
Dear Brian,

Once again thank you for the time spent in reviewing this paper and your useful suggestions.
Our responses are below.

The authors have generally done a good job in responding to reviewer comments,
and I only have a couple of minor suggestions remaining.

The revisions to address the issue of the representation of biosphyical effects of land
use are adequate, although I note that the argument was not that the FAIR model
should include latitude dependence, but rather that it is unclear whether it is a good
idea to represent only part of the biosphysical effects of land use. However the re-
vised text acknowledges the other factors at play, and that the sign of the effect on
forcing remains uncertain. And I would agree that a dependence on cumulative emis-
sions from land use remains a reasonable simple relationship to rely on.

Thank you for the understanding of our argument, which we trust is satisfactory.

Land use forcing remains an uncertainty that is difficult to relate to projections where limited
information is available. As stated in the response to the other reviewer, we have now allowed
the option of specifying a land-use forcing directly. The scaling with cumulative land-use CO2

emissions remains available and is the default option.

Following your original suggestion in your first review, we intend to allow a gridded land-
use transition dataset to be convoluted with the contributions to surface albedo change with
deforestation from Jones et al. (2015) in a future model version, once this data becomes
available.

In section 3 a particular approach to constraining model parameters using the ob-
served record of global average temperature is described. However, it needs to be
made clear that while this is one approach, there is a sub-field of work on this topic,
aiming to estimate model parameters (including ECS) from simple models and his-
torical data, and there are quite a number of methodological issue to content with,
including the influence of the length of the historical record, the means of distin-
guishing the forced response from natural variability, the method of specifying and
updating prior distributions, the accounting for individual components of historical
forcing, etc.

You are quite correct. We update the paragraph at the end of section 3.1 as follows:

“It should be stressed that there are several issues to consider when attempting to derive
plausible parameter sets from observational data. These include the type of observational
constraints to employ (Meinshausen et al., 2009), the length of the historical record (e.g.
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Otto et al. (2013)), the separation of forced response from natural variability (Haustein et al.,
2017), and assumptions surrounding prior distributions (Frame et al., 2005).”

p. 18 line 12 the revised sentence is somewhat awkwardly stated, or perhaps there is
a typo. Maybe clearer to say ”The RCP8.5 temperature change is lower despite higher
21st century ERF...”

Thank you for this suggestion. We have clarified this sentence.
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Dear William,

Once again thank you for your time spent in reviewing this manuscript and the useful com-
ments you provided. Original comments are given in bold, which are responded to point-by-
point in regular font.

Implementing the aerosol changes you suggest have changed model results slightly, so to
reflect this new default behaviour we have incremented the model version to 1.3.

Second review of Smith et al.

The authors have given detailed and thoughtful responses to my first review. I just
have two main outstanding points.

As I stated before it is dangerous to hard-wire conversions from land CO2 emissions
to albedo forcing, and from aircraft NOx to contrails. While these (by design) give
the correct response to the RCP8.5 scenario, this model is likely to be taken up and
(the authors should hope) used by many diverse groups for different purposes and
different scenarios. It is very likely that this hard-wiring will persist out in the com-
munity even when the authors have updated their own version. As an example the
RCP6.0 scenario has strong negative land CO2 emissions which presumably will give
incorrect land albedo forcing. The SSP2.6 and 1.9 also have negative land emissions.
If the input data is land use area then at least any future user is forced to think about
where this data is coming from.

Thank you for this comment.

We use this model for carbon budget calculations for the 600+ scenarios that are used in
the IPCC Special Report on 1.5 Degrees. For these scenarios all that are provided are
annual global mean emissions of the 39 species mentioned in table 1 in the manuscript. We
therefore do not have any better data on which to calculate forcing due to land use change
or aviation contrails in these scenarios. However, we have expanded the options available
for both forcing categories to allow the user to select a more appropriate option.

Land use

We have now added an option to allow the user to specify their own time series of land use
ERF externally, thereby not calculating it through a scaling with CO2 land use emissions.
The scaling with cumulative land-use CO2 emissions remains the default option.

A further option we will develop is to use an external dataset of annual land-use transitions
to and from forest/shrubland from the LUH datasets, and multiply these by the effect on
albedo change in each grid cell calculated from the GCAM model in Jones et al. (2015),
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figure 1. The Jones et al. (2015) data is currently not available to us, but this feature will be
implemented when it is.

Contrails

We understand your original concern and therefore provide two alternative methods.

As for land use, a user can specify a time series of contrail forcing directly, bypassing any
internally-calculated routines.

Alternatively, we provide a relationship based on a user-supplied time series of kerosene jet-
fuel consumption. For RCP scenarios this data does not appear to be available so cannot
be used for our demonstration of future projections, but a user could implement this if they
did have the data.

To respond to the author’s responses on methane lifetime:

1. If using the Holmes et al. parameters gives a slightly different result to MAGICC
(see also their Fig 7) that doesn’t seem an issue as there is no reason to assume
MAGICC is the “truth”. I agree with RCP8.5 there are two opposing effects – methane
increases the lifetime (+29%), climate decreases the lifetime (-17%), but that might
not be the same in all scenarios e.g. where climate increases but methane doesn’t or
vice-versa.

2. The relationship has been shown (in theory, and in models) to hold for methane
doubling in many papers, particularly by Michael Prather and Chris Holmes.

3. Applying a simple methane feedback won’t work so it is not surprising it doesn’t
reproduce the historical or future without extreme natural emissions. Over the his-
torical the methane self-feedback effect will be offset by increases in NOx emissions
and changes in climate, Naik et al. 2013 ACP find these effects more or less cancel.
In the future, as above Holmes et al. find climate change offsets more than half of the
methane self-feedback in RCP8.5.

Not using a state-varying methane lifetime remains a frustration and is an avenue for future
development.

Specific comments:

Page 2, line 13: Do you really mean different responses to “forcings” here (i.e. differ-
ent efficacies) or do you mean different responses to emissions?

We meant in response to emissions, and have updated this sentence.
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Page 2, line 15: Gasser et al. 2017 “Accounting for the climate–carbon feedback in
emission metrics” Earth Syst. Dynam. have quantified the effect of non-CO2 agents
on the carbon cycle.

This reference has been added, and a recent paper on the effects of non-CO2 forcing on
carbon budgets (Tokarska et al., 2018) has also been cited.

Page 2, line 23: I should have been clearer in my comment on this the first time round,
the Joos parameter certainly do include feedbacks for both biospheric carbon uptake
and temperature (see AR5 section 8.7.1.4 and above Gasser paper).

Thank you for this clarification. We have tried to simplify further to indicate that the issue is
that the Joos et al. (2013) relationship, which is designed for a particular experiment (100
GtC pulse against a background of 389ppm and present-day conditions) does not represent
C4MIP carbon cycles well for a more general background state. This was the carbon-cycle
relationship introduced in Millar et al. (2017). As Joos et al. (2013) models the multi-model
carbon cycle response, it does include carbon-cycle-climate feedbacks.

“A simple emulation of the carbon cycle of full- and intermediate-complexity earth system
models was developed by Joos et al. (2013) and used in the IPCC Fifth Assessment Report
(AR5) for the purposes of calculating global warming potentials. The model was developed
for a 100 GtC pulse against a background CO2 concentration of 389 ppm. Millar et al. (2017)
showed that this model does not sufficiently capture the time-evolving dependency of carbon
sinks against different background conditions.”

Page 3, line 16: It is not obvious whether the methane is already accounted for in the
carbon budgets (Boucher et al. 2009). See my further comment on page 6.

We agree it is not obvious. From Gillenwater (2008) and Boucher et al. (2009) it appears that
our treatment of including oxidised methane as CO2 is correct, and MAGICC also includes
a proportion of methane oxidised to CO2 (eq. A1 of (Meinshausen et al., 2011)). The
assumption that methane oxidised to CO2 is not included in national emissions inventories
has been moved to this section.

Gillenwater (2008) suggests that this treatment adds between 0.5 and 0.7% to global emis-
sions on a GWP basis. So, neglecting this effect (or erroneously including it) does not
introduce large errors.

The fraction of fossil methane oxidised to CO2 is a user-specified input which defaults to 0.61
following Boucher. The time series of total methane emissions attributable to fossil sources is
scenario-dependent, and RCP-calculated values are included in FAIR for the user to import.
By setting either of these numbers to zero, the user can switch off methane oxidation to CO2.
This has been highlighted in section 2.1.3.
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We have tested this in RCP4.5, and found that the difference in CO2 concentrations with the
methane conversion switched off is 0.3 ppm in 2015 and about 1.2 ppm in 2500.

Page 3, line 28 & page 4, line 23: Either use “molar mixing ratio” instead of “concen-
tration”, or specifically state that the units are mol mol-1. While it is generally fine to
use “concentration” colloquially, here specific equations are being presented and the
reader needs to know whether the results are in kg m-3 or mol mol-1.

Thank you for this suggestion which has been implemented.

Page 5, lines 19-25. If you are going to mention the perturbation lifetime, I think you
should explicitly say why it is not appropriate (changes in emissions of NOx & VOCs,
changes in climate). Naik et al. 2013 ACP find the methane lifetime is essentially
unchanged over the historical period due to compensating terms (models range from
-15% to +12%).

Thank you for this suggestion. The following commentary has been added:

“As emissions of OH-affecting species (NOx, NMVOCs, CO) and temperature have varied
substantially over the historical period, the perturbation lifetime definition is not appropriate
as the background state is not constant, and furthermore there is no robust evidence of a
change in methane lifetime between pre-industrial and present-day from the ACCMIP inter-
model comparison (Naik et al., 2013).”

Page 6, lines 1-2. The exponential decay of methane has no affect at all on the double
counting as this decay is to CO2. Even if the decay was instantaneous each mole of
CH4 would end up as a mole of CO2.

We have deleted this sentence to prevent confusion, and have mentioned the fact that
methane oxidation fraction and proportion of methane from fossil origin are user-specifiable.

Page 8, line 29-30: The semi-direct effect applies (almost) entirely to BC in IPCC. No
significant semi-direct effect has been quantified for the scattering aerosols. There-
fore your BC coefficient should be scaled down (and certainly not up by 1.37) until
you get a forcing of -0.45, and all other coefficients unchanged.

Thank you for this suggestion. As with many numbers supplied in this paper, the aerosol
radiative efficiencies for each species are inputs to the model that can be changed by the
user, and we report the defaults. Therefore we have updated these default coefficients.

The new relationship uses the 1750-2010 direct radiative forcings from Myhre et al. (2013)
for non-BC aerosols and scales the direct forcing from BC down by 0.1 W m−2 to account for
the semi-direct effect to match the best estimate ERFari. Table 5 and the aerosol section in
the text have been updated.
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Because this change in default aerosol treatment also changes the results, the headline
results reported in the paper have also changed slightly. To highlight the fact that this is a
different (default) model setup (although scientifically the same model since the last paper
revision), we decided it was cleaner to increment the model version to 1.3.

Section 2.2.9: It is very dangerous to have a conversion from CO2 emissions to
land-use hard-wired into FAIR – for instance in RCP6.0 land use CO2 emissions are
strongly negative (I don’t know why). It would be much safer to have land use area
as an input. RCP data can then be pre-processed to create a land use area input. As
the authors note the latitudinal dependence is very large. The new SSPs provide land
use area change for different cover types.

