## Dear Reviewer 1,

Thank you for the review. The following contains your initial review (denoted by " $\gg$ "), followed by our immediate reply (denoted by ">"), and our final response (in italic).
>> It has been mentioned that the paper introduces a novel framework. However, it seems that the current authors have used existing methodologies of clustering/statistical analysis that have already been applied to similar problems. Clustering of object fields is a well researched area of study. Therefore, it is not clear how this work adds to the literature.
$>$ It is true that all of the components of the proposed methodology are well-established (to varying degrees); but to our knowledge an object-based sensitivity analysis method has not been developed previously, and certainly not with the specific methods employed by us. More specifically, methods such as 1) clustering, 2) regression models, and 3) sampling methods from experimental design, have not been used together to perform sensitivity analysis of objects in a forecast/spatial field with respect to model parameters. Perhaps it is more accurate to describe our work as a general approach, employing existing methods, for addressing the question of how model parameters affect objects in a forecast field. Again, to our knowledge, no such framework exists, and in that sense the proposed approach is novel.

We have revised the paper to highlight the importance of each of these main components. A summary of these components is presented in section $2 f$ where the associated problems and our solutions to them are also reiterated.
$\gg$ Also, the paper does not provide any specific guidelines on the choice of algorithms and leaves the reader with an ambiguous mind.
$>$ Our initial intention was to develop a broad framework that can be utilized in a wide range of applications. But it is possible that we have gone too far. As such, we will be happy to add another section in which we provide the reader with some general (but more specific) guidance.

Section $2 b$ now provides $a$ wealth of guidance on clustering algorithms; in particular, lines 169-233.
>> With these changes, the paper may become a good guidance paper for sensitivity studies.
$>$ Thank you.
>> Specific comments:
$\gg 1$. Please elaborate the abstract to cover some key contributions of the paper or a summary of results in 1-2 sentences. It is incomplete to get the idea of the paper in the current form.
$>$ Agreed. We will do so.

## Done.

$\gg 2$. At the end of introduction, add more details of the work done in this paper. Also, add an outline of the various sections that follow.
$>$ Agreed. We will do so.
Done.
$\gg 3$. If the goal of the paper is to introduce a novel framework, a flowchart of steps involved in the methods section would be useful.
$>$ Another excellent idea. We will do so.

## Done (Figure 1).

In summary, we have added significant material to the paper in order to highlight the novelty of the work (short of using the word "novel!"). The very notion of an object-based SA is novel, and as argued in the paper, there are numerous arenas that may benefit from such a methodology. The clustering sections have also been expanded to provide general guidance to the prospective user.

Thank you,
Authors

## Dear Reviewer 2,

Thank you for the review. The following contains your initial review (denoted by ">>"), followed by our immediate reply (denoted by ">"), and our final response (in italic).
>> However, it is not clear that this approach is significantly different from established sensitivity analysis methods. The SA practitioner has to select a "response variable" which is typically a statistic based upon a subset of the full model output. Here, the authors use different cluster analysis approaches to define that subset and various statistics to summarize the model output from that subset. They do not argue for any specific cluster analysis method or statistic, and mention that clusters identified subjectively could also be used. This sounds like traditional SA using subjectively selected subsets of model output, therefore, it is not clear that this is a novel/new approach.
$>$ The proposed object-based SA is a great deal more than a simple application of traditional SA to a clustered field. In attempting to perform an object-based SA, the SA practitioner will be faced with numerous technical problems whose solutions form the foundation of our proposed methodology. To make that point more clear, we propose to include some version of the following discussion in the paper. It highlights the methodology's novel ingredients, the accompanying problems, and our solutions to them.
$>1)$ Clustering, as a method for objectively identifying the objects of interest, is a relatively obvious approach. However, it is important for the SA practitioner to be aware that there are at least two distinct ways in which objects can be defined in clustering algorithms, based on a) the number of clusters, and b) the size and distance between clusters. GMM and DBSCAN are the two methods that we have chosen to represent those two approaches.
$>2$ ) Selecting features of the objects, too, may seem straightforward. However, it is not at all obvious that the features can be derived from the covariance matrix. In fact, our initial attempt involved "fitting" closed curves to the objects, a task which is considerably more complicated. In the covariance-based feature selection approach, although we extracted only the simplest of features, there exists a large body of literature which can be of great utility to an SA practitioner.
$>3)$ Assessing the distribution of each feature presents a more complete picture of the underlying sensitivities than point estimates. The use of multivariate regression (with multiple responses) is a novel (and non-obvious) solution to the problem of summarizing that distribution.
>4) In a statistical approach to SA, it is important to display both the strength and the statistical significance of the sensitivities. A p-value measures only the latter. The use of boxplots, and the accompanying interpretation we provide, effectively accomplishes both tasks (with some trade-offs, of course).
$>$ Once again, it is true that each of these ingredients, and even the very notion of an object-based SA, could be (re-)discovered by an SA practitioner; what we have described in our paper is the lessons that we have learned from tackling that problem. We believe all of these lessons will be useful for the GMD readership.

## A rephrased version of the above four items is now included in summary section $2 f$.

>> Since the results in this manuscript were found to be consistent with previous sensitivity analysis work (Marzban et al. 2014) that did not use objects, it is also not clear that there are significant benefits to using the object-based approach described here.
$>$ It is true that our proposed method, when *specialized* to a "non-object" (e.g. the mean of a field), reproduces results that are consistent with traditional SA results. However, none of our object-based results can be obtained without the object-based SA. In other words, the object-based approach allows one to address questions that a non-object-based approach cannot.

The following sentence has been added (lines 477-480) to make this clear. "It is important to point out that this consistency does not imply that an object-based SA offers nothing more than traditional, non-object-based SA; the
former assesses the sensitivity of object features, something that cannot be done in the latter."
>> This leads the reader to question the value of going through the extra effort of object segmentation for sensitivity analysis versus traditional SA approaches.
> The reference to "extra effort" suggests that the reviewer may have in mind a situation where the user has an option of choosing between an object-based SA and a non-object-based one. In reality, there is no such option; if the problem at hand calls for SA of object features, then the object-based approach is the only choice; and the "extra effort" is not extra, but necessary.

The aforementioned sentence (on lines 477-480) addresses this response as well.
$\gg$ It is also not clear if this method has general relevance to the geo-scientific model development community beyond the weather/precipitation prediction application presented here. What other kinds of "objects" could be analyzed in other types of models?
> "Objects" are ubiquitous in Earth Systems. In addition to the meteorology example discussed in the paper, objects arise in models of the ocean (warm/cold eddies, convective plumes, oil spills, ocean garbage transport), volcanic plumes, planet interior, sea ice, vegetation growth, forest fires, and more.

Additional references have now been included in the paper for some of these examples where objects arise naturally. A figure from each citation has been provided here for the Reviewer's convenience. Objects are evident in all of them, and the features of these objects (e.g., number, size, shape) are all determined by parameters of the underlying models.

>> I cannot recommend acceptance for publication unless the authors provide a convincing argument for the novelty of the method and provide evidence of the benefits of performing sensitivity analysis on objects in model output.
$>$ We hope to have presented sufficient arguments to change the Reviewer's opinion.
In summary, at least to our knowledge, the very notion of an object-based SA is novel, and as we have now argued, there is clearly a need for it in a wide range of fields. Although the development of such a methodology may appear to be straightforward, there are numerous technical problems that must be overcome. Our paper identifies some of these problems, and offers solutions. Although the solutions involve well-established ideas (e.g., Latin hypercube sampling, clustering, multivariate multiple regression, multiple hypothesis testing), these ingredients have not been previously employed for an object-based sensitivity analysis (again, to our knowledge). As such, we believe the work as a whole is sufficiently novel to be considered categorically novel.

Thank you,
Authors.

## Dear Reviewer 3,

Thank you for the review. The following contains your initial review (denoted by " $\gg$ "), followed by our immediate reply (denoted by ">"), and our final response (in italic).
>> General comments and Summary ...
$\gg$ This is an interesting paper, and describes methodology for an important problem in sensitivity analysis, namely conducting SA for a spatial field of model responses. Furthermore, the clustering both addresses the nature of precipitation data (i.e., non-smooth or non-continuous data) while also reducing the dimension of the problem (i.e., considering fixed clusters rather than a fine spatial grid). The paper is well-written and nicely motivates the work, however, additional detail should be given in the section describing the statistical model, and I think reorganization of Section 3 would greatly improve the presentation (see the Technical corrections below). Furthermore, I am concerned with the analysis methods, particularly the significance testing, and am worried that the way in which the results are presented might be misleading (see the Scientific comments for more details).
$>$ We agree with all of your general comments. See more detailed responses below.

## >> Scientific comments

$\gg$ As a statistician, I will primarily comment on the statistical model and significance testing, leaving discussion on the experimental design of the sensitivity analysis and variables selected for analysis (i.e., latitude, longitude, intensity, area, orientation, and eccentricity) to more informed parties. In my opinion, the clustering approaches considered (GMM and DBSCAN) seem reasonable, and it was nice to see that results are robust to the clustering method used.

## $>$ Agreed.

>> My first concern has to do with the description of the MMR model as well as the treatment of daily replicates within this model. The authors present a generic description of a multiple linear regression model in Equation (1), but it would be helpful to more clearly describe the generalization to the multivariate multiple linear regression model that was actually used. If I am following everything correctly, the statistical model you actually use is

Eqn for MMR with 3 responses
(where $\min =$ minimum, med $=$ median, and $\max =$ maximum ), or, written in vector form,
Eqn for MRR in vector form
for $t=1, \ldots, 99$ samples taken from the 11-dimensional parameter space. Presumably, you use the usual MMR assumption that the error vectors delta_t are independent and identically distributed as Normal with mean vector 0 and non-diagonal covariance matrix Sigma (i.e., the elements of delta_t are correlated). Is this a correct characterization of the model?
$>$ The Reviewer's description of our model is correct, and we will be happy to include the additional details in the paper.

