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Abstract 4 
        We developed a Carbon data assimilation system to estimate the surface carbon fluxes 5 

using the Local Ensemble Transform Kalman Filter and atmospheric transfer model 6 

GEOS-Chem driven by the MERRA-1 reanalysis of the meteorological field based on the 7 

Goddard Earth Observing System Model, Version 5 (GEOS-5).  This assimilation system 8 

is inspired by the method of Kang et al. [2011, 2012], who estimated the surface carbon 9 

fluxes in an Observing System Simulation Experiment (OSSE) mode, as evolving 10 

parameters in the assimilation of the atmospheric CO2, using a short assimilation window 11 

of 6 hours. They included the assimilation of the standard meteorological variables, so that 12 

the ensemble provided a measure of the uncertainty in the CO2 transport. After introducing 13 

new techniques such as “variable localization”, and increased observation weights near the 14 

surface, they obtained accurate surface carbon fluxes at grid point resolution. We 15 

developed a new version of the LETKF related to the “Running-in-Place” (RIP) method 16 

used to accelerate the spin-up of EnKF data assimilation [Kalnay and Yang, 2010; Wang 17 

et al., 2013, Yang et al., 2014]. Like RIP, the new assimilation system uses the “no-cost 18 

smoothing” algorithm for the LETKF [Kalnay et al., 2007b], which allows shifting at no 19 

cost the Kalman Filter solution forward or backward within an assimilation window. In the 20 

new scheme a long “observation window” (e.g., 7-days or longer) is used to create an 21 

LETKF ensemble at 7-days. Then, the RIP smoother is used to obtain an accurate final 22 

analysis at 1-day. This new approach has the advantage of being based on a short 23 

assimilation window, which makes it more accurate, and of having been exposed to the 24 

future 7-days observations, which accelerates the spin up. The assimilation and observation 25 

windows are then shifted forward by one day, and the process is repeated. This reduces 26 

significantly the analysis error, suggesting that the newly developed assimilation method 27 

can be used with other Earth system models, especially in order to make greater use of 28 

observations in conjunction with models. 29 

 30 
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1.  Introduction 2 

  The exchange of carbon among atmosphere, land and oceans contributes to changes 3 

in the Earth’s climate, and is also sensitive to climate conditions. The CO2 concentration 4 

in the atmosphere is affected by both the natural variability of the Earth’s planetary system, 5 

and anthropogenic emissions. The terrestrial and oceanic ecosystems absorb more than 6 

one-half of the anthropogenic CO2 emission [Le Quéré et al., 2016]. One major scientific 7 

question is whether this rate of removal of CO2 from atmosphere will continue in future, 8 

and can it be enhanced? It is thus essential to better quantify the dynamics of earth surface 9 

carbon fluxes (SCF), and the variations of carbon sources and sinks, and their associated 10 

uncertainties.  11 

 A common approach for estimating SCF from atmospheric CO2 measurements and 12 

atmospheric transport models is referred to as a “top-down” approach.  The “top-down” 13 

methods estimate SCF through techniques such as Bayesian synthesis approach 14 

[Rödenbeck et al., 2003; Gurney et al., 2004; Enting, 2002; Bousquet et al., 1999], different 15 

types of ensemble Kalman filters (EnKF) [e.g. Peters et al., 2005, 2007; Feng et al., 2009; 16 

Zupanski et al.  2007; Lokupitiya et al., 2008], or variational data assimilation method [e.g., 17 

Baker et al., 2006, 2010;  Chevallier et al., 2009]. 18 

 Kang et al. [2011, 2012] developed a “top-down” carbon data assimilation system 19 

by coupling an atmospheric general circulation model (AGCM), including atmospheric 20 

CO2 concentrations, with the Local Ensemble Transform Kalman Filter (LETKF) [Hunt et 21 

al., 2007]. The meteorological variables (wind, temperature, humidity, surface pressure) 22 

and CO2 concentrations were assimilated simultaneously in order to account for the 23 

uncertainties of the meteorological field, and their impact on the transport of atmospheric 24 

CO2. They carried out Observing System Simulation Experiments (OSSEs), and their 25 

carbon assimilation system achieved for the first time an accurate estimation of the 26 

evolving SCF at the model grid resolution, without requiring any a priori information. The 27 

surface carbon fluxes were considered as “unobserved evolving parameters”, by 28 

augmenting the state vector at each column with a surface carbon flux (SCF). The Local 29 

Ensemble Transform Kalman Filter (LETKF) then estimated this evolving parameter from 30 

the error covariance between the low level atmospheric CO2 and the estimated SCF, and 31 
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after a spin-up of about one month, the LETKF accurately recovered the nature run 1 

seasonal surface carbon fluxes.  2 

 Kang et al., [2011, 2012] used a short 6-hour assimilation window for both 3 

atmospheric and CO2 observations because atmospheric observations are usually 4 

assimilated at this frequency, and because most Ensemble Kalman Filter methods require 5 

short windows to ensure that the forecast perturbations growth remains linear. Such a short 6 

data assimilation window, required by the LETKF, also protects the system from becoming 7 

ill conditioned [Enting, 2002, Fig. 1.3], and as a result it does not require additional a priori 8 

information. We note further that the use of such a short assimilation window differs very 9 

much from most other “top-down” approaches for estimating SCF that use long 10 

assimilation windows varying from a few weeks to months [e.g., Baker et al., 2006, 2010; 11 

Peters et al., 2005, 2007; Michalak, 2008; Feng et al., 2009].  12 

 Although the Kang et al. methodology was successful, it is computationally 13 

expensive, requiring ensemble forecasts and data assimilation not only for the carbon 14 

variables, but also for the standard atmospheric variables, in order to estimate the 15 

uncertainties of the CO2 atmospheric transport process. In this study, we used an improved 16 

version of LETKF data assimilation system with a state-of-the-art atmospheric transport 17 

model, the GEOS-Chem [Bey et al., 2001; Nassar et al., 2013], which is driven by the 18 

MERRA-1 reanalysis of the Goddard Earth Observing System Model, Version 5 (GEOS5). 19 

The improved data assimilation system, unlike Kang et al [2011, 2012], does not include 20 

an estimation of transport uncertainties related to the meteorological field.  21 

 The ultimate goal of our LETKF_C system is to estimate the grid-point SCFs, 22 

which, as in Kang et al. [2011, 2012], are treated as time-evolving parameters in the system. 23 

