lines), indicating the gravity signals are the superposition superstition of the 

contributions generated from the anomaly sources at different depths; and the signals originated from different 15 

anomaly sources have heterogeneous spectral contents (Spector and Grant, 1970; Syberg, 1972; Xu et al, 2018). Since 

Poisson wavelets at different depths are sensitive to signals with heterogeneous frequency characteristics, and we put 

Poisson wavelets’ grids at the locations where the anomaly sources situate. In this manner, the contributions from the 

anomaly sources at various depths can be estimated by different layers.     

 20 

Figure 1. Power spectrum analysis of local gravity field. The green curve is the radially averaged power spectrum, and 

the red straight lines represent the slopes of the spectrum in different frequency bands 

 

In order to separate the contributions stemmed from different anomaly sources, the wavelet multi-scale analysis, which 

is an excellent approach to extract the signals at different scales, is applied to decompose the gravity data g  into 25 

wavelet approximation WA  and a number of wavelet details wD ( 1,2,3, ),w W at different scales (Jiang et al., 

2012; Audet, 2013; Xu et al., 2017) 
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1

W

W w

w

g A D


     (4) 

where W is the maximum order for decomposition, WA  is the regional anomaly caused by deep and large-scale 

geological bodies, and w
D  is the local anomaly originated from shallow and small-scale heterogeneous substances. 

Wavelets analysis generates low-order wavelet details that are invariant with the decomposition order, and only the 

high-order wavelet details and corresponding wavelet approximation change with the decomposition order. Based on 5 

this property, we can choose the proper decomposition order to derive the desirable solutions. 

 

The decomposed signals reveal the features of geological bodies, the average depths of which can be estimated from 

the power spectral analysis (Spector and Grant, 1970; Syberg, 1972; Cianciara and Marcak, 1976; Xu et al., 2018) 

ln1
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
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
  (5) 10 

where wh is the average depth of anomaly source corresponding to wavelet detail wD ; ln w

kP is the logarithmic power 

spectrum of wD ; ln w

kP  and wk are the change rates for ln w

kP and radial wave number wk , respectively. 

 

In this study, tTerrestrial and shipborne gravity anomalies are merged for modeling. Gravity anomalies g  and 

quasi-geoid height  are related to the disturbing potential based on the multilayer approach as follows: 15 
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where  is the normal gravity value. 
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We suppose the observational errors are white noises with zero mean, and the gravity field model using the multilayer 

approach is written as the standard Gauss-Markov model 

2 2 1, { } 0, D{ } , 1,2, ,j j j j j j j j j jE j J        l e A x e e C Q P   (7) 

where x is the 1K  vector of unknown coefficients, including the unknown parameters of Poisson wavelets from of all 5 

the layers, i.e., 
1 21,1 1,2 1, 2,1 2,2 2, ,1 ,2 ,, , , , , , , , , , , ,

IK K I I I K        
   x , and

1 2 IK K K K    ; 

jA is the 
jm K  design matrix of group j , 

jl is the 1jm   corresponding observation vector, 
je is the 

1jm  vector of corresponding stochastic errors, and 
jm is the number of observations in group j , and J  is the 

number of observation groups. {}E and {}D are the expectation and dispersion operators, respectively. 
jC is the 

error variance-covariance matrix of group j , and 
2

j ,
jQ and

jP are the variance factor, cofactor matrix, and weight 10 

matrix of group j , respectively. 

 

Data in different groups are assumed to be independent, and the weight matrix
jP is supposed to be the scaled diagonal 

matrix with white noise properties since it is usually difficult to acquire the realistic full error variance-covariance 

matrix in real-life measurements. Point-wise data can be directly combined for modeling through the functional 15 

described above. However, the heterogeneous characteristics for of the data, in terms of spatial coverages and noise 

properties, may result in an ill-conditioned normal matrix (Panet et al., 2011). We apply the first-order Tikhonov 

regularization for tackling the ill-conditioned problem (Kusche and Klees, 2002; Wu et al., 2017a). For a 

given (regularization parameter) and (regularization matrix), the least-squares solution of Eq.(7) is (Klees et al., 

2008): 20 
1

2 2
1 1

1 1
ˆ

J J
T T

j j j j j j

j jj j


 



 

      
             

      
 x A P A A P l   (8) 

 

Moreover, we use the Monte-Carlo variance component estimation (MCVCE) to estimate the appropriate variance 
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factors of various different observation groups and the regularization parameter (Koch and Kusche, 2002; Kusche, 

2003; Wu et al., 2017c).  

