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Abstract: Due to complexity, multiple minerogenic stages, and superposition during 10 

geological processes, the spatial distributions of geological variables also exhibit specific 11 

trends and non-stationarity. For example, geochemical elements exhibit obvious spatial 12 

non-stationarity and trends because of the deposition of different types of coverage. Thus, 13 

bias may clearly occur under these conditions when general regression models are applied to 14 

mineral prospectivity mapping (MPM). In this study, we used a spatially weighted technique 15 

to improve general logistic regression and developed an improved model called the improved 16 

logistic regression model based on spatially weighted technique (ILRBSWT, version 1.0). 17 

The capabilities and advantages of ILRBSWT are as follows: (1) ILRBSWT is essentially a 18 

geographically weighted regression (GWR) model, and thus it has all its advantages when 19 

dealing with spatial trends and non-stationarity; (2) the current software employed for GWR 20 

mainly applies linear regression whereas ILRBSWT is based on logistic regression, which is 21 

used more commonly in MPM because mineralization is a binary event; (3) a missing data 22 

process method borrowed from weights of evidence is included to extend the adaptability 23 

when dealing with multisource data; and (4) the differences of data quality or exploration 24 

level can also be weighted in the new model as well as the geographical distance.  25 
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Keywords: anisotropy; geographical information system modeling; geographically weighted 26 

logistic regression; mineral resource assessment; missing data; trend variable; weights of 27 

evidence.  28 

 29 

1 Introduction 30 

The main distinguishing characteristic of spatial statistics compared with classical statistics is 31 

that the former has a location attribute. Before the development of geographical information 32 

systems, spatial statistical problems were often transformed into general statistical problems, 33 

where the spatial coordinates were more like a sample ID because they only had an indexing 34 

feature. However, even in non-spatial statistics, the reversal paradox or amalgamation paradox 35 

(Pearson et al., 1899; Yule, 1903; Simpson, 1951), which is commonly called Simpson's 36 

paradox (Blyth, 1972), has attracted much attention from statisticians and other researchers. 37 

In spatial statistics, some spatial variables usually exhibit certain trends and non-stationarity. 38 

Thus, it is possible for Simpson's paradox to occur when a global regression model is applied 39 

and the existence of unknown important variables may make this condition even worse. The 40 

influence of Simpson's paradox can be fatal. For example, due to the presence of cover and 41 

other factors that occur after mineralization, the ore-forming elements in Area Ι are generally 42 

much lower than those in Area II, but the actual probability of a mineral in Area Ι is higher 43 

than that in Area II, and more deposits may be discovered in Area Ι (Agterberg, 1971). In this 44 

case, a negative correlation will be obtained between the ore-forming elements and the 45 

mineralization according to the classical regression model, whereas a high positive correlation 46 

can be obtained in both areas if they are separated. Simpson's paradox is an extreme case of 47 

the bias caused by using a global model and it is usually not so severe in practice. However, 48 

this type of biased needs to be considered and we should take care when applying a classical 49 

regression model to a spatial problem. Several solutions to this issue have been proposed 50 
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previously, which can be divided into three types.  51 

(1) Locations are introduced as direct or indirect independent variables. Several studies 52 

have employed spatial trend variables (Agterberg, 1964; Agterberg and Cabilio, 1969; 53 

Agterberg, 1970; Agterberg and Kelly, 1971; Agterberg, 1971) to express linear or nonlinear 54 

trends in space by adding coordinate variables or their functions in predictive models. In these 55 

methods, the locations themselves are taken as independent variables as well as the normal 56 

independent variables. For example, Reddy et al. (1991) performed logistic regression by 57 

including trend variables for mapping the base-metal potential in the Snow Lake area, 58 

Manitoba, Canada. In addition, Casetti (1972) developed a spatial expansion method where 59 

the regression parameters are themselves functions of the x and y coordinates as well as their 60 

combinations.  61 

(2) Using local models to replace global models, i.e., geographically weighted models 62 

(Fotheringham et al., 2002). Geographically weighted regression (GWR) is the most popular 63 

model among the geographically weighted models. GWR was first developed at the end of the 64 

20
th

 century by Brunsdon et al. (1996) and Fotheringham et al. (1996, 1997, 2002) for 65 

modeling spatially heterogeneous processes, and it has been used widely in the field of 66 

geography.  67 

(3) Reducing the trends in spatial variables. For example, Cheng developed a local 68 

singularity analysis technique and spectrum-area (S-A) model based on fractal/multi-fractal 69 

theory (Cheng, 1997; Cheng, 1999). These methods can remove spatial trends and prevent the 70 

strong effects of the original high and low values of the variables on predictions, and thus they 71 

are used widely to weaken the effect of spatial non-stationarity to some degree (e.g., Zuo et 72 

al., 2016; Zhang et al., 2016; Xiao et al., 2017). 73 

GWR can be readily visualized and understood, and it is particularly valid for dealing 74 

with spatial non-stationarity, thus it has been used widely in geography and other areas that 75 
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require spatial data analysis. In general, GWR is a moving window-based model where 76 

instead of establishing a unique and global model for prediction, it makes a prediction for 77 

each current location using the surrounding samples, and a higher weight is given when the 78 

sample is located closer. The theoretical foundation of GWR is based on Tobler’s observation 79 

that: “everything is related to everything else, but near things are more related than distant 80 

