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Daojun Zhang, Na Ren, and Xianhui Hou 

Dear Editor, 

We appreciate both you and the two anonymous reviewers giving our work (ID: 

gmd-2017-278) positive comments and giving us the chance to make a further 

modification of our manuscript. We have carefully modified the manuscript according 

to the suggestions and comments provided by the reviewers and hope our 

modification could meet with the requirement of GMD. Following are the responds to 

the reviewers’ suggestions and comments one by one (all suggestions and comments 

are colored in red, and our proposed changes to the manuscript are colored blue). At 

the end of this file we attached the comparison between the newest edition and the 

original edition. 

Response to Anonymous Referee #1:  

1.  Line 52-53, these references are so old, please cite more recent references. 

Thank you for your comments and suggestions. Here we mainly listed the method 

research literatures. Unlike application researches, the method researches especially 

original models (not including modified models) are generally older. Anyway, we 

have added more recent models here as references, please see lines 57-64 in the 

comparison edition attached. The new statement is as following. 

“(1) Locations are introduced as direct or indirect independent variables. This type of 

model is still a global model, but space coordinates or distance weights are employed 

to adjust the regression estimation between the dependent variable and independent 

variables (Agterberg, 1964; Agterberg and Cabilio, 1969; Agterberg, 1970; Agterberg 

and Kelly, 1971; Agterberg, 1971; Casetti, 1972; Lesage & Pace, 2009, 2011).” 

2.  Line 57-61, it is better to show two recent examples.  

Thank you for your comments and suggestions. We have added more references here, 

which are about the new applications of models including locations as direct or 

indirect independent variables, please see lines 64-71 in the comparison edition 



attached. The new statement is as following. 

“For example, Reddy et al. (1991) performed logistic regression by including trend 

variables for mappingto map the base-metal potential in the Snow Lake area, 

Manitoba, Canada. In addition, Casetti (1972) developed a ; Helbich & Griffith (2016) 

compared the spatial expansion method (SEM) to other methods in modeling the 

house price variation locally, where the regression parameters are themselves 

functions of the x and y coordinates as well asand their combinations; Yu & Liu 

(2016) used the spatial lag model (SLM) and spatial error model to control spatial 

effects in modeling the relationship between PM2.5 concentrations and per capita GDP 

in China.” 

3.  Line 63-67, there are various applications of GWR in Geosciences, they should 

be cited here. 

Thank you for your suggestion and we have added some new literatures bout the 

application of GWR in different fields here, please see lines 74-78 in the comparison 

edition attached. The new statementis as following.  

“GWR wasmodels were first developed at the end of the 20th century by Brunsdon et 

al. (1996) and Fotheringham et al. (1996, 1997, 2002) for modeling spatially 

heterogeneous processes, and it hashave been used widely in the field of 

geography.geosciences (e.g., Buyantuyev & Wu, 2010; Barbet-Massin et al., 2012; 

Ma et al., 2014; Brauer et al., 2015).” 



Response to Anonymous Referee #2:  

The manuscript presents something that is technically sound. So it can be accepted for 

publication after addressing the following comments: 

1. The English needs to be improved. It has not been structured well. The statements 

and propositions have not been organized properly. Reflecting the state of the art is 

poor as well. The Introduction has not properly been tightened, so the problem and 

the purpose are not clear. 

Thank you for your suggestions. We have made a major revision to the manuscript. 

As you can see in the modified manuscript attached, added or subtracted some 

statements from the original manuscript to clarify the intentions of this work more 

clearly. We also included the evidential layers in the modified manuscript (please also 

see Figure R 1). With respect to instruction, we have re-sorted the previous researches 

in overcoming the non-stationary of spatial variables (especially lines 111-134 in the 

comparison edition attached), removed the redundant expressions to avoid repetition 

with later model description parts, and set more natural paragraphs to enhance the 

level of expression. Some expressions in the summary section have also been 

modified.  

Besides, the English was re-checked thoroughly. 

2. In Fig. 8, two different data sets were bound together and can explicitly be 

separated by a horizontal line. I think there is something wrong. Perhaps it would be 

better that the two data sets (A and B) be gridded by the same cell size and the spatial 

values should not be modeled/mapped individually. You should generate a model 

similar to the Fig. 5. 

Thank you for your suggestion. We have added that all the raster files in this research 

are created with the cell size of 1 km x 1 km (lines 481-482 in the comparison edition 

attached). In fact, it is missing data that caused the sharp differences between the 

north and south parts (i.e. A and B in Fig. 5) of Fig. 8 (new Fig. 9) rather than data set 



source, since we have made up a circumstance that there are no geochemical data in 

region B (lines 485-488 in the comparison edition attached). These expressions are 

cited following. 

“The four independent variables described previously were also used for 

ILRBSWT modeling in this study (see Figs. 4 (a) to (d)), and they were uniformed in 

the ArcGIS grid format with a cell size of 1 km × 1 km. To demonstrate the 

advantages of the new method for missing data processing, we designed an artificial 

situation in Fig. 5, i.e., grids in region A have values for all four independent variables, 

while they only have values for two independent variables and no values in the two 

geochemical variables in region B. ” 

We acknowledge that the texture looks finer in Fig. 5 (new Fig. 6), and that is 

because this spatial variable is a continuous variable. However, as a posterior 

probability layer, Fig. 8 (new Fig. 9) was obtained after the discretizing and 

integrating the evidence layers, including the buffer layer and the geochemical 

anomaly layer, which can easily lead to the spatial discontinuity of the grid value. As 

a result, the texture looks rough, which is not caused by grid size differences. 

 

3. Weighted evidence layers must be added to the manuscript. 

Thank you for your suggestion and we have accepted it, please see Fig R 4 (Fig. 4 in 

the attached comparison), which includes all original evidential layers used in this 

research. Besides, as a sliding window model, ILRBSWT builds predictive model at 

each local window, and the discretization of original evidential layers and the 

determination of weights for each class are also based on the local window, thus it is 

impossible to show the final weights used for modeling. 



 

Fig. R 1: Evidential layers used to map Au deposits in this study: buffer of anticline axes (a), 

buffer for the contact of Goldenville–Halifax Formation (b), and background (c) and 

anomaly (d) separated with the S-A filtering method based on the ore element loadings of the 

first component. 

   
(a)                                        (b) 

   
(c)                                        (d) 



4. The manuscript presents lack of a Discussion section. 

Thank you for your suggestion and we have accepted it. We have added an individual 

Discussion Section in the new manuscript to discuss the findings and deficiencies of 

the study (lines 539-602 in the comparison edition attached). Besides, we have added 

more analyses and discussions in section 5.5 about the comparison of the results of 

different models (lines 604-638 in the comparison edition attached); please also see 

details as cited following: 

 “6 Discussion 

Because of potential spatial heterogeneity, the model parameter estimates obtained 

based on the total equal-weight samples in the classical regression model may be 

biased, and they may not be applicable for predicting each local region. Therefore, it 

is necessary to adopt a local window model to overcome this issue. The presented 

case study shows that ILRBSWT can obtain better prediction results than classical 

logistic regression because of the former’s sliding local window model, and their 

corresponding intersection point values are 2.85 and 2.45, respectively. However, 

ILRBSWT has even advantages. For example, characterizing 26% or 29% of the total 

study area as promising prospecting targets is too high in terms of economic 

considerations. If instead 10% of the total area needs is mapped as the target area, the 

proportions of correctly predicted known deposits obtained by ILRBSWT and logistic 

regression are 44% and 24%, respectively. The prediction efficiency of the former is 

1.8 times larger than the latter. 

In this study, we did not separately consider the influences of spatial heterogeneity, 

missing data, and degree of exploration weight all remain, so we cannot evaluate the 

impact of each factor. Instead, the main goal of this work was to provide the 

ILRBSWT tool, demonstrating its practicality and overall effect. Zhang et al. (2017) 

applied this model to mapping intermediate and felsic igneous rocks and proved the 

effectiveness of the ILRBSWT tool in overcoming the influence of spatial 

heterogeneity specifically. In addition, Agterberg and Bonham-Carter (1999) showed 



that WofE has the advantage of managing missing data, and we have taken a similar 

strategy in ILRBSWT. We did not fully demonstrate the necessity of using 

exploration weight in this work, which will be a direction for future research. 

However, it will have little influence on the description and application of ILRBSWT 

tool as it is not an obligatory factor, and users can individually decide if the 

exploration weight should be used. 