As noted earlier in our response, we have now provided an alternative method to directly
specify land use forcing in FAIR. We have requested the gridded deforestation-to-forcing
dataset from Andy Jones (but we do not yet have this), which would allow gridded land-use
datasets to be imported directly.

The SSPs do provide land use area change, but they do not appear to be gridded (at least
from the SSP database at https://tntcat.iiasa.ac.at/SspDb). Land use (presumably
MAGICC-derived) forcing data does not appear to be available from these SSP scenarios
either, but even if it was, this would only be tuning responses to MAGICC.
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Abstract. Simple climate models can be valuable if they are able to replicate aspects of complex fully coupled earth system

models. Larger ensembles can be produced, enabling a probabilistic view of future climate change. A simple emissions-based

climate model, FAIR, is presented which calculates atmospheric concentrations of greenhouse gases and effective radiative

forcing (ERF) from greenhouse gases, aerosols, ozone and other agents. Model runs are constrained to observed temperature

change from 1880 to 2016 and produce a range of future projections under the Representative Concentration Pathway (RCP)5

scenarios. The constrained estimates of equilibrium climate sensitivity (ECS), transient climate response (TCR) and transient

climate response to cumulative CO2 emissions (TCRE) are 2.86 (2.01 to 4.22)2.93 (2.04 to 4.32) K, 1.53 (1.05 to 2.41)1.59

(1.07 to 2.50) K and 1.40 (0.96 to 2.23)1.44 (0.97 to 2.31) K (1000 GtC)−1 (median and 5–95% credible intervals). These

are in good agreement, with tighter uncertainty bounds, than the AR5 likely range, noting that AR5 estimates were derived

from a combination of climate models, observations and expert judgement. The ranges of future projections of temperature10

and ranges of estimates of ECS, TCR and TCRE are somewhat sensitive to the prior distributions of ECS/TCR parameters,

but less sensitive to the ERF from a doubling of CO2 or the observational temperature dataset used to constrain the ensemble.

Taking these sensitivities into account, there is no evidence to suggest that the median and credible range of observationally

constrained TCR or ECS differ from climate model-derived estimates. The range of temperature projections under RCP8.5 for

2081–2100 in the constrained FAIR model ensemble is lower than the emissions-based estimate reported in AR5 by half a15

degree, owing to differences in forcing assumptions and ECS/TCR distributions.

Copyright statement. ©Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

1 Introduction

Most multi-model studies, such as the Coupled Model Intercomparison Project (CMIP) which produces headline climate

projections for the Intergovernmental Panel on Climate Change (IPCC) assessment reports, compare atmosphere-ocean general20
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circulation models that are run with prescribed concentrations of greenhouse gases. Greenhouse gas and aerosol emissions

time series are provided by integrated assessment modelling groups based on socio-economic narratives (Moss et al., 2010;

Meinshausen et al., 2011b), which are then converted to atmospheric concentrations by simple climate-carbon-cycle models

such as MAGICC6 (Meinshausen et al., 2011a). Earth system models can be run in emissions mode, where emissions of

carbon dioxide are used as a starting point and the atmospheric CO2 concentrations are calculated interactively in the model,5

with atmospheric concentration changes being the residual of emissions minus absorption by land and ocean sinks. While

many models include the functionality to be run in CO2 emissions-driven mode, these integrations were not the main focus of

CMIP5 (the fifth phase of CMIP; Taylor et al. (2012)).

Earth system models in CMIP5 all show a positive carbon-cycle feedback, meaning that as surface temperature increases,

land and ocean carbon sinks become less effective at absorbing CO2 and a larger proportion of any further emitted carbon will10

remain in the atmosphere (Friedlingstein, 2015). The various feedback strengths are nevertheless model dependent (Friedling-

stein et al., 2006). While CO2 is the most important climate forcer, individual models may also differ in their responses to non-

CO2 emissionsforcings. These emissionsforcings can also introduce uncertainty that is not captured in concentration-driven

or CO2-only driven model experiments (Matthews and Zickfeld, 2012; Tachiiri et al., 2015; Gasser et al., 2017). As non-CO2

forcing impacts temperature which affects the efficiency of carbon sinks, non-CO2 forcing agents themselves influence the15

carbon cycle (MacDougall et al., 2015; Tokarska et al., 2018).

Simple models can be used to emulate radiative forcing and temperature responses to emissions and atmospheric concentra-

tions, and can be tuned to replicate the behaviour of individual climate and earth system models (Meinshausen et al., 2011a;

Good et al., 2011, 2013; Geoffroy et al., 2013). A simple emulation of the carbon cycle of full- and intermediate-complexity

earth system models was developed by Joos et al. (2013) and used in the IPCC Fifth Assessment Report (AR5) for the purposes20

of calculating global warming potentials. The model was developed for a 100 GtC pulse against a background CO2 concen-

tration of 389 ppmIn the IPCC Fifth Assessment Report (AR5), a simple carbon-cycle model was suggested, calibrated to

present-day conditions (Supplementary Material to Myhre et al., 2013b). This model used fixed time constants for the decay of

atmospheric CO2 where time constants were taken from a multi-model intercomparison of full- and intermediate-complexity

earth system models (Joos et al., 2013) with no feedbacks assumed for biospheric carbon uptake or temperature. It was25

introduced for the purposes of calculating global warming potentials, built on the impulse response model of Boucher and

Reddy (2008). Millar et al. (2017) showed that this AR5 model does not sufficiently capture the time-evolving dependency of

carbon sinks against different background conditionswith cumulative carbon emissions and temperatures. They introduced the

Finite Amplitude Impulse Response (FAIR) model (version 1.0) that tracks the time-integrated airborne fraction of carbon and

uses this to determine the efficiency of carbon sinks, in turn calculating atmospheric CO2 concentrations, radiative forcing, and30

temperature change.

FAIR v1.0 is well-calibrated to the temperature and carbon cycle response of earth system models. FAIR v1.3v1.2 is ex-

tended to calculate non-CO2 greenhouse gas concentrations from emissions, aerosol forcing from aerosol precursor emissions,

tropospheric and stratospheric ozone forcing from the emissions of precursors, and forcings from black carbon on snow, strato-

spheric methane oxidation to water vapour, contrails and land use change. Forcings from volcanic eruptions and solar irradiance
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fluctuations are supplied externally. These forcings are then converted to a temperature change, taking into account the different

thermal responses of the ocean mixed layer and deep ocean.

The model philosophy in FAIR is to represent these processes as simply as possible, and to be able to emulate the historical

ERF time series in AR5 given input emissions. FAIR is written in Python and open source. The extension to non-CO2 emissions5

makes FAIR v1.3v1.2 applicable for assessing scenarios with a broad range of emissions pathways.

This paper introduces the FAIR model in section 2, including the key changes from versions 1.0 to 1.31.2. Section 3 then

discusses the generation of a large ensemble of input parameters to the FAIR model which is run and results described in

section 4. A sensitivity analysis to some of the key inputs to the large ensemble is given in section 5. Section 6 provides a

summary.10

2 Development of FAIR v1.3v1.2 and differences to v1.0

FAIR v1.3v1.2 takes emissions of greenhouse gases and short-lived climate forcers as its main input. This is an array of size

(number of years × 40) (see table 1), and is based on the order provided in the RCP emissions datasets (Meinshausen et al.,

2011b). Additional optionsinputs that can be specified by the user include the treatment of aviation contrail and land use

forcing, theare the fraction of total nitrogen oxides (NOx) emitted by the aviation sector, fraction of total methane attributable15

to fossil fuels, natural emissions of CH4 and N2O, and natural forcing from solar variability and volcanoes. The atmospheric

concentrations of greenhouse gases are calculated from new emissions minus the decay of the current atmospheric burden,

which is determined by the atmospheric lifetime of each gas, and output as a (years× 31) array (table 2). For CO2, atmospheric

concentrations are calculated from a simple representation of the carbon cycle which includes temperature and saturation

dependency of land and ocean sinks. The calculated CO2 concentrations at each timestep also and includes a proportion of20

methane oxidised to CO2. This is on the assumption of a mole of oxidised methane from fossil sources is not also counted as

a mole of CO2 when reported in national emissions inventories (Gillenwater, 2008; Boucher et al., 2009).

The effective radiative forcing (ERF) from 13 different forcing agents (table 3) is determined from the concentrations of

each greenhouse gas, plus emissions of short-lived climate forcers and natural forcing and is output from the model as a (years

× 13) array. From the ERF, temperature change is calculated. The change in temperature feeds back into the carbon cycle,25

which impacts the atmospheric lifetime of carbon dioxide. A flow diagram outlining the key processes is provided in fig. 1. It is

also possible to run FAIR using only CO2 emissions as inputs or purely in forcing-only mode, where a time series of non-CO2

or total forcing can be optionally specified rather than calculated from emissions.

2.1 Greenhouse gases: emissions to concentrations

2.1.1 Carbon dioxide and carbon cycle30

The carbon cycle component in FAIR v1.0 is described in detail by Millar et al. (2017) and an overview is provided here.

The FAIR model uses anthropogenic fossil and land-use CO2 emissions as input and partitions them into four boxes Ri (with
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partition fraction ai and
∑3

0 ai = 1) representing the differing time scales of carbon uptake by geological processes (τ0), the

deep ocean (τ1), biosphere (τ2) and ocean mixed layer (τ3). The atmospheric molar mixing ratioconcentrations of CO2 and its

relationship to each box is5

CCO2
= CCO2,pi +

3∑
i=0

Ri

Ma

wCO2

wa
(1)

with CCO2,pi equal to 278 ppm and pi representing pre-industrial. Ma = 5.1352× 1018 kg is the dry mass of the atmosphere

and wCO2
and wa are the molecular weights of CO2 and dry air. Ri is in kilograms. The governing equations for the four boxes

are

dRi

dt
= aiECO2

− Ri

ατi
; i= 0, . . . ,3 (2)10

with ECO2
the emissions of CO2.

The four time constants τi are scaled by a factor α depending on the 100-year integrated impulse response function (iIRF100),

which represents the 100-year average airborne fraction of a pulse of CO2 (Joos et al., 2013). α is found by equating two

different expressions for iIRF100

3∑
i=0

αaiτi

[
1− exp

(
−100
ατi

)]
= r0 + rCCacc + rTT (3)15

and finding the unique root α (Millar et al., 2017). The right hand side of eq. (3) proposed by Millar et al. (2017) is a simplified

expression for iIRF100 that depends on the total accumulated carbon in land and ocean sinks Cacc = (
∑

tECO2,t)− (CCO2
−

CCO2,pi) and temperature change T since the pre-industrial era that simulates the behaviour of earth system models well. This

increase in iIRF100 and scaling of the time constants by α accounts for the land and ocean carbon sinks changing absorption

efficacy as more carbon is added to them (rC parameter). In earth system models it is also observed that the efficiency of carbon20

sinks decreases with increasing temperature (rT parameter; Fung et al. (2005); Friedlingstein et al. (2006)). Following Millar

et al. (2017) we use rC = 0.019 yr GtC−1 and rT = 4.165 yr K−1, but in contrast to Millar et al. (2017) a pre-industrial r0 = 35

years is used rather than their 32.4 years. This facilitates better agreement with present-day CO2 atmospheric concentrations

when spun up from 1765 with historical CO2 and non-CO2 emissions. This parameter combination is consistent with a present-

day iIRF100 diagnosed from more complex carbon-cycle models (Joos et al., 2013) with a fixed background CO2 concentration25

of 389 ppm.