things” (Tobler, 1970). In mineral prospectivity mapping (MPM), the dependent variables 81 

are binary and logistic regression is used instead of linear regression, and it is necessary to 82 

apply geographically weighted logistic regression (GWLR) instead. GWLR belongs to 83 

geographically weighed generalized linear regression model (Fotheringham et al. 2002) and it 84 

is included in the software module GWR 4.09 (Nakaya, 2016). However, GWLR can only 85 

deal with the data in the form of a tabular dataset containing the fields of dependent and 86 

independent variables, and the x-y coordinates. Therefore, the spatial layers must be 87 

re-processed into two-dimensional tables and the resulting data needs to be transformed back 88 

into a spatial form. Another problem with the application of GWR 4.09 for MPM is that it 89 

cannot deal with missing data (Nakaya, 2016). Weights of evidence (WofE) is a widely used 90 

model for MPM (Bonham-Carter et al., 1988, 1989; Agterberg, 1989; Agterberg et al., 1990), 91 

which can avoid the effect of missing data. However, WofE was developed based on the 92 

premise that an assumption of conditional independence is satisfied among the evidential 93 

layers with respect to the target layer; otherwise, the posterior probabilities will be biased and 94 

the number of estimated deposits will not be equal to the known deposits. Agterberg (2011) 95 

combined WofE with logistic regression and proposed a new model that can obtain an 96 

unbiased estimated of the number of deposits as well as avoiding the effect of missing data. In 97 

the present study, this concept is employed to deal with missing data and we propose the 98 

improved logistic regression model based on spatially weighted technique (ILRBSWT 99 

v1.0) for MPM. The main features of ILRBSWT include the following: (1) a spatial 100 
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t-statistics method (Agterberg et al., 1993) is introduced to determine the best binary threshold 101 

for independent variables, where binarization is performed based on a local window instead of 102 

the global level, which can increase the effect of indicating the independent variables to the 103 

target variable; and (2) a mask layer is included in the new model to deal with the data quality 104 

and exploration level differences among samples.  105 

The idea of this research is origin from the first author’s doctoral thesis (Zhang, 2015) 106 

in Chinese, which has been shown to have better efficiency for mapping intermediate and 107 

felsic igneous rocks (Zhang et al., 2017). The contribution of this research is to elaborate 108 

the principle of ILRBSWT, and provide a detailed algorithm for its design and 109 

implementation process with the code and software module attached. In addition, the 110 

processing of missing data is not covered by former researches. At last, the prediction of 111 

Au ore deposits in western Meguma Terrain, Nova Scotia, Canada, is chosen as case study 112 

to show the performance of ILRBSWT in MPM.  113 

 114 

2 Models 115 

Linear regression is commonly used for exploring the relationship between a response 116 

variable and one or more explanatory variables. However, in MPM and other fields, the 117 

response variable is binary or dichotomous, so linear regression is not applicable and thus a 118 

logistic model can be advantageous.  119 

2.1 Logistic Regression 120 

In MPM, the dependent variable(Y) is binary since Y can only take the value of 1 and 0, 121 

which means the mineralization occurs or not. Suppose that π represents the estimation of Y, 122 

0≤π≤1, then a logit transformation of π can be made, i.e., logit (π) =ln(π/(1-π)). Logistic 123 

regression function can be obtained as following. 124 

Logit π(𝑋1, 𝑋2, ⋯ , 𝑋𝑝) = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑝𝑋𝑝                              (1) 125 
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where 𝑋1, 𝑋2, ⋯ , 𝑋𝑝, comprises a sample of p explanatory variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑝, β0 is the 126 

intercept, and 𝛽1, 𝛽2, ⋯ , 𝛽𝑝 are regression coefficients.  127 

If there are n samples, we can obtain n linear equations with p+1 unknowns based on 128 

equation (1). Furthermore, if we suppose that the observed values for Y are 𝑌1, 𝑌2, ⋯ , 𝑌𝑛, and 129 

these observations are independent of each other, then a likelihood function can be 130 

established:   131 

L(𝛽) = ∏ (π𝑖
𝑌𝑖(1 − π𝑖)

1−𝑌𝑖)𝑛
𝑖=1 ,                                            

 

(2) 132 

where 𝜋𝑖 = 𝜋(𝑋𝑖1, 𝑋𝑖2,⋯ , 𝑋𝑖𝑝) =
𝑒
𝛽0+𝛽1𝑋𝑖1+⋯+𝛽𝑝𝑋𝑖𝑝

1+𝑒
𝛽0+𝛽1𝑋𝑖1+⋯+𝛽𝑝𝑋𝑖𝑝

. The best estimate can be obtained if 133 

and only if equation (2) takes the maximum. Then the problem is converted into solving 134 

𝛽1, 𝛽2, ⋯ , 𝛽𝑝 . Equation (2) can be further transformed into the following log-likelihood 135 

function. 136 

lnL(𝛽) = ∑ (𝑌𝑖𝜋𝑖 +
𝑛
𝑖=1 (1 − 𝑌𝑖)(1 − 𝜋𝑖))

                                      