As mentioned before, an Ensemble Kalman Filter requires a short assimilation window in 24 

order to have the ensemble perturbations evolve linearly and remain Gaussian. On the other 25 

hand, it is well known that the training needed to estimate evolving parameters through 26 

data assimilation could be quite long, so that it benefits from having many observations. 27 

Therefore, a short assimilation window would shorten the training period needed for the 28 

estimation of the SCF error covariance, hence lengthen the spin-up time. 29 

 To address this problem, we developed a new version of the LETKF using the 30 

“Running-in-Place” (RIP) method to accelerate the spin-up of EnKF data assimilation 31 
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[Kalnay and Yang, 2010; Wang et al., 2013; Yang et al., 2012]. Like RIP, the new 1 

assimilation system uses the “no-cost smoothing” algorithm [Kalnay et al., 2007b] that 2 

allows shifting at a negligible cost of the Kalman Filter solution forward or backward 3 

within a given assimilation window. Briefly, the new scheme works like this: a long 4 

“observation window” (e.g., 7-days, containing all the observations within 7 days) is used 5 

to create a temporary LETKF ensemble analysis at 7-days. Then the RIP smoother is used 6 

to obtain a final analysis at 1-day. This analysis has the advantage of being based on a short 7 

assimilation window, which makes it more accurate, and of having been exposed to the 7-8 

days of observations, which accelerates the spin up time. The assimilation and observation 9 

windows are then shifted forward by one day, and the process is repeated. We have tested 10 

this new method (short assimilation, long observation window) achieving a significant 11 

reduction of analysis errors, and we believe that this method could be useful in other data 12 

assimilation problems.  13 

 This paper is organized as follows: Section 2 briefly describes the new system used 14 

for CO2 data assimilation (LETKF_C). Section 3 explores the effect of combining 15 

assimilation and observation windows in an OSSE framework. Section 4 presents results 16 

of the proposed methodology applied to CO2 data. A summary and discussion are 17 

presented in section 5. 18 

 19 
2. LETKF_C data assimilation system  20 

         A data assimilation system includes a forecast model, observations, and a data 21 

assimilation method that optimally combines them.  In the proposed LETKF_C data 22 

assimilation system we use the GEOS-Chem as the forecast model and LETKF as the data 23 

assimilation method.  The pseudo-observations for our OSSE experiments are created at 24 

the locations of the real carbon observations from Orbiting Carbon Observatory-2 (OCO-25 

2) satellite [Crisp et al., 2004]. 26 

 27 

2.1 GEOS-Chem model and the “nature” run 28 

 GEOS-Chem is a global 3-D atmospheric Chemical transport model driven by the 29 

NASA reanalysis (MERRA-1) meteorological fields from the Goddard Earth Observing 30 

System data assimilation System Version 5, by the NASA Global Modeling and 31 
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Assimilation Office [Bosilovich et al., 2015].  This model has been applied worldwide to 1 

a wide range of atmospheric composition and transport studies.  The GEOS-Chem model 2 

used in this study is the version v10-01 with a resolution of 4° x 5°  (latitude x longitude), 3 

and 47 hybrid pressure-sigma vertical levels for CO2 simulation [Nassar et al., 2013]. 4 

GEOS-Chem is driven by the MERRA-1 reanalysis with 72 hybrid vertical levels, 5 

extending from the surface up to 0.01 hPa. The data used in this study was provided by the 6 

GEOS-Chem support team, based at the Harvard and Dalhousie Universities with support 7 

from the NASA Earth Science Division and the Canadian National and Engineering 8 

Research Council, who re-gridded the original data of spatial resolution of 0.25° x 0.3125° 9 

into the resolution of 4° x 5°. 10 

 GEOS-Chem requires the SCFs as a set of parameters at each grid point in order to 11 

simulate the CO2 concentration in the atmosphere. It is not possible to observe the global 12 

SCFs directly. Therefore, the SCFs are created from a “bottom-up” approach (considered 13 

as “truth” in our experiments) and used for the simulation of atmospheric CO2 14 

concentration with GEOS-Chem. The “bottom-up” SCFs used in this study include the 15 

three components shown in Equation (1):  1) terrestrial carbon fluxes (𝐹"#); 2) air-sea 16 

carbon fluxes (𝐹$#); 3) anthropogenic fossil fuel emissions (𝐹%&).  17 

𝑆𝐶𝐹 = 𝐹"# + 𝐹$# + 𝐹%&     (1) 18 

The 𝐹"#  values are derived from the VEgetation Global Atmosphere Soils (VEGAS) 19 

model [Zeng et al., 2004; Zeng et al., 2005], forced by the real evolving weather, obtained 20 

from the GEOS-Chem. The 𝐹$# values are from Takahashi et al. [2002], a climatological 21 

seasonal cycle estimated for the 1990s, and the 𝐹%& values are from Fossil Fuel Data 22 

Assimilation System (FFDAS) for the year 2012 [Asefi-Najafabady et al., 2014]. The air-23 

sea carbon flux and 𝐹%&values were scaled using the global carbon budget data of Le Quéré 24 

et al. [2015], in order to include interannual variations. A nature run for atmospheric CO2 25 

concentration simulation is driven by the SCFs in units of ( +,-
./01

) based on all three datasets.   26 

           In OSSEs, the nature run serves as the “truth”. We assume that the true “bottom-up” 27 

carbon fluxes are not known in our data assimilation experiments, and they will be 28 

estimated using the atmospheric pseudo-observations derived from the “truth”, as 29 

described in more detail below. The nature run obtained by coupling GEOS-Chem with 30 
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VEGAS is fairly realistic [figure not shown], so we use it to create the pseudo OCO-2 1 

observations for the period of January 2015- March 2016.  2 

2.2 Pseudo-Observations 3 

  The ultimate goal of this model-data assimilation system is to estimate the SCFs at 4 

every grid point using real observations such as the conventional surface CO2 5 

measurements of GlobalViewplus (GV+) flask network provided by Cooperative Global 6 

Atmospheric Data Integration Project [2016], and the observations from satellites such as 7 

the Greenhouse Gases Observing Satellite (GOSAT) [Yokota et al., 2004], and the Orbiting 8 

Carbon Observatory-2 (OCO-2) [Crisp et al., 2004]. Therefore, it is very beneficial to 9 

choose a realistic observation network to generate the pseudo-observation for testing the 10 

proposed data assimilation system. In this study, we developed the pseudo-observations 11 

for the OSSE assimilation experiments based on a realistic OCO-2 observation product.  12 