2.1.2 Other greenhouse gases

A one-box decay model is assumed for other greenhouse gases where the sink is an exponential decay of the existing gas

concentration anomaly. New emissions are converted to the equivalent increase in molar mixing ratios δCconcentrations in

year t by

δCt =
Et

Ma

wa

wf
δt (4)
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whereEt is the emissions of gas in year t,Ma = 5.1352×1018 kg is the mass of the atmosphere andwf is the molecular mass of

the greenhouse gas (δt = 1 for annual emissions data). The model updates the atmospheric molar mixing ratiosCconcentrations

at year t based on new emissions and the natural sink by5

Ct = Ct−1 +
1

2
(δCt−1 + δCt)−Ct−1(1− exp(−1/τ)) (5)

where τ is the atmospheric lifetime of each gas (table 2).

For CH4 and N2O, time-varying natural emissions are included in Et (fig. 2) in order to match the observed atmospheric

concentrations of these gases in Meinshausen et al. (2011b), including the 1765 concentrations when the 1765 natural emissions

are run to steady state. Beyond 2005, natural emissions of CH4 and N2O are fixed at 191 Mt CH4 yr−1 and 8.99 Mt N2-eq yr−110

which are close to the best-estimate present-day emissions of 202 Mt CH4 yr−1 and 9.1 Mt N2-eq yr−1 (Prather et al., 2012).

We prefer to use varying natural emissions with a fixed atmospheric lifetime of CH4 and N2O, firstly because this provides a

good match to observed and projected concentrations and secondly because this is consistent with the simple model philosophy.

Other methods of calculating concentrations of these gases are possible, for example using a fixed natural background emission

and relating any differences between observed and calculated historical concentrations as an error term (either in the natural or15

anthropogenic time series or missing processes), or by adjusting the atmospheric lifetime of each gas over the historical period

in order to match the observed concentrations at each time step.

Natural emissions of CO2 are not included as the carbon cycle model is more complex than the single box used for other

gases and it is assumed that natural sources and natural sinks are in balance. For other greenhouse gases, natural emissions

are assumed to be zero except for CF4, CH3Br and CH3Cl. Pre-industrial concentrations of these three minor compounds20

are estimated by running the 1765 emissions from Meinshausen et al. (2011b) to steady state using the lifetimes in table 2.

Unlike CH4 and N2O, natural emissions of CF4, CH3Br and CH3Cl are included in the anthropogenic emissions data. In total,

31 greenhouse gas species are used (table 2). Other than CO2, CH4 and N2O, the remaining gases can be subdivided into

those covered by the Kyoto Protocol (HFCs, PFCs, SF6), and the ozone depleting substances (ODSs) covered by the Montreal

Protocol (CFCs, HCFCs and other chlorinated and brominated compounds).25

The best estimate of τ for each gas except methane is used from AR5 (Myhre et al., 2013b, table 8.A.1), consistent with using

AR5 estimates for parameters where possible. We find that using a constant methane lifetime of 9.3 years results in reasonable

levels of historical natural emissions and also agrees well with the MAGICC6-projected RCP concentration scenarios in the

future. The global methane lifetime of 9.3 years used is significantly lower than the perturbation lifetime of 12.4 years in AR5.

This latter figure includes the feedback of methane emissions on its own lifetime due to the depletion of the OH radical which30

is the main tropospheric sink for methane (a factor of 1.34; Holmes et al. (2013), also used in AR5) and is used for perturbation

calculations against a constant background concentration. As emissions of OH-affecting species (NOx, NMVOCs, CO) and

temperature have varied substantially over the historical period, the background state is not constant, so the perturbation lifetime

is not appropriate Dividing the perturbation lifetime by 1.34 gives the atmospheric burden lifetime of 9.3 years.
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2.1.3 Methane oxidation to CO2

The oxidation of CH4 produces additional CO2 if it is of fossil origin, which is accounted for in the model. Methane is assumed

to be from fossil sources if it arises from the transport, energy or industry sectors. We use the breakdown of emissions by sector

from the RCP Database (2009). A best estimate of 61% of the methane lost through reaction with the hydroxyl radical in the5

troposphere (the dominant loss pathway) is converted to CO2 (Boucher et al., 2009). This is treated as additional emissions of

CO2:

ECH4→CO2
= 0.61fCH4fos(CCH4

−CCH4,pi)(1− exp(−1/τCH4
)) (6)

where fCH4fos is the fraction of anthropogenic methane attributable to fossil sources and τCH4
is 9.3 years. Both the fraction

of methane converted (61%) and the timeseries of the fraction of methane that is of fossil origin fCH4fos are user-specifiable,10

and RCP-derived values available from the RCP Database (2009) can be imported. The user can therefore switch off methane

oxidation by setting either of these values to zero. As atmospheric methane concentrations are reduced by exponential decay

in eq. (5), this prevents against (approximately) double-counting an emitted fossil-fuel CH4 molecule as both CH4 and CO2

after it has been oxidised.

Oxidation of CO and non-methane volatile organic compounds (NMVOCs) to CO2 is not included as to not double count15

the carbon that is included in national CO2 emissions inventories (Daniel and Solomon, 1998; Gillenwater, 2008).

2.2 Effective radiative forcing

The ERF from 13 different forcing agent groups are considered: CO2, CH4, N2O, other greenhouse gases, tropospheric O3,

stratospheric O3, stratospheric water vapour, contrails, aerosols, black carbon on snow, land use change, solar irradiance and

volcanoes (table 3). ERF, which accounts for all (stratospheric plus tropospheric) rapid adjustments, corresponds better to20

temperature change than “traditional” stratospherically adjusted radiative forcing (RF) (Myhre et al., 2013b; Forster et al.,

2016). Therefore, we use relationships for ERF where they exist.

2.2.1 Carbon dioxide, methane and nitrous oxide

We use the updated Etminan et al. (2016) RF relationships for CO2, CH4 and N2O, which for the first time includes band

overlaps between CO2 and N2O. It also includes a significant upward revision of the CH4 RF due to inclusion of previously25

neglected shortwave absorption, compared to the previous relationships of Myhre et al. (1998) used in AR5. Although Etminan

et al. (2016) calculate RF, Myhre et al. (2013b) concluded that over the industrial era there was not sufficient evidence to

state that ERF was significantly different from RF for these three gases, and ERF is taken to equal RF, although with a

doubled uncertainty range. The Etminan et al. (2016) relationships are reproduced in eqs. (7) to (9), where C (ppm), M and

N (ppb) have been used to represent concentrations of CO2, CH4 and N2O, and the subscript pi representing pre-industrial30
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concentrations.

FCO2
=
[
(−2.4× 10−7)(C −Cpi)

2 +(7.2× 10−4)|C −Cpi| − (1.05× 10−4)(N +Npi)+ 5.36
]
× log

(
C

Cpi

)
(7)

FN2O =
[
(−4.0× 10−6)(C +Cpi)+ (2.1× 10−6)(N +Npi)− (2.45× 10−6)(M +Mpi)+ 0.117

]
×
(√

N −
√
Npi

)
(8)

FCH4
=
[
−(6.5× 10−7)(M +Mpi)− (4.1× 10−6)(N +Npi)+ 0.043

]
×
(√

M −
√
Mpi

)
. (9)

Finally, a scaling to FCO2 is made to ensure that a doubling of CO2 using eq. (7) along with pre-industrial N2O concentrations5

equals the user-specified value of F2×, which defaults to 3.71 W m−2.

2.2.2 Other well-mixed greenhouse gases

For all well-mixed greenhouse gases in table 2 except CO2, CH4 and N2O the ERF is assumed to be a linear relationship of

the change in gas concentration Ci since the pre-industrial era by its radiative efficiency ηi [W m−2 ppb]:

Fi = ηi(Ci−Ci,pi); i ∈ {gas indices 3,4 . . . ,30} (10)10

where radiative efficiencies are given in table 2, i refers to index numbers in table 2 and Ci are converted to ppb. This is an

established method for small greenhouse gas forcings, also used in MAGICC.

2.2.3 Tropospheric ozone

Tropospheric ozone is formed from a complex chemical reaction chain from emissions of CH4, NOx, CO and NMVOC.

Furthermore its concentration is more variable in space and time than for the well-mixed greenhouse gases. Therefore, we15

do not calculate a globally averaged concentration. We use coefficients from Stevenson et al. (2013) to estimate tropospheric

ozone ERF from emissions of NOx, CO and NMVOC, and concentrations of methane, assuming linearity between atmospheric

burden and ozone forcing:

FO3tr = βCH4(CCH4 −CCH4,pi)+βNOx(ENOx−ENOx,pi)+βCO(ECO−ECO,pi)+βNMVOC(ENMVOC−ENMVOC,pi)+ f(T ) (11)

and20

f(T ) = min{0,0.032exp(−1.35T )− 0.032} (12)

The β coefficients in eq. (11) are provided in table 4 and eq. (12) is a small negative climate feedback, estimated using a curve

fit to year 2000, 2030 and 2100 temperature changes under RCP8.5 in Stevenson et al. (2013). As Stevenson et al. (2013) used

1850 as their baseline for forcing calculations based on emissions data from Lamarque et al. (2010), in RCP scenarios adjusted

coefficients can optionally be specified for times prior to 1850 where “pre-industrial” anthropogenic emissions are taken from25

Skeie et al. (2011). This ensures that ERF is both equal to zero in 1765 and equal to the best estimates in Stevenson et al. (2013)

for 2005. Both the differing treatment prior to 1850 and the climate feedback can optionally be switched off by the user.
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2.2.4 Stratospheric ozone

The stratospheric ozone ERF is calculated using the functional relationship borrowed from Meinshausen et al. (2011a), namely

30

FO3st = a(bs)c. (13)

a=−1.46× 10−5, b= 2.05× 10−3 and c= 1.03 in eq. (13) are fitting parameters that are found by a least-squares curve fit

between eq. (13) and the stratospheric ozone ERF timeseries from AR5; due to this data fitting approach, our parameters differ

from MAGICC. s is the equivalent effective stratospheric chlorine (EESC) from all ozone depleting substances, calculated as

(Newman et al., 2007)5

s= rCFC11

∑
i∈ODS

(
nCl(i)Ci

ri
rCFC11

+45nBr(i)Ci
ri

rCFC11

)
. (14)

ri represents fractional release values for each ODS compound taken from Daniel and Velders (2011) and reproduced in table 2.