(3) 137 

The solution can be obtained by taking the first partial derivative of  𝛽𝑖 (i = 0 to p), 138 

which should be equal to 0. 139 

{
 

 
𝑓( 𝛽0) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖0 = 0𝑛

𝑖=0

𝑓( 𝛽1) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖1 = 0
𝑛
𝑖=0

⋮
𝑓( 𝛽𝑝) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖𝑝 = 0

𝑛
𝑖=0

                                              (4) 140 

where 𝑋𝑖0 = 1, i takes the value from 1 to n, and equation (4) is obtained in the form of 141 

matrix operations. 142 

𝐗𝐓(𝐘 − 𝛑) = 𝟎                                                            (5) 143 

The Newton iterative method can be used to solve the nonlinear equations: 144 

𝛃̂(𝑡 + 1) = 𝛃̂(𝑡) + 𝐇−𝟏𝐔 ,                                                   (6) 145 

where 𝐇 = 𝐗𝐓𝐕(𝑡)𝐗, 𝐔 = 𝐗𝐓(𝐘 − 𝛑(𝑡)), t represents the number of iterations, and 𝐕(𝑡), 𝐗, 146 

𝐘, 𝛑(𝑡) , and 𝛃̂(𝑡) are obtained as follows: 147 
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𝐕(𝑡) =

(

 

π1(𝑡)(1 − π1(𝑡))

π2(𝑡)(1 − π2(𝑡))

⋱
π𝑛(𝑡)(1 − π𝑛(𝑡)))

 , 148 

 𝐗 =

(

 

𝑋10 𝑋11 ⋯ 𝑋1𝑝
𝑋20 𝑋21 ⋯ 𝑋2𝑝
⋮ ⋮ ⋱ ⋮
𝑋𝑛0 𝑋𝑛1 ⋯ 𝑋𝑛𝑝)

 , 𝐘 = (

𝑌1
𝑌1
⋮
𝑌𝑛

), 𝛑(𝑡) = (

π1(𝑡)
π2(𝑡)
⋮

π𝑛(𝑡)

), and 𝛃̂(𝑡) =

(

 
 
𝛽̂1(𝑡)

𝛽̂2(𝑡)
⋮

𝛽̂𝑛(𝑡))

 
 

.  149 

Hosmer et al. (2013) provided more information about the derivation from equations (1) to 150 

(6). 151 

2.2 Weighted Logistic Regression 152 

In practice, vector data is popularly used, and sample size (area) has to be considered. In this 153 

condition, weighted logistic regression modeling should be used instead of general logistic 154 

regression. In addition, it is preferable to use a weighted logistic regression model when a 155 

logical regression should be performed for large sample data, since weighted logical 156 

regression can greatly reduce the size of the matrix and improve the computational efficiency 157 

(Agterberg, 1992). Assuming that there are four binary explanatory variable layers and the 158 

study area consists of 1000×1000 grid points, the matrix size for normal logic regression 159 

modeling would be 10
6
×10

6
; however, if weighted logistic regression is used, the matrix size 160 

would be 32×32 at most. That is because sample classification process is contained in 161 

weighted logistic regression, and all samples are classified into the classes which own the 162 

same values at dependent and each independent variables. The samples with the same 163 

dependent and independent variables form certain continuous and discontinuous patterns in 164 

space, which are called “unique condition” units. Each unique condition unit is then treated as 165 

a sample, and the area (grid number) for it is taken as weight in weighed logistic regression. 166 

Thus, in the case of weighted logical regression, equations (2) to (5) in section 2.1 need to be 167 

changed as following Equations (7) to (10) respectively. 168 

 169 
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L𝑛𝑒𝑤(𝛽) = ∏ (π𝑖
𝑁𝑖𝑌𝑖(1 − π𝑖)

𝑁𝑖(1−𝑌𝑖))𝑛
𝑖=1 ,                                     

 

(7) 170 

lnL𝑛𝑒𝑤(𝛽) = ∑ (𝑁𝑖𝑌𝑖𝜋𝑖 +
𝑛
𝑖=1 𝑁𝑖(1 − 𝑌𝑖)(1 − 𝜋𝑖))

                               

(8) 171 

{
 

 
𝑓𝑛𝑒𝑤( 𝛽0) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖0 = 0

𝑛
𝑖=0

𝑓𝑛𝑒𝑤( 𝛽1) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖1 = 0
𝑛
𝑖=0

⋮
𝑓𝑛𝑒𝑤( 𝛽𝑝) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖𝑝 = 0

𝑛
𝑖=0

                                          (9)  172 

𝐗𝐓𝐖(𝐘 − 𝛑) = 𝟎                                                        (10) 173 

where 𝑁𝑖 is the weight for the i-th unique condition unit, i takes the value from 1 to n, and n 174 

is the total number of grid points. And W is a diagonal matrix which can be expressed as 175 

following. 176 

𝐖 =

(

 

𝑁1
𝑁2

⋱
𝑁𝑛)

  

Besides, new H and U should be used in equation (6) to perform Newton iterative under 177 

weighted logistic regression, i.e., 𝐇𝒏𝒆𝒘 = 𝐗𝐓𝐖𝐕(𝑡)𝐗, 𝐔𝒏𝒆𝒘 = 𝐗𝐓𝐖(𝐘 − 𝛑(𝑡)). 178 

2.3 Geographically Weighted Logistic Regression 179 

GWLR is a local window-based model because logistic regression is established at each 180 

current location in GWLR. The current location is changed using the moving window 181 

technique with a loop program. If we suppose that 𝐮 represents the current location, which 182 

can be uniquely determined by a pair of column and row numbers, x denotes that p 183 

explanatory variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑝 take values of 𝑋1, 𝑋2,⋯ , 𝑋𝑝 , respectively, and 𝜋(𝒙,𝐮) 184 

is the estimates of Y, i.e., the probability that Y takes a value of 1, then the following function 185 

can be obtained. 186 

Logit 𝜋(𝒙, 𝐮) = 𝛽0𝑖(𝐮) + 𝛽1(𝐮)𝑋1 + 𝛽2(𝐮)𝑋2 +⋯+ 𝛽𝑝(𝐮)𝑋𝑝 ,                            (11) 187 

where 𝛽0(𝐮), 𝛽1(𝐮), ⋯, 𝛽𝑝(𝐮) denote that these parameters are obtained at the location of 188 

