```
Response by author to interactive comment by RC1 on "Fast sensitivity analysis methods for computationally expensive models with multidimensional output" by Edmund Ryan et al.
```

```
Topical Editor Decision: Publish subject to minor revisions (review by editor) (25 May 2018)
```

Topical Editor Decision: Publish subject to minor revisions (review by editor) (25 May 2018)
by Andrea Stenke
by Andrea Stenke
Comments to the Author:
Comments to the Author:
Dear Edmund Ryan,
Dear Edmund Ryan,
thanks a lot for revising your manuscript according to the referees' comments.
thanks a lot for revising your manuscript according to the referees' comments.
There is one last and probably minor point which needs clarification. Referee \#1 brought this to my
There is one last and probably minor point which needs clarification. Referee \#1 brought this to my
attention after submission of your author's comment. The referee thinks that you might have
attention after submission of your author's comment. The referee thinks that you might have
misunderstood one of the comments: "In Figures 3 and 4 the scaling appears to be wrong. They say
misunderstood one of the comments: "In Figures 3 and 4 the scaling appears to be wrong. They say
they are plotting sensitivity indices which should be in [0,1], but the color bar indicates that they are
they are plotting sensitivity indices which should be in [0,1], but the color bar indicates that they are
in [0,70]. My guess is that the plot is correct and it's a mistake with scaling when they constructed the
in [0,70]. My guess is that the plot is correct and it's a mistake with scaling when they constructed the
color bar."
color bar."
Could you please briefly comment on this or, if necessary, revise the figures accordingly? After this
Could you please briefly comment on this or, if necessary, revise the figures accordingly? After this
has been clarified I will be happy to accept your paper for publication.
has been clarified I will be happy to accept your paper for publication.
Best regards,
Best regards,
Andrea Stenke

```
Andrea Stenke
```

Author's response:
Thanks for spotting this. In figures 3 and 4, the SIs are given as percentages (i.e. 0-100) but in the manuscript they are given as being in the 0-1 range. To fix this, I have added the following (highlighted in yellow) to the text following equation 1 on page 9 of the manuscript. I add $\times 100$ to equation 2 as well.

$$
\begin{equation*}
S_{i, j}=\frac{\operatorname{Var}\left[E\left(Y_{j} \mid X_{i}\right)\right]}{\operatorname{Var}\left(Y_{j}\right)} \times 100 \tag{1}
\end{equation*}
$$

where X_{i} is the i th column of the $n \times p$ matrix (i.e. a matrix with n rows and p columns) which stores the n samples of p-dimensional inputs and Y_{j} is the j th column of the $n \times m$ matrix which stores the corresponding n sets of m-dimensional outputs (table 1). We multiply by 100 so that the SI is given as a percentage. The notation given by $\operatorname{Var}(\cdot)$ and $E(\cdot)$ denote the mathematical operations that compute the variance and expectation. The simplest way of computing $S_{i, j}$ is by brute force, but this is also the most computationally intensive (Saltelli et al., 2008).