nCl and nBr represent the number of chlorine and bromine atoms in compound i with the factor of 45 in eq. (14) indicating that

bromine is 45 times more effective at stratospheric ozone depletion than chlorine (Daniel et al., 1999). The concentrations Ci

are expressed in ppb.10

2.2.5 Stratospheric water vapour from methane oxidation

In AR5, the ERF from the stratospheric water vapour oxidation of methane was assumed to be 15% of the methane ERF. This

was based on the methane forcing relationship of Myhre et al. (1998), which is about 20% lower than the Etminan et al. (2016)

methane forcing used in FAIR. As there has been no substantial revision to the stratospheric water vapour forcing we define

stratospheric water vapour ERF as 12% of the methane ERF.15

2.2.6 Contrails

Meinshausen et al. (2011b) did not include a forcing timeseries for contrails or contrail-induced cirrus, which contribute a small

positive ERF (Boucher et al., 2013). Three different methods to supply contrail ERF are available in FAIR: (1) scaling with

aviation-based NOx emissions; (2) scaling with global supply of jet kerosene fuel, or (3) supplying an external forcing time

series. In method 1, iIt is assumed that contrail ERF is proportional to the level of air traffic, which is in turn is proportional to20

aircraft emissions. We use aviation NOx emissions for this purpose, which are obtained from the RCP database. The ERF from

contrails Fcon is scaled by the ratio of aircraft NOx emissions in a given year ENOx,avi compared to 20052011 and multiplied

by the 20052011 ERF from Lee et al. (2009) of 0.0448 W m−2:

Fcon =
ENOx,avi

ENOx,avi,2005
Fcon,2005. (15)

This gives a coefficient of Fcon,2005/ENOx,avi,2005 = 0.0152 W m−2 (Mt-aviNOx yr−1)−1.25
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Method 2 is similar, based on kerosene fuel supplied Skerosene, as a proxy for activity data. We take a 2005 global kerosene

supply of 236 Gt from International Energy Agency (2018) to anchor the forcing time series calculation:

Fcon =
Skerosene

Skerosene,2005
Fcon,2005. (16)

For method 1, the past and future aviation NOx emissions from the RCP scenarios are available in FAIR, and is introduced

as the fraction of total NOx emissions attributable to aviation.

2.2.7 Aerosols

Aerosols have a lifetime of the order of days (Kristiansen et al., 2016), and the emissions are converted to forcing without an

intermediate concentration step.

The aerosol ERF contains contributions from aerosol-radiation interactions (ERFari) and from aerosol-cloud interactions5

(ERFaci). ERFari includes the direct radiative effect of aerosols, in addition to rapid adjustments due to changes in the atmo-

spheric temperature, humidity and cloud profile (formerly the semi-direct effect; Boucher et al. (2013)).

We use the multi-model results from Aerocom (Myhre et al., 2013a) andto provide coefficients of how emissions affect

ERFari. Again we assume a linear relationship between emissions and forcing:

Fari = γBCEBC + γOCEOC + γSOxESOx + γNOxENOx + γNH3
ENH3

+ γSOAENMVOC (17)10

where the default coefficients for each γ are provided in table 5 and calculated from the difference in anthropogenic emissions

between 17651850 and 20102000 (Lamarque et al., 2010). Users are free to specify their own species-dependent γ for each

aerosol precursor and scaled for rapid adjustments (see below). We assume emitted black carbon (BC) and organic carbon

(OC) correspond directly to BC and OC forcing, and that emissions of sulfur compounds (SOx) correspond directly to sulfate

forcing. Following Shindell et al. (2009) we assume a 60% contribution to nitrate aerosol forcing from NH3 and 40% from NOx.15

We allow formation of secondary organic aerosol (SOA) to scale with emissions of anthropogenic NMVOC. Biomass burning

aerosol has a net zero forcing in 2011 and is ignored, and mineral dust, which does not scale directly with an emitted component,

is also disregarded. The sum of the direct effects of each component is −0.35−0.328 W m−2 in 20101 assuming RCP4.5. The

difference between this and the best estimate ERFari of −0.45 W m−2 in AR5 is assumed to be due to rapid adjustments

(semi-direct effects). There is evidence that scattering aerosols do not exhibit significant semi-direct effects (Boucher et al.,20

2013), so the overall difference of−0.1 W m−2 is assumed to be due to BC semi-direct effects. The net impact is to reduce the

radiative efficiency coefficient of BC, and therefore the radiative efficiency of each species is scaled by a factor of 1.37.

ERFaci describes how aerosols affect clouds in the radiation budget; the two main mechanisms are changes in cloud droplet

size, which changes cloud albedo (Twomey, 1977) and changes in cloud lifetime and precipitation efficiency which affects

cloud fraction (Albrecht, 1989; Boucher et al., 2013). There is evidence that the ERFaci is not linear with emissions (Carslaw25

et al., 2013) and as such a simple linear scaling as for ERFari may not be appropriate.

In FAIR we use an emulation of the global aerosol model of Ghan et al. (2013) to estimate ERFaci from precursor emissions.

The Ghan et al. (2013) method contains a series of non-linear equations that require iterative solutions and currently has not
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been optimised for use in FAIR. We therefore emulate the ERFaci by varying the emissions of SOx and primary organic aerosol

(the sum of BC and OC). Secondary organic aerosol is also an input to the model, but it is found that ERFaci is only weakly30

dependent on NMVOC emissions and a simple functional form could not be found, so was eliminated as a predictor.

Informed by the simple aerosol model of Stevens (2015), we use a logarithmic dependence of ERFaci on emissions that can

vary both as a function of SOx and BC+OC, which represents increasing saturation of the cloud-albedo effect with increasing

emissions. We find a relationship of the form

G(ESOx,EBC+OC) =−1.95log(1+0.0111ESOx +0.0139EBC+OC) (18)5

where the coefficients in eq. (18) are found with a least-squares optimisation routine (r2 = 0.938). The modelled and simulated

outputs are compared in figure S1.

Equation (18) was derived from a climate model, and produces a present-day ERFaci that is stronger than the central estimate

of −0.45 W m−2 from AR5. We therefore scale eq. (18) in order to obtain a forcing of −0.45 W m−2 in 2011 under RCP4.5

emissions:10

Faci =−0.45
G(E)−G(E1765)

G(E2011)−G(E1765)
(19)

where E = (ESOx,EBC+OC) refers to emissions, and a numerical subscript refers to a particular year. The emissions for 1750

from Skeie et al. (2011) are used for year 1765, and a linear interpolation between 1765 and 1850 applied.

2.2.8 Black carbon on snow

The best estimate ERF of 0.04 W m−2 in AR5 for 2011 is compared to the BC emissions in 2011 from Meinshausen et al.15

(2011b), with this scaling factor assumed to hold for all years. The relationship is given by

FBCsnow = 0.00494EBC, (20)

where EBC is BC emissions in Mt yr−1.

2.2.9 Land use change

Land use forcing is a result of surface albedo change (Andrews et al., 2017) and changes in evapotranspiration patterns (Jones20

et al., 2015), which is often due to deforestation for agriculture (Myhre and Myhre, 2003). Cropland has a higher albedo

than the forest that it replaces, reflecting more incident solar radiation and therefore resulting in a negative ERF; additionally,

deforestation in boreal regions may unmask snow-covered ground, again increasing albedo.

Deforestation produces land-use related CO2 emissions. The total amount of deforestation since pre-industrial times could

therefore be expected to scale with cumulative land-use related CO2 emissions. This is the default approach is taken in FAIR.25

A regression of non-fossil CO2 emissions against land use ERF in AR5 gives

Flanduse =−1.14× 10−3
t∑

j=0

ECO2land,j , (21)
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where the coefficient has units W m−2 (Gt C)−1.

The simple relationship in eq. (21) does not take into account latitude dependence of surface albedo or any evapotranspiration

changes. As a zero-dimensional model, FAIR does not include geographical dependence of individual forcing effects, which

may differ significantly between forcing pathways (for example the scenarios typically used to drive integrated assessment

models). Inclusion of evapotranspiration effects, again which differ between tropical and boreal regions (Jones et al., 2015), is

challenging as they do not directly relate to an emitted species or a change in radiative forcing (Pielke et al., 2002). Nevertheless,5

we conclude that this simple treatment is acceptable, firstly as the range of land use forcing uncertainty is relatively large (so

much that the sign of the forcing is not known with confidence (Myhre et al., 2013b)), secondly because at least in the best

estimate the forcing is a small fraction of the present-day total, and thirdly because the future trajectory of the land use forcing

in the RCP datasets is very similar to that predicted by FAIR, suggesting that a dependence on cumulative land-use CO2

emissions is an important component of the land use forcing in MAGICC.10

Noting that this simple relationship may not be suitable in all cases, the user is free to supply their own time series of ERF

from land use change. If gridded land-use data is available, the transitions to and from forested land each year can be convoluted

with the marginal contribution to land use forcing per square kilometre deforestation (e.g. from Jones et al. (2015)).

2.2.10 Solar variability

The SOLARIS-HEPPA v3.2 solar irradiance dataset prepared for CMIP6 is used to generate the solar ERF, which includes15

projections of the variation in future solar cycles from 1850 to 2300 (Matthes et al., 2017). ERF from solar forcing is calculated

as the change in solar constant since 1850 divided by 4 (average insolation) and multiplied by 0.7 (representing planetary co-

albedo). This approach is also used in Meinshausen et al. (2011b). Prior to 1850, we revert to the solar forcing from AR5.

2.2.11 Volcanic aerosol

Historical volcanic forcing is punctuated by several large eruptions that cause large but short-lived negative forcing episodes,20

with several smaller eruptions that cause year-to-year changes in the volcanic forcing. In order to generate a historical volcanic

ERF time series we first start with gridded volcanic optical depths taken from the Easy Volcanic Aerosol generator over the

1850–2014 period (Toohey et al., 2016) which will be used to drive CMIP6 models. A number of time slice experiments with

various scalings of the historical mean volcanic optical depth are run in the HadGEM3-GA7.1 climate model (Walters et al.,

2017), where it was found that aerosol ERF scales as −18τvol (where τvol is globally averaged volcanic aerosol optical depth at25

550 nm). This scaling factor is consistent with other HadGEM models (Gregory et al., 2016), although weaker than the value

of −26τvol adopted in AR5. The discrepancy is claimed to be due to rapid adjustments, in which case our adoption of the less

negative value is consistent with the ERF definition.

In the context of measuring forcing since the pre-industrial, we have to assume an “average” level of volcanic background

aerosol. We therefore define the 1850–2014 period to have a mean volcanic forcing of zero. To achieve this we subtract the mean30

(negative) forcing from the historical period, resulting in a quiescent year ERF of around +0.1 W m−2. A similar approach

was taken in Meinshausen et al. (2011b), with a higher quiescent year forcing of about +0.2 W m−2. Prior to 1850 we use the
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AR5 dataset, scaled by 18/26 to match the differences in optical depth/forcing relationships, and from 2015 onwards volcanic

forcing is defined to be zero. For solar and volcanic forcing, users are free to provide a custom forcing time series or to use the

AR5 or RCP datasets which are both available in FAIR.