𝐮. The predicted probability for the current location can be obtained under the condition that 189 

the values of all the independent variables are known at the current location and all of the 190 
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parameters are also calculated based on the samples within the current local window. 191 

According to equation (6) in section 2.1, the parameters for GWLR can be estimated with 192 

equation (12):  193 

𝛃̂(𝐮)𝑡+1 = 𝛃̂(𝐮)𝑡 + (𝐗
T𝐖(𝐮)𝐕(𝑡)𝐗)−1𝐗T𝐖(𝐮)(𝐘 − 𝛑(𝑡)),                           (12) 194 

where t represents the number of iterations; X is a matrix comprising the values of all the 195 

independent variable, and all of the elements in the first column are 1; 𝐖(𝐮) is a diagonal 196 

matrix where the diagonal elements are geographical weights, which can be calculated 197 

according to distance, whereas the other elements are all 0; 𝐕(𝑡) is also a diagonal matrix 198 

and the diagonal element can be expressed as π𝑖(𝑡)(1 − π𝑖(𝑡)); and Y is a column vector 199 

representing the values taken by the dependent variable. 200 

2.4 Improved Logistic Regression Model based on Spatially Weighted Technique 201 

If a diagonal element in 𝐖(𝐮) is only for one sample (grid point in raster data), section 2.3 202 

can be seen as the improvement of section 2.1, i.e. samples are weighted according to its 203 

location. If samples are reclassified firstly according to unique condition mentioned in section 204 

2.2, and corresponding weights are then summarized according to each sample’s geographical 205 

weight, we can obtain an improved logistic regression model considering both sample sizes 206 

and geographical distances. The new model can not only reflects the spatial distribution of 207 

samples, but also reduce the matrix size, and it is to be discussed in following section. 208 

In addition to geographic factors, the degree considered in the study can affect the 209 

representativeness of a sample, e.g., differences in the level of exploration.  210 

Suppose that there are n grid points in the current local window, Si is the i-th grid, Wi(g) 211 

is the geographical weight of Si, and 𝑊𝑖(𝑑) represents the individual difference weight or 212 

non-geographical weight (in some cases, there may be differences in quality or the 213 

exploration level among samples, but 𝑊𝑖(𝑑) takes a value of 1 if there is no difference), 214 

where i takes a value from 1 to n. Furthermore, if we suppose that there are N unique 215 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-278
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 16 January 2018
c© Author(s) 2018. CC BY 4.0 License.



10 

 

conditions after overlaying all of the layers (N  n) and Cj denotes the j-th unique condition 216 

unit, then we can obtain the final weight for each unique condition unit in the current local 217 

window:  218 

𝑊𝑗(𝑡) = ∑ [𝑊𝑖(g) ∗ 𝑊𝑖(𝑑) ∗ df𝑖]
𝑛
𝑖=1 ,                                        (13) 219 

where {
df𝑖 = 1   if S𝑖 ∈ C𝑗
df𝑖 = 0   if S𝑖 ∉ C𝑗

, i takes a value from 1 to n,  j takes a value from 1 to N, and 220 

𝑊𝑗(𝑡) represents the total weight (by combining both 𝑊𝑖(𝑔) and 𝑊𝑖(𝑑)) for each unique 221 

condition unit. We can use the final weight calculated in equation (13) to replace the original 222 

weight in equation (12), which is one of the advantages of ILRBSWT. 223 

2.5 Missing data processing 224 

Missing data is a problem existing in all statistics-related research fields. In MPM, missing 225 

data are also prevalent due to ground coverage, and limitations of exploration technique and 226 

measurement accuracy. Agterberg and Bonham-Carter (1999) once compared following 227 

commonly used missing data processing solutions: (1) removing variables containing missing 228 

data, (2) deleting samples with missing data, (3) using 0 to replace the missing data, and (4) 229 

replacing the missing data with the mean of the corresponding variable. From the point of 230 

utilization efficiency of existing data, both (1) and (2) are clearly not good solutions since 231 

more data will be lost. Solution (3) is superior to (4) for missing values due to the detection 232 

limit of the measuring instrument; with respect to the missing data caused by the limitation of 233 

geographical environment and the prospecting technique, solution (4) is obviously a better 234 

choice. Missing data is mainly caused by the latter in MPM, and Agterberg (2011) pointed out 235 

that missing data could be even better dealt with by performing WofE model. In WofE, the 236 

evidential variable takes the value of positive weight (𝑊+) if it is favorable for the happening 237 

of the target variable (e.g., mineralization); and the evidential variable takes the value of 238 

negative weight (𝑊−) if it is unfavorable for the happening of the target variable; and 239 
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automatically the evidential variable takes the value of 0 if missing data happens. 240 