  The OCO-2 observations are the CO2 column-averaged dry air mole fractions over 13 

the entire OCO-2 pixel (defined as Xco2). The synthetic observations cover the entire globe 14 

once every 14 days with very high spatial resolution.  It includes 24 samples per second 15 

along the satellite track within ~ 7 km span.  The observations are expected to be highly 16 

correlated over a short length scale.  Furthermore, the observation quality is greatly affected 17 

by conditions such as cloud cover, surface type and the solar zenith angle at the time of 18 

measurement. The OCO-2 retrieval algorithm uses a warning level (WL) between 0 and 19 19 

to indicate the quality of measurements, where WL=0 means “most likely good”, and 20 

WL=19 means “least likely good” observations. To avoid highly correlated measurements 21 

being treated as independent measurements and to bring the spatial resolution in line with 22 

the resolution of atmosphere transfer model, David Baker provided an OCO-2 observation 23 

dataset which averaged the synthetic Xco2 in 10-second time window using the “good 24 

quality” observations retrieval defined by WL <= 15 (personal communication). 25 

     The OCO-2 retrievals used to obtain averages are based on the NASA Atmospheric 26 

CO2 Observations from Space XCO2 retrieval Algorithm version7r (O'Dell et al., 2012), 27 

as archived at https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_7r/summary (last 28 

access: 23 March 2017). A two-step averaging method has been used in order to avoid the 29 

final average to be disproportionately weighted to one part of the averaging bin (track) with 30 

more good quality retrievals. In the first step, the “good quality” retrievals defined as 31 
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WL<=15 and xco2_quality_flag=0 (another quality indicator of the data) are averaged over 1 

1-second bins, with weights inversely proportional to the square of each retrievals posterior 2 

uncertainty. In the second step, all the 1-second bins, with at least one valid retrieval, are 3 

averaged over a 10-second interval to create 10-second averaged data. The OCO-2 4 

averaging kernels are similarly averaged to create 10-second mean averaging kernels. This 5 

averaging method had been used for similar purpose in the recent study by Basu et al. 6 

(2018).  In this study, we further aggregated the observations from David Baker at the 7 

nearest GEOS-Chem output time of the 0, 6, 12, 18 UTC for each model day. The typical 8 

one-day coverage of observation of OCO-2 is shown in Figure 1. The values of Xco2 in 9 

the winter are significantly larger than those in summer of the Northern hemisphere and 10 

the OCO-2 observations are missing in the winter, for middle and high latitude regions 11 

(latitude > ~30). We used the actual location, time and error scales of the OCO-2 12 

observations to create the pseudo-observations for our experiment.  The pseudo-13 

observations are created by obtaining the “true” CO2 from the “nature” run using the 14 

location and time of the valid observation, then adding random errors with due 15 

consideration to the scales of the corresponding real observations. These derived pseudo-16 

observations used in this study are based on the real observations associated error scales , 17 

thus are more realistic than the GOSAT observations also used in Kang et al. [2012], 18 

because they are anchored, for example, to the real OCO-2 observations and to their quality, 19 

and  their statistical representation. 20 

 21 

2.3 The LETKF data assimilation system 22 

 The ensemble Kalman filter (EnKF) is a powerful tool for data assimilation that 23 

was first introduced by Evensen [1994]. The key attribute of this method is to derive the 24 

forecast uncertainties from an ensemble of integrated model simulations. A variety of 25 

ensemble Kalman filter assimilation methods have been proposed [Burgers et al., 1998; 26 

Houtekamer and Mitchell, 1998; Anderson, 2001, 2003; Bishop et al., 2001; Whitaker and 27 

Hamill, 2002; Tippett et al., 2003; Ott et al., 2004, Hunt et al., 2004]. The Local Ensemble 28 

Transform Kalman Filter (LETKF) introduced by Hunt et al. [2007] is chosen for this study. 29 

The LETKF is an extension of the Local Ensemble Kalman Filter [Ott et al., 2004] 30 

with the implementation of the ensemble transform filter [Bishop et al., 2001; Wang and 31 
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Bishop, 2003]. It is widely used for data assimilation, including several operational centers, 1 

and was also used for carbon data assimilations by Kang et al. [2011, 2012].  2 

As discussed earlier, we follow Kang et al., [2011] in estimating the SCFs as 3 

evolving parameters, augmenting the state vector C (the prognostic variable of atmospheric 4 

CO2) with the parameter SCF, i.e., X = [C, SCF]9.  The analysis mean X:; and its ensemble 5 

perturbations X;  are determined by Equations (2.1, 2.2) at every grid point, and the 6 

ensemble analysis is used as initial conditions for the ensemble forecast in the next cycle. 7 

𝑋=> = 𝑋=? + 𝑋?𝐾A(𝑦D − 𝑦=?)           (2.1) 8 

𝑋> = 𝑋?[(𝐾 − 1)𝑃I>]J/L               (2.2) 9 

Here 𝑋=?  is the mean of the forecast (background) ensemble members; 𝑋?	 is a 10 

matrix whose columns are the background perturbations of 𝑋+? − 𝑋=? for each ensemble 11 

member 𝑋+?  (k=1,…,K), where K is the ensemble size; 𝑦D	is a vector of all the observations; 12 

𝑦=? is the background ensemble mean in observation space (𝑦=? = 𝐻(𝑋=?)), where H is the 13 

observation forward operator that transforms values in the model space to those in the 14 

observation space; 𝑃I> = O(𝑌?)"𝑅RJ𝑌? + (SRJ)T
1

U
RJ

is the analysis error covariance matrix 15 

in ensemble space, which is a function of 𝑌? = 𝐻𝑋𝑏 , the matrix of background ensemble 16 

perturbations in the observation space, R, the observation error covariance (e.g., 17 

measurement error, aggregation error, representativeness error), and of 𝑟 , a multiplicative 18 

inflation parameter; and 𝐾A = 𝑃I>𝑌?𝑅RJ . LETKF assimilates simultaneously all 19 

observations within a certain distance at each analysis grid point, which defines the 20 

localization scale. Hunt et al. [2004] introduced a 4-dimensional version, and Hunt et al. 21 