2.3 Temperature change5

In simple impulse-response models, forcing is related to total temperature change in year t, Tt, by a two-time constant model

(Boucher and Reddy, 2008; Myhre et al., 2013b; Millar et al., 2015, 2017). FAIR v1.3v1.2 takes this approach with a small

modification compared to FAIR v1.0 to allow for forcing-specific efficacies εj such that

Tt,i = Tt−1,i exp(1/di)+

12∑
j=0

(qiεjFj(1− exp(1/di)) ; i= 1,2. (22)

Owing to the use of ERF rather than RF in FAIR v1.3v1.2 and its better correspondence with temperature, efficacies are10

assumed to be unity for all forcing agents except black carbon on snow (j = 9), where an efficacy of 3 is used following

Bond et al. (2013). The coefficients d1 and d2 govern the slow (i= 1) and fast (i= 2) temperature changes from a response to

forcing from the upper ocean and the deep ocean respectively (Millar et al., 2015). The total temperature change in year t is the

sum of the slow and fast components, i.e. Tt = Tt,1 +Tt,2. Fj represents the 13 individual forcing agents in year t calculated

in section 2.2 (see also table 3). d1 and d2 default to 239 and 4.1 years which are fit to match the mean of CMIP5 models15

(Geoffroy et al., 2013). The coefficients q1 and q2 (units K W−1 m2) are determined by solving a matrix equation given TCR,

ECS, d1, d2 and the ERF from a doubling of CO2, F2× = 3.71 W m−2 (Myhre et al., 2013b):

TECS =F2×(q1 + q2); (23)

TTCR =F2×

(
q1

(
1− d1

D

(
1− exp

(
−D
d1

)))
+ q2

(
1− d2

D

(
1− exp

(
D

d2

))))
(24)

giving the relative contributions to the fast and slow components of the warming. D = log(2)/ log(1.01)≈ 69.7 years is the20

time to a doubling of CO2 with a compound 1% per year increase in CO2 concentrations.

There is some evidence that ECS and TCR have not been constant values over the historical period (Gregory and Andrews,

2016; Gregory et al., 2015), and that ECS does not necessarily assume a constant value in CMIP5 modelling experiments

(Armour, 2017). FAIR has the capability to model time-evolving ECS and TCR by updating the q1 and q2 values in each time

step.25

3 Projections using a large ensemble

To test the model response to a range of forcing pathways, we perform a 100,000-member Monte Carlo simulation using

emissions from the RCP datasets (Meinshausen et al., 2011b). Emissions themselves are not altered from the RCP timeseries,

but the TCR, ECS, carbon cycle response to increasing temperature (rT ) and cumulative emissions (rC) along with the pre-

industrial value of iIRF100 (r0), plus the ERF scale factors for each of the 13 forcing agents, are drawn from distributions.30

FAIR is run from 1765 (the start of the RCP emissions datasets) to 2100.
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3.1 Constraint to historical temperature observations

As a wide range of forcing, and thus temperature, scenarios can be generated, there are a proportion of ensemble members

generated that fall outside the range of plausibility. We constrain the full 100,000 member ensemble (hereafter FULL) to the

observed temperature change from the Cowtan and Way (2014) dataset (hereafter C&W) to assess plausibility; ensemble mem-5

bers that satisfy the temperature constraint are designated as Not Ruled Out Yet (NROY) and the majority of the discussion of

the results in section 4 focuses on this dataset. We rebase all of the temperatures to the 1861–1880 mean following Richardson

et al. (2016), to represent a “pre-industrial” state that is relatively free from volcanic eruptions but with a reasonable global cov-

erage of temperature observations. An ordinary least-squares regression of temperature change versus time from 1880–2016 is

used to calculate the linear warming trend in each ensemble member. The regression is also performed for the C&W “obser-10

vational” dataset to estimate the observed warming rate. The confidence interval around the C&W warming rate is inflated by

a factor that represents the lag-1 autocorrelation of residuals (i.e. the trend-line estimate from the regression minus the C&W

“observations”) which accounts for internal climate variability (Santer et al., 2008; Thompson et al., 2015) and is the same

method used in AR5 to estimate linear temperature trends. The constraint is satisfied for an ensemble member if the modelled

trend falls within the 5–95% range of trend from C&W of 0.95± 0.17 K.15

The C&W observed warming from 1880–2016 higher than the HadCRUT4 estimate of 0.91±0.18 K for the same timeframe.

The infilling of grid boxes where no or limited data are available accounts for these differences, as sparse observations are

typically in polar regions which warm faster than the global mean (Cowtan and Way, 2014).Under this constraint approximately

26% of the FULL ensemble is retained in NROY.

It should be stressed that there are several issues to consider when attempting to derive plausible parameter sets from20

observational data. These include the type of observational constraints to employ (Meinshausen et al., 2009), the length of the

historical record (e.g. Otto et al. (2013)), the separation of forced response from natural variability (Haustein et al., 2017), and

assumptions surrounding prior distributions (Frame et al., 2005).

3.2 Sampling ECS and TCR

The ECS and TCR from CMIP5 models (Forster et al., 2013) are used to generate a joint lognormal distribution. Random25

variables are sampled using the R package MethylCapSig1 using the mean, standard deviation and correlation coefficient

(r = 0.81) between ECS and TCR in CMIP5. A lognormal distribution is representative of distributions of ECS and TCR in

the literature (Meinshausen et al., 2009; Rogelj et al., 2012; Flato et al., 2013; Millar et al., 2017). The sampled joint and

marginal distributions are shown as black contours and curves in fig. 3. We sample 100,000 ECS/TCR pairs; sampled pairs

where ECS < TCR are rejected and redrawn. A joint distribution is used because ECS and TCR are highly correlated and low30

values of the realised warming fraction (TCR divided by ECS) are inconsistent with models and observations (Millar et al.,

2015). For other sampled quantities in this section a 100,000 member ensemble is also generated.

1https://cran.r-project.org/package=MethylCapSig
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3.3 Sampling thermal response and carbon cycle parameters

We allow F2×, the ERF due to a doubling of CO2, to assume a Gaussian distribution with 5–95% confidence interval of 20%

around the best estimate ERF of 3.71 W m−2 (Myhre et al., 2013b). d1 (mean 239 years, standard deviation 63 years) and d25

(mean 4.1 years, standard deviation 1.0 years) in eq. (22) are also varied based on truncated Gaussian distributions (no values

outside ±3σ allowed, primarily to prevent unrealistically small or negative values of the slow response d1). Although FAIR is

able to model the response to time-varying ECS and TCR, we use time-invariant values in our ensemble.

Some uncertainty in the carbon cycle parameters is assumed with samples of r0, rC and rT taken from Gaussian distributions.

r0, rC and rT are given 5–95% confidence intervals of 13% of the default parameter value following Millar et al. (2017).10

3.4 Sampling ERF uncertainties

The uncertainty in each of the 13 forcing components is modelled following the 5–95% confidence intervals for each forcing

from AR5 (Myhre et al., 2013b, Table 8.6) in 2011 (table 3). This is achieved by scaling the ERF values calculated in sec-

tion 2.2; the uncertainty ranges are given in table 3. The scaling factor is applied to the whole time series. A time-varying scale

factor for forcing can be used, and an option is provided to exactly replicate the AR5 historical time series for each compo-15

nent, but we do not apply it here. Most uncertainties are assumed to be Gaussian, the exceptions being contrails and BC on

snow which are lognormally distributed (with geometric standard deviations 1.92 and 1.65 respectively, following AR5), and

aerosols which are modelled as two half-Gaussian distributions, treating values above and below the best estimate separately.

These ERF uncertainties are assumed to be uncorrelated with each other.

4 Results from the NROY ensemble for the RCP scenarios20

4.1 ECS and TCR

The FULL and NROY joint and marginal distributions of ECS and TCR are shown in fig. 3.

The temperature constraint in NROY results in distributions of ECS and TCR that are lower than in FULL. Some of the

prior sample space in which ECS and TCR are larger than the AR5 likely ranges has been rejected in the NROY distribution.

While the possibility that ECS > 5 K cannot be ruled out, it appears less likely than would be inferred from CMIP5 models,25

although it should be stressed that time-varying feedbacks are not accounted for in this large ensemble which would allow

ECS to increase over time (Armour, 2017). From the marginal distributions, we estimate that ECS and TCR are 2.86 (2.01 to

4.22)2.93 (2.04 to 4.32) K and 1.53 (1.05 to 2.41)1.59 (1.07 to 2.50) K (median; (5–95% range)) respectively in the NROY

ensemble, similar to but a little more tightly constrained than the AR5 likely (>66% probability) ranges of 1.5 to 4.5 K and

1.0 to 2.5 K, noting that the AR5 ranges are estimated from a combination of models, observations and expert judgement. The30

ratio of TCR to ECS, the realised warming fraction (RWF), is approximately independent of TCR in CMIP5 models (Millar

et al., 2015) and the prior distribution could alternatively be defined in terms of the TCR and RWF joint distribution, which is
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explored in section 5. The FULL and NROY median and 5 to 95% ranges of RWF are 0.56 (0.41 to 0.76) and 0.54 (0.40 to

0.720.41 to 0.73) respectively, which is close to the range of CMIP5 models (0.45 to 0.75, Millar et al. (2017)).

4.2 Historical and future greenhouse gas concentrations

The historical (1765–2005) greenhouse gas concentrations from the RCP scenarios in Meinshausen et al. (2011b) were as-5

similated from observations of in-situ and ice core records and represent a best estimate of the actual concentrations over this

period. We therefore assume that the RCP data represents the best estimate of the historical concentrations and compare our

estimates from the NROY ensemble using the emissions-driven model.

The FAIR model reproduces the historical concentrations of greenhouse gases (fig. 4). The atmospheric concentrations of

CO2 estimated from FAIR are up to 9 ppm lower than MAGICC6 in the period 1880–1950 (fig. 4a). A simple carbon cycle10

model cannot reproduce the kinks in the observational CO2 trend without large changes in the input emissions. However,

between 1950 and 2005, the differences between the two curves are small. The post-2005 atmospheric CO2 concentrations

are slightly higher than those estimated by MAGICC6 for the RCP scenarios, but the MAGICC6 concentrations are within the

uncertainty range from the NROY ensemble. FAIR projects best estimate CO2 concentrations of 427 (413 to 443), 552 (527 to

578), 695 (661 to 731) and 979 (926 to 1040)428 (413 to 444), 553 (528 to 581), 698 (663 to 734) and 983 (928 to 1048) ppm15

for RCP2.6, RCP4.5, RCP6 and RCP8.5 in 2100. Here, the uncertainty in CO2 concentrations relates to the range of carbon

cycle parameters and the temperature dependence on carbon uptake sampled in the large ensemble.

The historical CH4 and N2O concentrations in FAIR have been tuned to agree with Meinshausen et al. (2011b) by ad-

justing natural emissions as described previously (fig. 4b,c). There are some small differences in the future CH4 and N2O

concentrations in the RCPs using fixed atmospheric lifetimes and constant (present-day) natural emissions.20

Kyoto Protocol gases have been grouped as HFC134a-eq based on their radiative efficiency, and ODSs grouped as CFC12-eq

similarly (fig. 4d,e). Small differences between the models in future scenarios may be a result of the assumption of a change

in the rate of the Brewer-Dobson circulation in MAGICC6 (Meinshausen et al., 2011a), which increases the efficiency of the

stratospheric sink for these gases. This temperature-dependent effect is not included in FAIR. Over the historical period, the

differences are a result of the natural emissions of CF4 (contributing to HFC134a-eq), and CH3Br and CH3Cl (contributing to25

CFC12-eq) providing a non-zero background state of these greenhouse gas equivalents in FAIR. In the RCP historical dataset

these background concentrations have not been added to the HFC134a-eq and CFC12-eq timeseries.