𝑊+ = ln
𝐷1
𝐷

𝐴1−𝐷1
𝐴−𝐷

                                                           (14) 241 

𝑊− = ln
𝐷2
𝐷

𝐴2−𝐷2
𝐴−𝐷

                                                           (15) 242 

where A is an evidential layer, A1 means the area that A takes the value of 1, and A2 means 243 

the area that A takes the value of 0; A3 means the area with missing data, and A1+A2 is 244 

smaller than the total study area if missing data exists. D1, D2 and D3 are the area that the 245 

target variable takes the value of 1 in A1, A2 and A3 respectively. In fact, A3 and D3 are not 246 

used in equation (15) since no information is provided in area A3.  247 

However, it is preferred to use 1 and 0 to represent the positive and negative condition of 248 

the independent variable in logistic regression model. In this case, equation (16) can be used 249 

to replace missing data in logistic regression modeling, which will cause an equivalent effect 250 

just as missing data are processed in WofE.  251 

𝑀 =
−𝑊−

𝑊+−𝑊− =
ln

𝐷

𝐴−𝐷
−ln

𝐷2
𝐴2−𝐷2

ln
𝐷1

𝐴1−𝐷1
−ln

𝐷2
𝐴2−𝐷2

                                               (16) 252 

 253 

3 Design of the ILRBSWT Algorithm 254 

3.1 Local Window Design 255 

A raster data set is used for ILRBSWT modeling. With a regular grid, the distance between 256 

any two grid points can be calculated easily and we can even obtain distance templates within 257 

a certain window scope, which is highly efficient for data processing. The circle and ellipse 258 

are used for isotropic and anisotropic local window designs, respectively.  259 

(1) Circular Local Window Design 260 

If we suppose that W represents a local circular window where the minimum bounding 261 

rectangle is R, then the geographical weights can be calculated only inside R. Obviously, the 262 
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grid points inside of R but outside of W should be weighted as 0, and the weights for grid 263 

points inside W should be calculated according to the distances between themselves and the 264 

current location. R should be a square so we can also assume that there are n columns and 265 

rows in R, where n is an odd number. If we take east and south as the orientations of the x-axis 266 

and y-axis, respectively, and the position of the northwest corner grid is defined as (x = 1, y = 267 

1), then a local rectangular coordinate system can be established and the position for the 268 

current location grid can be expressed as 𝑂 (𝑥 =
𝑛+1

2
, 𝑦 =

𝑛+1

2
). The distance between any 269 

grid inside W and the current location grid can be expressed as 270 

𝑑𝑜−𝑖𝑗 = √(𝑖 −
𝑛+1

2
)
2

+ (𝑗 −
𝑛+1

2
)
2

, where i and j take values ranging from 1 to n. The 271 

geographical weight is a function of distance, so it is convenient to calculate w𝑖𝑗  with 272 

𝑑𝑜−𝑖𝑗 . Figure 1 shows the weight template for a circular local window with a half-window 273 

size of nine grid points.   274 
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 275 

Fig. 1 Weight template for a circular local window with a half-window size of nine grid points, 276 

where w1 to w30 represent different weight classes that decrease with distance and 0 denotes that the 277 

grid is weighted as 0. Gradient colors ranging from red to green are used to distinguish the weight 278 

classes for grid points. 279 

If we suppose that there are T_n columns and T_m rows in the study area, and Current 280 

(T_i, T_j) represents the current location, where T_i takes values from 1 to T_n and T_j takes 281 

values from 1 to T_m, then the current local window can be established by selecting the range 282 

of rows 𝑇_𝑖 −
𝑛−1

2
 to 𝑇_𝑖 +

𝑛−1

2
 and columns 𝑇_𝑗 −

𝑛−1

2
 to 𝑇_𝑗 +

𝑛−1

2
 based on the total 283 

research area. Next, we establish a local rectangular coordinate system according to the steps 284 

in the last paragraph, where the x and y coordinates for the northwest corner are defined as the 285 

coordinate origin by subtracting 𝑇_𝑖 −
𝑛−1

2
 and 𝑇𝑗 −

𝑛−1

2
 from the x and y coordinates, 286 
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respectively, for all of the grid points in the range. The corresponding relationship can then be 287 

established between the weight template and the current window. Global weights can also be 288 

included via the matrix product between the global weight layer and local weight template 289 

within the local window. In addition, special care should be taken when the weight template 290 

covers some area outside the study area, e.g., 𝑇_𝑖 −
𝑛−1

2
< 0, 𝑇_𝑖 +

𝑛−1

2
> 𝑇_𝑛, 𝑇_𝑗 −

𝑛−1

2
<291 

0, and 𝑇_𝑗 +
𝑛−1

2
> 𝑇_𝑚. 292 

(2) Elliptic Local Window Design 293 

In most cases, the spatial weights change to variable degrees in different directions and 294 

an elliptic local window may be better for describing the changes in the weights in space. In 295 

order to simplify the calculation, we can convert the distances in different directions into 296 

equivalent distances and an anisotropic problem then becomes an isotropic problem. For any 297 

grid, the equivalent distance is the semi-major axis length of the ellipse that passes through 298 

the grid and that is centered at the current location, where the parameters for the ellipse can be 299 

determined using the kriging method.  300 

We still use W to represent the local elliptic window and a, r, and θ are defined as the 301 

semi-major axis, the ratio of the semi-minor axis relative to the semi-major axis, and the 302 

azimuth of the semi-major axis, respectively. Then, W can be covered by a square R, where 303 

the side length is 2a-1 and the center is the same as W. There are (2a –1) × (2a – 1) grid 304 

points in R. We establish the rectangular coordinates as described above and we suppose that 305 

the center of the top left grid in R is located at (x = 1, y = 1), and thus the center of W should 306 

be  𝑂(𝑥0 = 𝑎, 𝑦0 = 𝑎). According to the definition of the ellipse, two of the elliptical focuses 307 

are located at F1(𝑥1 = 𝑎 + sin(𝜃)√𝑎2 − (𝑎 ∗ 𝑟)2, 𝑦1 = 𝑎 − con(𝜃)√𝑎2 − (𝑎 ∗ 𝑟)2)  and 308 