Similar to WofE and logistic regression, ILRBSWT is a data-driven method, thus it 

inevitably suffers the same problems as data-driven methods, e.g., the information 

loss caused by data discretization, and exploration bias caused by the training sample 

location. However, it should be noted that evidential layers are discretized in each 

local window instead of the total study area, which may cause less information loss. 

This can also be regarded as an advantage of the ILRBSWT tool. With respect to 

logistic regression and WofE, some researchers have proposed solutions to avoid 

information loss resulting from spatial data discretization by performing continuous 

weighting (Pu et al., 2008; Yousefi & Carranza, 2015b, 2015c, 2016), and these 

concepts can be incorporated into further improvements of the ILRBSWT tool in the 

future.” 

5. The methods applied, i.e. “weights of evidence” and “logistic regression” are 

data-driven MPM methods, which carry exploration bias and uncertainty resulting 

from using classified spatial data and location of known deposits as training sites. 

Please add a discussion on the disadvantages of such data-driven MPM methods. 

There are continuous weighting approaches using logistic functions (e.g., 

logistic-based weighting methods, geometric average function, continuous 

fuzzification method, and …) to avoid the aforementioned uncertainty. 

Thank you for your suggestions and we have accepted them. We have included in the 

Discussion Section a description about the shortcomings of the data-driven MPM 

method, and reviewed previous efforts in overcoming the issues caused by data 

discretization; please see details in the third paragraph in the discussion section. 



6. The evaluation method applied could not reflect the efficiency of the two models 

ade-quately. So you can see that there is no much difference between the models. I 

think it would be better if you could apply a prediction-area (P-A) plot and calculate 

normalized density for the two models to compare them. 

Thank you for your suggestion, and we have accepted it. We applied the 

prediction-area (P-A) plot and normalized density in the new manuscript to replace 

the previous used t-value method for model comparison in “5.5 Comparison of the 

mapping results” (lines 538-558 in the comparison edition attached), as is cited 

following.  

“To evaluate the predictive capacity of the newly developed and traditional methods, 

the posterior probability maps obtained through logistic regression and ILRBSWT 

shown in Fig. 9 (a) and 9 (b) were divided into 20 classes using the quantile method. 

Prediction-area (P-A) plots (Mihalasky & Bonham-Carter, 2001; Yousefi et al., 2012; 

Yousefi & Carranza, 2015a) were then made according to the spatial overlay 

relationships between Au deposits and the two classified posterior probability maps in 

Fig. 10 (a) and (b) respectively. In a P-A plot, the horizontal ordinate indicates the 

discretized classes of a map representing the occurrence of deposits. The vertical 

scales on the left and right sides indicate the percentage of correctly predicted 

deposits from the total known mineral occurrences and the corresponding percentage 

of the delineated target area from the total study area (Yousefi & Carranza, 2015a). 

As shown in Figs. 10 (a) and (b), with the decline of the posterior probability 

threshold for the mineral occurrence from left to right on the horizontal axis, more 

known deposits are correctly predicted, and meantime more areas are delimited as the 

target area; however, the growth in the prediction rates for deposits and corresponding 

occupied area are similar before the intersection point in Fig. 10 (a), while the former 

shows higher growth rate than the latter in Fig. 10 (b). This difference suggests that 

ILRBSWT can predict more known Au deposits than logistic regression for 

delineating targets with the same area, and indicates that the former has a higher 

prediction efficiency than the latter. 



It would be a little inconvenient to consider the ratios of both predicted known 

deposits and occupied area. Mihalasky and Bonham-Carter (2001) proposed a 

normalized density, i.e. the ratio of the predicted rate of known deposits to its 

corresponding occupied area. The intersection point in a P-A plot is the crossing of 

two curves. The first is fitted from scatter plots of the class number of the posterior 

probability map and rate of predicted deposit occurrences (the “Prediction rate” 

curves in Fig. 10). The second is fitted according to the class number of the posterior 

probability map and corresponding accumulated area rate (the “Area” curves in Fig. 

10). At the interaction point, the sum of the prediction rate and corresponding 

occupied area rate is 1; the normalized density at this point is more commonly used to 

evaluate the performance of a certain spatial variable in indicating the occurrence of 

ore deposits (Yousefi & Carranza, 2015a). The intersection point parameters for both 

models are given in Table 1. As shown in the table, 71% of the known deposits are 

correctly predicted with 29% of the total study area delineated as target area when the 

logistic regression is applied; if ILRBSWT if applied, 74% of the known deposits can 

be correctly predicted with only 26% of the total area delineated as the target area. 

The normalized densities for the posterior probability maps obtained from the logistic 

regression and ILRBSWT are 2.45 and 2.85 respectively; the latter performed 

significantly better than the former.” 

The evaluation results supported the conclusions of this research, Please see Fig. 

R 2 (Fig. 10 in the comparison edition attached). 



 

Fig. R 2: Prediction-area (P-A) plots for discretized posterior probability maps obtained 

by logistic regression and ILRBSWT respectively. 

 

 7. The Conclusion is somewhat repetition of the text body. Please re-think about the 

Conclusion. 

Thank you for your comment and the conclusion has been reorganized:  

“Given the problems in existing MPM models, this research provides an ILRBSWT 

tool. We have proven its operability and effectiveness through a case study. This 

research is also expected to provide a software tool support for geological exploration 

researchers and workers in overcoming the non-stationarity of spatial variables, 

  

 

(a) 

 

(b)  



missing data, and differences in exploration degree, which should improve the 

efficiency of MPM work.” 
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ImprovedAn improved logistic regression model based on a spatially weighted technique 1 

(ILRBSWT v1.0) and its application to mineral prospectivity mapping  2 

 3 
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Abstract: Due to complexityThe combination of complex, multiple minerogenic stages, and 10 

mineral superposition during geological processes, the has resulted in dynamic spatial 11 

distributions and non-stationarity of geological variables also exhibit specific trends and 12 

non-stationarity.. For example, geochemical elements exhibit obviousclear spatial 13 

non-stationarityvariability and trends because of the deposition of different types ofwith 14 

coverage. type changes. Thus, bias may clearlyis likely to occur under these conditions when 15 

general regression models are applied to mineral prospectivity mapping (MPM). In this study, 16 

we used a spatially weighted technique to improve general logistic regression and developed 17 

an improved model called, i.e., the improved logistic regression model, based on a spatially 18 

weighted technique (ILRBSWT, version 1.0). The capabilities and advantages of ILRBSWT 19 

are as follows: (1) ILRBSWTit is essentially a geographically weighted regression (GWR) 20 

model, and thus it has all its advantages of GWR when dealing withmanaging spatial trends 21 

and non-stationarity; (2) while the current software employed for GWR mainly applies linear 22 

regression whereas, ILRBSWT is based on logistic regression, which is used more commonly 23 

insuitable for MPM because mineralization is a binary event; (3) a missing data 24 

processprocessing method borrowed from weights of evidence is included in ILRBSWT to 25 



2 

 

extend theits adaptability when dealing withmanaging multisource data; and (4) in addition to 26 

geographical distance, the differences ofin data quality or exploration level can also be 27 

weighted in the new model as well as the geographical distance.  28 

Keywords: anisotropy; geographical information system modeling; geographically weighted 29 

logistic regression; mineral resource assessment; missing data; trend variable; weights of 30 

evidence.  31 

 32 

1 Introduction 33 

The main distinguishing characteristic of spatial statistics compared withto classical statistics 34 

is that the former has a location attribute. Before the development of geographical information 35 

systems were developed, spatial statistical problems were often transformed into general 36 

statistical problems, where the spatial coordinates were more likesimilar to a sample ID 37 

because they only had an indexing feature. However, even in non-spatial statistics, the 38 

reversal paradox or amalgamation paradox (Pearson et al., 1899; Yule, 1903; Simpson, 1951), 39 

which is commonly called Simpson's paradox (Blyth, 1972), has attracted muchsignificant 40 

attention from statisticians and other researchers. In spatial statistics, some spatial variables 41 

usually exhibit certain trends and spatial non-stationarity. Thus, it is possible for Simpson's 42 

paradox to occur when a globalclassical regression model is applied, and the existence of 43 

unknown important variables may makeworsen this condition even worse. The influence of 44 

Simpson's paradox can be fatal. For example, in geology, due to the presence of cover and 45 

other factors that occur after post-mineralization, the ore-forming elements in Area Ι are 46 

generally much lower than those in Area II, butwhile the actual probability of a mineral in 47 