3. Numerical results and discussion 

3.1. Wavelet analysis of local gravity signals 

In order to determine the depths of different layers, the residual gravity data are decomposed into the signals at 5 

different scales based on wavelet analysis. The spline interpolation is used to compute the gridded data for wavelet 

decomposition., and Coif3 basis functions are chosen for wavelet decomposition (Xu et al., 2017). The preliminary 

maximum order for wavelet decomposition is arbitrarily chosen to some extent, however, since the low-order details 

are invariant with the increase of decomposition order, we can preliminarily choose a predefined order and implement 

the wavelet decomposition, and analyze the derived details. If there are still details that are useful for constructing the 10 

multilayer model haven’t been separated, we need to increase the decomposition order until all the useful details have 

been extracted; otherwise, we truncate to a specific order, and compute the wavelet details and approximation to 

construct the multiply layer’s parameterization. By trial and errors, the preliminary order for decomposition is chosen 

as nine, and Figure 1 shows the derived wavelet details (the corresponding statistics are provided in Table 1), where the 

maximum order for decomposition is preliminarily chosen as ten. With the increase of decomposition order, more 15 

long-wavelength features show upoccur. More specifically, the low-order details demonstrate the high-frequency 

signals stemmed from the shallow and small-scale substances;. wWhile, the high-order ones with long-wavelength 

patterns reflect the anomalies caused by deep and large-scale geological bodies. It is noticeable that the 1st- and 

2nd-order details (i.e.,
1D and 2D ) are seems dominated by the high-frequency signals correlate strongly with the local 

topography (the local digital terrain model (DTM) could can be found seen in Figure 1 in Wu et al., 2017b(2017c)). We 20 

mainly attribute this to the uncorrected topographical signals in RTM corrections, which is mainly due to the 

inaccuracy of the density parameters in RTM corrections and limitations of DTM both in terms of spatial resolution 

and precision. As a result, the small-scalehigh-frequency signals originated from local topography variation cannot 

thoroughly recovered from RTM reduction, and consequently, the uncorrected signals leak into the 1st- and 2nd-order 

details. However, these signals are of small magnitude (see Table 1)To avoid these high-frequency errors propagating 25 

into the final solution, and we neglect the first these two wavelet details for in designing the multiply layers’ networks 

to avoid the adverse impacts introduced by these high-frequency noises. Moreover, with the order increasing to nine 
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and larger, we notice 9D  and
10D obviously reveal the large-scale signals with the wavelengths of hundreds of 

kilometers. Given that the mean distance between the data in this target area is approximately several kilometers and 

the spatial resolution of the applied GGM (i.e., GOCO05S) is roughly 72 km, the spectral contents of the residual 

signals need to be recovered is roughly between several kilometers and tens of kilometers within the RCR framework, 

i.e., approximately between degree 250 to 3000 in terms of spherical harmonics’ representation. While, the spectral 5 

contents of the 9th- and 10th-order details exceed the frequency bands of the signals need to be recoveredmodeled, and 

the maximum order for wavelet decomposition is truncated to eight. In this manner, the third- to eighth-order ( 3D - 8D ) 

wavelet details and the final wavelet approximation ( 8A ) (see the information in Figure 2 and Table 2) are applied for 

constructing the multilayer modelmultiply layers’ networks, which are consists of seven layers at various depths. 

Different layers are sensitive to signals with heterogeneous frequency characteristics, and shallow and deep layers 10 

mainly capture the short- and long-wavelength signals, respectively. 
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Figure 1. Wavelet details at various scales. (a)
1

D , (b)
2

D , (c)
3

D , (d)
4

D , (e)
5

D , (f)
6

D , (g)
7

D , (h)
8

D , and (i)
9

D .and 

(j)
10

D  
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Table 1. Statistics of various different wavelet details (units: mGal) 

 max min mean sd 

1
D  2.23 -2.78 0.00 0.20 

2
D  4.52 -5.57 0.00 0.32 

3
D  19.27 -16.26 0.00 2.30 

4
D  21.71 -17.46 0.00 3.18 

5
D  15.38 -16.47 0.00 3.80 

6
D  10.60 -9.72 0.00 2.75 

7
D  4.43 -3.33 0.00 0.95 

8
D  1.23 -1.52 0.00 0.34 

9
D  0.66 -0.45 0.00 0.18 

 

Figure 2. Wavelet approximation
8

A . 
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Table 2. Statistics of wavelet approximation (units: mGal). 

max min mean sd 

0.83 -1.70 -0.41 0.32 

 

3.2. Key parameters of Poisson wavelets  

The order of Poisson wavelets is fixed at 3 to achieve a good compromise between the localization in space and 

frequency domain (Panet et al., 2011). In addition, the depth and number of Poisson wavelets are the crucial points 5 

affecting the solution quality (Klees et al., 2008). Poisson wavelets belong to different layers are placed on the 

Fibonacci grids at various depths beneath the topography, and the power spectrum analysis is applied to estimate the 

depths. As shown in Figure 3, the green curves show the radially averaged logarithm power spectrums for of the 

signals of at different scales, and the red straight lines represent the slopes of the spectrums, indicatinge the depths of 

corresponding layers. The red lines represent rates of change for logarithmic power relative to wave number, estimated 10 

by a autoregressive method; and the starting point and terminal point of the red lines are the inflection points of the 

curves, recognized according to the trend of the curves (Xu et al., 2018).  The layers go deeper as the scales increase, 

and the shallow layers reflect the small-scale signals, while the deep ones recover the long-wavelength information. 