## We have now revised the description of MMR to align it with the Reviewer's presentation.

>> In practice, you actually estimate the 3 X 11 beta coefficients from Equation (1) for each of six features and each of 40 days, presenting boxplots of the beta coefficients aggregated over the 40 daily replicates for each of the 3 X 11 X 6 combinations of feature summaries/input variables/features. (See below for a concern related to the boxplots.) This seems like an unnecessary complication to the analysis. As evidenced by your decision to keep only every third day (reducing your data from 120 days to 40 days) in order to remove temporal correlation, it seems to me that these 40 days could represent an ensemble of realizations for each of the 99 parameter settings. Thus, instead of fitting 40 separate MMR models for each of the 6 features, your model could instead be

Eqn for MMR in vector form but across all days
for $d=1, \ldots, 40$ days (I assume that $x_{\_} j t d=x \_j t$ for $j=1, \ldots, 11$, i.e., that the input parameter settings are the same for each day). In other words, instead of using the 40 daily replicates to estimate the distribution of each beta coefficient, you could build this variation into the statistical model and directly estimate the variability of the coefficients, then calculating P-values or confidence intervals as required. This seems to be a more refined way to handle the daily
replicates, especially since it seems that you are not concerned with how the beta coefficients vary across the different days.
$>$ Here the Reviewer is concerned over how daily variability is "handled." In the paper, we developed an MMR for each of the 40 days, while the proposed model in $\mathrm{Eq}(2)$ above, would "average" over the daily variability. While the latter model may make sense from the perspective of a Statistician aiming to build a most parsimonious model, the fact is that in most SA applications daily variability is something that users want to see. As such, averaging over it is not desirable for practitioners. There is a third alternative - introducing a factor, denoted Day, on the right side of the model. In other words, in the language of experimental design, one can block the Day factor. We have actually performed that analysis as well. There are pros and cons to that work.
$>$ In general, on the one hand, blocking the Day factor is expected to make it easier to detect a statistically significant effect in the other 11 beta coefficients (i.e., it can increase power). On the other hand, because of the restriction on randomization (hence, treating Day as block), one cannot rely on the tests of significance for a block (i.e., Day) effect. Even if one were to believe the p-value associated with the Day factor, it would be only one number! And that brings us back to what we said earlier, namely that in most applications users desire to see the daily variability.
$>$ Now, that is all generalities and expectations; but what about the problem at hand? As we said, we have actually done the analysis of including the Day factor in the model as a block. Some of the results are reasonable conclusive. For example, when the response is simply the domain average of the forecast (i.e., not object-based at all), we found that blocking the Day factor has no effect on the estimates of the other 11 beta coefficients. But when dealing with objects the results do not suggest any simple conclusion! For that reason, we decided to exclude it from the paper. However, if the Reviewer believes this is too important to ignore, we will be happy to discuss it (perhaps in an appendix, in order to not disrupt the flow of the paper).

First, contrary to the Reviewer's initial assessment that we "are not concerned with how the beta coefficients vary across the different days," we actually do care about the daily variability of the betas. We had mentioned this in the earliest version of the paper, but we have now reiterated it in many places. Also, as mentioned previously, we have the results of the analysis wherein a Day factor is included in the model. Note that the current results (e.g., each panel in Figure 5) involves 11 boxplots, while those from the model that includes a Day factor involve 11 p-values. We have confirmed that the p-values are consistent with the boxplots; small p-values are associated with boxplots that are far from the zero line, and large p-values correspond to boxplots that have a significant overlap with the zero line. But, as we expressed in our initial response, it is immediately evident that the 11 boxplots carry a lot more information than 11 p-values. Consequently, although we agree with the Reviewer in that from a statistician's perspective it makes good sense to include a Day factor in the model, given the importance of viewing daily variability, we have opted for the boxplots. However, as per the Reviewer's suggestion we have produced confidence intervals, superimposed on the boxplots. A brief comparison of the pros and cons of boxplots and confidence intervals is given on lines 370-385.
>> Secondly, I am concerned by the significance testing procedure and the presentation of results. First of all, your two-stage procedure for controlling Type I error seems ad hoc, particularly your qualitative approach to assessing individual significance in the second stage.
$>$ We are surprised by the Reviewer's opinion on the 2-stage procedure. Outside of the multiple-hypothesis-testing circles, it is *the* approach to testing. One begins with a single omnibus test, and only if it's rejected one proceeds to performing multiple tests. There are numerous articles advocating the wisdom in this practice, and we will be happy to include them in the paper.

[^0]models. Now, because there is still multiplicity across the 40 days and 6 features, we have implemented FWER- and FDR-controlling procedures.
$\gg$ The omnibus test in the first stage is a good idea (although it would be helpful to have more details given on exactly what you have done - instead of simply providing citations),
$>$ The omnibus test we performed is an F-test (again, a standard choice). Is this the kind of detail the Reviewer is proposing?

The omnibus test performed is a generalization of the F-test called Pillai's trace test. This test is now named on line 342.
$\gg$ but you need to be careful about the multiple testing even after reducing the number of tests to $6 \mathrm{X} 40=240$. I appreciate that you have at least considered a Bonferroni adjustment, but you should think carefully about this choice: Bonferroni controls a family-wise error rate, implying that the collective conclusion of all tests is invalid if at least one Type I error is made. I don't think this is actually what you want - it seems to me that you simply want to control the number of Type I errors. As an alternative, you might consider the very simple procedure for controlling the rate of false discoveries (i.e., FDR) given in the classic paper by Benjamini and Hochberg (1995). Their simple procedure is remarkably powerful and could more appropriately address the multiple testing issue.
$>$ It is not clear to us which error rate - FWER or FDR - is more appropriate to control for gridded fields, so we shall report the results of both. However, let us point out that the choice of the controlled error rate has very little bearing on the majority of the results in the paper, because in spite of the prevalence of p-values very little hypothesis testing is actually performed. There are only a few places in the paper where we report counts of significant effects. The remainder of the conclusions are based on the visual assessment of boxplots; in this connection, please see our response below.

The FWER and FDR are now presented on lines 320-330, and the results are reported on lines 448-455.
>> Regardless, after you have conducted the omnibus test, you proceed to present box plots of the coefficient estimates, aggregated across the daily replicates. I think that such an aggregation of the coefficient estimates provides you with a sampling distribution of the true coefficient estimate - please correct me if this is not the right way to think about this.
> It may be safer to call it the "empirical" sampling distribution. Even then, some may object to calling it a sampling distribution because sampling across days is hardly a random sample from a population. But, yes, these boxplots are intended to summarize some proxy for the sampling distribution of the respective regression coefficients.

## The revised paper now follows the Reviewer's terminology, referring to the boxplots as providing a 5-point summary of

 the empirical sampling distribution.$\gg$ In any case, the aggregated coefficient estimates are most certainly not a posterior distribution of the true coefficient, which is what you would get from a fully Bayesian analysis. In this case, it is misleading to represent a sampling distribution with a boxplot: if the boxplot is skewed to the right, this does not mean that the distribution of the true coefficient is skewed to the right.
$>$ Given that we have no a priori reasons for believing that there should be a skew, we have no reason to choose anything other than a symmetric a priori pdf. As such, the skew in the boxplots does translate to a skew in the posterior pdf.
$\gg$ Instead, you should represent sampling distributions using a confidence interval, which could be plotted as a box (with no whiskers) or a solid bar.
> A confidence interval has two "drawbacks:"

1) It does not convey the shape of the underlying distribution - a useful quantity, and
2) It depends on a significance/confidence level (see next comment, below).

As we mentioned above, in spite of these "drawbacks," confidence intervals are now supplemented to the boxplots.
>> Additionally, simply checking to see if boxplots overlap with zero is not an appropriate way to assess statistical significance: what significance level is being considered?
> The Reviewer is correct in that boxplots alone are not sufficient for performing hypothesis testing - one also requires some kind of threshold, e.g., significance level. However, as we have indicated above and in the paper, in spite of the prevalence of p -values in the paper, we actually do very little hypothesis testing (i.e., rejecting/not-rejecting). This is intentional. Although some problems can benefit from a simple significant/not-significant summary of results, in the case of our problem, we believe it is more informative to display the empirical sampling distributions. Although this certainly introduces a subjective/qualitative ingredient into the analysis, we believe that it displays the results in a more holistic manner, and therefore, is a more useful trade-off. This philosophy is in line with the policy that many journals and practitioners are following in that summarizing complex results in terms of a binary reject/no-reject decision, or a p-value, or a confidence interval, leads to loss of information. We are hoping that the Reviewer will see the benefits of this trade-off, but if necessary we are willing to superimpose some sort of confidence interval on the boxplots (or the alternative shaded-point plots proposed below).

As mentioned above, given that boxplots and confidence intervals represent a different trade-off between the information at hand, we have decided to display both.
>> My suggestion would be to fold the daily replicates into the MMR as suggested in Equation (2), and calculate P-values for each of the 11 X 3 X 6 coefficients. Then, I would use the Benjamini and Hochberg procedure to identify statistically significant coefficients at a particular level alpha. Instead of the boxplots in Figures 2 and 3, I would recommend using points or bars to indicate the magnitude of the coefficient estimate and shading or masking to indicate which estimates are statistically significant.
> As we have indicated, we are amenable to discussing the various ways in which daily variability can be handled, and reporting counts of significant effects based on both FWER and FDR control. We can also see the benefit of replacing the boxplots with something that shows each of the members in the boxplots. Although this will take some experimentation on our part, we will do it because it's a good idea.
\#All of the above suggestions have now been implemented, with the exception of including a Day factor in the model. To reiterate, the daily variability is a sufficiently important source of variability (at least in meteorology) that it deserves a visual display; including a Day factor in the model, although statistically more rigorous, denies the user that luxury.
>> Technical corrections
$\gg$ On a more technical note, I found the organization of Section 3 to be very confusing. I would suggest moving Sections 3(d) and 3(e) to immediately follow Section 3(a). In this case you will have already described the clustering and the features of interest before discussing the statistical model and significance testing. I would also recommend moving lines 161-170 into Section 3(e).
$>$ We were aware that there is some "back-and-forthing" in that section, but we believed that structure was a reasonable trade-off. However, if the Reviewer found it "very confusing," then we will be happy to re-organize as suggested.

The sections have been moved as per the Reviewer's suggestion.
In summary, we have responded actively to the Reviewer's suggestion to expand the discussion of MMR, explain omnibus tests, restructure the presentation, include FWER- and FDR-controlling procedures, and supplement the boxplots with confidence intervals. The exceptions are in not including a Day factor in the MMR model (explained in the response denoted \#, above), and maintaining the 2 -stage nature of the procedure (explained in the response denoted *).

Thank you,
Authors.

# On the Effect of Model Parameters on Forecast Objects 

Caren Marzban ${ }^{1,2 *}$, Corinne Jones ${ }^{2}$, Ning Li $^{2}$, Scott Sandgathe ${ }^{1}$<br>${ }^{1}$ Applied Physics Laboratory<br>${ }^{2}$ Department of Statistics

Univ. of Washington, Seattle, WA 98195 USA


#### Abstract

Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature "map." However, the The field for some quantities such as precipitation generally consists of spatially coherent and disconnected "objects." Such objects arise in many problems, including precipitation forecasts in atmospheric models, Eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., ntmberlocation, size, and intensityintensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on features of forecast objects. Although, in principle, the objects can be defined by any means, here they are identified via clustering algorithms. The main ingredients of the methodology include the use of 1) Latin hypercube sampling for


[^1]varying the values of the model parameters, 2) statistical clustering algorithms for identifying objects, 3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and 4) methods for reducing the number of hypothesis tests, and controlling the resulting errors. The final "output" of the methodology is a series of boxplots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.