Area Ι is higher than that in Area II, and simply because more deposits may bewere 48 

discovered in Area Ι (Agterberg, 1971). In this case, a negative correlation willcorrelations 49 

would be obtained between the ore-forming elements and the mineralization according to the 50 
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classical regression model, whereas a high positive correlationcorrelations can be obtained in 51 

both areas if they are separated. Simpson's paradox is an extreme case of the bias caused by 52 

using a global modelgenerated from classical models, and it is usually not so severe in 53 

practice. However, this type of biasedbias needs to be considered and we should take care 54 

needs to be taken when applying a classical regression model to a spatial problem. Several 55 

solutions to this issue have been proposed previously, which can be divided into three types.  56 

(1) Locations are introduced as direct or indirect independent variables. Several studies 57 

have employed spatial trendThis type of model is still a global model, but space coordinates 58 

or distance weights are employed to adjust the regression estimation between the dependent 59 

variable and independent variables (Agterberg, 1964; Agterberg and Cabilio, 1969; Agterberg, 60 

1970; Agterberg and Kelly, 1971; Agterberg, 1971) to express linear or nonlinear trends in 61 

space by adding coordinate variables or their functions in predictive models. In these methods, 62 

the locations themselves are taken as independent variables as well as the normal independent 63 

variables.; Casetti, 1972; Lesage & Pace, 2009, 2011). For example, Reddy et al. (1991) 64 

performed logistic regression by including trend variables for mappingto map the base-metal 65 

potential in the Snow Lake area, Manitoba, Canada. In addition, Casetti (1972) developed a ; 66 

Helbich & Griffith (2016) compared the spatial expansion method (SEM) to other methods in 67 

modeling the house price variation locally, where the regression parameters are themselves 68 

functions of the x and y coordinates as well asand their combinations; Yu & Liu (2016) used 69 

the spatial lag model (SLM) and spatial error model to control spatial effects in modeling the 70 

relationship between PM2.5 concentrations and per capita GDP in China.  71 

(2) Using localLocal models are used to replace global models, i.e., geographically 72 

weighted models (Fotheringham et al., 2002). Geographically weighted regression (GWR) is 73 

the most popular model among the geographically weighted models. GWR wasmodels were 74 

first developed at the end of the 20th century by Brunsdon et al. (1996) and Fotheringham et al. 75 
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(1996, 1997, 2002) for modeling spatially heterogeneous processes, and it hashave been used 76 

widely in the field of geography.geosciences (e.g., Buyantuyev & Wu, 2010; Barbet-Massin et 77 

al., 2012; Ma et al., 2014; Brauer et al., 2015).  78 

(3) Reducing the trends in spatial variables. For example, Cheng developed a local 79 

singularity analysis technique and spectrum-area (S-A) model based on fractal/multi-fractal 80 

theory (Cheng, 1997; Cheng, 1999). These methods can remove spatial trends and 81 

preventmitigate the strong effects on predictions of the originalvariables starting at high and 82 

low values of the variables on predictions, and thus they are used widely to weaken the effect 83 

of spatial non-stationarity to some degree (e.g., ZuoZhang et al., 2016; ZhangZuo et al., 84 

2016; Xiao et al., 2017). 85 

GWR models can be readily visualized and understood, and it is particularly valid for 86 

dealing with spatial non-stationarity, thus it has been used widelyare intuitive, which have 87 

made them applied in geography and other areasdisciplines that require spatial data analysis. 88 

In general, GWR is a moving window-based model where instead of establishing a unique 89 

and global model for prediction, it makes a prediction forpredicts each current location using 90 

the surrounding samples, and a higher weight is given when the sample is located closer. The 91 

theoretical foundation of GWR is based on Tobler’s observation that: “everything is related to 92 

everything else, but near things are more related than distant things” (Tobler, 1970).  93 

In mineral prospectivity mapping (MPM), the dependent variables are binary and 94 

logistic regression is used instead of linear regression, and; therefore, it is necessary to apply 95 

geographically weighted logistic regression (GWLR) instead. GWLR belongs tois a type of 96 

geographically weighed generalized linear regression model (Fotheringham et al.., 2002) and 97 

itthat is included in the software module GWR 4.09 (Nakaya, 2016). However, the function 98 

module for GWLR in current software can only deal with themanage data in the form of a 99 

tabular dataset containing the fields ofwith dependent and independent variables, and the x-y 100 
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coordinates. Therefore, the spatial layers musthave to be re-processed into two-dimensional 101 

tables and the resulting data needs to be transformed back into a spatial form.  102 

Another problem with the application ofapplying GWR 4.09 for MPM is that it cannot 103 

deal withhandle missing data (Nakaya, 2016). Weights of evidence (WofE) is a widely used 104 

model for MPM (Bonham-Carter et al., 1988, 1989; Agterberg, 1989; Agterberg et al., 1990), 105 

which can avoid) that mitigates the effecteffects of missing data. However, WofE was 106 

developed based on the premise that an assumption ofassuming that conditional independence 107 

is satisfied among the evidential layers with respect to the target layer; otherwise, the 108 

posterior probabilities will be biased, and the number of estimated deposits will not be 109 

equalunequal to the known deposits. Agterberg (2011) combined WofE with logistic 110 

regression and proposed a new model that can obtain an unbiased estimated of the number of 111 

deposits as well as avoiding the effect of missing data. In the present study, this concept is 112 

employed to deal with missing data and we propose the improved logistic regression model 113 

based on spatially weighted technique (ILRBSWT v1.0) for MPM. The main features of 114 

ILRBSWT include the following: (1) a spatial t-statistics method (Agterberg et al., 1993) is 115 

introduced to determine the best binary threshold for independent variables, where 116 

binarization is performed based on a local window instead of the global level, which can 117 

increase the effect of indicating the independent variables to the target variable; and (2) a 118 

mask layer is included in the new model to deal with the data quality and exploration level 119 

differences among samples. estimate of number of deposits while also avoiding the effect of 120 

missing data. In this study, we employed Agterberg (2011) ‘s to account for missing data. 121 

The ideaOne more improvement of the ILRBSWT is that a mask layer is included in the 122 

new model to address data quality and exploration level differences between samples. 123 

Conceptually, this research is originoriginated from the first author’s doctoral thesis 124 

(of Zhang,  (2015); in Chinese,), which has been shown to haveshowed better efficiency 125 
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for mapping intermediate and felsic igneous rocks (Zhang et al., 2017). The contribution 126 

of this research is to elaborate the principleThis work elaborates on the principles of 127 

ILRBSWT, and provideprovides a detailed algorithm for its design and implementation 128 

process with the code and software module attached. In addition, the processing of 129 

missing data is not a technique covered in GWR modeling presented in prior research, and 130 

a solution borrowed from WofE is provided in this study. Finally, ILRBSWT performance 131 

in MPM is tested by former researches. At last, the prediction ofpredicting Au ore deposits 132 

in western Meguma Terrain, Nova Scotia, Canada, is chosen as case study to show the 133 

performance of ILRBSWT in MPM.  134 

 135 

2 Models 136 

Linear regression is commonly used for exploring the relationship between a response 137 

variable and one or more explanatory variables. However, in MPM and other fields, the 138 

response variable is binary or dichotomous, so linear regression is not applicable and thus a 139 

logistic model can beis advantageous.  140 

2.1 Logistic Regression 141 

In MPM, the dependent variable(Y) is binary sincebecause Y can only take the value of 1 and 142 

0, which means theindicating that mineralization occurs orand not respectively. Suppose that 143 

π represents the estimation of Y, 0≤π≤1, then a logit transformation of π can be made, i.e., 144 

logit (π ) =ln(π /(1-π )). LogisticThe logistic regression function can be obtained as 145 

following.follows: 146 

Logit π(𝑋1, 𝑋2, ⋯ , 𝑋𝑝) = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑝𝑋𝑝                              (1) 147 

where 𝑋1, 𝑋2, ⋯ , 𝑋𝑝, comprises a sample of p explanatory variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑝, β0 is the 148 

intercept, and 𝛽1, 𝛽2, ⋯ , 𝛽𝑝 are regression coefficients.  149 
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If there are n samples, we can obtain n linear equations with p+1 unknowns based on 150 

equation (1). Furthermore, if we suppose that the observed values for Y are 𝑌1, 𝑌2, ⋯ , 𝑌𝑛, and 151 

these observations are independent of each other, then a likelihood function can be 152 

established:   153 

L(𝛽) = ∏ (π𝑖
𝑌𝑖(1 − π𝑖)

1−𝑌𝑖)𝑛
𝑖=1 ,                                            

 