[2007] provide a detailed documentation of the 4D-LETKF which we are using.  22 

 23 

2.4 Choosing the long observation window (OW) and the short assimilation window 24 

(AW)  25 

Like other data assimilation methods, LETKF proceeds in analysis cycles that 26 

consist of two steps, a forecast step and an analysis step. In the analysis step, the model 27 

forecast (also called prior or background) and the observations are optimally combined to 28 

produce the analysis (also called the posterior), which is the best estimate of the current 29 

state of the system under study. In the forecast step, the model is then advanced in time 30 
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with the analysis as the initial condition and its result becomes the forecast for the next 1 

analysis cycle. All observations within the assimilation time window are used to constrain 2 

the state at the end of the assimilation window. 3 

The focus of this study was on the estimation of SCFs that are time varying 4 

parameters in GEOS-Chem. As discussed earlier, a preliminary LETKF analysis, which 5 

provides the weights for each ensemble perturbation, is performed over a longer window 6 

(e.g., 7 days with observations starting at time t). Then, the “No-Cost” smoothing [Kalnay 7 

et al, 2007b, Kalnay and Yang, 2010] is applied, using the same analysis weights obtained 8 

at the end of the long observation window (e.g., 7 days) for each ensemble member, but 9 

combining the ensemble perturbations at the end of the corresponding short assimilation 10 

window (e.g., 1-day). This creates the final 1-day analysis (at time t+AW), which benefits 11 

from the information from all the observations made throughout the long OW (7 days), and 12 

from the linearity of the perturbations in the short AW of 1 day, which is required for 13 

accuracy. At this time the procedure is repeated starting at t+AW, one day later. 14 

In this new approach, we have the flexibility to combine a short assimilation 15 

window (AW) of length m (e.g., m=1 day), with a long observation window (OW) of length 16 

n (e.g., n=7 days), to improve the estimation of SCF.  In the forecast step, the model is 17 

integrated from t to t+n, to produce the forecast corresponding to the observations within 18 

the OW. In the analysis step, the observations and corresponding forecasts within the OW 19 

are used by the LETKF to estimate optimal weights for the ensemble members. The “No-20 

Cost” smoother applies these optimal weights to determine the analysis of the model state 21 

and the SCF parameter at 𝑡 + 𝑚.  The resulting analysis is then used as the initial conditions 22 

for the next analysis cycle starting from time 𝑡 + 𝑚.  23 

 24 

2.5 Experimental setup  25 

          In our experiments we used an ensemble size of 20 members, which was 26 

reasonable since the data assimilation include only one state variable (CO2 concentration) 27 

and one parameter variable (SCF).  A similar experiment but with 80-member ensemble 28 

size showed only slight improvement of assimilation quality (figure not shown) but 29 

dramatically increased the computational cost. The initial ensemble is created by random 30 

selection of the state and flux values from the model-based “nature” run for both SCF and 31 
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atmospheric CO2 concentration. Therefore, the initial uncertainties of fluxes and CO2 1 

values are equivalent to their “natural” variability. Based on a sensitivity analysis, we found 2 

a horizontal localization radius of 15000 km is optimal for our system. Following Kang el 3 

al. [2012], a vertical localization is also applied by assigning a larger weight to the CO2 4 

updating on surface layers to reflect the expected dominance of layers near the ground in 5 

the change of the total column CO2 measured by OCO-2.  6 

 7 

 2.6 Additive Inflation Method 8 

 The inflation is very important for our LETKF_C data assimilation system. The 9 

LETKF uses the forecast ensemble spread to represent forecast uncertainties. All EnKFs 10 

tend to underestimate the uncertainty in their state estimate because of nonlinearities and 11 

limited number of ensemble members (Whitaker and Hamill, 2002). Underestimating the 12 

uncertainty (ensemble spread) leads to overconfidence in the background state estimate, 13 

and less confidence in the observations, which will eventually lead the EnKF to ignore the 14 

observations and result in filter divergence. This is also true for our carbon-LETKF data 15 

assimilation system. The ensemble spread of CO2 in GEOS-Chem model decreases during 16 

model integration when the ensemble members are using the same meteorological forcing 17 

and SCF values, which is very different from the system with prognostic meteorological 18 

fields where the ensemble spread of model state increases during model integration (not 19 

shown). The ensemble spread of SCFs also does not increase during model integration 20 

because the SCFs are predicted using persistence, and the LETKF decreases the ensemble 21 

spreads for both SCFs and CO2 during analysis steps. Therefore, without inflation, the 22 

ensemble spread of the CO2 and SCFs would be continuously decreasing during data 23 

assimilation, and soon would become too small for LETKF to accept any observations, and 24 

hence, cause filter divergence. 25 

 There are different types of inflation methods that address the problem of 26 

overconfidence, such as multiplicative inflation, relaxation to prior, and additive inflation 27 

[e.g. Anderson and Anderson, 1999; Mitchell and Houtekamer, 2000; Zhang et al., 2004; 28 

Whitaker et al., 2008; Miyoshi, 2011]. For this study, we chose additive inflation, which 29 

adds random fields to the analysis before the ensemble forecast of the next analysis cycle. 30 

Additive inflation has some advantages compared to multiplicative inflation because it 31 
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prevents the effective ensemble dimension from collapsing toward the dominant directions 1 

of error growth [Whitaker et al., 2008; Kalnay et al., 2007a]. We applied additive inflation 2 

to the ensemble of atmospheric CO2 and SCF to increase perturbations in the initial 3 

conditions, for the next time step. It is important for an additive inflation method to 4 

minimize the impact of model imbalance and initial shocks generated by adding the random 5 

fields into a model.  Following Kang et al [2012], the added fields are selected randomly 6 

from the model nature run. Pairs of atmospheric CO2 and surface CO2 flux fields are 7 

chosen randomly from model nature run within one year before the analysis time, their 8 

ensemble mean is removed and their difference are scaled to a magnitude corresponding to 9 

30% of model seasonal variance to create the ensemble of random fields for additive 10 

inflation. Therefore, each selected random field is balanced, and when it is added into 11 

model, the balance will be essentially maintained. 12 

 13 

3. Sensitivity analysis for AW and OW length 14 

 We tested the new version of the LETKF with short AW and long OW, described 15 

in previous sections by conducting two sets of experiments using the LETKF_C system in 16 

an OSSE framework with OCO-2 like observations. The first set of experiments used the 17 

regular 4D-LETKF settings (with a single window length AW=OW) to investigate the 18 

effect of the length of AW for estimating SCF. In the second set of experiments, we 19 

investigated the optimal OW length after choosing the best AW from the first set of 20 

experiments.  The assimilation period for all experiments was 1 January 2015 to 1 March 21 