The author's copyright for this publication is transferred to University of Washington.

## 1. Introduction

Complex, physics-based numerical models of natural phenomena often have parameters - henceforth, model parameters - whose values are generally not a priori specified. In such situations it is important to infer the manner in which the model parameters affect the outputs of the model (i.e., forecasts, or predictions), and often the techniques of Sensitivity Analysis (SA) are employed to assess the effects. There is a wide range of techniques from relatively simple one-at-a-time method (also known as the Morris method) where each model parameter is varied individually (e.g., Yu et al. (2013)), to multivariate approaches motivated by statistical methods of experimental design (Montgomery 2009) where the values of the model parameters are varied according to some optimization criterion. Alternative approaches can be found in Backman et al. (2017) where algorithmic differentiation is used, and in Kalra et al. (2017) where the underlying physics equations are integrated using quadrature methods. And yet another alternative is the adjoint method, commonly used in meteorological circles (Errico 1997).

It is difficult to classify these the various methods into a simple taxonomy (Bolado-Lavin and Badea 2008), but the terms Local and Global have been used to denote two broad categories (Saltelli et al. 2010, 2008); generally, local methods employ some sort of derivative of the model output with respect to inputs, while global techniques rely on a decomposition of the variance of the output in terms of the variance explained by the inputs. Comparisons of the various approaches are not common-place, because each approach is usually suited for a specific application where other methods may not be practically feasible. However, an example of the comparison of one global approach and one local (adjoint) approach on the Lorenz ' 63 model (Lorenz 1963) has been performed by Marzban (2013).

Another possible classification criterion is based on the purpose of the SA. Some SA work is performed for assessing how model parameters impact the model itself, not as a means to some other goal. For example, Lucas et al. (2013) uses a global SA method to explore the effect of model parameters on the probability of model crashes. By contrast, sometimes SA is performed as an intermediate step to another goal, such as the calibration of the model (Safta et al. 2015; Hacker et al. 2011; Laine et al. 2012; Ollinaho et al. 2014). All of these classification criteria are imperfect, as there exist works which fall "between" Global versus Local, or SA-only versus SA-for-calibration; some examples include Roebber (1989); Roebber and Bosart (1989); Robock et al. (2003). The work reported here falls into the Local and SA-only category; as such, although the proposed methodology can be used for calibration, no attempt is made to do so here.

In many SA studies, the output of the model (i.e., the response variable in the SA) is usually a single or a handful of scalar quantities. But there are situations in which the output is a gridded spatial field, e.g., temperature forecasts over a spatial region. Every grid point reflects a forecast at that location, and for a quantity like temperature the field as a whole has a smooth, continuous nature. SA is more complicated for precipitation fields, where the model output is a quantity whose spatial structure is not smooth and/or continuous. Indeed, there may be a coherent set of grid points that receive no precipitation at all, while an adjacent set of grid points will reflect a complex pattern of precipitation. In short, the spatial field of such quantities will contain "objects" within which precipitation does occur, surrounded by regions of little or no precipitation. Such objects arise in a wide range of Earth systems, e.g., models of ocean currents and eddies (e.g., Fig. 1 in Samsel et al. (2015)), atmospheric plume/dispersion (e.g., Fig. 4 in Stein et al. (2015)), ocean garbage transport (e.g. Fig. 2 in Froyland et al. (2014)), forest fires (e.g. Fig. 8 in Vogelmann et al. (2011)), and models of the Earth's mantle (e.g., Fig. 4. in

French et al. (2013)).

For such discrete fields, the assessment of the quality of the forecasts has given rise to a wide range of specialized techniques generally referred to as spatial verification (or evaluation) (Ahijevyeh et al. 2009; Baldwin et al. 2001, 2002; Brown et al. 2002; Casati et al. 2004; Davis et al. 2006a,b; Du A subset of these methods employs the notion of an object explicitly. In some applications, the object is defined subjectively - for example, by human experts. In other applications statistical methods for clustering (Everitt 1980) are used to identify/define objects within the field (Marzban and Sandgathe 2006, 2008). This clustering approach, which has been re-examined by Lakshmanan and Kain (2010), and more recently by Wang et al. (2015), is the basis of the object-identification procedure used in the present work.

Although no spatial verification/evaluation is done here, the importance of objects within the forecast field, and the development of elustering techniques for identifying them, calls for a SA framework wherein one can assess the effect of model parameters on the objects. In meteorology certain features of the elusters/objectsare of special interest; they include size, location, intensity, and shapeobjects. Also, the assessment of sensitivity is highly intertwined with that of statistical significance. As such, the The methodology developed here can be viewed as a SA with a multivariate response, wherein an object-based SA with which one can assess the impact (both the magnitude and the statistical significance) of model parameters on object features.

The More specifically, the next section describes the main components of the proposed methodology, namely Latin hypercube sampling for determining how the model parameters are varied (section 2a) and use of clustering algorithms for identifying objects in the forecast field (section 2b). The object features examined here, generally of interest in many applications include size location, intensity, and shape, all of which can be readily estimated from the forecasts directly (section

2c). Section 2d describes multivariate multiple regression for assessing the impact of the model parameters on the distribution (across the forecast domain) of object features. Anticipating the problems associated with multiple hypothesis testing, steps are taken to first reduce the number of tests, and then to control different error rates (section 2e). Ultimately boxplots and confidence intervals are used to visually display the daily variability of the sensitivities. Section 2 f summarizes all of these components, and is followed by a demonstration of the methodology on forecasts from a weather prediction model (section 3). The paper ends with a statement of the conclusions, additional discussion, and ways in which the methodology can be generalized (section 4).

## 2. Method

## a. Data

The numerical model employed to demonstrate the methodology is COAMPS ${ }^{\circledR}$ (Hodur 1997), for which some SA work has already been done. Doyle et al. (2011) and Jiang and Doyle (2009) examine the effect of model parameters on mountain waves. Motivated by the work of Holt et al. (2011) who studied the effect of 11 model parameters on various characteristics of the forecasts, Marzban et al. (2014) used a globalf, variance-based )SA to study the effect of the same parameters and their interactions on mean (across the forecast domain) precipitation, and the center-of-gravity of precipitation.

## 3. Method

The methodology described in this paper involves two other techniques developed previously
by some of the authors of this paper. In one, cluster analysis is used for identifying objects (Marzban and Sandgathe 2006, 2008; Marzban et al. 2008, 2009); in the other, SA is performed to assess-By contrast, here, the effect of model parameters on non-spatial features (e.g., domain mean) of the model parameters is assessed on features of objects within the forecast field(Marzban et al. 2014). This section describes these components, puts forth the SA model, proposes means of assessing sensitivity and statistical significance, and deseribes the data used to demonstrate the methodology. As discussed in section 2c, a total of six features are examined, together summarizing the location, intensity, and the shape of each object.

## a. Data

The inputs of These 11 parameters are the inputs to the numerical modelexamined here are 11 model parameters, and the outputs are forecasts of precipitation at each of $45 \times 72$ grid points, with a spacing of 81 km , covering the entire continental US, including coastal regions, and portions of Canada and Mexico. The SA method developed here requires data - technically, computer data - which are created by generating an ensemble (or sample) of inputs input values, assimilating surface observations, and then running the model forward to produce 24 h forecasts of precipitation amount at each grid point. As such, the SA results are contingent on the nature of this data, and consequently, care must be taken in the data-generation step of the methodology.

In order to include The data used for the SA must be representative of the range of phenomena observed at large. To that end, the present application involves a wide range of weather phenomena, the data include spanning 120 days from February 16 through July 2, 2009. Confirmed by visual examination of all 120 forecasts, this temporal period includes a comprehensive series of
midaltitude synoptic systems traveling across the northern portion of the domain. These synoptic systems extend down into the southeastern US early in the period and are replaced by subtropical convective systems in the late spring and summer months. This subtropical activity also occurs in the southwestern portion of the domain (west coast of Mexico) during June and July in association with the southwest monsoon. The only apparent atypical weather appears to be a greater amount of convective activity off the east coast of the US associated with quasi-stationary or slow moving frontal systems during the period.

It is important that the data cases are as independent as possible. To that end, the 120 days are sampled at 3-day intervals in order to minimize temporal dependency, leading to 40 days for the analysis.

For each of the 40 days, 99 different values for 11 parameters are generated by Latin Hy percube Sampling (LHS). Said differently, for each day, a sample of size 99 is taken from the 11-dimensional space of the model parameters. This so-called "space-filling" sampling scheme assures that no two of the 99 points have the same value for any of the 11 parameters. It can be shown that this property leads to more precise estimates (at least, no less-precise estimates) than alternative many other sampling schemes (Cioppa and Lucas 2007; Montgomery 2009; Marzban 2013). LHS is appropriate when the model parameters are all continuous quantities (i.e., taking values on the Real line). For discrete or categorical inputs, Latin Square Designs (LSD) or Fractional Factorial Designs (FFD) can be employed to produce optimal samples (Montgomery 2009); these eases methods will be demonstrated in a separate article.

Given that daily variability is a common source of variability in models dealing with Earth systems, one question that arises is whether one should use a given LHS sample for all days in the analysis. Here in order to explore a larger portion of the model parameter space, the LHS
sample is allowed to vary across each of the 40 days in the study. Although this choice confounds variability due to model parameters with daily variability, it is arguably a better choice than the alternative (of using the same LHS sample across all days) because the final sensitivity results will not be contingent on a given LHS sample.

The 11 model parameters are shown in Table 1; the choice of these parameters is explained in Holt et al. (2011). As mentioned in that paper, these parameters were chosen for their anticipated sensitivity (through model tests and discussions with developers) of the parameterizations in an effort to ehose choose parameters most likely to produce changes in the model output precipitation fields. Also, to focus on heavy precipitation, only the grid points whose convective precipitation amount exceeds the 90th percentile of precipitation across the domain are analyzed.

A very similar data set is used in Marzban et al. (2014) to assess the sensitivity of the average andeenter-of-gravity of precipitation (across the domain)

## a. Cluster Analysis

There exists a wide range of clustering methods, each with their respective parameters (Everitt 1980). At one extreme, there exists a class of clustering methods wherein the desired number of cluster, $N C$ is specified by the user. A proven example in this class is called Gaussian Mixture Model (GMM) clustering (McLachlan and Peel 2000). At the other extreme, there exist clustering routines where $N C$ does not play a role at all. One such method is called Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al. 1996). DBSCAN has two parameters, here denoted $\epsilon$ and min samples. Roughly speaking, $\epsilon$ is the maximum distance between two grid points in order for them to be in the same cluster, and min samples is the minimum number of grid
points necessary to form a cluster.