Table 3 provides the estimated depths for of different layers, which are limited between 45 km and 61 60 km. The 

shallowest layer locates 5.74.5 km underneath the topography, while the depth of the deepest one is approximately 15 

estimated as 60.2 59.2 km. It is noticeable that the thickness of sediments in this target area is approximately 2~4 km, 

and the thickness of the upper-middle crust is roughly 15~20 km (Artemieva and Thybo, 2013). Thus, the first four 

layers (layer1, layer2, layer3 and layer4) locate between the sediments and upper-middle crust, and the corresponding 

wavelet details (
3

D ,
4

D ,
5

D and
6

D ) display as the small-scale patterns due to the highly heterogeneous structure of the 

crust. The distributions of 
3

D  and 
4

D  (with the average depths of 4.5 km and 9.2 km, respectively) on land are 20 

more dispersed than that in the ocean, demonstrate that the tectonic structure underneath the land is more complex than 

that beneath the ocean in the upper crust. Moreover, the gravity anomalies in the northern of North Sea are more 

dispersed than those in the central and southern of North Sea, which is consistent with that the Viking Graben and 

basin are located in the northern and southern of North Sea, respectively, e.g., see Fichler and Hospers (1990), and 

Blundell et al. (1991). The mean source depths of 
5

D  and 
6

D  are 13.7 km and 19.6 km, respectively, correspond to 25 
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the depths of the middle crust. The gravity anomalies during these two layers present apparent positive-negative 

alternating patterns, which may be interpreted as the crustal shearing and extrusion (Blundell et al., 1991; Ziegler and 

Dèzes, 2006). While, the last three layers (layer5, layer6, and layer7) are supposed to be located between the Moho 

surface and upper mantle considering the Moho depth in this region is approximately 25~30 km (Grad and Tiira, 2009), 

and the corresponding details (
7

D ,
8

D and
8

A ) become smoother and more long-wavelength signals show upoccur. 5 

7
D  with the mean source depth of 27.0 km primarily reflects the Moho undulation. The distribution of 

positive-negative alternating gravity anomalies in 
7

D  is nearly south-north oriented, which is in agreement with the 

features of the Moho relief in this area (Fichler and Hospers, 1990; Ziegler and Dèzes, 2006). The average source 

depths of 
8

D  and 
8

A  are 32.3 km and 59.0 km, respectively, correspond with the depth of the upper mantle, indicate 

that the density distribution of the upper mantle is relatively smooth. Overall, these decomposed gravity anomalies can 10 

reveal the tectonic structure of study area at different depths. 
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Figure 3. Power spectrum analysis of various wavelet signals. (a)
3

D , (b)
4

D , (c)
5

D , (d)
6

D , (e)
7

D , (f)
8

D , and (g)
8

A . 

The green curves are the radially averaged logarithm power spectrums, and the red straight lines  represent rates of 

change for logarithmic power relative to wave number.represent the slopes of the spectrums. 

 5 
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Table 3 Depths of multiply layers beneath the topography (Units: km). 

layer1 4.5 

layer2 9.2 

layer3 13.7 

layer4 19.6 

layer5 27.0 

layer6 32.3 

layer7 59.2 

 

As mentioned above, different layers are constructed designed to recover the wavelet details and approximation signals 

with various spectral contentsat different scales, and a trial-and-error approach is used to estimate the number of 

Poisson wavelets offor each layer (Wittwer, 2009). For a specific layer with the fixed depth, we predefine different 5 

number of Poisson wavelets to form a certain number of Fibonacci grids. Then, the signals reconstructed from these 

grids are compared with the true values, i.e., ones derived from wavelet decomposition, and the parameter that derives 

the smallest differences between the modeled and true signals is consider as the optimal one. By trail and errors, the 

spatial resolutions of Fibonacci grids (mean distance between Poisson wavelets) are changed from 20 to 14 km with a 

step of 1 km. Table 4 shows the accuracies of the solutions derived from different Fibonacci grids for of various 10 

multiply layers, and we take the situations of the first layer for instance. With more the increase of Poisson wavelets, 

the SD value of the differences between the reconstructed and true signals decreases gradually to 0.10 0.12 mGal when 

the spatial resolution of the grid increase to 16 km. Since then, no significant improvements show upoccur with 

incorporating more Poisson wavelets. Moreover, introducing more Poisson wavelets increases the overlapping between 

them, which may lead to the highly-conditioned normal matrices, and the associated heavy regularization may 15 

decrease the solution quality (Wu et al., 2017a2017b). The optimal mean distance between Poisson wavelets of the 

first layer is estimated as 16 km. Similarly, the spatial resolutions for the rest layers can be determined in this way, see 

Table 4. 

 

 20 

Table 4 Accuracies of solutions derived from different various Fibonacci grids with various spatial resolutions for of 
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different layers (Units: mGal). 

 20 km 19 km 18 km 17 km 16 km 15 km 14 km 

layer1 0.43 0.34 0.21 0.16 0.12 0.12 0.12 

layer2 0.52 0.43 0.33 0.25 0.19 0.16 0.16 

layer3 0.58 0.40 0.28 0.19 0.16 0.14 0.14 

layer4 0.55 0.39 0.29 0.26 0.15 0.13 0.13 

layer5 0.38 0.26 0.17 0.14 0.10 0.10 0.10 

layer6 0.22 0.16 0.12 0.10 0.08 0.08 0.08 

layer7 0.11 0.09 0.08 0.06 0.06 0.06 0.06 

 