2016. The annual mean RMSEs differences are calculated from the simulation results by 22 

removing the spin-up period of first two months (January and February 2015). The  average 23 

period is from March 1 2015 to the end of February 2016.  The details of experimental 24 

settings are shown in Table 1. 25 

 26 

 27 

 28 

 29 

 30 

 31 
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 1 

Table 1.  Lengths of Assimilation Window (AW), and Observation Window (OW), and the 2 

resulting time-averaged global mean RMSEs for different experiments. The first four 3 

experiments use regular 4D-LETKF, with AW=OW. The last four experiments use AW=1 4 

day, found to be optimal, and different OWs.  5 

 EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7 EXP8 

AW 6 hours 1 day 3 days 7 days 1 day 1 day 1 day 1 day 

OW 6 hours 1 day 3 days 7 days 2 days 8 days 15 days 30 days 

RMSE 

( +,-
./01

)   

0.077 0.059 0.068 0.074 0.053 

 

0.041 0.040 0.050 

 6 

 7 

3.1 Sensitivity analysis for different assimilation windows 8 

  The sensitivity of SCF estimates to the length of AW was investigated based on the 9 

first set of experiments (EXP1-EXP4) with regular 4D-LETKF settings, where the length 10 

of OW is the same as that of the AW. All experiments used the same observations and 11 

initial conditions.  Since the temporal coverage of the OCO-2 observation network is too 12 

sparse for our LETKF_C assimilation system to estimate the SCF signal in a short time 13 

scales, we focus on the estimation of SCF for the seasonal and longer time scales.  14 

    Figure 2 shows the estimated global total surface fluxes from the first set of 15 

experiments. The “true” global total surface fluxes show a clear seasonal cycle with very 16 

large carbon uptake during the growing season of Northern Hemisphere (NH), from May 17 

to August, and carbon release during other seasons with the peak release during November. 18 

All experiments reproduced fairly well the seasonal cycle of SCF.  19 

When the AW is very short (6 hours), there are large magnitude and high frequency 20 

noise overlaying the seasonal cycle. The magnitude of high frequency errors of SCF 21 

estimation in EXP1 is comparable with the seasonal variability of SCF (Figure 2a). When 22 

the AW=7 days, the high frequency errors of estimation decay, but the long assimilation 23 

window increases the analysis RMSE (EXP4). The EXP2 with AW= 1 day produced the 24 

best estimation of SCF among all four experiments with equal observation and assimilation 25 
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windows (Figure 2).  1 

 The advantage of AW=1 day (EXP2) is clearly seen from the smaller average global 2 

root mean square error (RMSE) (Figure 2c). The RMSE of surface carbon flux is calculated 3 

as  4 

𝑅𝑀𝑆𝐸(𝑡) = 	\𝐸](^𝐹>(𝑥, 𝑡) − 𝐹`(𝑥, 𝑡)a
L
)     (3) 5 

where 𝑥 and 𝑡 are space and time location; 𝐹> and 𝐹` indicate the analysis and the “true” 6 

SCF from nature run, respectively. 𝐸] is spatial average. The estimations from experiments 7 

with long AW (3 days and 7 days) have a smaller RMSE for the first three months (January 8 

to March), when the “truth” had very little variation because the long AWs enhances the 9 

signal and smoothes the high-frequency noise. The experiments with long AW could miss 10 

the fine-scale signals of SCF variation and fail to catch its variation with time. Therefore, 11 

the estimations with long AW showed large RMSE during the period when SCF had larger 12 

variations. The estimation with AW of 6 hour showed very large RMSE because of the 13 

overwhelming high frequency noise. The estimation with AW of 1 day had the smallest 14 

RMSE among all the experiments with regular 4D-LETKF.   15 

 The time-averaged  RMSEs of SCFs is calculated as  16 

𝑅𝑀𝑆𝐸(𝑥) = 	\𝐸b(^𝐹>(𝑥, 𝑡) − 𝐹`(𝑥, 𝑡)a
L
)      (4) 17 

 which shows very similar spatial patterns, but different amplitudes for different 18 

experiments (Figure 3).  The large RMSEs of SCF estimation located in Southeast 19 

American, Southeast of China and Russia, and resembled that of the SCF variance (not 20 

shown). The regions of higher variance indicate more information is needed to resolve such 21 

large variance by observations, which is hard to achieve. As expected, the SCF RMSE of 22 

0.059 from EXP2 with AW of 1 day is significantly smaller than the RMSE from EXP1 23 

with a short AW of 6 hour (0.077 +,-
./01

), and EXP3 and EXP4 with longer AWs of 3 days 24 

(0.068 +,-
./01

) and 7 days (0.074	 +,-
./01

) respectively.  25 

 Our results suggest that the preferred AW for estimating SCF is 1 day. This is 26 

distinctly different from previously published studies that indicate either a very short AW 27 

(6 hours) [Kang et al 2011, 2012], or a very long AW (longer than a few weeks) [e.g., 28 

Baker et al., 2006, 2010; Peters et al., 2005, 2007; Michalak, 2008; Feng et al., 2009] is 29 
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optimum.  A short AW can better constrain the model state and therefore produce a better 1 

parameter estimation. It is worth mentioning that a very short AW of 6 hours can degrade 2 

the SCF estimation with high frequency noise in our LETKF-C system. We postulate that 3 

the high frequency noise is related to the sampling errors in the CO2-SCF covariance that 4 

has smaller signal-noise ratio compared to those in experiments with longer AWs. 5 

  The same results can be obtained from the same experiments with different initial 6 

time, indicating the robustness of our findings [figure not shown]. The convergence of 7 

estimated SCFs from the experiments starting from months with big SCF variation, such 8 

as April, is slightly slower than the experiments from the time with small SCF variation, 9 

such as January. While the estimated SCFs converges in a few analysis cycles ( a few days) 10 

in our system (Figure 2), the small difference of convergence does not make any significant 11 

impact on the quality of estimated SCFs. Moreover, the calculation of RMSE of estimated 12 

