1	Response by author to interactive comment by RC1 on "Fast sensitivity analysis
2	methods for computationally expensive models with multidimensional output" by
3	Edmund Ryan et al.
4	
5	Topical Editor Decision: Publish subject to minor revisions (review by editor) (25 May 2018)
6	by Andrea Stenke
7	Comments to the Author:
8	Dear Edmund Ryan,
9	
10	thanks a lot for revising your manuscript according to the referees' comments.
11	
12	There is one last and probably minor point which needs clarification. Referee #1 brought this to my
13	attention after submission of your author's comment. The referee thinks that you might have
14	misunderstood one of the comments: "In Figures 3 and 4 the scaling appears to be wrong. They say
15	they are plotting sensitivity indices which should be in [0,1], but the color bar indicates that they are
16	in [0,70]. My guess is that the plot is correct and it's a mistake with scaling when they constructed the
17	color bar."
18	
19	Could you please briefly comment on this or, if necessary, revise the figures accordingly? After this
20	has been clarified I will be happy to accept your paper for publication.
21	
22	Best regards,
23	Andrea Stenke

24

25 Author's response:

26 Thanks for spotting this. In figures 3 and 4, the SIs are given as percentages (i.e. 0-100) but in the

27 manuscript they are given as being in the 0-1 range. To fix this, I have added the following (highlighted

in yellow) to the text following equation 1 on page 9 of the manuscript. I add \times 100 to equation 2 as

29 well.

30

$$S_{i,j} = \frac{Var[E(Y_j|X_i)]}{Var(Y_j)} \times 100$$
(1)

where X_i is the *i*th column of the $n \times p$ matrix (i.e. a matrix with *n* rows and *p* columns) which stores the *n* samples of *p*-dimensional inputs and Y_j is the *j*th column of the $n \times m$ matrix which stores the corresponding *n* sets of *m*-dimensional outputs (table 1). We multiply by 100 so that the SI is given as a percentage. The notation given by $Var(\cdot)$ and $E(\cdot)$ denote the mathematical operations that compute the variance and expectation. The simplest way of computing $S_{i,j}$ is by brute force, but this is also the most computationally intensive (Saltelli et al., 2008).

37