3.3. Regional solution and its validation 

For regional gravity field recovery, pPoint-wise terrestrial and shipboard gravity anomalies are merged for 

modelingcombined. Since there are no accurate information for terrestrial and shipboard data, we assume the 5 

accuracies of 2 mGal for both of these two types of data, and the posterior variance factors of different observation 

groups are estimated from MCVCE method. The weights of different observation groups, indicate their relative 

contributions, and play a key role in data combination. The estimated variance factors for terrestrial and shipboard 

gravity data are approximately 1.45 mGal and 1.30 mGal through the MCVCE method, respectively, when we model 

the local gravity field based on the multilayer approach. For terrestrial data, the estimated accuracy is in good 10 

agreement with that derived by Klees et al. (2008), i.e., 1.48 mGal for parts of the Netherlands. However, it is difficult 

to judge whether this estimate is realistic in other regions because of a lack of accuracy information. While, for 

shipboard data, the computed value of 1.30 mGal is smaller than the results of crossover adjustments, where the 

standard deviation for the residuals at the crossovers was approximately estimated as 2.0 mGal (Slobbe, 2013). 

However, this value may be too optimistic considering much of the shipborne data were collected decades ago without 15 

GPS navigation. The first-order Tikhonov regularization is used to tackle the ill-conditioned problem (Kusche and 

Klees, 2002; Wu et al., 2017b), and the convergent regularization parameter is approximately 
5

0.5 10


 estimated 

from the MCVCE method; the details for regularization parameter estimation and comparisons with different methods 

can be referred to Wu et al. (2017b).  

 20 
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The performance of the traditionally-used single-layer is also investigated for comparison, and the parameterization of 

local gravity field based on the single-layer approach can be seen in, e.g., Klees et al. (2008) and Slobbe (2013). By 

trial and errors, the single layer of Poisson wavelets’ grid is located 40 km beneath the topography, and the mean 

distance between Poisson wavelets is defined as 8.7 km (Wu et al., 2016). Figure 4 shows the normalized spectrums 

for different approaches. Considering the frequency range of the signals to be recovered in the target area is 5 

approximately between degree 250 to 3000 in spherical harmonics’ representation, we note the single-layer approach is 

only sensitive to parts of the signals’ spectrum, i.e., approximately between degree 300 to 1200 if we suppose half of 

the maximum value of the normalized spectrum is the criterion for determining whether it is sensitive or not within a 

specific frequency band. However, for the high-frequency band between degree 1200 to 3000, this approach is less 

sensitive. On the contrary, the multilayer approach effectively covers the spectrum of the local gravity signals, which is 10 

both sensitive to the low- and high-frequency bands. Figure 5 provides the residuals of data after least squares 

adjustment using different methods, showsing the residuals derived from the multilayer approach reduce significantly 

in the whole region compared with ones obtained from the single-layer approach, especially in western parts of UK, 

south of Norway, and southwest of Germany, where the high-frequency signals correlated with local topography 

dominate the features of regional gravity field. We also find the improvements occurring in the ocean parts, especially 15 

in waters around the English Channel, Irish Sea, northwest of North Sea, and Atlantic Ocean close to northwest UK. 

The statistics in Table 5 displays the standard deviation (SD) value for the residuals of terrestrial (shipborne) gravity 

anomalies decreases by 0.39 mGal (0.36 mGal) when the multilayer approach is used. These results are reasonable 

since the multilayer approach contains several layers shallower than 40 km, and the spectrums of these layers shift to 

the high-frequency bands. As a result, the spectrum of the multilayer approach is more sensitive to signals with 20 

high-frequency properties, and consequently, demonstrate that the multilayer approach can more accurately recovers 

the local high-frequency signals can be better fitted by the multilayer approachthan the single-layer one. The main 

reason is that the spectrum of the multilayer method covers the whole spectral contents of the regional gravity signals, 

which is more sensitive to the high-frequency signals. The statistics in  displays the SD value for the residuals of 

terrestrial (shipborne) gravity anomalies decreases by 0.30 mGal (0.34 mGal) when the multilayer approach is used. It 25 

is also worth to mention that the analysis of data residuals can’t be treated as the only criteria for justifying the 

performances of different approaches, since these gravity data have been used for modeling purpose, and the SD values 

of data residuals should be regarded as the internal agreement. Besides, due to the limitation of the accuracies of 

gravity data, we can’t make conclusions too firmly only depends on the analysis of data residuals. One may also argue 
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that it may be possible to derive lower data residuals if we put the Poisson wavelets’ grid shallower when the 

single-layer approach is used. However, we believe a shallower single grid may reduce the data residuals, but may not 

derive a better solution when validated against the independent control data, see the detailed discussions in Wu et al. 