SCFs has excluded the spinup period of first two months to remove the potential impact of 13 

initial condition and initial time. 14 

 15 

3.2 Sensitivity analysis for different observation windows (OW) 16 

The results presented earlier and associated discussion suggest that parameter 17 

estimation through data assimilation benefits from long training time and having sufficient 18 

number of observations, implying that the length of OW is critical for the estimation of 19 

desired parameter(s). We investigated the effect of such sensitivity to find out the suitable 20 

length of OW for estimating SCF in the second set of experiments (EXP5-EXP8), all based 21 

on the optimum AW=1 day that was identified from the first set of experiments, with 22 

different OW lengths. 23 

The estimated global total SCFs in the second set of experiments show a clear 24 

seasonal cycle matching the “truth” (Figure 4a). Compared with EXP2 (OW=1) shown 25 

with the green line in Figure 2a), EXP5 (OW=2days) reduced the high frequency noise 26 

significantly when the OW length was increased from 1 day to 2 days. There is still some 27 

high frequency noise in the SCF estimation for EXP5, because the observations for 2 days 28 

are not sufficient to smooth out the high frequency noise introduced into the estimation 29 

through data assimilation. The estimated global total SCFs for EXP6 (OW=8days), EXP7 30 

(OW=15), EXP8 (OW=30) are much smoother than that of EXP5 (OW=1day), because of 31 
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their longer OW. However, the estimation for OW of 30 days shows a clear time shift 1 

compared with “truth”, especially during the transient period when the majority of 2 

ecosystems /plants switching from dormant phase in the winter to the growing phase in the 3 

spring. The surface carbon fluxes change rapidly during this period. The time shift can also 4 

be seen in the estimations for these experiments with OW of 15 days, but it is less 5 

pronounced. In the proposed LETKF technique, most of observations in a long OW are 6 

introduced at a time later than the assimilation time. Since the SCFs are temporally 7 

evolving parameters, the information (variation) of future surface fluxes is brought into the 8 

estimation of current time when the future observations are included in the OW. Therefore, 9 

the estimated SCF with a very long OW tend to shift towards its future value. The estimated 10 

SCF with moderate OW=8 days and 15 days (EXP6 and EXP7) are more accurate than 11 

those with a short OW of 2 days (EXP5) and very long OW of 30 days (EXP8), by avoiding 12 

the significant high frequent noise observed in EXP5 (OW=2 days) and the significant time 13 

shift present in EXP8 (OW=30 days). The global mean RMSEs of estimated SCF from 14 

OW=8 and 15 days (EXP6 and EXP7) are significantly smaller than those from OW=2 and 15 

30 days, i.e., EXP5 and EXP8 (Figure 4c).  16 

   The spatial pattern of time-average RMSE of SCF for EXP5 (OW=2 days; Figure 17 

5) is similar to those in the first set of experiments, which had short AW=OW (Figure 3). 18 

The regions with large RMSE in EXP5 (OW=2 days) disappear with OW=7 and 15 days 19 

in EXP6 and EXP7, because the long OWs enhance the signals for SFC estimation. The 20 

large RMSE in SCF estimates for EXP8 (OW=30 days) are primarily in the Northern 21 

Hemisphere mid-latitudes, because of the time shift in estimations with OW=30 days. The 22 

mean RMSEs of experiments with moderate OWs of 8 and 15 days are 0.041 +,-
./01

	and 23 

0.040 +,-
./01

, respectively, which is significantly smaller than those from experiments with 24 

OWs of 2 days (0.053 +,-
./01

) and 30 days (0.050 +,-
./01

). 25 

 A longer OW requires a longer forecast period for each forecast step, which results 26 

in additional computational time/cost. For example, EXP7 with OW of 8 days used 8-time 27 

more computational time compared to EXP2. Furthermore, the length of OW is also 28 

constrained by the time scale of estimation parameters.  A long OW tends to generate a 29 

time shift for its estimation.  For seasonal and longer time scales, OW(s) in moderate range 30 
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of 8~15 days appear to be most suitable for the LETKF_C estimates of the SCF.  EXP6 1 

and EXP7 show almost the same quality of SCF estimation, but EXP6 has higher 2 

computational efficiency. The best configuration thus appears to be EXP6 with an OW of 3 

8 days and AW of 1 day, referred as the “benchmark” experiment hereafter. 4 

 We note that the high frequency noise in EXP1 with a short AW of 6 hours can be 5 

smoothed out by a long OW (i.e. 8-15 days).  We postulate that an experiment with AW of 6 

6 hours and OW 8 days will produce similarly realistic estimations as the “benchmark” 7 

experiment; however, it would require much more computational time. 8 

 9 

4 Evaluating estimated fluxes from the “benchmark” experiment 10 

  With the moderate long observation and short assimilation windows, we obtained 11 

best estimates of surface carbon fluxes, and their seasonal cycle. This section describes the 12 

SCF estimates from the “benchmark” experiment. Figure 6 shows a comparison of surface 13 

carbon fluxes based on the “benchmark” assimilation experiment and nature (“truth”) run 14 

for Northern Hemisphere Summer (June, July and August)  and Winter seasons (December, 15 

January, and February).  The “bottom-up” carbon fluxes used in the “nature” run show a 16 

very strong seasonal cycle over the continents, except Antarctica.  The North Hemisphere 17 

mid-latitude areas are very large carbon sinks in the Summer, and carbon sources in the 18 

Winter, as expected. The strong seasonal cycle of surface fluxes mainly related to the 19 

variability of terrestrial ecosystems that absorbs large amount of CO2 during the growing 20 

season (Spring and Summer) and release carbon back to the atmosphere during dormant 21 

seasons (Fall and Winter). The estimated surface fluxes in the seasonal time scale follow 22 

closely the “truth”. The benchmark assimilation experiment closely reproduces the spatial 23 

pattern of surface fluxes globally, for different seasons. The difference between the 24 

benchmark estimation and “truth” shown in Figures 6 e & f are very small. There are some 25 

positive carbon flux differences over Northern Hemisphere mid-latitudes in the Winter, 26 

thus a positive bias in estimated atmospheric CO2 concentration is expected.  27 

       The analysis of CO2 concentrations matches the “nature” run well.  The error pattern 28 

also matches the CO2 seasonal cycle and the error pattern of estimated SCF.  Figure 7 29 

shows the comparison of surface atmospheric CO2 concentrations between the benchmark 30 

assimilation experiment and nature (“truth”) run, for the Northern Hemisphere Summer 31 
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and Winter.  The spatial pattern of assimilated CO2 matches the “truth” very well.  The 1 

analysis successfully reproduced the seasonal cycle of CO2 over Northern Hemisphere 2 

mid-latitudes, with low CO2 concentration in Summer (Figures 7a-c) and high CO2 in 3 