(2) 154 

where 𝜋𝑖 = 𝜋(𝑋𝑖1, 𝑋𝑖2, ⋯ , 𝑋𝑖𝑝) =
𝑒
𝛽0+𝛽1𝑋𝑖1+⋯+𝛽𝑝𝑋𝑖𝑝

1+𝑒
𝛽0+𝛽1𝑋𝑖1+⋯+𝛽𝑝𝑋𝑖𝑝

. The best estimate can be obtained if 155 

and only if equation (2) takes the maximum. Then the problem is converted into solving 156 

𝛽1, 𝛽2, ⋯ , 𝛽𝑝 . Equation (2) can be further transformed into the following log-likelihood 157 

function.: 158 

lnL(𝛽) = ∑ (𝑌𝑖𝜋𝑖 +
𝑛
𝑖=1 (1 − 𝑌𝑖)(1 − 𝜋𝑖))

                                      

(3) 159 

The solution can be obtained by taking the first partial derivative of  𝛽𝑖 (i = 0 to p), 160 

which should be equal to 0.: 161 

{
 

 
𝑓( 𝛽0) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖0 = 0

𝑛
𝑖=0

𝑓( 𝛽1) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖1 = 0
𝑛
𝑖=0

⋮
𝑓( 𝛽𝑝) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖𝑝 = 0

𝑛
𝑖=0

                                              (4) 162 

where 𝑋𝑖0 = 1, i takes the value from 1 to n, and equation (4) is obtained in the form of 163 

matrix operations. 164 

𝐗𝐓(𝐘 − 𝛑) = 𝟎                                                            (5) 165 

The Newton iterative method can be used to solve the nonlinear equations: 166 

�̂�(𝑡 + 1) = �̂�(𝑡) + 𝐇−𝟏𝐔 ,                                                   (6) 167 

where 𝐇 = 𝐗𝐓𝐕(𝑡)𝐗, 𝐔 = 𝐗𝐓(𝐘 − 𝛑(𝑡)), t represents the number of iterations, and 𝐕(𝑡), 𝐗, 168 

𝐘, 𝛑(𝑡) ,), and �̂�(𝑡) are obtained as follows: 169 

𝐕(𝑡) =

(

 

π1(𝑡)(1 − π1(𝑡))

π2(𝑡)(1 − π2(𝑡))

⋱
π𝑛(𝑡)(1 − π𝑛(𝑡)))

 , 170 
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 𝐗 =

(

 

𝑋10 𝑋11 ⋯ 𝑋1𝑝
𝑋20 𝑋21 ⋯ 𝑋2𝑝
⋮ ⋮ ⋱ ⋮
𝑋𝑛0 𝑋𝑛1 ⋯ 𝑋𝑛𝑝)

 , 𝐘 = (

𝑌1
𝑌1
⋮
𝑌𝑛

), 𝛑(𝑡) = (

π1(𝑡)
π2(𝑡)
⋮

π𝑛(𝑡)

), and �̂�(𝑡) =

(

 
 
�̂�1(𝑡)

�̂�2(𝑡)
⋮

�̂�𝑛(𝑡))

 
 

.  171 

Hosmer et al. (2013) providedFor a more information aboutdetailed description of the 172 

derivation fromderivations of equations (1) to (6), see Hosmer et al. (2013). 173 

2.2 Weighted Logistic Regression 174 

In practice, vector data is popularlyoften used, and sample size (area) has to be considered. In 175 

this condition, weighted logistic regression modeling should be used instead of a general 176 

logistic regression. In addition, itIt is also preferable to use a weighted logistic regression 177 

model when a logical regression should be performed for large sample data, since because 178 

weighted logical regression can greatlysignificantly reduce the size of the matrix size and 179 

improve the computational efficiency (Agterberg, 1992). Assuming that there are four binary 180 

explanatory variable layers and the study area consists of 1000×1000 grid points, the matrix 181 

size for normal logic regression modeling would be 106×106; however, if weighted logistic 182 

regression is used, the matrix size would be 32×32 at most. That isThis condition arises 183 

because the sample classification process is contained in the weighted logistic regression, and 184 

all samples are classified into the classes which ownwith the same values atas the dependent 185 

and each independent variables. The samples with the same dependent and independent 186 

variables form certain continuous and discontinuous patterns in space, which are called 187 

“unique condition” units. Each unique condition unit is then treated as a sample, and the area 188 

(grid number) for it is taken as weight in the weighed logistic regression. Thus, infor the case 189 

of weighted logical regression, equations (2) to (5) in section 2.1 need to be changed as 190 

following Equationsto equations (7) to (10) respectivelyas follows. 191 

 192 

L𝑛𝑒𝑤(𝛽) = ∏ (π𝑖
𝑁𝑖𝑌𝑖(1 − π𝑖)

𝑁𝑖(1−𝑌𝑖))𝑛
𝑖=1 ,                                     

 

(7) 193 
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lnL𝑛𝑒𝑤(𝛽) = ∑ (𝑁𝑖𝑌𝑖𝜋𝑖 +
𝑛
𝑖=1 𝑁𝑖(1 − 𝑌𝑖)(1 − 𝜋𝑖))

                               

(8) 194 

{
 

 
𝑓𝑛𝑒𝑤( 𝛽0) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖0 = 0

𝑛
𝑖=0

𝑓𝑛𝑒𝑤( 𝛽1) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖1 = 0
𝑛
𝑖=0

⋮
𝑓𝑛𝑒𝑤( 𝛽𝑝) = ∑ (𝑌𝑖−𝜋𝑖)𝑋𝑖𝑝 = 0

𝑛
𝑖=0

                                          (9)  195 

𝐗𝐓𝐖(𝐘 − 𝛑) = 𝟎                                                        (10) 196 

where 𝑁𝑖 is the weight for the i-th unique condition unit, i takes the value from 1 to n, and n 197 

is the total number of grid points. Andunique condition units. W is a diagonal matrix which 198 

can bethat is expressed as following.follows: 199 

𝐖 =

(

 

𝑁1
𝑁2

⋱
𝑁𝑛)

  200 

BesidesIn addition, new values of H and U should be used in equation (6) to perform 201 

Newton iterative underiteration as part of the weighted logistic regression, i.e., 𝐇𝒏𝒆𝒘 =202 

𝐗𝐓𝐖𝐕(𝑡)𝐗, 𝐔𝒏𝒆𝒘 = 𝐗
𝐓𝐖(𝐘 − 𝛑(𝑡)). 203 

2.3 Geographically Weighted Logistic Regression 204 

GWLR is a local window-based model becausewhere logistic regression is established at each 205 

current location in the GWLR. The current location is changed using the moving window 206 

technique with a loop program. If we supposeSuppose that 𝐮 represents the current location, 207 

which can be uniquely determined by a pair of column and row numbers, x denotes that p 208 

explanatory variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑝  that take values of 𝑋1, 𝑋2, ⋯ , 𝑋𝑝  , respectively, and 209 

𝜋(𝒙, 𝐮) is the estimates of YY estimate, i.e., the probability that Y takes a value of 1, and then 210 

the following function can be obtained. 211 

Logit 𝜋(𝒙, 𝐮) = 𝛽0𝑖(𝐮) + 𝛽1 = 𝛽0(𝐮) + 𝛽1(𝐮)𝑋1𝑥1 + 𝛽2(𝐮)𝑋2𝑥2 +⋯+ 𝛽𝑝(𝐮)𝑋𝑝𝑥𝑝  ,                            212 

(11) 213 

where, 𝛽0(𝐮), 𝛽1(𝐮), ⋯, 𝛽𝑝(𝐮) denoteindicate that these parameters are obtained at the 214 

location of 𝐮. The Logit 𝜋(𝒙, 𝐮), the predicted probability for the current location 𝐮, can be 215 

Formatted: English (United States)



10 

 

obtained under the condition that the values of all the independent variables are known at the 216 

current location and all of the parameters are also calculated based on the samples within the 217 

current local window. According to equation (6) in section 2.1, the parameters for GWLR can 218 

be estimated with equation (12):  219 

�̂�(𝐮)𝑡+1 = �̂�(𝐮)𝑡 + (𝐗
T𝐖(𝐮)𝐕(𝑡)𝐗)−1𝐗T𝐖(𝐮)(𝐘 − 𝛑(𝑡)),                           (12) 220 

where t represents the number of iterations; X is a matrix comprisingthat includes the values 221 

of all the independent variablevariables, and all of the elements in the first column are 1; 222 