Here, these two approaches are selected for demonstration because they allow for two very different ways in which a user can inject a priori knowledge into the analysis. For example, in some applications it may be more natural to specify the number of clusters, in which case GMM is a natural choice. On the other hand, DBSCAN is more natural if the user has knowledge of the typical size and distance between clusters. For example consider a situation wherein the grid-spacing is relatively large (as is the case in this paper, i.e., 81 km ), allowing one to examine only large scale precipitation. Although time of year and location are also important if one were to focus only on winter months in, say, the Pacific Northwest, then it is reasonable to set $\epsilon$ to 3 or 4 . By contrast, if one is considering jet streaks, e.g., where some maximum wind speed value is reached, then $\epsilon$ can be closer to 1 . As for min samples, 4 or 5 are reasonable values for both precipitation and jet streak events, at the model resolution used here.

In addition to the way in which the respective parameters are handled, another reason why these two clustering methods are used here is that they occupy two other extremes in the family of clustering algorithms: GMM clustering belongs to a class of model-based algorithms (Banfield and Raftery 1993; in statistics circles because they are conducive to performing statistical tests, while DBSCAN assumes no underlying model, and for this reason is often employed in machine learning applications.

For the SA component of the methodology developed here, it is not necessary for the objects to be defined by these or any other clustering algorithm; the objects may be defined by any other criterion or even by human experts. But some general guidance on the available options may be in order. As mentioned previously, some algorithms require the specification of the number of clusters (e.g. GMM) while others require information on the desired size and/or distance between clusters
(e.g. DBSCAN). There exists another class of clustering algorithms wherein no such specification is required; an example of this type is the hierarchical agglomerative clustering (Everitt 1980), wherein the procedure begins by assigning each of $N$ points to a unique cluster, and then proceeds by combining the clusters systematically until all points are members of a single cluster. As such, this algorithm allows the number of clusters to vary systematically from $N$ to 1. A variation on this routine involves the reverse procedure wherein the number of clusters is varied from 1 to $N$. The clustering results may depend on the choice of these procedures, and so for any specific problem some trial-and-error experimentation is recommended.

In clustering algorithms that rely on a notion of distance, there are two types of distance that must be distinguished, generally referred to as intra-cluster and inter-cluster. The former refers to the distance between any two points, while the latter gauges the "distance" or similarity between two clusters. On gridded fields, the notion of an intra-cluster distance is itself ambiguous; two common choices are the Euclidean distance (defined by the Pythagorean theorem) and the Manhattan distance (defined by the sum of the grid lengths connecting two grid points). Although the resulting clusters do depend on the choice of this distance measure, the former generally lead to smaller and more distant clusters. Here, in DBSCAN, the Euclidean intra-cluster distance is used; GMM does not involve the notion of an intra-cluster distance.

In clustering algorithms that involve the notion of an inter-cluster distance, some consideration must be given to at least three common measures: 1) the group-average distance (defined as the average of the intra-cluster distances between all the points across two clusters), 2) the distance between the closest grid points across the two clusters and 3) the distance between the farthest grid points across the clusters. The last two options are often called SLINK (for Shortest or Single link), and CLINK (for Complete link), respectively. Again, the final clustering results may depend on the
choice of this distance, but CLINK generally results in tightly packed, small clusters. By contrast, SLINK leads to long and thin clusters. A comparison of these distance measures in clustering of precipitation forecasts is performed in Marzban and Sandgathe (2006). GMM and DBSCAN do not employ a notion of inter-cluster distance.

Given that all of the above-mentioned choices may affect the final clustering result, and the fact that the notion of an object is user-dependent, no specific choice is recommended here. A similar philosophy is adopted with respect to the model parameters . Here, however, the precipitation fields are first subjected to cluster analysis (Sect. 3d), and then six clusterfeatures (Sect. 3e) are employed as respense variables in a multivariate SAvalues of the parameters of the clustering algorithms; they may be specified by the user, or varied across a range of values, depending on the specific application. Although there exist statistical criteria that lead to unique values for the parameters, the criteria involve the optimization of some other quantity, e.g., Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC). As such, the ambiguity in the choice of the clustering algorithm, or the values of their parameters, is simply replaced with the ambiguity of selecting the appropriate criterion. Therefore, again, no attempt is made to optimize the values of the parameters. It is assumed that the user has sufficient information about the underlying physics to either specify the number of physical objects (or a range thereof), or the typical size and distance between physical objects.

## b. Cluster Features

In spatial verification some of the errors that are of interest include displacement, intensity, size/area, and shape error. The estimation of these errors presumes the ability to compute, respectively, the
location, intensity, area, and shape of a cluster. Here, the latitude and longitude of the centroid of a cluster are taken as coordinates of its location; intensity is measured by the median (across the spatial extent of the cluster) of precipitation; and area is measured by the number of grid points in a cluster. The shape of a cluster in GMM is an ellipse because that is the cross-section (i.e. level-set) of a bivariate Gaussian. Then, the eccentricity and orientation of the semi-major axis of the ellipse are natural for quantifying the shape of clusters. In DBSCAN clusters are not restricted to have any specific shape. In order to be able to compare the two clustering algorithms, here an elliptical shape is assumed for the clusters, and the eccentricity and orientation are obtained from the first and second eigenvectors of the covariance matrix computed from the coordinates of all the grid points in a given cluster. The length of the semi-major axis is set to the largest eigenvalue. The ability to estimate the shape of the ellipse from the covariance matrix is an important component of the methodology, because the alternative of fitting curves through the edges of clusters is a much more complicated task. This covariance matrix is central to the construction of many other features of potential interest (Bookstein 1991).

In short, the six cluster features examined here are latitude, longitude, intensity, area, orientation, and eccentricity. It is worth reiterating that these quantities can be estimated from the forecast field, directly, without any further modelling of the objects. Also, as explained in the next section, in order to assess how the distribution (across the forecast field) of a given feature is affected by the the model parameters the former is summarized with three moments - minimum, median, and maximum.

The SA methodology in (Marzban et al. 2014)-Marzban et al. (2014) is a variance-based approach which allows one to identify linear or nonlinear relationships between the forecast quantities and the model parameters, and even interactions between the model parameters. As a first approximation, however, it is sufficient to estimate only the linear (i.e., main) effects, because nonlinear and interaction effects are often much smaller than main effects; see, for example, pages 192, 230, 272, 314, 329 in Montgomery (2009), and pages 33-34 in Li et al. (2006). For this reason a linear regression-based model is adequate. Specifically, the effects effect of the model parameters are is assessed via the least-squares estimate of the regression coefficients $\beta_{i}$ in

$$
\begin{equation*}
y=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{11} x_{11}+\delta, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{11} x_{11}+\delta, \tag{2}
\end{equation*}
$$

where $x_{i}$ denote standardized model parameters, $y$ is the forecast quantity (e.g., some cluster feature), and $\delta$ represents any source of variability in $y$ other than from the model parameters. This linear model is further justified by the results (shown below) because when it is specialized to the case of one cluster (i.e., the entire spatial domain), it reproduces the results of the variance-based approach reported in Marzban et al. (2014).

There exists a realization of Eq. (1) in which the response is vector-valued; the model is called Multivariate Multiple Regression (MMR), wherein Eq. (1) is understood as a vector equation, where $y, \alpha$, and $\beta_{i}$ are all vectors (Fox et al. 2013; DelSole and Yang 2011; Rencher and Christensen 2012). Ideally one could allow each component of the response vector to represent a forecast feature of a given object. However, the number of objects/clusters varies across the 99 values of the parameters and across days in the data. Methods for estimating MMR coefficients when the number of
responses is a random variable (varying across cases) are not readily available. Therefore, for each of the six features, we consider measuring location, intensity and shape, three summary measures $\div$ The-are considered: the minimum, median, and maximum (across the clusters in the domain) of the feature. These three quantities can be thought of as a 3-point summary of the distribution (technically, histogram) of the feature, and they serve as the three responses in MMR. In short, the statistical model used here is

$$
\left(\begin{array}{l}
y_{d}^{\min }  \tag{3}\\
y_{d}^{\text {med }} \\
y_{d}^{\max }
\end{array}\right)=\left(\begin{array}{c}
\alpha_{d}^{\min } \\
\alpha_{d}^{\text {med }} \\
\alpha_{d}^{\max }
\end{array}\right)+\left(\begin{array}{c}
\beta_{1, d}^{\min } \\
\beta_{1, d}^{\text {med }} \\
\beta_{1, d}^{\max }
\end{array}\right) x_{1, d}+\left(\begin{array}{c}
\beta_{2, d}^{\min } \\
\beta_{2, d}^{\text {med }} \\
\beta_{2, d}^{\max }
\end{array}\right) x_{2, d}+\cdots+\left(\begin{array}{c}
\beta_{11, d}^{\min } \\
\beta_{11, d}^{\text {med }} \\
\beta_{11, d}^{\max }
\end{array}\right) x_{11, d}+\left(\begin{array}{c}
\delta_{d}^{\text {min }} \\
\delta_{d}^{\text {med }} \\
\\
\delta_{d}^{\max }
\end{array}\right)
$$

where min, med, and max denote the minimum, median, and maximum (across clusters), respectively, and $d=1,2, \cdots 40$ days. In this equation, the index corresponding to the 99 samples, across which the regression is performed, has been suppressed. As mentioned previously, the 99 samples of the 11 model parameters are allowed to vary across the 40 days - hence the $d$ subscript on the $x^{\prime} s$ in Eq. (2).

The medianacross clusters In addition to serving as a 3-point summary of the distribution of features, the minimum, median, and maximum also serve another purpose; the median is useful, because one can assess the effect of the model parameters on a "typical" cluster; the minimum and maximum across clusters are useful because they allow one to assess whether a model parameter has an effect on any of the clusters in a field. For example, if it is found that a particular model parameter is positively (negatively) associated with the minimum (maximum) size across clusters, then one can conclude that the size of at least one of the clusters in the field is affected by that parameter. This is an important consideration, because if the size of at least one of the clusters is
not affected by a parameter, then that parameter can be said to have no effect on the size of clusters.
Additionally, consideration of the three summary measures, together, allows one to assess the effect of the model parameters on the distribution of the features

One may wonder why it is important to use MMR with three responses, as opposed to three single-response multiple regression models; it is easy to show that the latter ignores the correlation between the response variables (Fox et al. 2013; Rencher and Christensen 2012). As such, MMR provides a better model of the underlying relationship between the model parameters and the response variables.