(2016). In the following part, we introduce another high-quality independent data set, i.e., GPS/leveling data, for 

external validation, which give us more confidences with respect to the performances of different methods.  5 

 

It is also of interest to implement a Akaike information criterion (AIC) test for different models. Although, the 

multilayer model fits the gravity observations better, but it also increases the level of estimated parameters. AIC 

rewards the goodness of fit of data, but also includes a penalty with the increasing of the number of estimated 

parameters. In other words, it deals with the trade-off between the goodness of fit of the model and the simplicity of 10 

the model. AIC value is an estimator of the relative quality of statistical models for a given set of data, providing a 

means for model selection, and the model that gives the minimum AIC value may be more preferable (Akaike, 1974; 

Burnham and Anderson, 2002). The definition for the AIC value can be seen in Eq.(A1) in the Appendix. Since we 

model the gravity field in the framework of least squares system, we can simply take 2 ln( / )AIC k n RSS n  for 

model comparision, where k is the number of estimated parameters in the model, n is the number of observations, 15 

and RSS is the residual sum of squares (RSS), see the details in the Appendix. In this study, the number of point-wise 

gravity observations used for modeling is 894649, and the numbers of estimated parameters in the multilayer and 

single-layer model are 47504 and 19477, respectively. The RSS values for the multilayer and single-layer model are 

computed as 
5 2

108.8527 mGal and 
6 2

101.3296 mGal , respectively, based on the data residuals after the least 

squares adjustment. Then, the AIC values for the multilayer and single-layer model are estimated as 85581 and 393400, 20 

respectively. Based on these statistics, we notice that the multilayer model gives a smaller AIC value, which may be 

more preferable since it reaches a better balance between the goodness of fit of data and the simplicity of the model. 
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Figure 4. Normalized spectrums for (a) single-layer and (b) multilayer approach. 

 

 

To test the ability of realistic extrapolation of different regional models recovered from various methods, which is 5 

actually comparing the predicted values derived from the regional model (e.g., model computed from the multilayer or 

single-layer approach) and ones derived from independent survey/measurements, we introduce GPS/leveling data in 

the Netherlands (534 points), Belgium (2707 points), and parts of Germany (213 points) are used as the independent 

validation data., These data are provided in terms of geometric quasi-geoid heights derived from the high-quality GPS 

measurements and leveling survey, and the overall estimated accuracy of these observed quasi-geoid heights is 10 
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approximately at 1 cm level. It is worth to mention that these GPS/leveling data are not combined for modeling, and 

their three dimensional coordinates don’t coincide with the positions of gravity data. For validating different models 

with GPS/leveling data, we need to reconstruct the regional model based on the computed Poisson wavelets’ 

coefficients and coordinates of GPS/leveling points (see Eq.(6)), and compute the gravimetric quasi-geoid heights at 

these points, which are ones predicted from the regional model. Then, we compute the standard deviation (SD) of the 5 

point-wise difference between GPS/leveling data and the gravimetric quasi-geoid height derived from the regional 

approach, which is actually external validation. and tThe validation results demonstrate the discrepenciesy between the 

GPS/leveling points and quasi-geoid heights derived from the multilayer approach decrease substantially compared 

with ones computed from the single-layer approach, see Figure 6. The most prominent improvements occur in the 

northwest of Belgium, west of Germany, and eastern parts of Netherlands, which are in good agreement with the 10 

results for the gravity data residuals analysis demonstrated in Figure 5. As shown in Table 6, the accuracies of 

gravimetric quasi-geoid derived from the multilayer approach are improved by 0.4 cm, 0.9 cm and 1.1 cm in the 

Netherlands, Belgium and parts of Germany, respectively. Moreover, the mean values indicate that the solution with 

computed from the multilayer approach also further reduces the biases between gravimetric solution and local 

GPS/leveling data, with the magnitude of 0.8 cm, 0.7 cm, and 1.1 cm in these three regions, respectively, compared to 15 

the one modeled from the single-layer approach. From these results, we can see that the multilayer approach not only 

leads to a reduction for the data residuals, but also derives a better solution assessed by the independent control data, 

compared to the single-layer approach. For constructing the multilayer model, we consider that the gravity signals are 

the sum of the contributions generated from the anomaly sources, and different layers are designed for recovering these 

contributions with heterogeneous spectral contents. As a result, the spectrum of multilayer approach is sensitive to the 20 

frequency bands of local gravity signals, both in low- and high-frequency bands, and the local signals may be better 

recovered. Based on the evaluation results, we conclude the multilayer approach proposed in this study outperforms 

the traditionally-used single-layer method, which maybe more preferable in gravity field modeling using 

heterogeneous data. We also notice that there are still biases between the regional gravimetric solutions and local 

GPS/leveling data, see the mean values in Table 6, which are mainly due to the commission errors in the GGM and 25 

uncorrected systematic errors in the local gravity data and leveling systems (Fotopoulos, 2005). Generally, 

corrector-surface (Fotopoulos, 2005; Nahavandchi and Soltanpour, 2006) or more complicated algorithms, like least 

squares collocation (Tscherning, 1978), boundary-value methodology (Klees and Prutkin, 2008; Prutkin and Klees, 

2008), and a direct approach (Wu et al., 2017a), can be applied to reduce the systematic errors and properly combine 
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GPS/leveling data and gravimetric solution. However, since the target for this study is to develop a multilayer 

approach for gravimetric quasi-geoid modeling, which is served as a basic surface for further geophysical applications, 

e.g., study the ocean circulation and structure of lithosphere; while, after implementing these methods for combining 

local GPS/leveling and gravimetric model, the derived quasi-geoid is not purely gravimetric. Besides, we only have the 

well distributed GPS/leveling data in the limited region, i.e., in Netherlands, Belgium, and parts of Germany, while in 5 

other regions, no high-quality control data are available. If we use the locally distributed GPS/leveling data for 

removing these systematic errors and computing the combined quasi-geoid, the final solution may be distorted in other 

regions, especially in the ocean parts, since no control data in these regions have been combined. Thus, we don’t 

implement these methods mentioned above for computing the combined quasi-geoid. In following study, we use the 

gravimetric model derived from the multilayer approach, which is hereafter denoted as QGNSea V1.0 (quasi-geoid 10 

over the North Sea version 1.0).  