𝐖(𝐮) is a diagonal matrix where the diagonal elements are geographical weights, which can 223 

be calculated according to distance, whereas the other elements are all 0; 𝐕(𝑡) is also a 224 

diagonal matrix and the diagonal element can be expressed as π𝑖(𝑡)(1 − π𝑖(𝑡)); and Y is a 225 

column vector representing the values taken by the dependent variable. 226 

2.4 Improved Logistic Regression Model based on the Spatially Weighted Technique 227 

As is mentioned in the introduction section, there are primarily two improvements for 228 

ILRBSWT compared to GWLR, i.e., the capacity to manage different types of weights, and 229 

the special handling of missing data. 230 

2.4.1 Integration of Different Weights 231 

If a diagonal element in 𝐖(𝐮) is only for one sample (, i.e., the grid point in raster data),, 232 

section 2.3 can be seen as the is an improvement ofon section 2.1, i.e. samples are weighted 233 

according to itstheir location. If samples are first reclassified firstly according to the unique 234 

condition mentioned in section 2.2, and corresponding weights are then summarized 235 

according to each sample’s geographical weight, we can obtain an improved logistic 236 

regression model considering both sample sizessize and geographical distancesdistance. The 237 

new model can not onlyboth reflects the spatial distribution of samples, but also reduce and 238 

reduces the matrix size, and itwhich is to be discussed in the following section. 239 

In addition to geographic factors, the degree considered in the study can affect the 240 

Field Code Changed
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representativeness of a sample, e.g., differences in the level of exploration, is also considered 241 

in this study.  242 

Suppose that there are n grid points in the current local window, Si is the i-th grid, Wi(g) 243 

is the geographical weight of Si, and 𝑊𝑖(𝑑) represents the individual difference weight or 244 

non-geographical weight (in. In some cases, there may be differences in quality or the 245 

exploration level among samples, but 𝑊𝑖(𝑑) takes a value of 1 if there is no difference),, 246 

where i takes a value from 1 to n. Furthermore, if we suppose that there are N unique 247 

conditions after overlaying all of the layers (N  n) and Cj denotes the j-th unique condition 248 

unit, then we can obtain the final weight for each unique condition unit in the current local 249 

window:  250 

𝑊𝑗(𝑡) = ∑ [𝑊𝑖(g) ∗ 𝑊𝑖(𝑑) ∗ df𝑖]
𝑛
𝑖=1 ,                                        (13) 251 

where {
df𝑖 = 1   if S𝑖 ∈ C𝑗
df𝑖 = 0   if S𝑖 ∉ C𝑗

, i takes a value from 1 to n,  j takes a value from 1 to N, and 252 

𝑊𝑗(𝑡) represents the total weight (by combining both 𝑊𝑖(𝑔) and 𝑊𝑖(𝑑)) for each unique 253 

condition unit. We can use the final weight calculated in equation (13) to replace the original 254 

weight in equation (12), which is one of the advantagesan advantage of ILRBSWT. 255 

2.54.2 Missing data processing 256 

Missing data is a problem existing in all statistics-related research fields. In MPM, missing 257 

data are also prevalent due to ground coverage, and limitations of exploration technique and 258 

measurement accuracy. Agterberg and Bonham-Carter (1999) once compared the following 259 

commonly used missing data processing solutions: (1) removing variables containing missing 260 

data, (2) deleting samples with missing data, (3) using 0 to replace the missing data, and (4) 261 

replacing the missing data with the mean of the corresponding variable. From the point of 262 

utilization efficiency ofTo efficiently use existing data, both (1) and (2) are clearly not good 263 

solutions sinceas more data will be lost. Solution (3) is superior to (4) for missing values due 264 

Formatted
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to the detection limit of the measuring instrumentin the condition that work has not been done 265 

and real data is unknown; with respect to the missing data caused by the limitation of 266 

geographical environment and the prospecting techniquedetection limits, solution (4) is 267 

obviouslyclearly a better choice. Missing data is mainlyprimarily caused by the latter in MPM, 268 

and Agterberg (2011) pointed out that missing data could be evenwas better dealt with by 269 

performingaddressed in a WofE model. In WofE, the evidential variable takes the value of 270 

positive weight (𝑊+) if it is favorable for the happening of the target variable (e.g., 271 

mineralization); and), while the evidential variable takes the value of negative weight (𝑊−) if 272 

it is unfavorable for the happening of the target variable; and automatically the evidential 273 

variable takes the value of “0” if there is missing data happens. 274 

𝑊+ = ln
𝐷1
𝐷

𝐴1−𝐷1
𝐴−𝐷

                                                           (14) 275 

𝑊− = ln
𝐷2
𝐷

𝐴2−𝐷2
𝐴−𝐷

                                                           (15) 276 

where A is an evidential layer, A1 meansis the area (or grid number, similarly hereinafter) that 277 

A takes the value of 1, and A2 meansis the area that A takes the value of 0; A3 meansis the area 278 

with missing data, and A1+A2 is smaller than the total study area if missing data exists. D1, D2, 279 

and D3 are the area thatareas where the target variable takesvariables take the value of 1 in A1, 280 

A2, and A3 respectively. In fact, A3 and D3 are not used in equation (15) sincebecause no 281 

information is provided in area A3.  282 

However, it is preferred to use If “1” and “0” are still used to represent the positive and 283 

negativebinary condition of the independent variable in logistic regression model. In this 284 

case,instead of 𝑊+and 𝑊−, equation (16) can be used to replace missing data in logistic 285 

regression modeling, which will cause an equivalent effect just as missing data are processed 286 

in WofE.  287 
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𝑀 =
−𝑊−

𝑊+−𝑊− =
ln

𝐷

𝐴−𝐷
−ln

𝐷2
𝐴2−𝐷2

ln
𝐷1

𝐴1−𝐷1
−ln

𝐷2
𝐴2−𝐷2

                                               (16) 288 

 289 

3 Design of the ILRBSWT Algorithm 290 

3.1 Local Window Design 291 

A raster data set is used for ILRBSWT modeling. With a regular gridgrids, the distance 292 

between any two grid points can be calculated easily and we can even obtain distance 293 

templates within a certain window scope can be obtained, which is highly efficient for data 294 

processing. The circle and ellipse are used for isotropic and anisotropic local window designs, 295 

respectively.  296 

(1) Circular Local Window Design 297 

If we supposeSuppose that W represents a local circular window where the minimum 298 

bounding rectangle is R, then the geographical weights can be calculated only inside R. 299 

ObviouslyClearly, the grid points inside of R but outside of W should be weighted as 0, and 300 

the weightsweight for the grid pointswith a center inside W should be calculated according to 301 

the distances between themselves and thedistance from its current location. Because R should 302 

beis a square so, we can also assume that there are n columns and rows in Rit, where n is an 303 

odd number. If we take east and south as the orientations of the x-axis and y-axis, respectively, 304 

and the position of the northwest corner grid is defined as (x = 1, y = 1), then a local 305 

rectangular coordinate system can be established and the position forof the current location 306 

grid can be expressed as 𝑂 (𝑥 =
𝑛+1

2
, 𝑦 =

𝑛+1

2
). The distance between any grid inside W and 307 

the current location grid can be expressed as 𝑑𝑜−𝑖𝑗 = √(𝑖 −
𝑛+1

2
)
2
+ (𝑗 −

𝑛+1

2
)
2
, where i and 308 

j take values ranging from 1 to n. The geographical weight is a function of distance, so it is 309 

convenient to calculate w𝑖𝑗 with 𝑑𝑜−𝑖𝑗 .. Figure 1 shows the weight template for a circular 310 

local window with a half-window size of nine grid points.  grids. 311 
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 312 

Fig. 1 Weight template for a circular local window with a half-window size of nine grid 313 

pointsgrids, where w1 to w30 represent different weight classes that decrease with distancedistances 314 

and 0 denotesindicates that the grid is weighted as 0. Gradient colors ranging from red to green are 315 

used to distinguish the weight classes for grid points. 316 

If we supposeSuppose that there are T_n columns and T_m rows in the study area, and 317 

Current (T_i, T_j) represents the current location, where T_i takes values from 1 to T_n and 318 

T_j takes values from 1 to T_m, then the current local window can be established by selecting 319 

the range of rows 𝑇_𝑖 −
𝑛−1

2
 to 𝑇_𝑖 +

𝑛−1

2
 and columns 𝑇_𝑗 −

𝑛−1

2
 to 𝑇_𝑗 +

𝑛−1

2
 based 320 

onfrom the total research area. Next, we can establish a local rectangular coordinate system 321 

according to the steps in the last paragraph, where the x and y coordinates for the northwest 322 

corner are defined as the coordinate origin by subtractingpreviously described steps; we 323 
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subtract 𝑇_𝑖 −
𝑛−1