The data on the response variables $y$ are log-transformed to assure more bell-shaped histograms; this transformation is not necessary, but is useful when the regression coefficients are subjected to statistical tests, because many such tests assume relatively bell-shaped distributions.
d. Significance Tests

Testing the coefficients in the MMR model involves performing a large number of statistical tests $(40 \times 11 \times 6 \times 3)$ : one on each of 40 days, for each of 11 parameters, for each of six cluster features, and for each of three summary measures across clusters. A large number of tests, in turn, leads to an exponential growth in the probability of making some some Type I error-a fact. In general, the increase in the probability of making errors associated with multiple tests is known as the multiple hypothesis testing problem (Montgomery 2009). A standard procedure in statistics for taming (Benjamini and Hochberg 1995; Bretz et al. 2001; Dmitrienko et al. 2009; Montgomery 2009; Rosenblatt 2013;

There exist several procedures for addressing this problem, and they all involve two ingredients: 1) A set of "raw" p-values resulting from multiple hypothesis tests, and 2) the specification of an error rate to be controlled. Then, the p-values are corrected (usually scaled) in order to control the error rate. Two common measures of error rate are the Family-wise Error Rate (FWER), defined as the probability of at least one Type I error, and the False Discovery Rate (FDR), which is the expected proportion of Type I errors is to divide the task into two stage among all the tests that lead to the rejection of the null hypothesis. One of the simplest procedures for correcting the p-values involves simply multiplying all of the p-values by the number of tests, and then comparing these corrected p-values with a fixed significance level (e.g. 0.05). This correction controls the FWER, and is called the Bonferroni correction (Bretz et al. 2001; Wilks 2011). One of the popular procedures for controlling the FDR, due to Benjamini and Hochberg (1995) similarly involves scaling each p-value but by a quantity that depends on the rank of the p-value. The choice of the error rate to be controlled is sometimes evident from the nature of the problem (Rosenblatt 2013), but not in the present case; for this reason, both corrections are examined.

Quite independently of the above methods for controlling the errors arising from the multiplicity of tests, there exists a procedure which is often practiced when one is faced with multiple hypothesis tests. The main goal of the procedure is to reduce the number of tests performed, and it is generally possible to do so in tests that involve linear models (Montgomery 2009). In the first stage of the procedure, one performs a single, often-called omnibus, hypothesis test of whether any of the parameters any of the predictors (here, model parameters) in the linear model have an effect on any any of the responses. In the present application, such a test reduces the number of tests to $40 \times 6$. If the null hypothesis cannot be rejected, then one performs no more tests are performed, and the conclusion of the analysis is that there is no evidence that any of the parameters have an
effect on any of the responses. If, however, the null hypothesis is rejected, then, and only then, one proceeds to the second stage, i.e., testing of testing the significance of each of the $40 \times 6$ effectsparameters, separately.

For In the present application, the omnibus test used in the first stage, omnibus tests are readily available within MMR models (DelSole and Yang 2011; Fox et al. 2013; Rencher and Christensen 2012)is called the Pillai's trace test (Fox et al. 2013; Rencher and Christensen 2012), and its use reduces the total number of tests from $(40 \times 11 \times 6 \times 3)$ to only $40 \times 6$. Here, these tests were performed, yielding extremely small both FWER- and FDR-controlling corrections to these p-values, i.e., highly significant results (see Fig. 1), necessitating the second stage analysis.

Histogram of p -values from the multivariate tests across all days and response variables.
For the second stage, a number of methods have been developed, again for the purpose of taming Type I errors; two of the more commonly employed methods are due to Tukey and Dunnet (Montgomery 2009). But these tests are generally complex procedures which in the end still involve a simplistic comparison of a p-value with a prespecified significance level. Although sufficient for hypethesis testing, these-are examined. The second stage of the aforementioned procedure calls for testing the effect of each of the model parameters separately, but only for those comparisons that have been found significant in the first stage. However, here, for the this second stage, no hypothesis testing is performed at all, because in spite of the plethora of $p$-values they provide no information on the magnitude magnitude of the effect . For this reason, instead, we adopt the more qualitative approach of examining of each parameter. Instead, in the second stage, we examine the boxplot of the estimated regression coefficients directlyas well as the associated confidence intervals.

The boxplots (shown in the next section) are generated and analyzed interpreted as follows.

For each of the six cluster features, the response vector $y$ is set to the for each of the three summary measures (minimum, median, and maximum facross clusters in the whole field) of that feature. For each of these three response variables, boxplots of the regression coefficients for the 11 model parameters are produced. The degree of overlap between each boxplot and the number zero reflects a visual (though qualitative) assessment of both the statistical significance and the magnitude of the effect of the corresponding model parameter on the response: If zero is well within the span of the boxplot, then one cannot conclude anything regarding the effect; if the boxplot is significantly above (below) zero, then one can conclude that the corresponding parameter has a positive (negative) effect on the response in question; and in such a case, the "distance" of the boxplot relative to zero provides a visual indication of the magnitude of the effect.

## e. Cluster Analysis

There exists a wide range of clustering methods, each with their respective parameters (Everitt 1980). At one extreme, there exists a class of elustering methods wherein the desired number of cluster, NC, is speciffied by the user. A proven example in this class is called Gaussian Mixture Model (GMM) clustering (McLachlan and Peel 2000). At the other extreme, there exist clustering routines where $N C$ does not play a role at all. One such method is called Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al. 1996). DBSCAN has two parameters, here denoted $\epsilon$ and minsamples. Roughly speaking, $\epsilon$ is the maximum distance between two grid points in order for them to be in the same cluster, and min_samples is the minimum number of grid points necessary to form a clusterThe confidence interval for the mean (across 40 days) of the regression coefficient is computed from the estimates of the daily regression coefficients and their
standard errors, all computed within MMR. Given that each of the aforementioned displays in the final "output" of the methodology involves 11 CIs, a Bonferroni correction is introduced in order to assure that FWER is maintained at $5 \%$. The interpretation of the CIs is similar to that of the boxplots. If a CI excludes the number zero, one can reject the null hypothesis of no effect with (at least) $95 \%$ confidence; otherwise, there is no evidence to draw any conclusion. The overall position of the CI conveys information on the magnitude of the effect.

These two approaches are selected here for demonstration because they allow for two very different ways in which a user can inject a prioriknowledge into the analysis. For example, in some applications it may be more nattral to specify the number of elusters, in which case GMM is a natural choice. On the other hand, DBSCAN is more natural if the user has knowledge of the typical size and distance between clusters. For example, consider a situation wherein the grid-spacing is relatively large (as is the case in this paper, i.e., 81 km ), allowing one to examine only large seale precipitation. Although time of year and location are also important, but if one were to focus only on winter months in, say, A brief discussion of the advantages and disadvantages of the boxplot and the Confidence Interval (CI) is in order. The boxplot can be considered to provide a 5-point summary of the empirical sampling distribution of a regression coefficient. The sampling distribution is more fundamental than the CI (and the Pacific Northwest, then it is reasonable to set c to 3 or 4 . By contrast, if one is considering jet streaks, $p$-value) in the sense that the latter is derived from the former, and as such, the sampling distribution contains more information. However, this additional information comes at the cost of less rigor, for hypothesis testing with boxplots is inherently qualitative. CIs introduce a more rigorous display but they too have some limitations. For example, whereas hypothesis testing with boxplots does not require a notion of a confidence level, CIs depend explicitly on that notion. Furthermore analysis of multiple

CIs suffers from the same problems that arise in multiple hypothesis testing with p-values (see section 2e). Another limitation of CIs is that they are generally symmetric, and so do not convey information on the shape (e.g., where some maximum wind speed value is reached, then c can be eloser to 1 . As for min_samples, 4 or 5 are reasonable values for both precipitation and jet streak events, at the model resolution used here.

In addition to the way in which the respective parameters are handled, another reason why these two clustering methods skew) of the underlying distribution - boxplots do; see the discussion section for other alternatives. Given the different trade-offs between boxplots and CIs, both are used hereis that they oceupy two other extremes in the family of elustering algorithms: GMM elustering belongs to a class of model-based algorithms (Banfield and Raftery 1993; Fraley and Raftery 2002) con in statistics circles because they are conducive to performing statistical tests, while DBSCAN assumes no underlying model, and for this reason is often employed in machine learning applications. For the SA component of the methodology developed here, it is not necessary for the objects to be defined by these or any other elustering algorithm; the objects may be defined by any other criterion or even by htman experts.- Consequently, the final output of the methodology will consist of a figure involving 11 boxplots and CIs (one per model parameter), for each of six forecast features, and three summary measures (minimum, median, maximum) thereof.

## e. Summary of Method

This subsection summarizes the main ingredients of the proposed methodology and the associated problems (and solutions) that arise in an object-based SA. See the flowchart in Fig. 1.


Figure 1: The flowchart highlighting the main components of the methodology.

## f. Cluster Features

In spatial verification some of the errors that are of interest include displacement, intensity, size/area, and shape error. The estimation of these errors presumes the ability to compute, respectively, the location, intensity, area, and shape of a cluster. Here, the latitude and longitude of the centroid of a cluster are taken as coordinates of its location; intensity is measured by the median (across the spatial extent of SA, when the model parameters are continuous, a common method for varying them is LHS. It is important to point out that in models wherein daily variability is present it is advisable to allow the LHS to vary across days.

The model, here COAMPS, is then run for each of the eluster) of precipitation; and area is measured by model parameter values in the LHS and each of the generated forecast fields is subjected to cluster analysis for the purpose of identifying objects in the forecast fields. The choice of the clustering algorithm is an important consideration. Some users may wish to use algorithms
in which the number of grid peints in a cluster. The shape of a cluster, in GMM, is an ellipse, because that is the cross-section (i. e., level-set) of objects is specified, while other may find it more natural to specify the typical size and/or distance between objects. GMM and DBSCAN are examples from each category. Yet other users may wish to examine all possible clusterings of a field in which case a hierarchical method is more advisable.

After the objects have been identified, one must decide what object features are of interest. Features that can be estimated directly from the forecast field, without further modelling, are desirable. The six features proposed here are all readily computed from the forecast field and its spatial covariance matrix.

Given the variability of the object features across the forecast domain it is then important to assess the effect of the model parameters on the distribution of object features, because the model parameters affect the various objects within a forecast field in different ways. As such, assessing the effect of model parameters on the distribution of features presents a more complete picture of sensitivities than point estimates. Here, a bivariate Gaussian. Then, the eccentricity and orientation of the semi-major axis of the ellipse are natural for quantifying the shape of clusters. In DBSCAN, clusters are not restricted to have any specific shape. In order to be able to compare the two clustering algorithms, here an ellipse is "fitted" to the clusters, and again the eccentricity and orientation of the semi-major axis is used to represent the shape of the eluster. (Teehnically, the direction of 3-point summary of the distribution is considered: the minimum, median, and maximum.