4.3 Historical, present and future radiative forcing

Figure 5 shows the comparison between FAIR and MAGICC6 for the 13 forcing agents considered in FAIR for the NROY

ensemble. The ERF time series for the historical period in AR5 is also shown (IPCC, 2013). The updated radiative forcing30

relationship for CH4 increases radiative forcing substantially (fig. 5b). The new relationship for N2O results in a slightly lower

ERF estimate in FAIR than RF in MAGICC6 (fig. 5c) which is offset by the higher concentrations of N2O in FAIR. The FAIR

estimate of CO2 forcing is also higher than MAGICC for the RCPs, but the ERFs from FAIR and RFs from MAGICC for the
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minor greenhouse gases are similar (fig. 5a,d). For non-CO2 gases, AR5 did not provide a breakdown of ERF by individual

gas, so the total ERF has been scaled by the ratios in the MAGICC6 timeseries.

For tropospheric ozone, the Stevenson et al. (2013) relationship agrees well with AR5 until around 1970, from which point

it is larger than AR5. There is also a large relative difference between this relationship and the MAGICC estimate in AR5 out

to 2100 (fig. 5e). The shape of the stratospheric ozone ERF curve between AR5 and MAGICC6 differs, but it can be seen that

the AR5 historical ERF is well emulated as it uses the same functional relationship as AR5 (fig. 5f). Stratospheric water vapour5

from methane oxidation depends on the underlying methane forcing and is similar to the AR5 timeseries (fig. 5g). Contrail

ERF shows a similar time evolution over the historical period to AR5 (fig. 5h). Historically, ERF from aviation contrails has

been small, but may become more substantial in the future. The median aerosol ERF in FAIR is slightly more negative than in

AR5 from around 1900 to 2011 (fig. 5i) but is less negative than the RCP projections. We reiterate here that the RCPs report

RF from MAGICC rather than ERF.10

BC on snow has a smaller ERF in FAIR than the corresponding RF in MAGICC6, although the efficacy factor of 3 used

in FAIR results in a similar effect on temperature between the models (fig. 5j). Estimates of future land use forcing in FAIR

follow a similar shape to the Meinshausen et al. (2011b) dataset with slightly less negative best estimates to the AR5 ERF 2011

best estimate; agreement in the historical period to either MAGICC6 or AR5 is less good, but the general trajectory of forcing

is correct (fig. 5k). There are substantial differences between the volcanic forcing datasets in FAIR, AR5 and the RCPs that are15

not easy to discern at the resolution of the plot (fig. 5l): generally, the AR5 dataset gives more negative forcing than the RCPs

during volcanically active years, and also defines the absence of volcanoes as zero forcing whereas the RCP and FAIR datasets

define zero to be the average of the historical period. Solar forcing is used from the new CMIP6 dataset which is reasonably

similar to the RCP time series for historical forcing but exhibits some differences in the future owing to the assumed inter-cycle

variability that was not present in CMIP5 (fig. 5m).20

Figure 5n shows the sum of the forcing components. The best estimate sum of ERF follows AR5 closely over the historical

period, which is intentional. In the RCP future scenarios, the FAIR best estimates of ERF are higher than the corresponding

RF estimates in MAGICC. This is in part due to the increased CH4, tropospheric ozone and contrail forcing in FAIR, and less

negative total aerosol ERF for RCP2.6. The FAIR model projects 2100 ERFs (median and (5–95% credible intervals)) of 2.62

(1.79 to 3.64), 4.62 (3.30 to 6.22), 5.84 (4.07 to 8.00) and 9.34 (6.84 to 12.44)2.67 (2.12 to 3.25), 4.69 (3.89 to 5.53), 5.9025

(4.86 to 6.98) and 9.42 (7.93 to 10.95) W m−2 for RCP2.6, RCP4.5, RCP6.0 and RCP8.5 respectively.

4.4 Relationship between forcing components, ECS and TCR

The distribution of ERF in 2017 for aerosols, greenhouse gases and the anthropogenic total in both the FULL and the NROY

ensembles assuming the RCP8.5 forcing pathway is shown in fig. 6 and table 6. The temperature constraint in NROY permits

a wider range of greenhouse gas ERF thanshifts the distribution of ERF for greenhouse gases slightly to the left but is similar30

to the FULL ensemble. For aerosols, the distribution of ERF in NROY is again slightly widernarrower than in FULL, with

a reduction in the probability of a strong present-day aerosol forcing. The median estimate of net anthropogenic ERF of
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2.632.70 W m−2 in 2017 for NROY is a little lower thansimilar to the unconstrained FULL estimate of 2.73 W m−2 with a

wider uncertainty range.

There are negative correlations between aerosol radiative forcing and ECS/TCR (fig. 7). A large negative aerosol forcing

requires a high ECS to balance and recreate realistic observed temperatures (Forest et al., 2006). Millar et al. (2015) highlighted

the necessity of anti-correlation between TCR and aerosol forcing in observational constraints. The aerosol forcing on TCR

constraint is tighter than that on ECS, evidenced by the narrower mass of points in the TCR plot (fig. 7b) compared to the ECS5

plot (fig. 7a). A high value for TCR (greater than 2.5 K) or ECS (greater than 5 K) is only possible with a strong negative

present-day aerosol forcing (more negative than about −1.0 W m−2).

4.5 Observed and future temperature changes

Figure 8a shows the transient historical and RCP-projected temperature change for 1850–2100 along with the 2081–2100

median, 1σ (16–84% range) and 5–95% credible range for the NROY ensemble (fig. 8b), (c.f. Rogelj et al. (2012), Collins10

et al. (2013, fig. 12.8b)). For the RCP scenarios, the median NROY estimates of temperature change for 2081–2100 are 1.49,

2.29, 2.66 and 3.911.53, 2.37, 2.74 and 4.03 K above pre-industrial for RCPs 2.6, 4.5, 6.0 and 8.5 respectively. The median,

1σ and 5–95% ranges of total temperature change predicted from FAIR are a little lower for RCPs 2.6, 4.5 and 6.0 thanabout

the same for RCP2.6 and RCP4.5 as those predicted by the emissions-driven MAGICC6 experiments which are reported in

AR5 (Rogelj et al., 2012; Meinshausen et al., 2009), a little lower for RCP6, and substantially lower for RCP8.5. The RCP8.515

temperature change is lowercase is despite higher 21st century ERF profiles in FAIR compared to RF in MAGICC. The

difference of 0.60.5 K in the median end-of-century warming in RCP8.5 could be particularly important in policy assessments.

Differences between the models can arise from many sources. The results of Rogelj et al. (2012) are based on best estimates

of the ECS/TCR and radiative forcing from the IPCC Fourth Assessment Report (AR4), whereas we guide FAIR using AR5

forcings. Differences between this study and Rogelj et al. (2012) could be due to differences in the historical radiative forcing20

time series. The RF over the 1861–1880 to 2005 period, which forms the bulk of the period used to constrain the ensemble to

observed temperatures, in Meinshausen et al. (2011b) is 1.72 W m−2 whereas the ERF differences are 1.98 W m−2 in AR5

and 1.971.96 W m−2 in FAIR over the same period. Therefore, the same observed temperature change would be recreated with

a smaller RF in Rogelj et al. (2012) than the corresponding ERF in FAIR, and the same future forcing in MAGICC6 would

lead to a higher temperature change than in FAIR. Other differences between the studies include a different selection of ECS25

and TCR priors in Meinshausen et al. (2009) and Rogelj et al. (2012) (based on AR4, but not substantially different from the

CMIP5 models used in this study), a different method of constraining to observed temperatures, and different assumptions

regarding the strength of future aerosol and ozone forcing. The sensitivity to some of these assumptions is tested in section 5.

4.6 Transient Climate Response to Emissions

There is an approximately linear relationship between cumulative CO2 emissions and temperature, independent of the actual30

emissions pathway taken, providing temperature is still increasing (Allen et al., 2009; Collins et al., 2013). Using this linearity
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we can diagnose the transient climate response to emissions (TCRE), defined as the change in temperature for a 1000 Gt

cumulative emission of carbon.

We show both the TCRE assuming CO2 forcing alone and the temperature change due to all forcing agents but measured

against cumulative carbon emissions (fig. 9). When including the effect of non-CO2 forcing on the total temperature change,

the temperature response is substantially larger than for CO2 forcing alone. This indicates that a smaller cumulative CO2

emission is required to reach the same temperature change, and is a result of the total non-CO2 forcing being positive. This5

same conclusion was reached in Collins et al. (2013) when assessing a suite of earth system models.

To determine the TCRE we run FAIR in CO2-only mode. We measure cumulative CO2 emissions and temperature change

since 1870, as this is the date from which reliable estimates of carbon emissions start (Le Quéré et al., 2016) and is also at the

centre of the 1861–1880 period used to evaluate temperature changes.

The NROY ensemble in FAIR shows a TCRE of 0.95 to 2.220.97 to 2.31 K for a cumulative carbon emission of 1000 Gt10

with a best estimate of 1.391.44 K. We diagnose TCRE based on the RCP8.5 simulation. The TCRE range from FAIR is within

the range of estimates from AR5 (0.8 to 2.5 K, Collins et al. (2013)). Towards higher cumulative CO2 emissions in RCP8.5

the temperature response has a slightly concave shape. The slight (rather than moderate) downward curvature is also present

in CMIP5 earth system models, as the increase in airborne fraction of CO2 with emissions almost cancels out the logarithmic

relationship between CO2 concentration and temperature (Millar et al., 2016).15

The TCRE curve can be inverted to consider the remaining carbon budget until either 1.5 K or 2 K total warming is reached

(the limits imposed in the Paris Agreement). In RCP8.5, a total of 555 GtC has been emitted over the period 1870–2016, which

is close to the observational best estimate of 565 GtC (Le Quere et al., 2016). Considering all forcing agents (the red curve

in fig. 9), the cumulative emissions limit required to ensure peak warming remains under 1.5 K is 725 (590 to 943) GtC. To

remain under 2 K of total warming, the allowable cumulative emissions are 968 (734 to 1323) GtC.20

4.7 Top of atmosphere energy imbalance

The top of atmosphere energy imbalance N can be diagnosed from (Forster et al., 2013)

N = F −λT (25)

where λ is the climate feedback parameter and λ= F2×/ECS. In fig. 10 we compare FAIR model outputs from the NROY

ensemble under RCP4.5 to observations of the earth’s energy imbalance from satellites (Clouds and the Earth’s Radiant Energy25

System; CERES) and from the array of Argo floats (Argo, 2000), which measure ocean temperature which is the largest

component of the change in earth’s energy budget. Both datasets are taken from Johnson et al. (2016).

For most years from 2001 to 2015 the net energy balance from CERES is within the uncertainty range estimated from the

FAIR NROY ensemble. The Argo estimate of N is more variable prior to 2005, after which coverage of the Argo floats saw

a large increase (Johnson et al., 2016). From 2005 onwards, all Argo estimates but one fall inside the credible range of FAIR

estimates. Both CERES and Argo observations from 2005 onwards are clustered towards the lower half of the credible range
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from FAIR, which may indicate that ECS over the 2005–2015 period could be towards the lower end of the credible range

estimated from the NROY ensemble.