F2 (𝑥2 = 𝑎 − sin (𝜃)√𝑎2 − (𝑎 ∗ 𝑟)2, 𝑦2 = 𝑎 + con (𝜃)√𝑎2 − (𝑎 ∗ 𝑟)2)  . The summed 309 

distances between a point and the two focus points can be expressed as 310 
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𝑙𝑖𝑗 = √(𝑖 − 𝑥1)2 + (𝑗 − 𝑦1)2 +√(𝑖 − 𝑥2)2 + (𝑗 − 𝑦2)2, where i and j take values from 1 to 311 

2a – 1. According to the elliptical focus formula, we can decide whether a grid in R is located 312 

in W. For any grid in R, if the sum of the distances between the two focal points and a grid 313 

center is greater than 2a, then the grid is located in W, vice versa. For the grid points outside 314 

of W, the weight is assigned as 0, and the equivalent distances should be calculated for the 315 

grid points within W. As mentioned above, the parameters for the ellipse can be determined 316 

using the kriging method. In the ellipse W where the semi-major axis is a, we keep r and 𝜃 317 

as constants, so we can obtain countless ellipses centered at the center of W, and the 318 

equivalent distance is the same on the same elliptical orbit. Thus, the equivalent distance 319 

template can be obtained for the elliptic local window. Figure 2 shows the equivalent distance 320 

templates under the conditions that a = 11 grid points, r = 0.5, and the azimuths for the 321 

semi-major axis are 0°, 45°, 90°, and 135°, where the weight template can also be calculated 322 

based on Fig. 2.   323 

 324 
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 325 

Fig. 2 Construction of the distance template based on a elliptic local window: a = 11 grid points, 326 

r = 0.5, and the azimuths for the semi-major axis are 0° (a), 45°(b), 90° (c), and 135° (d). 327 

3.2 Pseudocode for ILRBSWT 328 

The ILRBSWT method focuses mainly on two problems, i.e., spatial non-stationarity and 329 

missing data. We use the moving window technique to establish a local model, which can 330 

overcome the spatial non-stationarity better compared with the global model. The spatial 331 

t-value employed in the WofE method is used to binarize spatial variables based on the local 332 

window, which is quite different from binarization based on the global range, where the 333 

missing data can be handled well because positive and negative weights are used instead of 334 

the original “1” and “0” values, and the missing data can then be represented well as “0.” 335 

Both the isotropy and anisotropy window types are possible in our new proposed model. The 336 

geographical weights and the window size can be determined by the users themselves. If the 337 

                         

(a) (b) 

(c) (d) 
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geographic weights are equal and there are no missing data, then ILRBSWT will yield the 338 

same posterior probabilities as logistic regression; hence, the later can be treated as a special 339 

case of the former. The core ILRBSWT algorithm is as follows. 340 

Step 1. Establish a loop for all of the grid points in the study area according to both the 341 

columns and rows. Determine a basic local window with a size of rmin based on a variation 342 

function or other method. In addition, the maximum local window with a size of rmax is set, 343 

with an interval of ∆𝑅. If we suppose that a geographical weight model has already been 344 

given in the form of a Gaussian curve determined by variations in the geostatistics, i.e., 345 

𝑊(g) = e−𝜆𝑑
2
, where d is the distance and 𝜆 is the attenuation coefficient, then we can 346 

calculate the geographical weight for any grid in the current local window. The equivalent 347 

radius should be used in the anisotropic situation. When other types of weights are considered, 348 

e.g., the degree of exploration or research, it is also necessary to synthesize the geographical 349 

weights and other weights (see equation 10). 350 

Step 2. Establish a loop for all of the independent variables. In a circular (elliptical) 351 

window with a radius (equivalent radius) of rmin, apply the WofE (Agterberg, 1992) model 352 

according to the grid weight determined in step 1, thereby obtaining a statistical table 353 

containing the parameters of 𝑊𝑖𝑗
+, 𝑊𝑖𝑗

− , and 𝑡𝑖𝑗 , where i is the i-th independent variable and 354 

j denotes the j-th binarization.  355 

Step 2.1. If a maximum 𝑡𝑖𝑗  exists and it is greater than or equal to the standard t-value 356 

(e.g., 1.96), record the values of 𝑊𝑖−max _𝑡
+ , 𝑊𝑖−max _𝑡

−  , and 𝐵𝑖−max _t, which denote the 357 

positive weight, negative weight, and corresponding binarization, respectively, under the 358 

condition where t takes the maximum value. Go to step 2 and apply the WofE model to the 359 

other independent variables. 360 

Step 2.2. If a maximum 𝑡𝑖𝑗  does not exist or it is smaller than the standard t-value, go to 361 

step 3. 362 
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Step 3. In a circular (elliptical) window with a radius (equivalent radius) of rmax, increase 363 

the current local window based on rmin according to the algorithm in step 1. 364 

Step 3.1. If all of the independent variables have already been processed, go to step 4. 365 