The question then arises as to how to model the effect of the model parameters on that distribution.
Here, it is shown that MMR, with multiple responses corresponding to different moments of the distribution of a features, constitutes an elegant solution. Most notably, MMR allows for omnibus
tests of statistical significance which dramatically reduce the number of hypothesis tests. Other steps are also taken to control the error rate associated with multiple hypothesis testing. Then, for each day $(d=1, \ldots 40)$, the MMR coefficients $\beta_{i, d}^{\min } \beta_{i, d}^{m e d} \beta_{i, d}^{\max }$ with $i=1, \ldots 11$, provide estimates of the impact of the $i^{\text {th }}$ parameter on the distribution of cluster features.

Finally, given the importance of assessing daily variability (at least in the present application), it is proposed that displaying the boxplot of the sensitivities (i.e., the semi-major axis is defined to be the direction of the first eigenvector of the covariance matrix computed from the coordinates of all the grid points in a given cluster $\beta$ 's) across days is more useful than reporting p-values. Such boxplots, although more qualitative than p-values, are more effective in visually displaying both the magnitude and the variability of the sensitivities. Additionally, CIs are also displayed for the purpose of rendering the analysis somewhat less qualitative; see the discussion section for further alternatives.

The length of the semi-major axis is set to the largest eigenvalue.)
In short, the six cluster feature examined here are latitude, longitude, intensity, area, orientation, and eccentricity. Also, recall that for each of these features, three summary measures are computed - minimum, median, and maximum - and used as the multivariate response vector in MMR (see Sect. 3b).

## 3. Results

As mentioned earlier, 40 previously, 24 h forecasts are produced for 40 days, each with 99 different values of 11 parameters in COAMPS. Each forecast field is clustered, and three summary measures (minimum, median, and maximum, all across clusters) are computed, each for six cluster features
(latitude, longitude, ete.intensity, area, orientation, and eccentricity). First, an omnibus test is performed to test whether any of the 11 parameters have an effect on any of the three summary measures, on each day and for each cluster feature. Then, six MMR models are set up mapping the 11 parameters to three response variables. The daily variability - displayed as boxplots (e.g., Fig. 2 and Fig. 3) and confidence intervals - for each of the regression coefficients offers a visual assessment of both the statistical significance and the magnitude of the effect of each parameter. ${ }^{1}$

Estimated regression coefficients (i.e. sensitivity of the model parameters) with median precipitation of the clusters as the response, after clustering with DBSCAN with various parameter values.

In the first stage of the analysis the respense variable is a 3-dimensional vector, and an omnibus test is performed to test if any of the 11 parameters have an effect on any of the three response variables, for each day and each cluster feature. Such a test The possibility of performing omnibus tests in MMR reduces the number of tests from $(40 \times 11 \times 6 \times 3)$ to $(40 \times 6)=240$. The individual p-values are not shown here, but for DBSCAN their histogram is shown in Fig. 1.2. Evidently, all of the comparisons yield extremely small p-values. At a significance level of 0.05 , out of the 240 tests, 29-53 p-values are not significant when using DBSCAN and 59-67 are not significant when using GMM. By examining the To emphasize the importance of this result, consider the hypothetical situation in which all of these $p$-values, the were found to be not significant. In that case, no further hypothesis testing would be necessary at all. Indeed, an examination of the individual p-values displayed in Fig. 2, reveals that a vast majority of the non-significant results are associated with the tests when the response feature is the eccentricity of a cluster. If one applies the Bonferroni correction (Devore and Farnum 2005) to the significance level in order to account for

[^2]

Figure 2: Histogram of $p$-values from the omnibus tests across all days and response variables. the multiple tests, the significance level becomes $0.05 /(40 \times 6)=2 \times 10^{-4}$. At this significance level there are-an object. As such, one may anticipate that none of the parameters have any effect on eccentricity. The smallness of the remaining $p$-values, however calls for proceeding to the second stage of analysis.

The Bonferroni correction for controlling the FWER requires multiplying all of the p-values by the number of tests (i.e., 240). This correction leads to many more nonsignificant comparisons: 87 129 for DBSCAN and 94-111 for GMM. Upon making this correction, in addition to eccentricity some of the other features also emerge as being unaffected by any of the 11 parameters. Further details of these results are presented below. When the Benjamini and Hochberg (1995) procedure is applied to control FDR, the number of nonsignificant comparisons is similar to those from the uncorrected tests, i.e. 60 for DBSAN and 74 for GMM.

Figure 2

(a) $\epsilon=2$, min samples $=3$

(d) $\epsilon=2$, min samples $=5$

(b) $\epsilon=3$, min samples $=3$

(e) $\epsilon=3$, min samples $=5$

(c) $\epsilon=4$, min samples $=3$

(f) $\epsilon=4$, min samples $=5$

Figure 3: Estimated regression coefficients (i.e. sensitivity of the model parameters) with median precipitation of the clusters as the response, after clustering with DBSCAN with various parameter values. The red symbols are 95\% simultaneous CIs.

As mentioned previously, although these rigorous considerations based on p-values are important to assure that the number of false alarms is tamed, it is equally useful to examine the boxplot summary of the empirical sampling distribution and CIs of the effects. Figure 3 shows the sensitivity results when the response is the median (across clusters) of precipitation intensity, and DBSCAN is employed with different parameters. The analogous results for GMM with different values of $N C$ are not shown here, but they are similar. Recall that the variability displayed in each boxplot is due to the 40 days examined. First, note that all of the panels are mostly similar to one another, which implies that the sensitivity results are mostly unaffected by the parameters of the clustering algorithm.

It can also be seen that many of the 11 parameters have a histogram/boxplot of values mostly
around zero. In other words, when considered across multiple days most of the 11 model parameters have no effect on the median of precipitation, The most obvious exception is parameter 3, which by virtue of having mostly negative values for its regression coefficient, is negatively associated with median precipitation. Parameter 7 not only has a weaker effect (because the median of the corresponding boxplot is closer to zero), it is also not as statistically significant (because zero falls well within the span of the boxplot). This parameter is positively associated with precipitation intensity in the typical (median) cluster, i.e., increasing the parameter leads to more intense clusters; more, below. The conclusions drawn from an analysis of the CIs in Fig. 3 are the same.

All of these findings are consistent with those found for convective precipitation in Marzban et al. (2014) where a variance-based sensitivity was performed without any clustering at all. This consistency adds justification to the local/regression-based SA adopted here, i.e., Eq. (1). 2). It is important to point out that this consistency does not imply that an object-based SA offers nothing more than traditional non-object-based SA; the former assesses the sensitivity of object features, something that cannot be done in the latter.

Figure 34 shows the effect of the model parameters on the latitude and longitude of the clusters (top two rows), amount of precipitation (middle row) in the clusters, and the area and orientation of the clusters (bottom two rows). The three columns correspond to the minimum, median, and maximum of a feature. Eccentricity has also been examined, but the results are not shown here because it is not affected by any of the 11 parameters; this conclusion is consistent with the results of the F-test omnibus tests performed in the first stage, mentioned above.

Examination of all of the panels suggests that parameters $4,5,8,9,10,11$ have little or no effect on any of the object features. By contrast, parameters 1,2,3,6, and 7 appear to have varying effects depending on the object feature. Also, the orientation (in addition to eccentricity) of the


Figure 4: Estimated regression-MMR coefficients (i.e. sensitivity of the model parameters) on three summary measures (minimum, median, maximum) of different cluster features (latitude, longitude, amount of precipitation, and area and orientation of clusters. Eccentricity is not shown (see text). The red symbols are $95 \%$ simultaneous CIs. The clustering is done with DBSCAN with $\epsilon=2 \sqrt{2}$, min $\_$samples $=3$.
clusters is unaffected by any of the parameters.
The strongest effects are from parameters 3 and 7 on the amount of precipitation. This relationship was already examined in Fig. 23 ; but now the same pattern can be seen in the minimum, median, and maximum intensity (panels g, h, i in Fig. 34), which implies that the effect of parameters 3 and 7 is to shift down and up, respectively, the whole distribution of precipitation intensity.

The next strongest effects are those of parameters 1 and 7 on maximum area (panel 1). Given that these two parameters have no effect on the minimum and median area (panels $j$ and $k$ ), it follows that these parameters affect only the right tail of the distribution of size. In other words, by contrast to precipitation intensity whose distribution shifts when parameter 7 is varied, the distribution of size is stretched when that parameter changes. Parameter 6, too, appears to have an effect on maximum area, but to a lesser extent, both statistically and in magnitude.

Whereas parameter 1 tends to stretch out the distribution of area to the right, it appears to have the opposite effect on the minimum and median longitude of the clusters. The effect is weak in magnitude, but statistically significant. It does not affect the maximum longitude (panel f), and so, it stretches the distribution of longitude on the left, causing clusters to appear with smaller longitude, which given the encoding of the data used here, means to the west. Parameters 2, 6, and 7 appear to have the same effect as parameter 1.

The latitude appears to be weakly affected by some of the parameters. For example, parameter 7, and to a much lesser degree parameter 1 , is positively associated with median and maximum latitude, but negatively associated with minimum latitude. In other words, increasing parameter 7 increases the width of the distribution of latitude values, causing them to be more spread out along the latitudes.

All of the above conclusions are based on clustering with DBSCAN with $\epsilon=2 \sqrt{2}$ and
min_samples=3. To test the robustness of these results the same analysis was repeated but with GMM as the eluster-clustering algorithm and with $N C=3$. The results (not shown here) are mostly the same. One relatively clear difference between the DBSCAN and GMM results is in the effect of parameters 1 and 7 on area; whereas with DBSCAN those parameters have an effect only on the maximum area, the results based on GMM suggest a significant effect on all three eluster feattres distribution summary measures (minimum, median, and maximum area).

Further differences between DBSCAN and GMM sensitivity results are found when one performs a multivariate test for the effect of the model parameters across all days. For DBSCAN, the p-values corresponding to each of the six cluster features are all found to be nearly zero. So, some of the model parameters do have a significant effect on some of the features. The same is true for GMM, with the exception of latitude and eccentricity for which there is no evidence of an effect (p-values 0.435 and 0.290 , respectively). It may appear that these results are contradictory, but they are not because the respective parameters of the two clustering algorithms have not been tuned to render them comparable. Specifically, the DBSCAN parameters are $\epsilon=2 \sqrt{2}$ and min_samples $=3$, while for GMM the parameter $N C$ is set to three. In other words, the differences are due to the way in which the two clustering algorithms handle their respective parameters. As mentioned earlier, such differences do not point to defects in the methodology; they simply reflect the choice of what the user considers to be an object.

## 4. Conclusion and Discussion

It is shown that by employing methods of cluster analysis and sensitivity analysis one can assess the magnitude and statistical significance of the effect of model parameters on the distribution of
features (location, intensity, size, and shape) of objects within forecast fields. The framework alse allows one to assess the impact of the model parameters on the distribution of forecast features. For example, one can reveal the model parameters that affect the overall location and/or width of the distribution of object features, and those which impact the shape of the distribution, e.g., by stretching out the left and/or right tail. The approach does not point to any "optimal" values of the model parameters, for that would require optimizing the model parameters to maximize some measure of agreement between forecasts and observations. In other words, although the work here lays the foundation for tuning the model parameters for the purpose of improving forecasts in terms of metrics that arise naturally in spatial verification/evaluation methods, no such tuning is performed here.