2
 and 𝑇𝑗 −

𝑛−1

2
 fromon the x and y coordinates, respectively, for all of the 324 

grid pointsgrids in the range. The corresponding relationship can then be established between 325 

the weight template and the current window. Global weights can also be included via the 326 

matrix product between the global weight layer and local weight template within the local 327 

window. In addition, special care should be taken when the weight template covers some area 328 

outside the study area, i.e.g.,., 𝑇_𝑖 −
𝑛−1

2
< 0, 𝑇_𝑖 +

𝑛−1

2
> 𝑇_𝑛, 𝑇_𝑗 −

𝑛−1

2
< 0, and 𝑇_𝑗 +329 

𝑛−1

2
> 𝑇_𝑚. 330 

(2) Elliptic Local Window Design 331 

In most cases, the spatial weights change totendency of the spatial variable degrees 332 

inmay vary with different directions and an elliptic local window may be better for 333 

describingdescribe the changes in the weights in space. In order toTo simplify the calculation, 334 

we can convert the distances in different directions into equivalent distances, and an 335 

anisotropic problem is then becomesconverted into an isotropic problem. For any grid, the 336 

equivalent distance is the semi-major axis length of the ellipse that passes through the grid 337 

and that is centered at the current location, where and passes through the grid, while the 338 

parameters for the ellipse can be determined using the kriging method.  339 

We still use W to represent the local elliptic window and a, r, and θ are defined as the 340 

semi-major axis, the ratio of the semi-minor axis relative to the semi-major axis, and the 341 

azimuth of the semi-major axis, respectively. Then, W can be covered by a square R, where 342 

the whose side length is 2a-1 and the center is the same as W. There are (2a –1) × (2a – 1) 343 

grid pointsgrids in R. We establish the rectangular coordinates as described above and we 344 

suppose that the center of the top left grid in R is located at (x = 1, y = 1), and thus the center 345 

of W should be  𝑂(𝑥0 = 𝑎, 𝑦0 = 𝑎). According to the definition of the ellipse, two of the 346 

elliptical focuses are located at F1 (𝑥1 = 𝑎 + sin(𝜃)√𝑎
2 − (𝑎 ∗ 𝑟)2, 𝑦1 = 𝑎 −347 
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con(𝜃)√𝑎2 − (𝑎 ∗ 𝑟)2)  and F2 (𝑥2 = 𝑎 − sin (𝜃)√𝑎
2 − (𝑎 ∗ 𝑟)2, 𝑦2 = 𝑎 +348 

con (𝜃)√𝑎2 − (𝑎 ∗ 𝑟)2) .). The summed distances between a point and the two focus points 349 

can be expressed as 𝑙𝑖𝑗 = √(𝑖 − 𝑥1)
2 + (𝑗 − 𝑦1)

2 +√(𝑖 − 𝑥2)
2 + (𝑗 − 𝑦2)

2, where i and j 350 

take values from 1 to 2a – 1. According to the elliptical focus formula, we can decide whether 351 

a grid in R is located in W. Forequation, for any grid in R, if the sum of the distances between 352 

the two focal points and a grid center is greater than 2a, then the grid is located inwithin W, 353 

and vice versa. For the grid pointsgrids outside of W, the weight is assigned as 0, and we only 354 

need to calculate the equivalent distances should be calculated for the grid pointsgrids within 355 

W. As mentioned above, the parameters for the ellipse can be determined using the kriging 356 

method. In the ellipse W, where the semi-major axis is a, we keep r and 𝜃 are maintained as 357 

constants, sothen we can obtain countless ellipses centered at the center of W, and the 358 

equivalent distance is the same on the same elliptical orbit. Thus, the equivalent distance 359 

template can be obtained for the local elliptic local window. Figure 2 shows the equivalent 360 

distance templates under the conditions that a = 11 grid pointsgrids, r = 0.5, and the azimuths 361 

for the semi-major axis are 0°, 45°, 90°, and 135°, where the weight template can also be 362 

calculated based on Fig. 2.  respectively.  363 

 364 
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 365 

Fig. 2 Construction of the distance template based on aan elliptic local window: a = 11 grid 366 

points, r = 0.5, and the azimuths for the semi-major axis are 0° (a), 45°(b), 90° (c), and 135° (d).) 367 

respectively. 368 

3.2 PseudocodeAlgorithm for ILRBSWT 369 

The ILRBSWT method primarily focuses mainly on two problems, i.e., spatial 370 

non-stationarity and missing data. We use the moving window technique to establish a local 371 

models instead of a global model, which can to overcome the spatial non-stationarity better 372 

compared with the global model. The spatial t-value employed in the WofE method is used to 373 

binarize spatial variables based on the local window, which is quite different from traditional 374 

binarization based on the global range, where the missing data can be handled well because 375 

positive and negative weights are used instead of the original values of “1” and “0” values, 376 

and the missing data can then beare represented well as “0.” Both the isotropy and anisotropy 377 

                         

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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window types are possibleprovided in our new proposed model. The geographical 378 

weightsweight function and the window size can be determined by the users themselves. If 379 

the geographic weights are equal and there are no missing data, then ILRBSWT will yield the 380 

same posterior probabilities as classical logistic regression; hence, the later can be 381 

treatedviewed as a special case of the former. The core ILRBSWT algorithm is as follows. 382 

Step 1. Establish a loop for all of the grid pointsgrids in the study area according to both 383 

the columns and rows. Determine a basic local window with a size of rmin based on a variation 384 

function or other method. In addition, the maximum local window with a size of rmax is set as 385 

rmax, with an interval of ∆𝑅. If we supposeSuppose that a geographical weightweighted 386 

model has already been given in the form of a Gaussian curve determined byfrom variations 387 

in the geostatistics, i.e., 𝑊(g) = e−𝜆𝑑
2
, where d is the distance and 𝜆 is the attenuation 388 

coefficient, then we can calculate the geographical weight for any grid in the current local 389 

window. The equivalent radius should be used in the anisotropic situation. When other types 390 

of weights are considered, e.g., the degree of exploration or research, it is also necessary to 391 

synthesize the geographical weights andwith other weights (see equation 1013). 392 

Step 2. Establish a loop for all of the independent variables. In a circular (elliptical) 393 

window with a radius (equivalent radius) of rmin, apply the WofE (Agterberg, 1992) model 394 

according to the grid weight determined in step 1, thereby obtaining a statistical table 395 

containing the parameters of 𝑊𝑖𝑗
+, 𝑊𝑖𝑗

− ,, and 𝑡𝑖𝑗, where i is the i-th independent variable 396 

and j denotes the j-th binarization.  397 

Step 2.1. If a maximum 𝑡𝑖𝑗 exists and it is greater than or equal to the standard t-value 398 

(e.g., 1.96), record the values of 𝑊𝑖−max _𝑡
+ , 𝑊𝑖−max _𝑡

−  ,, and 𝐵𝑖−max _t, which denote the 399 

positive weight, negative weight, and corresponding binarization, respectively, under the 400 

condition where t takes the maximum value. Go to step 2 and apply the WofE model to the 401 

other independent variables. 402 
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Step 2.2. If a maximum 𝑡𝑖𝑗 does not exist, or it is smaller than the standard t-value, go to 403 

step 3. 404 

Step 3. In a circular (elliptical) window with a radius (equivalent radius) of rmax, increase 405 

the current local window based onradius from rmin according to the algorithm in step 1. 406 

Step 3.1. If all of the independent variables have already been processed, go to step 4. 407 