 

Figure 5. Residuals of gravity data derived from (a) single-layer and (b) multilayer approach. 

 

 15 
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Table 5 Statistics of the residuals of gravity data computed from different approaches (units: mGal). 

  max min mean sd 

Single-layer approach 
Terrestrial 19.58 -16.91 0.00 1.45 

Shipborne 11.91 -17.38 0.00 1.07 

Multilayer approach 
Terrestrial 16.96 -14.90 0.00 1.06 

Shipborne 9.25 -15.96 0.00 0.71 

 

 

Figure 6. Differences between GPS/leveling data and gravimetric quasi-geoids computed from (a) single-layer and (b) 

multilayer approach. 5 

Table 6 Evaluation of quasi-geoids modeled from different approaches (Units: cm). 

  max min mean sd 

Single-layer approach 

Netherlands 5.9 0.1 3.8 1.2 

Belgium 1.2 -13.1 -3.5 2.8 

Germany 1.2 -11.2 -3.6 2.9 

Multilayer approach 

Netherlands 4.8 0.0 3.0 0.8 

Belgium 1.2 -6.8 -2.8 1.9 

Germany 1.0 -6.7 -2.5 1.8 
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QGNSea V1.0 is compared with a regional model called EGG08 (Denker, 2013) and other two four recently published 

high-order GGMs, i.e., EGM2008 (d/o 2190) (Pavlis et al., 2012),  and EIGEN-6C4 (d/o 2190) (Förste et al., 2014), 

GECO (d/o 2190) (Gilardoni et al., 2015), and SGG-UGM-1 (d/o 2159) (Liang et al., 2018), for cross validationfurther 

comparisons. The reason for choosing these four GGMs for comparisons is that these models have relatively higher 5 

spatial resolutions and better accuracies compared to most of other available GGMs, see the information in 

http://icgem.gfz-potsdam.de/home. EGG08 is a regional gravimetric quasi-geoid model in Europe, which was 

recovered by stokes integral based on locally distributed gravity data. This model is provided in terms of gridded data 

instead of spherical harmonics, the space resolution of which is 1′ in latitude and 1.5′ in longitude, respectively 

(Denker, 2013). While, the rest four models are global geopotential models provided in terms of spherical harmonics, 10 

and EGM2008 was computed by merging GRACE measurements, terrestrial, altimetry-derived, and airborne gravity 

data. Since no GOCE data have been incorporated for developing EGM2008, and the recently published GGMs have 

been developed by combining GOCE data, which is supposed to improve the gravity field in the frequency bands 

approximately from degree 30 to 220 in spherical harmonics representation (Gruber et al., 2010). EIGEN-6C4 was 

computed by combining GRACE, GOCE, and terrestrial gravity data and other data sets;  GECO was computed by 15 

incorporating the GOCE-only TIM R5 (d/o 250) solution into EGM2008, and SGG-UGM-1 was computed by the 

combination of EGM2008 gravity anomalies and GOCE gravity gradients and satellite-to-satellite tracking data. 

Differences between QGNSea V1.0 and other models are shown in Figure 7 (the boundary limits for the area are 

contracted by 0.5° in all the directions to reduce edge effects),, the magnitude of which reaches decimeter level. For 

EGG08, we note the most prominent differences appear in eastern parts of the Irish Sea and center of Germany. 20 

Different data pre-processing procedures and methods for parameterization partly account for these differences, e.g., 

QGNSea V1.0 is recovered from the multilayer approach using Poisson wavelets and proper weights for different 

observation groups are estimated through MCVCE; while the spectral combination technique and spectral weights 

were implemented in EGG08 for merging heterogeneous data (Denker, 2013). Larger differences are observed 

between QGNSea V1.0 and these four GGMs, and For EGM2008/EIGEN-6C4, remarkable differences show in 25 

southern  of Norway, northern of the North Sea, eastern of the Irish Sea, and northwest of Germany;. besides Apart 

from the applications of different techniques for modeling, these differences are partly interpreted as the additional 

signals introduced by QGNSea V1.0, stemming from the incorporation of more high-quality gravimetry gravity data. 

The evaluation results with GPS/leveling data displayed in Figure 8 and Table 7 show the gravimetric quasi-geoid 

http://icgem.gfz-potsdam.de/home


25 
 

inversed from the multilayer approach has the best quality, especially in the north of the Netherlands and western and 

eastern parts of Belgium, and the accuracies for QGNSea V1.0, EGG08, EGM2008 and EIGEN-6C4 are 1.6 cm, 2.2 

cm, 2.6 cm and 2.7 cm, respectively, when comparing with all the GPS/leveling data in the target area (see ). The SD 

value of the misfit between the GPS/leveling data and QGNSea V1.0 is 1.5 cm, while this value increases to 2.2 cm 

when EGG08 is validated. In contrast, the accuracies of these four GGMs are slightly worse than EGG08, which are 5 

approximately at 2.6 cm levels. Compared to these GGMs, tThe added values introduced by the local high-quality data 

lead to the primary improvements of QGNSea V1.0, which mainly contribute to the fine structures at short-wavelength 

bands. Moreover, the improvements in the frequency bands that GOCE data contribute may be also the reasons, since 