Winter (Figures 7b-d), consistent with seasonal cycle of CO2 absorption and release by 4 

terrestrial ecosystems. There are positive CO2 concentrations located at high latitudes of 5 

North America and far East Asia regions during Winter 2016 (Figure 7f), due to the positive 6 

bias in estimated SCF (Figure 6f). 7 

The consistency of annual mean estimated SCF for both benchmark experiment and 8 

“truth” is a very important feature for our LETKF_C assimilation system (Figure 8a). In 9 

EnKF assimilation the ensemble spread is considered as a good representation of 10 

uncertainties associated with both parameters and model state [e.g., Evensen 2007, Liu et 11 

al. 2014].  The surface carbon fluxes are special parameters that vary with time and it is 12 

very hard to quantify their uncertainty during assimilation. When the ensemble spread of 13 

parameters are too small to drive model with a robust response, the estimation fails.  The 14 

additive inflation with 30% of nature variability is used to maintain the amplitude of 15 

parameters ensemble spread. Although the ensemble spread of the global total surface flux, 16 

in our experiments, is bigger than its error (Figure 8a), we were still able to estimate very 17 

well the global total surface CO2 fluxes (ensemble mean), and their seasonal variability. 18 

This is consistent with findings of Liu el al [2014], that parameter estimation can tolerate 19 

some inconsistency between parameter ensemble spread and parameter error.  20 

The global mean RMSE of SCF decrease from an initial value of ~0.1 21 

𝑘𝑔	𝐶	𝑚RL𝑦RJ to ~ 0.04 𝑘𝑔	𝐶	𝑚RL𝑦RJ in just a few analysis cycles (Figure 8b). It does not 22 

further decrease during following assimilation cycles because the SCF values vary 23 

temporally. The signals added by observations are mainly used to reproduce the temporal 24 

variation of SCF. 25 

 It is very important for a SCF estimation to reproduce the spatial distribution of the 26 

annual mean of the SCF, since it identifies the carbon sources and sinks in the Earth System.   27 

Though the amplitude of annual mean SCF is much smaller than the seasonal cycle of SCF, 28 

the estimated spatial pattern of annual mean SCF in the benchmark experiment (Eq. 5) is 29 

generally consistent with the “truth” (Figure 9).  30 

∆𝐹(𝑥) = 	𝐸b^𝐹>(𝑥, 𝑡)a − 𝐸b^𝐹`(𝑥, 𝑡)a     (5)  31 



 

 19 

In summary, we found that the OSSE experiments using long observation windows 1 

and short assimilation windows resulted in the best estimates of SCF. 2 

 3 

5 Summary and Discussion  4 

  We have developed a LETKF-GEOS-Chem carbon data assimilation (LETKF_C) 5 

system for estimating the surface carbon fluxes (SCF).  The GEOS-Chem atmospheric 6 

transport model is driven by the single realization of meteorology fields from MERRA 7 

reanalysis. The proposed system captured the “true” SCF spatial and temporal variability. 8 

The system performed best with a choice of short assimilation and long observation 9 

windows.   10 

 The LETKF requires a short assimilation window to avoid an ill-posed condition 11 

caused by the nonlinear processes in the forecast model with a long forecast time. The 12 

parameter estimation favors a long training period and many observations.  Based on these 13 

features, we developed a new method to accurately estimate the SCF. The new scheme 14 

separates original assimilation time window into observation (OW) and assimilation (AW) 15 

windows, allowing the flexibility to apply an OW that is different than the AW. Like RIP, 16 

the new technique takes advantage of the “no-cost smoothing” algorithm developed for the 17 

LETKF by Kalnay et al. [2007b] that allows to transport the Kalman Filter solution forward 18 

or backward within the observation window. 19 

        The new method was applied to the LETKF_C system in the OSSE mode using a 20 

dataset developed based on the OCO-2 observation characteristics. The sensitivity 21 

experiments for this model-assimilation system demonstrated that the new technique, i.e. 22 

with a short AW and long OW, significantly improves the SCF estimation as compared to 23 

regular 4D-LETKF with identical observation and assimilation windows. The best AW for 24 

SCF estimation is 1 day, which is different from the typical AW of 6 hours used in the 25 

meteorological assimilations. An OW in the range of 8-15 days is required to estimate the 26 

surface carbon fluxes for seasonal and longer time scales.  The benchmark experiment with 27 

AW of 1 day and the OW of 8 days successfully reproduced the mean seasonal and annual 28 

SCF.  29 

Our working hypothesis was that that the optimal OW for the estimation of SCF 30 

could be reduced with more observations. We examined this hypothesis by using simulated 31 
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OCO-2 observations and Global View Plus (GV+) observations. Similar to the OCO-2 1 

pseudo-observation, the GV+ pseudo-observations were also generated based on the actual 2 

location, time and corresponding error scale of the GV+ flask observations. The results 3 

show that the AW/OW lengths of 1day /8 day is also optimal with both the OCO-2 and 4 

GV+ observation characteristics. We estimated the SCF using the OCO-2 and GV+ 5 

pseudo-observations with the identical experiment settings as the OCO-2 experiments, 6 

except we replace the experiment with very long OW of 30 days with an experiment with 7 

a short OW of 4 days to better evaluate the impact from short OWs. Thus the current 8 

experiments settings are using OW of 2, 4, 8, 15 days.   9 

The results from these experiments show that the AW/OW lengths of 1day /8 day 10 

is still optimal for both the OCO-2 and GV+ observation characteristics (Figure 10).  11 

Generally, the time-mean RMSE of estimated SCF with OCO-2 and GV+ (Figure 10) are 12 

smaller than the corresponding estimates for OCO-2 only (Figure 5). The short OW of 2 13 

days performs worse than the moderate OWs of 4 days, 8 days and 15 days. The time-14 

averaged global mean RMSE is 0.046 +,-
./01

 for experiments with OW of 2 days (Figure 15 

10a). The time-averaged global mean RMSE is only 0.040, 0.037 and 0.039 +,-
./01

 for 16 

experiments with OW of 4 days, 8 days and 30 days, respectively (Figure10 b, c and d). 17 