Step 3.2. If the size of the current local window exceeds the size of rmax, then disregard 408 

the current independent variable and go to step 2 to consider the remaining independent 409 

variables. 410 

Step 3.3. Apply the WofE model according to the grid weight determined in step 1 in the 411 

current local window, which has increased.. If a maximum 𝑡𝑖𝑗 exists and it is greater than or 412 

equal to the standard t-value, record the values of 𝑊𝑖−max _𝑡
+ , 𝑊𝑖−max _𝑡

− , 𝐵𝑖−max _t ,, and 413 

rcurentrcurrent, which representsrepresent the radius (equivalent radius) for the current local 414 

window. 415 

Step 3.4. If a maximum 𝑡𝑖𝑗 does not exist or it is smaller than the standard t-value, go to 416 

step 3. 417 

Step 4. Suppose that 𝑛𝑠 independent variables are remainingstill remain. 418 

Step 4.1. If 𝑛𝑠 ≤ 1, then calculate the mean value for the dependent variable in the 419 

current local window with a radius size of rmax and retain it as the posterior probability in the 420 

current location. In addition, set the regression coefficients for all of the independent variables 421 

as missing data. Go to step 6. 422 

Step 4.2. If 𝑛𝑠 ≥ 1, then find the independent variable with the largest local window and 423 

apply the WofE model to all the other independent variables, before recordingand then update 424 

the values of 𝑊𝑖−max _𝑡
+ , 𝑊𝑖−max _𝑡

−  ,, and 𝐵𝑖−max _𝑡 for this time, and then go. Go to step 5. 425 

Step 5. Apply the logistic regression model based on the previously determined 426 

geographic weights, and for each independent variable: (1) use 𝑊𝑖−max _𝑡
+  to replace all of the 427 
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values that are less than or equal to 𝐵𝑖−max _𝑡;, (2) use 𝑊𝑖−max _𝑡
−  to replace all of the values 428 

that are greater than 𝐵𝑖−max _𝑡;, and (3) use 0 to replace no data (“-9999”). The posterior 429 

probability and regression coefficients can then be obtained for all of the independent 430 

variables at the current location, and go to step 6. 431 

Step 6. Take the next grid as the current location and repeat steps 2–5. 432 

 433 

4 Interface Design 434 

In addition to the improved GWLR, we developed other modeling processes, where all of the 435 

visualization and mapping procedures are performedBefore performing spatially weighted 436 

logistical regression with ILRBSWT 1.0, data pre-processing is performed using the ArcGIS 437 

10.2 platform and GeoDAS 4.0 software. The mapsAll data are originally stored in grid 438 

format, which areshould be transformed into ASCII files based on tools included in with the 439 

Arc toolbox before the improved GLWR is performed. in ArcGIS 10.2; after modeling with 440 

ILRBSWT 1.0, the result data will be transformed back into grid format 441 

As shown in Fig. 3, the main interface for the improved GLWR comprises ILRBSWT 442 

1.0 is composed of four parts.  443 

The upper left part is for the layer input settings, where independent variable layers, 444 

dependent variable layers, and global weight layers should be assigned if they exist.. Layer 445 

information is shown at the upper right corner, including the row numbers, column numbers, 446 

grid size, ordinate origin, and the expression for missing data. The local window parameters 447 

and weight attenuation function can be defined in the middle.as follows. Using the drop-down 448 

list, we can prepareprepared a circle or ellipse to represent various isotropic and anisotropic 449 

spatial conditions, respectively. The corresponding window parameters should be set for each 450 

window type. For the ellipse, it is necessary to set parameters comprisingcomposed of the 451 

initial length of the equivalent radius (initial major radius), the final length of the equivalent 452 
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radius (largest major radius), the increase in the length of the equivalent radius (growth rate), 453 

the threshold of the spatial t-value used to determine the need to enlarge the window, the 454 

length ratio of the major and minor axes, the orientation of the ellipse’s major axis, and the 455 

compensation coefficient for the sill. Next, it is necessary to define theWe prepared different 456 

types of weight attenuation function and a variety of kernel functions via the drop-down menu 457 

to provide choices to users, such as exponential model, logarithmic model, Gaussian model, 458 

orand spherical model, via the drop-down menu. Moreand corresponding parameters can be 459 

set when a certain model is selected. The output file settings areis defined at the bottom and 460 

the execution button is at the lower right corner. 461 

 462 

Fig. 3 User interface design. 463 

 464 

 465 

 466 

5 Real Data Testing 467 

5.1 Data source and preprocessing 468 
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The test data used in this study were obtained from the case study reported byin Cheng (2008). 469 

The study area (≈7780 km2) wasis located in western Meguma Terrain, Nova Scotia, Canada. 470 

Four independent variables were used in the WofE model for gold mineral potential mapping 471 

by Cheng (2008), i.e., buffer of anticline axes, buffer for the contact of Goldenville–Halifax 472 

Formation, and background and anomaly separated with the S-A filtering method based on 473 

theore element loadings of the ore elements of the first component. More information about 474 

the data set can be found, as shown in Cheng (2008).Fig. 4.  475 

Four476 
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 477 

Fig. 4 Evidential layers used to map Au deposits in this study: buffer of anticline axes (a), buffer for 478 

the contact of Goldenville–Halifax Formation (b), and background (c) and anomaly (d) separated 479 

with the S-A filtering method based on the ore element loadings of the first component. 480 

The four independent variables mentioned abovedescribed previously were also used for 481 

ILRBSWT modeling in this study. In order to (see Figs. 4 (a) to (d)), and they were uniformed 482 

   

(a)                                        (b) 

   

(c)                                        (d) 
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in the ArcGIS grid format with a cell size of 1 km  1 km. To demonstrate the advantages of 483 

the new method when processing for missing data processing, we designed aan artificial 484 

situation where the geochemical data were missing for the northern part of the study area, as 485 

shown in Fig. 4. In that case,in Fig. 5, i.e., grids in region A ownhave values atfor all of the 486 

four independent variables; however, grids in region B, while they only ownhave values atfor 487 

two independent variables, and they have no values in the two geochemical variables. in 488 

region B.  489 

 490 

Fig. 45 Study area (A and B) and the scope withwhere there is missing geochemical 491 

data (in area B)..  492 

5.2 Mapping weights for the exploration level 493 

These types ofExploration level weights can be determined based on prior knowledge 494 

according to differences in the exploration dataabout data quality, e.g., different scales may 495 

exist throughout the whole study area. They ; however, these weights can also be 496 

obtainedcalculated quantitatively. The density of known deposits is a good index for the 497 

exploration level, wherei.e., the degree of research is highermore comprehensive when more 498 

deposits are discovered. The exploration level weightsweight layer for the mapped study area 499 
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was obtained using the kernel density tool provided by the ArcToolbox in ArcGIS 10.2 are, as 500 

shown in Fig. 56. 501 

 502 

Fig. 56 Exploration level weights. 503 

5.3 Parameter Assignment offor local window parameters and geographical weightsand 504 

weight attenuation function 505 

EmpiricalBoth empirical and quantitative methods can be used to determine the local window 506 

parameters and the attenuation function for geographical weights. The variation function in 507 

geostatistics, which is an effective method for describing the structures and trends ofin spatial 508 

variables, so it was usedapplied in this study. In order toTo calculate the variation function for 509 

athe dependent variable, it is necessary to first map the posterior probability using the global 510 

logistic regression method, before establishing the variation function to determinedetermining 511 

the local window type and parameters. from the variation function. Variation functions 512 

arewere established in four directions in order to detect anisotropic changes in space. If there 513 
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are no significant differences among the various directions, a circular local window can be 514 

used for ILRBSWT, as shown in Fig. 1; otherwise, an elliptic local window should be used, as 515 

shown in Fig. 2. The specific parameters for the local window in the study area were obtained 516 

as shown in Fig. 67, and the final local window and geographical weight attenuation were 517 

determined as indicated in Fig. 78 (a) and 78 (b), respectively. 518 

 519 

Fig. 67 Experimental variogram fitting in different directions, where the green lines denote the 520 
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variable ranges determined for azimuths of (a) 0°, (b) 45°, (c) 90°, and (d) 135°. 521 

 522 

 523 

 524 

Fig. 78 Nested spherical model for different directions. The green lines in (a) correspond to those 525 

in Fig. 65, and (b) shows the geographical weight template determined based on (a).  526 

5.4 Data integration 527 

Using the algorithm described in section 3.2, ILRBSWT was performed forapplied to the 528 

study area according to the parameter settings in Fig. 3. The estimated probability map 529 

obtained for intermediate and felsic igneous rocks Au deposits by ILRBSWT is shown in Fig. 530 

89 (b), while Fig. 89 (a) presents the results obtained by logistic regression. It can be seen 531 

   
(a) 

 
(b) 
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from As shown in Fig. 8 that, ILRBSWT can better weak the effect ofmanages missing data 532 

than logistic regression, sinceas the Au deposits in the north part of the study area (wherewith 533 

missing data exist) are well felled into) better fit within the region with relatively higher 534 

posterior probability in Fig. 89 (b) than in Fig. 89 (a). 535 

 536 

Fig. 89 Posterior probability maps obtained for an Au depositdeposits by (a) logistic regression 537 

and (b) ILRBSWT. 538 

5.5 Comparison of the mapping results 539 

In order toTo evaluate the predictive capacity of the newly developed method and the 540 

traditional methodmethods, the posterior probability maps obtained bythrough logistic 541 

regression and ILRBSWT shown in Fig. 8(b9 (a) and 8(a), respectively, 9 (b) were divided 542 

into 20 classes byusing the quantile method and the t-values . Prediction-area (P-A) plots 543 