Given the novelty of the proposed framework, some recommendations are in order. The choice of the elustering algorithm depends on the specific user. Indeed, there are sittations in which elusters/objects in a field are identified by human experts. For these reason, no specific clustering algorithm is recommended. A similar philosophy is adopted with respect to the values of the parameters of the clustering algorithms; they may be specified by the user, or varied across a range of values, depending on the specific application. Although there exist statistical criteria that lead to unique values for the parameters, the criteria involve the optimization of some other quantity, e.g., Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC). As such, the ambiguity in the choice of the clustering algorithm, or the values of their parameters, is simply replaced with the ambiguity of selecting the appropriate criterion. Therefore, again, no attempt is made to optimize the values of the parameters. It is assumed that the user has sufficient information about the underlying physics to either specify the number of physical objects (or a range thereof), or the typical size and distance between physical objects.

It is worth pointing out that at least in meteorology, it is not uncommon for different human experts to have different notions of an object in the forecast field. As such, the ambiguities discussed above are not specific to clustering algorithms, but are inherent to any object-based approach. In spite of this inherent ambiguity, many spatial verification techniques generally rely on some notion of an object. The main reason is that accounting for objects in a forecast field is a first step in the verification/evaluation process, and the manner in which objects are defined is of secondary importance.

While this paper is primarily about a methodology, it is worthwhile to provide a possible physical explanation for at least the strongest results in the COAMPS application. The strongest influence or sensitivity is from parameter 3, the fraction of available precipitation fed back to the grid from the Kain-Fritsch scheme. Increasing this fraction reduces convective precipitation and, based on the results in Marzban et al. (2014), increases stable precipitation, while not affecting total precipitation. It also is responsible for weakening the convective precipitation, i.e., increasing the number of weak systems. The next largest sensitivity is from parameter 7, which controls the temperature difference required to initiate convective precipitation. Again, as shown in Marzban et al. (2014), this parameter also controls a trade-off between convective and stable precipitation and has little effect on total precipitation (along with parameter 1). Parameters 1 and 7 do increase the area of convective precipitation in large precipitation events but not in smaller (areal) precipitation events, likely due to the trade-off between stable and convective precipitation in large events such as frontal systems and mesoscale clusters. This process may also explain the apparent increase in east-west areal coverage and the intensification of precipitation events, as found here.

Several generalizations of the proposed methodology are possible. In Marzban et al. (2008) it has been shown that clustering can be done not only in the 2-dimensional space of latitude
and longitude of each grid point, but also in the 3-dimensional space that includes the amount of precipitation at each grid point. In fact, one may argue that the inclusion of more meteorological quantities in the clustering phase ought to lead to more meteorologically relevant objects being identified. In turn, this is more likely to lead to more realistic representation of the effect of the parameters on the object features. The object features may also be extended or revised. For example, here the shape of an object is approximated by an ellipse. But it is possible to use more sophisticated methods of shape analysis (Bookstein 1991; Lack et al. 2010; Micheas et al. 2007; Lakshmanan et al. 2009) to model more complex shapes. Another possible generalization is to allow for interactions between model parameters. Although the statistical model used here does account for covariance between the model parameters, and between the response variables, no explicit interaction is introduced. The inclusion of such terms is straightforward, and is unlikely to lead to overfitting, at least in linear models such as MMR.

The use of boxplots (in the second stage) to visually display the daily variability of the results is necessarily qualitative. But the authors believe that the information provided in the visual display compensates for the lack of rigor accompanying p-values. CIs are more rigorous than the boxplots, but as mentioned previously, that rigor is accompanied by loss of some information. However, if even more rigor is called for, then it is possible to revise the displays accordingly. For example, one option would be to include a Day factor in the MMR model, and then test the model parameters. Although, the daily variability of the $\beta$ coefficients will be lost, each model parameter will be accompanied by a p-value. Alternatively, one may compute a Bayesian intervals (Leonard and Hsu 1999); such intervals are not necessarily symmetric, and therefore, will be able to convey information on the shape of the underlying sampling distribution. However, they do require additional information, e.g., some knowledge of the prior distribution of the $\beta$ 's. All of
these options will render the analysis more quantitative, although with a different focus than that emphasized here. ${ }^{2}$

## 5. Code and/or data availability

The code and the data analyzed here occupy about 4.0 G of computer space, and are available upon request from the corresponding author, or from https://doi.org/10.5281/zenodo. 1043542

## 6. Competing Interests

The authors declare that they have no conflict of interest

## 7. Acknowledgments

This work has received support from Office of Naval Research (N00014-12-G-0078 task 29) and National Science Foundation (AGS-1402895). The authors are grateful to James D. Doyle and Nicholas C. Lederer for providing invaluable support. Ethan P. Marzban is acknowledged for making the flowchart in Figure 1.

## References

Ahijevych, D., Gilleland, D. E., Brown, B. G., and Ebert, E. E.: Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts, Wea. Forecasting, 24, 1485-

[^3]Backman, J., Wood, C., Auvinen, M., Kangas, L., Hannuniemi, H., Karppien, A., and Kukkonen, J.: Sensitivity analysis of the meteorological pre-processor MPP-FMI 3.0 using algorithmic differentiation, Geosci. Model Dev. Discuss., (in review), 2017.

Baldwin, M. E., Lakshmivarahan, S., and Kain, J. S.: Verification of mesoscale features in NWP models, in: Amer Meteor. Soc., 9th Conf. on Mesoscale Processes, pp. 255-258, Ft. Lauderdale, FL., 2001.

Baldwin, M. E., Lakshmivarahan, S., and Kain, J. S.: Development of an "events-oriented" approach to forecast verification, in: 15th Conf. Numerical Weather Prediction, San Antonio, TX, 2002.

Banfield, J. D. and Raftery, A. E.: Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803-821, 1993.

Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., B 57, 289-300, 1995.

Bolado-Lavin, R. and Badea, A. C.: Review of sensitivity analysis methods and experience for geological disposal of radioactive waste and spent nuclear fuel, JRC Scientific and Technical Report, Available online, 2008.

Bookstein, F. L.: Morphometric Tools for Landmark Data: Geometry and Biology, Cambridge, 1991.

Bretz, F., Hothorn, T., and Westfall, P.: Multiple Comparisons Using R, Chapman and Hall, 2001.

Brown, B. G., Mahoney, J. L., Davis, C. A., Bullock, R., and Mueller, C.: Improved approaches for measuring the quality of convective weather forecasts, in: 16th Conference on Probability and Statistics in the Atmospheric Sciences, pp. 20-25, Orlando, FL, 2002.

Casati, B., Ross, G., and Stephenson, D.: A new intensity-scale approach for the verification of spatial precipitation forecasts, Met. App., 11, 141-154, 2004.

Cioppa, T. and Lucas, T.: Efficient nearly orthogonal and space-filling latin hypercubes, Technometrics, 49(1), 45-55, 2007.

Davis, C., Brown, B., and Bullock, R.: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas, Mon. Wea. Rev., 134, 1772-1784, 2006a.

Davis, C. A., Brown, B., and Bullock, R.: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems, Mon. Wea. Rev., 134, 1785-1795, 2006 b.

DelSole, T. and Yang, X.: Field Significance of Regression Patterns, J. Climate, 24, 5094-5107, 2011.

Devore, J. and Farnum, N.: Applied Statistics for Engineers and Scientists, Thomson, 2005.

Dmitrienko, A. A., Tamhane, C., and (ed.), F. B.: Multiple Testing Problems in Pharmaceutical Statistics, Chapman and Hall, 2009.

Doyle, J. D., Jiang, Q., Smith, R. B., and Grubii, V.: Three-dimensional characteristics of stratospheric mountain waves during T-REX, Mon. Wea. Rev., 139, 3-23, 2011.

Du, J. and Mullen, S. L.: Removal of Distortion Error from an Ensemble Forecast, Mon. Wea. Rev., 128, 3347-3351, 2000.

Ebert, E.: Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework, Meteor. Appl., 15 (1), 51-64, 2008.

Ebert, E. E. and McBride, J. L.: Verification of precipitation in weather systems: determination of systematic errors, Jour. Hydrology, 239, 179-202, 2000.

Errico, R. M.: What is an Adjoint Model?, Bull. Amer. Meteor. Soc., 78, 2577-2591, 1997.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of Knowledge Discovery and Data Mining (KDD-96), vol. 96(34), pp. 226-231, 1996.

Everitt, B. S.: Cluster Analysis, Heinemann Educational Books, London, 1980.

Fox, J., Friendly, M., and Weisberg, S.: Hypothesis tests for multivariate linear models using the car package, The R Journal, 5(1), 39-52, 2013.

Fraley, C. and Raftery, A.: Model-Based Clustering, Discriminant Analysis, and Density Estimation, Journal of the American Statistical Association, 97, 611-631, 2002.

French, S., Lekic, V., and Romanowicz, B.: Waveform Tomography Reveals Channeled Flow at the Base of the Oceanic Asthenosphere, Sience, 342, 227-230, 2013.

Froyland, G., Stuart, R. M., and van Sebille, E.: How well-connected is the surface of the global ocean?, Chaos, 24, ??, 2014.

Gilleland, D. E., Ahijevych, D., Brown, B. G., Casati, B., and Ebert, E. E.: Intercomparison of Spatial Forecast Verification Methods, Wea. Forecasting, 24, 1416-1430, 2009.

Hacker, J. P., Snyder, C., Ha, S.-Y., and Pocernich, M.: Linear and non-linear response to parameter variations in a mesoscale model, Tellus A, 63, 429-444, doi:10.1111/j.1600-0870.2010.00505.x, 2011.

Hodur, R. M.: The Naval Research Laboratorys Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), Mon. Wea. Rev., 125, 1414-1430, 1997.

Hoffman, R. N., Liu, Z., Louis, J.-F., and Grassotti, C.: Distortion representation of forecast errors, Mon. Wea. Rev., 123, 2758-2770, 1995.

Holt, T. R., Cummings, J. A., Bishop, C. H., Doyle, J. D., Hong, X., Chen, S., and Jin, Y.: Development and testing of a coupled ocean-atmosphere mesoscale ensemble prediction system, Ocean Dynamics, 61, 1937-1954, doi:10.1007/s10236-011-0449-9, 2011.

Jiang, Q. and Doyle, J. D.: The impact of moisture on Mountain Waves, Mon. Wea. Rev., 137, 3888-3906, 2009.