EGM2008/EGG08 was developed without GOCE data. We find that these four GGMs have the comparable accuracies, 

where the ones developed by combining GOCE data and EGM2008 (i.e., GECO and SGG-UGM-1) don’t have better 10 

performances than EGM2008, and SGG-UGM-1 even has the slightly worse performance than EGM2008, which is 

especially prominent in the eastern parts of Belgium, however, the possible reasons need further investigation. We also 

notice that a new Europe gravimetric quasi-geoid called EGG2015 has been computed, where the GOCE-derived 

GGMs were used as the reference models (Denker, 2015). However, this model is not publicly available, and its 

performance can’t be assessed in this local region.       15 
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Figure 7. Difference between QGNSea V1.0 and (a) EGG08, (b) EGM2008, (c) EIGEN-6C4, (d) GECO, (e) 

SGG-UGM-1. Note that the mean differences are removed. 
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Figure 8. Evaluation of the various quasi-geoids. (a) QGNSea V1.0, (b) EGG08, (c) EGM2008, (d) EIGEN-6C4, (e) 

GECO, (d) EIGEN-6C4and (f) SGG-UGM-1. Note that the mean differences are removed. 

Table 7. Statistics of accuracy of various quasi-geoids. (units: cm). Note that the mean differences are removed. 

 max min sd 

QGNSea V1.0 5.2 -3.9 1.5 

EGG08 7.8 -9.4 2.2 

EGM2008 8.4 -10.0 2.6 

EIGEN-6C4 9.0 -11.9 2.7 

GECO 8.3 -12.8 2.6 

SGG-UGM-1 8.8 -12.7 2.7 

 5 

For further comparisons, a high-resolutionwe compute the local mean dynamic topography (MDT) over the target 
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region is derived using QGNSea V1.0, which illustrates the departure of the mean sea surface (MSS) from the 

quasi-geoid/geoid (Becker et al., 2014; Bingham et al., 2014). is compared with an existing model called DTU13MDT 

with the spatial resolution of 1′×1′ (Figure 10 (b))We compute the MDTs in a geodetic way, and the raw MDTs are 

computed as the differences between MSS and local geoid/quasi-geoid models, and the derived MDTs are further 

smoothed with a Guassian filter to suppress the small-scale signals that can’t be resolved from the MSS or local 5 

geoid/quasi-geoid (Andersen et al., 2013). DTU13MSS from 1993-2012 is chosen as the MSS, and this model is 

provided as the gridded data, with the spatial resolution of 1′×1′ (Andersen et al., 2013). Considering QGNSea V1.0 

and EGG08 have better performances than other models compared with local GPS/leveling data, we only compute the 

local MDTs based on these two gravimetric quasi-geoids. Similar as the methods for computing DTU13MDT 

(Andersen et al., 2013), the local MDT is computed in a purely geodetic way, where DTU13MSS and QGNSea 10 

V1.0/EGG08 are directly combined to obtain the raw MDT. Then,, and a Gaussian filter with a correlation length of 

675 km is further applied to smooth the derived MDT, considering the small-scale signals that have the wavelengths 

shorter than several kilometers can’t be recovered from the local gravity data, since the mean distance between gravity 

data is approximately at 6~7 km level. The modeled MDTs based on QGNSea V1.0 and EGG08 are denoted as  

called MDTNS_QGNSeaNSeaMDT and MDTNS_EGG08, respectively (Mean dynamic topography over the North 15 

Sea),  is displayed insee Figure 9 (a), showinging in good agreement with DTU13MDT each other in most areas over 

the North Sea.  Although the misfit between QGNSea V1.0 and EGM2008 reaches several centimeters in the North 

Sea (see  (c)), the applied Gaussian filter seems attenuates these differences and consequently, these two MDTs 

demonstrate similar structures in the spatial domain. Prominent signals like the Norwegian coastal currents can be seen 

in these two MDTs, also see e.g., Idžanović et al. (2017), although the signals observed in MDTNS_QGNSea don’t 20 

provide a full picture of Norwegian coastal currents due to the limited data coverage in Norway and its neighbouring 

ocean areas. While, in other areas of the North Sea, the MDTs show quite smooth patterns, indicate the small change in 

sea surface topography, which is consistent with Hipkin et al. (2004). It is also worth noting that observable differences 

appear between these MDTs, especially in the northern parts of the North Sea and east parts of the Irish Sea. The 

geostrophic velocities in Figure 11 indicate the geostrophic surface currents are rather smooth in the North Sea, where 25 

the SD values for the zonal (meridian) components are approximately 1.96 cm/s (1.86 cm/s) and the absolute values 

for both the zonal and meridian components are within 8 cm/s in the open sea areas. However, extreme values are 

observed surrounding most offshore areas, e.g., see the features over the offshore regions closed to The Wash (around 

0.5°W and 53°N) and Thames estuary (around 1°W and 51.5°N) in England, and along the coastal areas of France, 
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Netherlands, and Germany, which are typically identified as errors (Hipkin et al., 2004). The problems for computing 

geodetic MDTs in offshore regions are twofold. First, the quasi-geoid/geoid is poorly modeled in coastal areas due to 

the unfavorable data coverage, and data inconsistencies are usually observed when combining land and marine gravity 

surveys. Moreover, the quality of altimetry data is dramatically reduced near the offshore areas, and associated errors 

in the derived MSS propagate into the final MDT (Andersen et al., 2013). However, airborne gravity measurements 5 

provide a seamless way for gravity measurements over land and seas, which may allay this situation (Andersen and 

Knudsen, 2000). Similar results can also be found in Hipkin et al. (2004).  