5 Sensitivity to prior distributions and constraints5

To determine the robustness of the results of the NROY ensemble, the input assumptions were varied or the ensemble members

subjected to a different constraint as described in this section. The results are summarised in tables 7 to 9.

5.1 Prior distributions of ECS and TCR

The prior distributions of ECS and TCR havehas a large influence on the posterior distributions attained (Pueyo, 2012). Here

we test the dependence of the shape of the posterior distributions of ECS and TCR in the constrained samples on the choice of10

prior distributions.

As the RWF is approximately independent of TCR we use an alternative prior starting with the distributions of TCR and

RWF. Noting the analysis of Collins et al. (2013), the AR5 likely range of TCR of 1.0 to 2.5 K is taken to be most probable,

with values between 0.5–1.0 K and 2.5–3.5 K possible but unlikely. A trapezoidal distribution in TCR with these limits is

constructed, therefore not expressing any prior judgement about the most likely value of TCR within the AR5 likely range.15

The RWF is sampled from a Gaussian distribution with mean 0.6 and 5–95% range of 0.45–0.75 following Millar et al. (2017),

truncated to fall within the 0.2–1.0 range. These ranges are subjective choices based on evidence from CMIP5 models. The

posterior distribution of ECS in particular can be sensitive to the choice of prior distribution (Frame et al., 2005; Pueyo, 2012).

Figure S2 shows the alternative prior distributions and the posteriors obtained as a result of constraining to the C&W observed

temperatures.20

The best estimate and credible range of ERF is very similar to NROY with the alternative prior distributions (table 8).

However the future temperature projections under the RCPs span a wider range than in NROY (table 9). This is due to the

wider range of ECS and TCR admitted in the posterior distributions (table 7) using this alternative prior.

5.2 ERF from a doubling of CO2

The canonical RF value of F2× = 3.71 W m−2 may not be applicable when considering all land surface and tropospheric25

rapid adjustments in the definition of ERF. For CO2 forcing rapid adjustments include cloud changes that are not driven

by temperature change (Gregory and Webb, 2008) and land surface adjustments consequential to plant stomatal conductance

(Doutriaux-Boucher et al., 2009). The mean ERF for a doubling of CO2 in CMIP5 models was found to be 3.44 W m−2 (Forster

et al., 2013). The simulation is repeated with this new lower ERF value for a doubling of CO2, with the same uncertainty of

20%.30

It is found that this lower value of F2× slightly lowers the best estimate and credible range of ECS, TCR and ERF, but

the temperature change under the RCP scenarios are higher than in NROY due to non-CO2 forcings. This behaviour can be

analysed with the help of eq. (25). In equilibrium states, the TOA energy imbalance N = 0 and eq. (25) is rearranged to yield
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T = F2×/λ. If F2× is found to take a lower value, and ensemble members are constrained to the same observed temperature,

then the climate sensitivity 1/λmust be higher to compensate. Therefore, the same positive future non-CO2 forcing time series

will produce higher temperatures in the future.5

5.3 Historical temperature constraint

Historical temperatures were also constrained using the HadCRUT4 dataset without infilling (Morice et al., 2012), along with

the GISTEMP (Hansen et al., 2010), Berkeley Earth (Berkeley Earth, 2017) and NOAA (Zhang et al., 2017) observational

datasets. The linear 1880–2016 trends are 0.91± 0.18 K, 0.99 ± 0.22 K, 1.07 ± 0.16 K and 0.93 ± 0.24 K respectively. All

datasets, including C&W (0.95± 0.17 K), were accessed on 17 October 2017.10

We also perform analysis on the FULL dataset, where the input assumptions are guided by CMIP5 models and AR5 uncer-

tainty ranges but no constraint to historical temperature is performed. We show in tables 7 to 9 that ECS, TCR, TCRE, ERF

and temperature change depend slightly on the dataset of constraint, with datasets showing more warming over the historical

period also projecting warmer 2100 temperatures under the RCP scenarios. Using the FULL ensemble however leads to wide

uncertainty bounds and higher median estimates of these diagnosed parameters than using any of the constrained ensembles.15

Therefore, using a historical temperature constraint rejects parameter combinations that produce larger future temperature

changes.

6 Conclusions

We present a simple model, FAIR v1.3v1.2, that calculates global temperature change, effective radiative forcing from a variety

of drivers, and concentrations of greenhouse gases. The emissions-based model is based on the FAIR v1.0 carbon cycle-climate20

model with an extension for emissions of non-CO2 greenhouse gases, ozone precursors and aerosols. This version of FAIR,

which is tuned to the effective radiative forcing timeseries in AR5 over the historical period, provides ERFs that are close to the

target radiative forcings from the RCP scenarios in 2100. FAIR was not tuned to emulate the radiative forcing in the MAGICC6

model, however it closely matches the concentrations of greenhouse gases projected in that model.

Within FAIR, the response of the carbon cycle model can be adjusted via the rate of uptake of carbon by land and ocean25

processes parameterised as a function of total temperature change and cumulative carbon emissions (iIRF100). Emissions and

concentrations are converted to effective radiative forcing and the relationship of ERF to temperature change is governed by

the TCR, ECS, and the efficacy of each of the 13 separate forcing categories considered in the model. The emulation of specific

earth system models is therefore possible as discussed by Millar et al. (2017).

Using a correlated joint lognormal prior distribution of ECS and TCR based on CMIP5 models, running a 100,000 member30

ensemble in FAIR and keeping only those ensemble members that match the rate of temperature change from 1880–2016 in

from Cowtan & Way (the not ruled out yet or NROY ensemble), we find that the median and 5–95% credible range of ECS

and TCR to be 2.86 (2.01 to 4.22) K and 1.53 (1.05 to 2.41)2.93 (2.04 to 4.32) K and 1.58 (1.07 to 2.50) K respectively. The

transient climate response to CO2 emissions (TCRE) is diagnosed from a CO2-only ensemble and found to be 1.40 (0.96 to
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2.23)1.44 (0.97 to 2.31) K (1000 GtC)−1. These ranges are similar to the IPCC AR5 likely ranges for ECS, TCR and TCRE,35

albeit with tighter credible bounds. The NROY best estimates and ranges are not very sensitive to a lower estimate of the ERF

from a doubling of CO2 or a different observational temperature datasets to constrain the historical temperature change rather

than the Cowtan and Way (2014) dataset. They are more sensitive to the prior distribution of ECS and TCR, particularly for the

constraint on ECS. All methods of constraint lead to lower median and credible range estimates of ECS, TCR and TCRE than

not constraining to temperature at all (the FULL ensemble, with input parameters estimated from the distribution of CMIP55

models and ERF uncertainties based on AR5 estimates).

Our estimate of TCR is not as low as the range derived by Otto et al. (2013) from observational constraints (0.9 to 2.0 K).

Similarly our best estimate of ECS is higher than the estimate provided by Gregory and Andrews (2016) of around 2 K using

observed sea-surface temperatures and sea-ice in two atmosphere-only GCMs. While we cannot absolutely rule out values of

ECS greater than 5 K or TCR greater than 2.5 K, this would require a strong present-day aerosol forcing (at least as negative as10

−1.0 W m−2, but probably more so) to balance. Progress towards tightening these upper bounds could therefore be achieved

with a better understanding of the present-day aerosol forcing (Stevens et al., 2016).

Temperature changes projected in the NROY ensemble in 2100 are a little lower thansimilar to those from Rogelj et al.

(2012) for the RCP scenarios, except for RCP8.5 where the FAIR is 0.60.5 K lower in the median response. This is due to

the lower ensemble estimates of ECS and TCR in NROY, and the differences in present-day minus 1850 radiative forcing

between AR5/NROY and the RCP radiative forcing in Meinshausen et al. (2011b). Nevertheless, under RCP8.5 the median

year 2100 temperature projection is 4.324.45 K above the pre-industrial in our NROY ensemble, which would have very severe5

global consequences. Conversely the median estimate for RCP2.6 is 1.481.52 K, suggesting about a 50% chance of limiting

end-of-century warming to 1.5 K under this pathway.

FAIR is useful for creating large ensembles of future temperature change based on input uncertainties in the carbon cycle

parameters and effective radiative forcing strengths. This can be used for instance to assess the impacts of emissions commit-

ment scenarios or committed warming (Ehlert and Zickfeld, 2017), or if a certain category of emissions such as aerosols are10

increased or decreased in the future. FAIR can be used with integrated assessment models to calculate the social cost of carbon

in the presence of non-CO2 forcing agents. Following the 2015 Paris Agreement and in anticipation of the 2018 IPCC Special

Report, the FAIR model can be used to investigate emissions pathways consistent with 1.5 K and 2 K total warming limits,

including remaining carbon budgets, and give probabilistic indications of the likelihood of these limits being breached.

Code availability. The source code can be obtained at https://github.com/OMS-NetZero/FAIR and can also be installed from the Python15

Package Index (https://pypi.org/project/fair/). A user guide is included in the supplementary material.
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Figure 1. Simplified overview of the FAIR v1.3v1.2 model.
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Figure 2. Natural emissions of methane and nitrous oxide used in the FAIR model. Future emissions are fixed at their 2011 values. Also
shown are the present-day best estimates of Prather et al. (2012).
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Figure 3. (a) Joint distributions (FULL and NROY) of ECS and TCR. (b) Marginal distributions of ECS. (c) Marginal distributions of TCR.
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Figure 5. Comparison of the radiative forcing from RCP2.6, RCP4.5, RCP6.0 and RCP8.5 derived from 13 separate components (subplots
a–m), along with the total radiative forcing (subplot n). ERF from FAIR (solid lines) with 5-95% confidence intervals (shading), RF from
MAGICC6 (dashed lines, Meinshausen et al. (2011b)) and RF from AR5 Annex II for 1850–2011 (green solid lines, IPCC (2013)).
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Table 1. Emissions time series input used in FAIR, based on the RCP emissions datasets in Meinshausen et al. (2011b).

Index Species Unit Remark

0 Year Year Important for running RCP scenarios as some treatments differ before 1850
1 CO2 fossil Gt C yr−1

2 CO2 land-use Gt C yr−1

3 CH4 Mt yr−1 Only anthropogenic emissions
4 N2O Mt N2 yr−1 Only anthropogenic emissions, expressed as N2 equivalent mass
5 SOx Mt S yr−1 Only anthropogenic emissions
6 CO Mt yr−1 Only anthropogenic emissions
7 NMVOC Mt yr−1 Only anthropogenic emissions
8 NOx Mt N yr−1 Only anthropogenic emissions
9 BC Mt yr−1 Only anthropogenic emissions
10 OC Mt yr−1 Only anthropogenic emissions
11 NH3 Mt yr−1 Only anthropogenic emissions
12 CF4 kt yr−1 Natural emissions should be included
13 C2F6 kt yr−1

14 C6F14 kt yr−1

15 HFC23 kt yr−1

16 HFC32 kt yr−1

17 HFC43-10 kt yr−1

18 HFC125 kt yr−1

19 HFC134a kt yr−1

20 HFC143a kt yr−1

21 HFC227ea kt yr−1

22 HFC245fa kt yr−1

23 SF6 kt yr−1

24 CFC11 kt yr−1

25 CFC12 kt yr−1

26 CFC113 kt yr−1

27 CFC114 kt yr−1

28 CFC115 kt yr−1

29 CCl4 kt yr−1

30 Methyl chloroform kt yr−1

31 HCFC22 kt yr−1

32 HCFC141b kt yr−1

33 HCFC142b kt yr−1

34 Halon 1211 kt yr−1

35 Halon 1202 kt yr−1

36 Halon 1301 kt yr−1

37 Halon 2401 kt yr−1

38 CH3Br kt yr−1 Natural emissions should be included
39 CH3Cl kt yr−1 Natural emissions should be included
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Table 2. The set of greenhouse gases used in FAIR. With the exception of methane lifetime, radiative efficiencies and lifetimes are from AR5
(Myhre et al., 2013b, table 8.A.1). For ozone-depleting substances, the fractional release coefficients ri (Daniel and Velders, 2011) and the
number of chlorine and bromine atoms are also given, for calculation of equivalent effective stratospheric chlorine (eq. (14)).