Kalra, T. S., Aretxabaleta, A., Seshadri, P., Ganju, N. K., and Beudin, A.: Sensitivity Analysis of a Coupled Hydrodynamic-Vegetation Model Using the Effectively Subsampled Quadratures Method, Geosci. Model Dev. Discuss., (in review), 2017.

Keil, C. and Craig, G. C.: A displacement-based error measure applied in a Regional Ensemble Forecasting System, Mon. Wea. Rev., 135(9), 3248-3259, 2007.

Lack, S. A., Limpert, G. L., and Fox, N. I.: An object-oriented multiscale verification scheme, Wea. Forecasting, 25(1), 79-92, 2010.

Laine, M., Solonen, A., Haario, H., and Järvinen, H.: Ensemble prediction and parameter estimation system: the method, Q. J. R. Meteorol. Soc, 138, 289-297, 2012.

Lakshmanan, V. and Kain, J. S.: A Gaussian Mixture Model Approach to Forecast Verification, Wea. Forecasting, 25(3), 908-920, 2010.

Lakshmanan, V., Hondl, K., and Rabin, R.: An Efficient, general-purpose technique for identifying storm cells in geospatial image, J. Atmos. Oceanic Technol., 26, 523-537, 2009.

Leonard, T. and Hsu, J. S. J.: Bayesian Methods; An Analysis for Statisticians and Interdisciplinary Researchers, Cambridge University Press, Cambridge, 1999.

Li, J., Hsu, K., AghaKouchak, A., and Sorooshian, S.: An object-based approach for verification of precipitation estimation, International Journal of Remote Sensing, 36:2, 513-529, 2015.

Li, X., Sudarsanam, N., and Frey, D. D.: Regularities in data from factorial experiments, Complexity, 11(5), 32-45, 2006.

Lorenz, E. N.: Deterministic non-periodic flow, J. Atmos. Sci., 20, 130-141, 1963.

Lucas, D. D., Klein, R., Tannahill, J., Ivanova, D., Brandon, S., Domyancic, D., and Zhang, Y.: Failure analysis of parameter-induced simulation crashes in climate models, Geosci. Model Dev., 6, 1157-1171, 2013.

Marzban, C.: Variance-based Sensitivity Analysis: An illustration on the Lorenz '63 model, Mon. Wea. Rev., 141(11), 4069-4079, 2013.

Marzban, C. and Sandgathe, S.: Cluster analysis for verification of precipitation fields, Wea. Forecasting, 21(5), 824-838, 2006.

Marzban, C. and Sandgathe, S.: Cluster Analysis for Object-Oriented Verification of Fields: A Variation, Mon. Wea. Rev., 136, 1013-1025, 2008.

Marzban, C., Sandgathe, S., and Lyons, H.: An Object-oriented Verification of Three NWP Model Formulations via Cluster Analysis: An objective and a subjective analysis, Mon. Wea. Rev., 136 (9), 3392-3407, 2008.

Marzban, C., Sandgathe, S., Lyons, H., and Lederer, N.: Three Spatial Verification Techniques: Cluster Analysis, Variogram, and Optical Flow, Wea. Forecasting, 24(6), 1457-1471, 2009.

Marzban, C., Sandgathe, S., Doyle, J. D., and Lederer, N. C.: Variance-Based Sensitivity Analysis: Preliminary Results in COAMPS, Mon. Wea. Rev., 142, 2028-2042, 2014.

McLachlan, G. J. and Peel, D.: Finite Mixture Models, John Wiley \& Sons, Hoboken, NJ USA, 2000.

Micheas, A. C., Fox, N. I., Lack, S. A., and Wikle, C. K.: Cell identification and verification of QPF ensembles using shape analysis techniques, J. Hydrology, 343, 105-116, 2007.

Montgomery, D. C.: Design and Analysis of Experiments, Wiley \& Sons, 7th edition, 2009.

Nachamkin, J. E.: Mesoscale verification using meteorological composites, Mon. Wea. Rev., 132, 941-955, 2004.

Ollinaho, P., ärvinen, H., Bauer, P., Laine, M., Bechtold, P., Susiluoto, J., and Haario, H.: Optimization of NWP model closure parameters using total energy norm of forecast error as a target, Geosci. Model Dev., 7(5), 1889-1900, 2014.

Rencher, A. C. and Christensen, W. F.: Methods of Multivariate Analysis, John Wiley \& Sons, Inc., Hoboken, NJ, USA, doi:10.1002/9781118391686.ch10, 2012.

Roberts, N. M. and Lean, H. W.: Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events, Mon. Wea. Rev., 136, 78-97, 2008.

Robock, A., Luo, L., Wood, E. F., Wen, F., Mitchell, K. E., Houser, P., Schaake, J. C., Lohmann, D., Cosgrove, B., Sheffield, J., Duan, Q., Higgins, R. W., Pinker, R. T., Tarpley, J. D., Basara, J. B., and Crawford, K. C.: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during warm seasons, J. Geophys. Res., 108, 8846-8867, 2003.

Roebber, P.: The role of surface heat and Moisture Fluxes Associated with large-scale ocean current meanders in maritime cyclogenesis, Mon. Wea. Rev., 117, 1676-1694, 1989.

Roebber, P. and Bosart, L.: The sensitivity of precipitation to circulation details. part i: an analysis of regional analogs, Mon. Wea. Rev., 126, 437-455, 1989.

Rosenblatt, J.: A practioner's guide to multiple hypothesis testing error rates, arXiv:1304.4920v3, 2013.

Safta, C., Ricciuto, D., Sargsyan, K., Debusschere, B., Najm, H., Williams, M., and Thornton, P.: Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model, Geosci. Model Dev., 8, 1899-1918, 2015.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis: The Primer, Wiley Publishing, 2008.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S.: Variance based
sensitivity analysis of model output: Design and estimator for the total sensitivity index, Computer Physics Communications, 181, 259-270, 2010.

Samsel, F., Petersen, M., Abram, G., Turton, T. L., Rogers, D., and Ahrens, J.: Visualization of Ocean Currents and Eddies in a High-Resolution Global Ocean-Climate Model, in: Proceedings of the $15^{\text {th }}$ International Conference for High Performance Computing, Networking, Storage and Analysis, Austin, TX, 2015.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAAS HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bull. Amer. Meteor. Soc., 96, 2059-2077, 2015.

Venugopal, V., Basu, S., and Foufoula-Georgiou, E.: A new metric for comparing precipitation patterns with an application to ensemble forecasts, J. Geophys. Res., 110, D8, D08 111 10.1029/2004JD005 395, 2005.

Vogelmann, J. E., Kost, J. R., Tolk, B., Howard, S., Short, K., and Chen, X.: Monitoring Landscape Change for LANDFIRE Using Multi-Temporal Satellite Imagery and Ancillary Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 252-264, 2011.

Wang, Y. H., Fan, C. R., Zhang, J., Niu, T., Zhang, S., and Jiang, J. R.: Forecast Verification and Visualization based on Gaussian Mixture Model Co-estimation, Computer Graphics Forum, 34, 99-110, 2015.

Wealands, S. R., Grayson, R. B., and Walker, J. P.: Quantitative comparison of spatial fields for
hydrological model assessment: some promising approaches, Advances in Water Resources, 28, 15-32, 2005.

Wernli, H., Paulat, M., Hagen, M., and Frei, C.: SAL - A Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts, Mon. Wea. Rev., 136, 4470-4487, 2008.

Wilks, D. S.: Statistical Methods in the Atmospheric Sciences (3rd edition), Elsevier Inc., 2011.

Yu, Y. Y., Finke, P. A., Wu, H. B., and Guo, Z. T.: Sensitivity analysis and calibration of a soil carbon model (SoilGen2) in two contrasting loess forest soils, Geosci. Model Dev., 6, 29-44, 2013.

| ID | Name (Unit) | Description | Default | Range |
| :---: | :---: | :---: | :---: | :---: |
| 1 | delt $2 \mathrm{KF}\left({ }^{\circ} \mathrm{C}\right)$ | Temperature increment at the LCL for KF trigger | 0 | -2, 2 |
| 2 | cloudrad ( $m$ ) | Cloud radius factor in KF | 1500 | 500, 3000 |
| 3 | prcpfrac | Fraction of available precipitation in KF, fed back to the grid scale | 0.5 | 0, 1 |
| 4 | mixlen | Linear factor that multiplies the mixing length within the PBL | 1.0 | 0.5, 1.5 |
| 5 | sfcflx | Linear factor that modifies the surface fluxes | 1.0 | 0.5, 1.5 |
| 6 | wfctKF | Linear factor for the vertical velocity (grid scale) used by KF trigger | 1.0 | 0.5, 1.5 |
| 7 | delt $1 \mathrm{KF}\left({ }^{\circ} \mathrm{C}\right)$ | Another method to perturb the temperature at the LCL in KF | 0 | -2, 2 |
| 8 | $\text { autocon1 }\left(\frac{k g}{m^{3} s}\right)$ | Autoconversion factors for the microphysics | 0.001 | $1 \mathrm{e}-4,1 \mathrm{e}-2$ |
| 9 | $\text { autocon2 }\left(\frac{\mathrm{kg}}{\mathrm{~m}^{3} s}\right)$ | Autoconversion factors for the microphysics | 4e-4 | $4 \mathrm{e}-5,4 \mathrm{e}-3$ |
| 10 | rainsi $\left(\frac{1}{m}\right)$ | Microphysics slope intercept parameter for rain | 8.0e6 | 8.0e5, 8.0e7 |
| 11 | snowsi ( $\frac{1}{m}$ ) | Microphsyics slope intercept parameter for snow | 2.0e7 | 2.0e6, 2.0e8 |

$\mathrm{KF}=$ Kain-Fritsch, PBL $=$ Planetary Boundary Layer, LCL $=$ Lifted Condensation Level

Table 1: The 11 parameters studied in this paper. Also shown are the default values, and the range over which they are varied.


[^0]:    *We maintain that the two-stage approach in linear models is a standard and time-tested procedure, and we have provided references and more explanation of omnibus tests to support that belief. We have also demonstrated the usefulness of the 2-stage procedure through an example. Specifically, in the first stage of the procedure, i.e., without examining the effects of each model parameter on each response separately, there is already evidence that eccentricity is not affected by any of the model parameters. As such, there is no reason to perform multiple hypothesis testing of the effect of each model parameter on each response. The omnibus test in the first stage is not intended to control errors associated with multiple hypothesis testing involving model parameters and responses; it is designed to avoid that testing altogether. Abandoning the 2-stage procedure is tantamount to ignoring the utility of omnibus tests in linear

[^1]:    *Corresponding Author: marzban@stat.washington.edu

[^2]:    ${ }^{1}$ Detailed results on clustering are available; they are suppressed here only to focus on the object-based SA methodology as a whole.

[^3]:    ${ }^{2}$ The authors acknowledge an anonymous reviewer for these alternatives.