 

 

Figure 9. Different geodetic MDTs in North Sea. (a) MDTNS_QGNSea; (b) MDTNS_EGG08. For all profiles the 10 

mean value has been removed. 

4. Conclusions 

A multilayer approach is developed for gravity field recovery at regional scales from heterogeneous data based on the 

ideain the framework of multi-resolution representation, where the residual gravity field is parameterized as the 

superposition of the multiply layers of Poisson wavelets’ grids located at the different depths beneath the topography. 15 

Since the gravity signals is the sum of the contributions generated from the anomaly sources at different depths, we put 

the multiply layers at the locations where different anomaly sources situate. Further, wavelet decomposition and power 
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spectrum analysis are applied for estimating the depths of different layers.  

 

For testing the performance of this multilayer approach, a local gravimetric quasi-geoid called QGNSea V1.0 over the 

North Sea in Europe is modeled and compared with other models, where a dense coverage of high-quality 

measurements extending continuously from land to ocean are available. Based on wavelet analysisdecomposition and 5 

power spectrum analysis, multiply layers that situate between 4.5 km and 59.2 km underneath the topography are built 

to capture the signals with different spectral contentsat different scales. The numerical results show that the multilayer 

approach is sensitive to the spectrum of signals, both in the low- and high-frequency bands; while, the 

traditionally-used single-layer approach is only sensitive for parts of signals’ spectrum. The comparisons with the 

single-layer approach show that the residuals of data derived from the multilayers approach reduce significantly in the 10 

target areafits the gravity observations better, especially in the regions where the gravity signals show strong 

correlations with the variation of local topography. Moreover, we introduce a Akaike information criterion (AIC) test 

for different models, which is an estimator of the relative quality of statistical models for a given set of data, providing 

a means for model selection in the view of statistical test. The associated results demonstrate that the multilayer model 

gives a smaller AIC value, which reaches a better balance between the goodness of fit of data and the simplicity of the 15 

model. The evaluation with independent GPS/leveling data tests the ability of realistic extrapolation of regional models 

recovered from different methods, reveals the model called QGNSea V1.0 computed by multilayer approach  fits the 

local GPS/leveling data betterderiving a more accurate quasi-geoid, where QGNSea V1.0 outperforms the solution 

obtained by the single-layer approach, by the magnitudes of 0.4 cm, 0.9 cm and 1.1 cm in the Netherlands, Belgium 

and parts of Germany, respectively, compared to the one recovered from the single-layer approach. Further 20 

comparisons with the existing models indicates show that QGNSea V1.0 has the best performance, which could may 

be used beneficial for investigating the ocean circulation in the North Sea and surrounding oceanic areaslocal areas. 

 

Future work is needed for further improving the QGNSea V1.0. First, the satellite data (e.g., K-band Range Rate data 

and gravity gradients) from GRACE and GOCE missions can be combined with the ground-based gravity data for 25 

further improving the solution quality. However, deeper Poisson wavelet’s gridslayers than ones we use to combine 

surface data may be implemented to incorporate satellite observations, since these data are more sensitivemainly 

contribute to low-frequency gravity signalsbands of gravity field. In addition, the stochastic model may need to be 

refined. For instance, the effects on the solutions caused by the GGM’s errors may be quantified if we incorporate the 
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full error variance-covariance matrix of the spherical coefficients is incorporated into the stochastic model. 

ConsequentlyIn this way, the different data may be more properly weighted, and the solution can may be further 

improved.  
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Appendix A: Akaike information criterion 25 

Suppose that we have a statistical model of some data, and the Akaike information criterion (AIC) value of the model 

is (Burnham and Anderson, 2002) 

ˆ2 -2ln( )AIC k L   (A1) 
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where k is the number of estimated parameters in the model, and L̂ is the maximum value of the likelihood function for 

the model (Akaike, 1974; Burnham and Anderson, 2002). 

For least squares fitting, the maximum likelihood estimate for the variance of a model’s residuals distributions is 

2ˆ /RSS n    (A2) 

where RSS is the residual sum of squares (RSS), and n is the number of observations. 5 

Then, the maximum value of a log-likelihood function of least square model is (Burnham and Anderson, 2002) 

2

2

1ˆln(2 ) ln( ) ln( / )
ˆ2 2 22

n n n
RSS RSS n C 


        (A3) 

where C is a constant independent of the model. 

Combining Eq.(A1) and Eq.(A3), for least square model, the AIC value is expressed as 

2 ln( / )AIC k n RSS n C     (A4) 10 

  

Since only differences in AIC are meaningful, the constant C can be ignored, and we can conveniently take   

2 ln( / )AIC k n RSS n  for model comparisons. 
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