(Mihalasky & Bonham-Carter, 2001; Yousefi et al., 2012; Yousefi & Carranza, 2015a) were 544 

then calculated using WofE modeling (Fig. 9). Clearly, ILRBSWT performed better because 545 

higher t-values were obtained, especially when a smaller area was delineated as the target area, 546 

which is much more realistic. In the northern part of the study area, the known deposits fitted 547 

better to the high made according to the spatial overlay relationships between Au deposits and 548 

   
(a)                                    (b)    
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the two classified posterior probability area shown in Fig. 8(b) than that in Fig. 8(a), which 549 

indicates that ILRBSWT can deal with missing data better than logistic regression. 550 

 551 

Fig. 9 Student’s t-values calculated for the spatial correlation between the known Au deposit 552 

layermaps in Fig. 10 (a) and the (b) respectively. In a P-A plot, the horizontal ordinate 553 

indicates the discretized classes of a map representing the occurrence of deposits. The vertical 554 

scales on the left and right sides indicate the percentage of correctly predicted deposits from 555 

the total known mineral occurrences and the corresponding percentage of the delineated target 556 

area from the total study area (Yousefi & Carranza, 2015a). As shown in Figs. 10 (a) and (b), 557 

with the decline of the posterior probability layers obtained by logistic regression and ILRBSWT 558 

at different threshold levels.  559 

 560 

6 Conclusions 561 

In this study, we developed an improved GWLR model ILRBSWT based on logistic 562 

regression, WofE, and the current GWR model. Furthermore, a software module was 563 

developed for ILRBSWT and a case study demonstrated its capacitiesfor the mineral 564 

occurrence from left to right on the horizontal axis, more known deposits are correctly 565 
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predicted, and advantages. Following objectives were achieved: 566 

(1) A moving window technique is employed for spatial variable–parameter logistic 567 

regression, which can overcome or weaken the effect of spatial non-stationarity in MPM and 568 

improve the accuracy of mineral meantime more areas are delimited as the target area; 569 

however, the growth in the prediction. 570 

(2) The variogram model in geostatistics is used to determine the spatial anisotropic 571 

parameters  rates for deposits and corresponding occupied area are similar before the 572 

intersection point in Fig. 10 (a), while the former shows higher growth rate than the latter in 573 

Fig. 10 (b). This difference suggests that ILRBSWT can predict more known Au deposits than 574 

logistic regression for delineating targets with the same area, and geographical weight 575 

attenuation model, which makes the local window parameter design more objective and 576 

tenableindicates that the former has a higher prediction efficiency than the latter. 577 

It would be a little inconvenient to consider the ratios of both predicted known deposits 578 

and occupied area. Mihalasky and Bonham-Carter (2001) proposed a normalized density, i.e. 579 

the ratio of the predicted rate of known deposits to its corresponding occupied area. The 580 

intersection point in a P-A plot is the crossing of two curves. The first is fitted from scatter 581 

plots of the class number of the posterior probability map and rate of predicted deposit 582 

occurrences (the “Prediction rate” curves in Fig. 10). The second is fitted according to the 583 

class number of the posterior probability map and corresponding accumulated area rate (the 584 

“Area” curves in Fig. 10). At the interaction point, the sum of the prediction rate and 585 

corresponding occupied area rate is 1; the normalized density at this point is more commonly 586 

used to evaluate the performance of a certain spatial variable in indicating the occurrence of 587 

ore deposits (Yousefi & Carranza, 2015a). The intersection point parameters for both models 588 

are given in Table 1. As shown in the table, 71% of the known deposits are correctly predicted 589 

with 29% of the total study area delineated as target area when the logistic regression is 590 
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applied; if ILRBSWT if applied, 74% of the known deposits can be correctly predicted with 591 

only 26% of the total area delineated as the target area. The normalized densities for the 592 

posterior probability maps obtained from the logistic regression and ILRBSWT are 2.45 and 593 

2.85 respectively; the latter performed significantly better than the former. 594 

 595 

Fig. 10 Prediction-area (P-A) plots for discretized posterior probability maps obtained by 596 

logistic regression and ILRBSWT respectively. 597 

Table 1. Parameters extracted from the intersection points in Figs. 10 (a) and (b). 598 

Model Prediction rate Occupied area Normalized density 

Logistic regression 0.71 0.29 2.45 

ILRBSWT 0.74 0.26 2.85 

(3) The spatial t-statistics method based on WofE is introduced to perform 599 

binarization/discretization for the independent variables in each local window, and the new 600 

  

 

(a) 

 

(b)  

Class number 

Class number 

Area Prediction rate 
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model can better handle missing data. 601 

(4) The global weight layer in ILRBSWT can reflect differences in the data quality or 602 

exploration level well.  603 

 604 

6 Discussion 605 

Because of potential spatial heterogeneity, the model parameter estimates obtained based 606 

on the total equal-weight samples in the classical regression model may be biased, and they 607 

may not be applicable for predicting each local region. Therefore, it is necessary to adopt a 608 

local window model to overcome this issue. The presented case study shows that ILRBSWT 609 

can obtain better prediction results than classical logistic regression because of the former’s 610 

sliding local window model, and their corresponding intersection point values are 2.85 and 611 

2.45, respectively. However, ILRBSWT has even advantages. For example, characterizing 26% 612 

or 29% of the total study area as promising prospecting targets is too high in terms of 613 

economic considerations. If instead 10% of the total area needs is mapped as the target area, 614 

the proportions of correctly predicted known deposits obtained by ILRBSWT and logistic 615 

regression are 44% and 24%, respectively. The prediction efficiency of the former is 1.8 times 616 

larger than the latter. 617 

In this study, we did not separately consider the influences of spatial heterogeneity, 618 

missing data, and degree of exploration weight all remain, so we cannot evaluate the impact 619 

of each factor. Instead, the main goal of this work was to provide the ILRBSWT tool, 620 

demonstrating its practicality and overall effect. Zhang et al. (2017) applied this model to 621 

mapping intermediate and felsic igneous rocks and proved the effectiveness of the ILRBSWT 622 

tool in overcoming the influence of spatial heterogeneity specifically. In addition, Agterberg 623 

and Bonham-Carter (1999) showed that WofE has the advantage of managing missing data, 624 

and we have taken a similar strategy in ILRBSWT. We did not fully demonstrate the necessity 625 



33 

 

of using exploration weight in this work, which will be a direction for future research. 626 

However, it will have little influence on the description and application of ILRBSWT tool as 627 

it is not an obligatory factor, and users can individually decide if the exploration weight 628 

should be used. 629 

Similar to WofE and logistic regression, ILRBSWT is a data-driven method, thus it 630 

inevitably suffers the same problems as data-driven methods, e.g., the information loss caused 631 

by data discretization, and exploration bias caused by the training sample location. However, 632 

it should be noted that evidential layers are discretized in each local window instead of the 633 

total study area, which may cause less information loss. This can also be regarded as an 634 

advantage of the ILRBSWT tool. With respect to logistic regression and WofE, some 635 

researchers have proposed solutions to avoid information loss resulting from spatial data 636 

discretization by performing continuous weighting (Pu et al., 2008; Yousefi & Carranza, 637 

2015b, 2015c, 2016), and these concepts can be incorporated into further improvements of the 638 

ILRBSWT tool in the future. 639 

 640 

7 Conclusions 641 

 Given the problems in existing MPM models, this research provides an ILRBSWT tool. 642 

We have proven its operability and effectiveness through a case study. This research is also 643 

expected to provide a software tool support for geological exploration researchers and 644 

workers in overcoming the non-stationarity of spatial variables, missing data, and differences 645 

in exploration degree, which should improve the efficiency of MPM work. 646 

 647 

Code availability 648 

The software tool ILRBSWT v1.0 in this research iswas developed by using C#, and the main 649 

codes and key functions are prepared in the file “Codes & Key Functions”. The executable 650 
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program files are placed in the folder “Executable Programs for ILRBSWT”. Please find them 651 

in gmd-2017-278-supplement.zip. 652 

 653 

Data availability 654 

The data used in this research is sourced from the demo data offor GeoDAS software 655 

(http://www.yorku.ca/yul/gazette/past/archive/2002/030602/current.htm), and this data 656 

iswhich was also used by Cheng (2008). All spatial layers used in this work isare included in 657 

the folder “Original Data” in the format of an ASCⅡ file, which can beis also found in 658 

gmd-2017-278-supplement.zip. 659 
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