Index Gas Molecular weight Radiative efficiency Lifetime
wf (g mol−1) η (W m−2 ppb−1) τ (yr) ri nCl nBr

Major gases

0 CO2 44.01 N/A Variable
1 CH4 16.04 N/A 9.3
2 N2O 44.01 N/A 121

Kyoto Protocol gases

3 CF4 88.00 0.09 50000
4 C2F6 138.01 0.25 10000
5 C6F14 338.04 0.44 3100
6 HFC23 70.01 0.18 222
7 HFC32 52.02 0.11 5.2
8 HFC43-10 252.06 0.42 16.1
9 HFC125 120.02 0.23 28.2
10 HFC134a 102.03 0.16 13.4
11 HFC143a 84.04 0.16 47.1
12 HFC227ea 170.03 0.26 38.9
13 HFC245fa 134.05 0.24 7.7
14 SF6 146.06 0.57 3200

Ozone depleting substances

15 CFC11 137.37 0.26 45 0.47 3 0
16 CFC12 120.91 0.32 100 0.23 2 0
17 CFC113 187.38 0.30 85 0.29 3 0
18 CFC114 170.92 0.31 190 0.12 2 0
19 CFC115 154.47 0.20 1020 0.04 1 0
20 CCl4 153.81 0.17 26 0.56 4 0
21 Methyl chloroform 133.40 0.07 5 0.67 3 0
22 HCFC22 86.47 0.21 11.9 0.13 1 0
23 HCFC141b 116.94 0.16 9.2 0.34 2 0
24 HCFC142b 100.49 0.19 17.2 0.17 1 0
25 Halon 1211 165.36 0.29 16.0 0.62 1 1
26 Halon 1202 209.82 0.27 2.9 0.62 0 2
27 Halon 1301 148.91 0.30 65 0.28 0 1
28 Halon 2401 259.82 0.30 20 0.65 0 2
29 CH3Br 94.94 0.004 0.8 0.60 0 1
30 CH3Cl 50.49 0.01 1 0.44 1 0
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Table 3. The 13 separate forcing groups considered in FAIR v1.3v1.2 in the calculation of effective radiative forcing. The ERF uncertainty
represents the 5–95% range and is used in the generation of the large ensemble (section 3). ERF uncertainties from Myhre et al. (2013b)
are used except for CH4 where we use the Myhre et al. (2013b) estimate inflated by the additional uncertainty in the new methane forcing
relationship in Etminan et al. (2016), which also affects the uncertainty in stratospheric water vapour oxidation from methane.

Index Forcing agent Depends on ERF uncertainty

0 CO2 CO2 emissions; CH4 fossil fraction; cumulative C emissions; total temperature change ±20%
1 CH4 CH4 emissions ±28%
2 N2O N2O emissions ±20%
3 Other greenhouse gases Emissions of other greenhouse gases ±20%
4 Tropospheric ozone Emissions of CH4 and short-lived climate forcers ±50%
5 Stratospheric ozone Concentrations of ozone depleting substances (subset of minor greenhouse gases) ±200%
6 Stratospheric water vapour CH4 ERF ±72%
7 Contrails Aviation NOx fraction; total NOx emitted −66 to +191%
8 Aerosols Emissions of short-lived climate forcers −89 to +111%
9 Black carbon on snow Emissions of black carbon −56 to +128%
10 Land use change Cumulative emissions of land-use related CO2 ±167%
11 Volcanic Externally supplied forcing from volcanoes ±50%
12 Solar Externally supplied forcing from solar variability ±0.05 W m−2
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Table 4. Contribution to tropospheric ozone ERF from each precursor. Pre-industrial emissions from Skeie et al. (2011), pre-industrial CH4

from Meinshausen et al. (2011b), 1850 and 2000 emissions from Lamarque et al. (2010) and 2000 minus 1850 ERF from Stevenson et al.
(2013).

Ozone forcing efficiency βi (eq. (11))
Species ERF in 2000 (W m−2) Pre-1850 Post-1850 Pre-industrial value

CH4 0.178 1.73× 10−4 1.73× 10−4 W m−2 ppb−1 722 ppb
CO 0.076 4.76× 10−5 8.51× 10−5 W m−2 (Mt yr−1)−1 170 Mt CO yr−1

NMVOC 0.044 1.88× 10−4 2.25× 10−4 W m−2 (Mt yr−1)−1 5 Mt NMVOC yr−1

NOx 0.125 5.72× 10−4 9.08× 10−4 W m−2 (Mt yr−1)−1 2 Mt N yr−1
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Table 5. Contribution to ERFari from each aerosol precursor species and contribution to 2011 ERFari.

Species ERFari in 2011 (W m−2) Radiative efficiency (10−3 W m−2 (Mt yr−1)−1)

SOx −0.34 −6.22 (Mt S)
BC +0.13 +16.0
OC −0.05 −1.45
NH3 −0.066 −1.56
NOx −0.044 −1.17 (Mt N)
SOA −0.08 −0.38
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Table 6. Median and 5–95% credible intervals for effective radiative forcing from greenhouse gases, aerosols and anthropogenic total from
the FULL and NROY FAIR ensembles in 2017. Anthropogenic total contains contributions from contrails, BC on snow and land use change
and therefore is not equal to the sum of greenhouse gas and aerosol forcing. Compare fig. 6.

Effective radiative forcing (W m−2)
Forcing type Before temperature constraint (FULL) After temperature constraint (NROY)

Greenhouse gases 3.69 (3.18 to 4.21) 3.68 (2.90 to 4.61)
Aerosols −0.91 (−1.63 to −0.37) −0.96 (−1.65 to −0.27)
Anthropogenic total 2.73 (1.85 to 3.50) 2.63 (1.74 to 3.73)
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Table 7. Sensitivity in the ECS, TCR, TCRE to variations in the underlying assumptions in the FAIR large ensemble. For the sensitivity
experiments the section number in the manuscript describing the change is given. The Accepted column details the proportion of the 100,000
member FULL ensemble that satisfied the specified temperature constraint.

Variation (section) Accepted ECS (K) TCR (K) TCRE (K (Eg C)−1)
5% 50% 95% 5% 50% 95% 5% 50% 95%

C&W temperature constraint (NROY) 26.1% 2.01 2.86 4.22 1.05 1.53 2.41 0.96 1.40 2.23
C&W with alternative ECS/TCR prior (5.1) 21.6% 1.57 2.62 4.76 0.99 1.55 2.68 0.89 1.35 2.55
C&W with F2× = 3.44 W m−2 (5.2) 24.9% 1.99 2.84 4.22 1.03 1.52 2.41 0.93 1.36 2.15
HadCRUT4 temperature constraint (5.3) 26.4% 1.97 2.82 4.19 1.02 1.51 2.38 0.93 1.37 2.21
GISTEMP temperature constraint (5.3) 33.2% 2.03 2.89 4.26 1.06 1.56 2.44 0.97 1.42 2.27
Berkeley Earth temperature constraint (5.3) 23.4% 2.11 2.97 4.32 1.13 1.61 2.48 1.02 1.47 2.30
NOAA temperature constraint (5.3) 35.2% 1.98 2.85 4.22 1.03 1.52 2.41 0.93 1.39 2.23
No temperature constraint (FULL) 100% 2.00 3.11 4.86 1.01 1.73 2.96 0.91 1.58 2.78
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Table 8. Sensitivity in the effective radiative forcing to variations in the underlying assumptions in the FAIR large ensemble.

Variation Effective radiative forcing in 2100, W m−2

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5
5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

C&W temperature constraint (NROY) 1.79 2.62 3.64 3.30 4.62 6.22 4.07 5.84 8.00 6.84 9.34 12.40
C&W with alternative ECS/TCR prior 1.76 2.61 3.68 3.27 4.61 6.25 4.04 5.84 8.04 6.81 9.34 12.42
C&W with F2× = 3.44 W m−2 1.67 2.45 3.40 3.12 4.34 5.85 3.83 5.47 7.48 6.51 8.83 11.69
HadCRUT4 temperature constraint 1.76 2.59 3.59 3.27 4.57 6.17 4.03 5.78 7.93 6.78 9.26 12.28
GISTEMP temperature constraint 1.80 2.64 3.67 3.31 4.63 6.27 4.09 5.87 8.05 6.86 9.37 12.45
Berkeley Earth temperature constraint 1.85 2.70 3.73 3.36 4.71 6.36 4.16 5.97 8.17 6.94 9.50 12.58
NOAA temperature constraint 1.77 2.60 3.62 3.27 4.59 6.21 4.04 5.80 7.98 6.79 9.29 12.36
No temperature constraint (FULL) 1.65 2.67 3.90 3.17 4.67 6.55 3.91 5.91 8.40 6.66 9.42 12.85
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Table 9. Sensitivity in the 2100 temperature change in RCP scenarios to variations in the underlying assumptions in the FAIR large ensemble.

Variation Temperature change in 2100 from 1861–1880 mean, K
RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5
5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

C&W temperature constraint (NROY) 1.10 1.48 2.09 1.73 2.37 3.45 2.08 2.84 4.14 3.11 4.33 6.50
C&W with alternative ECS/TCR prior 0.95 1.42 2.26 1.52 2.31 3.83 1.86 2.80 4.59 2.82 4.29 7.24
C&W with F2× = 3.44 W m−2 1.10 1.49 2.11 1.73 2.39 3.51 2.07 2.85 4.19 3.13 4.38 6.63
HadCRUT4 temperature constraint 1.06 1.44 2.05 1.67 2.31 3.39 2.00 2.77 4.07 3.01 4.22 6.40
GISTEMP temperature constraint 1.11 1.51 2.14 1.74 2.42 3.53 2.09 2.90 4.25 3.14 4.42 6.62
Berkeley Earth temperature constraint 1.19 1.59 2.20 1.88 2.52 3.62 2.27 3.03 4.36 3.39 4.60 6.79
NOAA temperature constraint 1.06 1.47 2.09 1.67 2.35 3.46 2.00 2.81 4.15 3.01 4.29 6.51
No temperature constraint (FULL) 0.92 1.66 2.97 1.52 2.66 4.73 1.81 3.20 5.75 2.80 4.90 8.72
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