We only see a slight impact of observation coverage on the optimal OW length. The best 18 

OW appears to be 8~15 days which produce the smallest RMSE when only OCO-2 19 

observations only are assimilated.  The smallest RMSE in the experiment is obtained in the 20 

experiment with the best OW of 8 days, when both OCO-2 and GV+ observations are 21 

assimilated into the system.   22 

             Two different sets experiments (OCO-2 vs OCO-2 and GV+) suggesting the same 23 

optimal OW of 8 days indicates that the observation coverage and observation type is not 24 

the major factor in deciding the length of optimal OW. We speculate that the optimal OW 25 

is mainly decided by the time-scale of model response to the SCF uncertainties because 26 

LETKF constrains parameters (SCF) based on the mapping function of parameter-state 27 

covariance, hence, only the model response to the parameter uncertainties provide the 28 

signal for parameter estimation.  29 

            It is worth noting that our approach works best for estimating parameters that vary 30 
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slowly over moderate time scales. It may not be optimum for estimating SCF variation for 1 

short time-scales such as sub-daily to daily because the variations shorter than OWs are 2 

filtered out.  Furthermore, we used a coarse spatial resolution (4° x 5°) GEOS-Chem in our 3 

study. We postulate that the optimal AW/OW could be different when a higher spatial 4 

resolution version of GEOS-Chem is used with the proposed assimilation system, because 5 

models with different resolutions response to the SCF may be different. This issue also 6 

merits further exploring in the future.  7 

            Our new developed short AW and long OW technique is different from the standard 8 

4D-variational method and the 4D-LETKF. The 4D-Var and the 4D-LETKF have been 9 

shown (Bonavita et al. 2015; Hamrud et al 2015) to have an essentially equivalent 10 

performance, and their hybrid blending the complete Kalman Gain matrices of the two 11 

systems in an EnKF framework was comparable to the hybrid ensemble data assimilation 12 

system currently operational at ECMWF, but with lower computational cost.  The hybrid 13 

ensemble data assimilation system at ECMWF uses an ensemble of 4D-Var assimilation at 14 

reduced resolution to provide a flow-dependent estimate of background errors for use in 15 

4D-Var assimilation (Bonavita et al. 2015).  The short AW and long OW approach can be 16 

used with other Earth system models for parameter estimation, when the parameters have 17 

slow and smooth variations in time and space, and the observations are too limited to 18 

constrain the parameters well.   19 

 20 

6 Code and data availability 21 

 This study focused on developing a new methodology for estimating carbon flux 22 

based on a carbon cycle model/data assimilation system. It does not generate any new 23 

dataset. The related code for GEOS-Chem and LETKF can be accessed from 24 

http://acmg.seas.harvard.edu/geos/doc/man/chapter_2.html#DownCode and 25 

https://github.com/takemasa-miyoshi/letkf, respectively.    26 
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1 
Figure 1. The 10-seconds average of good quality OCO-2 Xco2 observations (Warning 2 
Level <=15), obtained from David Baker for (a) 1 January 2015 and (b) 1 July 2015. 3 
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 1 
Figure 2.  (a) the global total SCF from nature run (“truth”, black line) and from the 2 
estimations of the first set of experiments with different AW. (b) the difference of global 3 
total SCF between the estimations from the experiments with different AW and the nature 4 
run (“truth”). (c) the global average RMSE of the estimated SCFs from the experiments 5 
with different AW. 6 
 7 

�		� ��
	� ����
($#�������������������� ��
'*8
'$8
��������%$8 320154/8
*8
$8
�*
�%$
�%*
�'$
�'*

�� �� ����
���
�� ���
���
����

�($�����������	�
����
����
���� 	��� ��� ���� ��� ���� ���� ��
� ���� ���� ���� ���� ���� 	��� ���
'$%*8 '$&+8

�
	� ���� �����
%*���������������������6�7
%'8
.8
+8
��
���
�(
�+
�.
�%'
�������	��������������
����������

���� 	��� ��� ���� ��� ���� ���� ��
� ���� ���� ���� ���� ���� 	��� ���
'$%*8 '$&+8

�C	� ���� �����
�����������������������������
$!%)8
$!%(8
$!%'8
$!%%8
$!%8
$!$.8
$!$-8
$!$,8
$"$+8
$!$*8
$!$)8
$!$(8
$!$'8
$!$%8
$������������������������
���� 	��� ��� ���� ��� ���� ���� ��
� ���� ���� ���� ���� ���� 	��� ���
'$%*8 '$&+8



 

 29 

 1 
Figure 3. The spatial pattern of the annual mean RMSE of estimated SCF from the 2 
experiments with different AW (EXP1-4) for the average period from 1 March  2015 to 3 
the end of February  2016. (January and February 2015 are treated as spinup period for our 4 
experiments).   5 
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 1 

 2 
Figure 4. Same as Figure 2, except for the second set of experiments with different OW, 3 
but same AW of 1 day. 4 
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  1 

 2 
 3 
Figure 5. Same as Figure 3, except for the second set of experiments with different OW,  4 
but  similar AW of 1 day. 5 
   6 
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 1 
Figure 6. The SCF of “nature” run and estimation from benchmark experiment for Northern 2 
Hemisphere Summer (a, c and e), and Winter (b, d, and f).The a and b are the “truth” from 3 
the “nature” run; the c and d are the estimates from benchmark experiment; and the e and 4 
f are the difference between estimation and “truth”.  5 
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 1 
Figure 7. Same as Figure 6, except for surface concentrations of CO2. Where (a) and (c) 2 
share the upper left colorbar; (b) and (d) use the  upper right colorbar. 3 
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 1 
Figure 8. (a) The global total SCF of “truth” and estimation from the benchmark 2 
experiment: the black line is the truth, green line is the ensemble mean of the estimation, 3 
and yellow shading is the ensemble spread. (b) the global mean RMSE of the estimated 4 
SCF from the benchmark experiment. 5 
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 1 
Figure 9. (a) the annual mean of SCF (with the FFE removed) for “nature” run; (b) the 2 
annual mean of estimated SCF (with the FFE removed) from benchmark experiment ; and 3 
(c) their differences. 4 
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 4 
Figure 10. Same as Figure 5, except for assimilating both OCO-2 and GV+ Pseudo-5 
Observations. The  panel (a), (b), (c) and (d) show the results with OW of  2 days, 4 days, 6 
8 days and 15 days respective.  7 