Step 3.2. If the size of the current local window exceeds the size of rmax, then disregard 366 

the current independent variable and go to step 2 to consider the remaining independent 367 

variables. 368 

Step 3.3. Apply the WofE model according to the grid weight determined in step 1 in the 369 

current local window, which has increased. If a maximum 𝑡𝑖𝑗  exists and it is greater than or 370 

equal to the standard t-value, record the values of 𝑊𝑖−max _𝑡
+ , 𝑊𝑖−max _𝑡

− , 𝐵𝑖−max _t , and rcurent, 371 

which represents the radius (equivalent radius) for the current local window. 372 

Step 3.4. If a maximum 𝑡𝑖𝑗  does not exist or it is smaller than the standard t-value, go to 373 

step 3. 374 

Step 4. Suppose that 𝑛𝑠 independent variables are remaining. 375 

Step 4.1. If 𝑛𝑠 ≤ 1, then calculate the mean value for the dependent variable in the 376 

current local window with a radius size of rmax and retain it as the posterior probability in the 377 

current location. In addition, set the regression coefficients for all of the independent variables 378 

as missing data. Go to step 6. 379 

Step 4.2. If 𝑛𝑠 ≥ 1, then find the independent variable with the largest local window and 380 

apply the WofE model to all the other independent variables, before recording the values of 381 

𝑊𝑖−max _𝑡
+ , 𝑊𝑖−max _𝑡

−  , and 𝐵𝑖−max _𝑡 for this time, and then go to step 5. 382 

Step 5. Apply the logistic regression model based on geographic weights and for each 383 

independent variable: (1) use 𝑊𝑖−max _𝑡
+  to replace all of the values that are less than or equal 384 

to 𝐵𝑖−max _𝑡; (2) use 𝑊𝑖−max _𝑡
−  to replace all of the values that are greater than 𝐵𝑖−max _𝑡; and 385 

(3) use 0 to replace no data (“-9999”). The posterior probability and regression coefficients 386 

can then be obtained for all of the independent variables at the current location, and go to step 387 
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6. 388 

Step 6. Take the next grid as the current location and repeat steps 2–5. 389 

 390 

4 Interface Design 391 

In addition to the improved GWLR, we developed other modeling processes, where all of the 392 

visualization and mapping procedures are performed using the ArcGIS 10.2 platform and 393 

GeoDAS 4.0 software. The maps are stored in grid format, which are transformed into ASCII 394 

files based on tools included in the Arc toolbox before the improved GLWR is performed.  395 

As shown in Fig. 3, the main interface for the improved GLWR comprises four parts. 396 

The upper left part is for the layer input settings, where independent variable layers, 397 

dependent variable layers, and global weight layers should be assigned if they exist. Layer 398 

information is shown at the upper right corner, including the row numbers, column numbers, 399 

grid size, ordinate origin, and missing data. The local window can be defined in the middle. 400 

Using the drop-down list, we can prepare a circle or ellipse to represent various isotropic and 401 

anisotropic spatial conditions, respectively. The corresponding window parameters should be 402 

set for each window type. For the ellipse, it is necessary to set parameters comprising the 403 

initial length of the equivalent radius (initial major radius), the final length of the equivalent 404 

radius (largest major radius), the increase in the length of the equivalent radius (growth rate), 405 

the threshold of the spatial t-value used to determine the need to enlarge the window, the 406 

length ratio of the major and minor axes, the orientation of the ellipse’s major axis, and the 407 

compensation coefficient for the sill. Next, it is necessary to define the attenuation function 408 

and a variety of kernel functions, such as exponential model, logarithmic model, Gaussian 409 

model, or spherical model, via the drop-down menu. More parameters can be set when a 410 

certain model is selected. The output file settings are defined at the bottom and the execution 411 

button is at the lower right corner. 412 
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 413 

Fig. 3 User interface design. 414 

 415 

5 Real Data Testing 416 

5.1 Data source and preprocessing 417 

The test data used in this study were obtained from the case study reported by Cheng (2008). 418 

The study area (≈7780 km
2
) was located in western Meguma Terrain, Nova Scotia, Canada. 419 

Four independent variables were used in the WofE model for gold mineral potential mapping 420 

by Cheng (2008), i.e., buffer of anticline axes, buffer for the contact of Goldenville–Halifax 421 

Formation, and background and anomaly separated with the S-A filtering method based on 422 

the loadings of the ore elements of the first component. More information about the data set 423 

can be found in Cheng (2008).  424 

Four independent variables mentioned above were also used for ILRBSWT modeling in 425 

this study. In order to demonstrate the advantages of the new method when processing 426 

missing data, we designed a situation where the geochemical data were missing for the 427 

northern part of the study area, as shown in Fig. 4. In that case, grids in region A own values 428 
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at all of the four independent variables; however, grids in region B only own values at two 429 

independent variables, and they have no values in the two geochemical variables. 430 

 431 

Fig. 4 Study area (A and B) and the scope with missing geochemical data (B).  432 

5.2 Mapping weights for the exploration level 433 

These types of weights can be determined based on prior knowledge according to differences 434 

in the exploration data, e.g., different scales may exist throughout the whole study area. They 435 

can also be obtained quantitatively. The density of known deposits is a good index for the 436 

exploration level, where the degree of research is higher when more deposits are discovered. 437 

The exploration level weights for the mapped study area obtained using the kernel density 438 

tool provided by the ArcToolbox in ArcGIS 10.2 are shown in Fig. 5. 439 
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 440 

Fig. 5 Exploration level weights. 441 

5.3 Assignment of local window parameters and geographical weights 442 

Empirical and quantitative methods can be used to determine the local window parameters 443 

and the attenuation function for geographical weights. The variation function in geostatistics 444 

is an effective method for describing the structures and trends of spatial variables, so it was 445 

used in this study. In order to calculate the variation function for a dependent variable, it is 446 

necessary to first map the posterior probability using the global logistic regression method, 447 

before establishing the variation function to determine the local window type and parameters. 448 

Variation functions are established in four directions in order to detect anisotropic changes in 449 

space. If there are no significant differences among the various directions, a circular local 450 

window can be used for ILRBSWT, as shown in Fig. 1; otherwise, an elliptic local window 451 

should be used, as shown in Fig. 2. The specific parameters for the local window in the study 452 

area were obtained as shown in Fig. 6, and the final local window and geographical weight 453 
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attenuation were determined as indicated in Fig. 7 (a) and 7(b), respectively. 454 

 455 

Fig. 6 Experimental variogram fitting in different directions, where the green lines denote the 456 

variable ranges determined for azimuths of (a) 0°, (b) 45°, (c) 90°, and (d) 135°. 457 

 458 

 459 
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 460 

Fig. 7 Nested spherical model for different directions. The green lines in (a) correspond to those 461 

in Fig. 6, and (b) shows the geographical weight template determined based on (a).  462 

5.4 Data integration 463 

Using the algorithm described in section 3.2, ILRBSWT was performed for the study area 464 

according to the settings in Fig. 3. The estimated probability map obtained for intermediate 465 

and felsic igneous rocks by ILRBSWT is shown in Fig. 8 (b), while Fig. 8 (a) presents the 466 

results obtained by logistic regression. It can be seen from Fig. 8 that ILRBSWT can better 467 

weak the effect of missing data than logistic regression, since the Au deposits in the north part 468 

of the study area (where missing data exist) are well felled into the region with relatively 469 

higher posterior probability in Fig. 8 (b) than in Fig. 8 (a). 470 

   
(a) 

 
(b) 
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 471 

Fig. 8 Posterior probability maps obtained for an Au deposit by (a) logistic regression and (b) 472 

ILRBSWT. 473 

5.5 Comparison of the mapping results 474 

In order to evaluate the predictive capacity of the newly developed method and the traditional 475 

method, the posterior probability maps obtained by logistic regression and ILRBSWT shown 476 

in Fig. 8(b) and 8(a), respectively, were divided into 20 classes by the quantile method and the 477 

t-values were then calculated using WofE modeling (Fig. 9). Clearly, ILRBSWT performed 478 

better because higher t-values were obtained, especially when a smaller area was delineated as 479 

the target area, which is much more realistic. In the northern part of the study area, the known 480 

deposits fitted better to the high posterior probability area shown in Fig. 8(b) than that in Fig. 481 

8(a), which indicates that ILRBSWT can deal with missing data better than logistic 482 

regression. 483 

   
(a)                                    (b)    
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 484 

Fig. 9 Student’s t-values calculated for the spatial correlation between the known Au deposit 485 

layer and the predicted posterior probability layers obtained by logistic regression and ILRBSWT at 486 

different threshold levels.  487 

 488 

6 Conclusions 489 

In this study, we developed an improved GWLR model ILRBSWT based on logistic 490 

regression, WofE, and the current GWR model. Furthermore, a software module was 491 

developed for ILRBSWT and a case study demonstrated its capacities and advantages. 492 

Following objectives were achieved: 493 

(1) A moving window technique is employed for spatial variable–parameter logistic 494 

regression, which can overcome or weaken the effect of spatial non-stationarity in MPM and 495 

improve the accuracy of mineral prediction. 496 

(2) The variogram model in geostatistics is used to determine the spatial anisotropic 497 

parameters and geographical weight attenuation model, which makes the local window 498 

parameter design more objective and tenable. 499 

(3) The spatial t-statistics method based on WofE is introduced to perform 500 
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binarization/discretization for the independent variables in each local window, and the new 501 

model can better handle missing data. 502 

(4) The global weight layer in ILRBSWT can reflect differences in the data quality or 503 

exploration level well.  504 

 505 

Code availability 506 

The software tool ILRBSWT v1.0 in this research is developed by using C#, and the main 507 

codes and key functions are prepared in file “Codes & Key Functions”. The executable 508 

program files are placed in the folder “Executable Programs for ILRBSWT”. Please find them 509 

in gmd-2017-278-supplement.zip. 510 

 511 

Data availability 512 

The data used in this research is sourced from the demo data of GeoDAS software 513 

(http://www.yorku.ca/yul/gazette/past/archive/2002/030602/current.htm), and this data is also 514 

used by Cheng (2008). All spatial layers used in this work is included in the folder “Original 515 

Data” in the format of ASCⅡ file, which can be also found in gmd-2017-278-supplement.zip. 516 
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