
Answer to the review comments by Dr Barry Croke

We would like to thank Dr Barry Croke for his detailed analysis and suggestions on
the article. They will help improving the quality of the manuscript.

Specific comments

1. Page 9, section 3.1: The issue is not really instability but rather the size of the
error in the approximation given by the numerical method. There is instability
when the errors grow with time. Yes, this is definitely a problem, but the problem
starts before this point. Even if the errors decay with time (resulting in a stable
solution), they can be large enough to cause problems, particularly if the decay is
sufficiently slow. What is needed is a numerical method that gives a sufficiently
small error at the time-step of interest. The reason for going to a finer sub-step
is to reduce the error in the numerical approximation, not to avoid instability
(essentially, stability is a necessary but not sufficient condition). This is a flaw
that exists in the literature, but it would be good to not continue to propagate
it. Another point here is that by going to a sub-step calculation, you are mak-
ing assumptions about how the inputs (rainfall and potential evaporation) are
distributed within a time step. Is the rainfall a delta function at the start of the
time step, a constant rate over the time step (zero order hold), or something else?

We agree that stability is necessary but not sufficient. However, the adaptive
sub-step calculation method used in this work is designed to particularly reduce
instabilities as the sub-step value calculation is based on the difference between
two consecutive solutions obtained with different tested sub-step values. To be
sure that this method was interesting we compared it to a fixed sub-step Euler
implicit method with one hundred sub-steps and the differences between the two
were very low. Regarding the second remark on the need not to propagate the
confusion between error and instabilities, we will better explain this point in the
revised version of the article. About the assumption on the input distribution,
we considered the input as constant over a time-step (over one day for the daily
model and over one hour for the hourly model). We are aware that this is a
simplification of the truth but without more indications at the sub-hourly time-
step we decided to keep it constant for the hourly and daily models. We will add
this information in the section 3.1 to help understanding.

Added/Modified: Sect. 3.1, p 12, line 4 (of the revised manuscript), The choice
of using adaptive sub-step rather than single-step implicit method (as recom-
mended by Clark and Kavetski, 2010) is a result of several tests that are not
shown here. We compared the modelling results with single-step integration to
those obtained with the adaptive sub-step algorithms and found some differences
in resulting flows (in particular for high flows). The differences found this way
were not negligible. In this case, we can say that the stability of the implicit single-
step integration is not sufficient to sufficiently reduce the integration errors.

For both hourly and daily time steps, the inputs are considered as constant during
the time step. Even if this assumption is a simplification of the truth, we chose
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to keep it constant to simplify the calculation and not to introduce treatment
differences between hourly and daily time step models.

2. Page 10, section 3.3, line 9: Given the use of a log transform, are there zero flows
present, or are all stream perennial? If there are zero flows, how are these handled?
Options are to simply ignore them (meaning the model can take any value for
time steps with zero flow), or use the two parameter Box-Cox transformation. The
later should be generally preferred as this includes assessment of the performance
of the model even when the observed flows are zero.

To handle the zero flow, a small quantity corresponding to one hundredth of the
mean flow of the catchment is added to flow in the log transform. This technique
was used by Pushpalatha et al. (2012) on the Nash-Sutcliffe efficiency and we
adopted it. This will be specified in the revised version of the manuscript.

Added/Modified: Sect. 3.3, p 13, line 8, In the case of logarithm transforma-
tion, following the recommendations made by Pushpalatha et al. (2012), a small
quantity which corresponds to one hundredth of the catchment mean flow is added
to avoid troubles with null flows.

3. Page 14, line 22-24: This may be due to the sub-step calculation in the numerical
integration. This would convert the model to something approaching a continuous
time model (using the zero order hold), as in the papers published by Littlewood,
Croke and Young (2011; HSJ, 56:3, 521-524) and Littlewood and Croke (2013;
Hydrology Research, 44, 430-440). These papers compared a discrete-time model
(IHACRES) and a continuous-time model (CT-DBM model in the Captain tool-
box), and showed that the variation in the parameter values was significantly
smaller for the continuous-time model. This re-emphasizes the need for the dis-
tribution of the climate input within a sub-step to be defined.

This is a very good remark, the production store differential equation resolu-
tion can approximate a continuous time runoff input as used with CT-DBM in
the 2013 Hydrology Reasearch article. Regarding this approximation, it tends to
confirm on a wide range of catchments the result that this paper highlighted.
However, we can also explain the difference between x4 parameters by the higher
errors due to operator-splitting approximation in differential equations resolution
at daily time-step. The higher errors may introduce differences in calibrated pa-
rameter values. This is, in our opinion, a combination of these two modifications
that allow the parameters values to be constant across time-steps. In this con-
text, we can admit that the constant distribution of input is problematic but,
until now, it is the best approximation that we can use. We will further discuss
this point in the article and introduce the cited references.

Added/Modified: Sect. 4.2, p 18, line 16, As explained in the work of Littlewood
and Croke (2013), this improvement can be explained by the fact that the adaptive
sub-step integration approximates a continuous time input in the Nash cascade.
The results obtained with the x4 parameter here tend to confirm on a wide range
of catchments this earlier work. However, in addition to the input errors, the lack
of x4 time consistency can also be explained by the integration errors produced by
the operator splitting at daily time step.
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4. Page 16, Figure 9: There are a couple of outliers in the x3 plot, one with an
extremely large difference in the value. Any ideas why this catchment is behaving
so differently? Is it a very small catchment?

Indeed, the two outliers catchments are small catchments (145 and 20 square
kilometers area). But, as other studied catchments with a similar area did not
face this issue, it is not the only reason to explain this behaviour. This is neither
due to the state-space transformation because the parameter differences between
daily and hourly transformation also exist with the discrete version of the model
for these catchments nor is it due to performances because models are quite good
on these catchments. The difference between daily and hourly parameter values
may be due to x3 parameter insensitivity on these catchments. We will discuss
the case of these outliers in the article.

Added/Modified: Sect. 4.2, p 19, line 3, The outliers in x3 values that occur
in Fig. 10 are also present in Fig. 9. No explanations relating to physical charac-
teristics of these catchments or simulation performance were found. We assume
that these outliers values are due to the non sensitivity of the x3 parameter for
these catchments.

5. Page 16, Figure 10: Obviously there are same extremely large negative values in
the KGE values using log transformed flows. This means that some of the models
are giving very poor fits. Presumably the mean value for the state space model
is just a little below zero? Might be worth including a little more discussion on
this?

The mean KGE’ on the log is -0.0825, this negative value is due to some strongly
negative KGE’ values. To deal with these values that introduce troubles in per-
formances analysis, we will replace the KGE’ criteria used in the article by a
bounded version of it. This version, bounded between −1 and 1, is calculated
like the C2M criterion (Mathevet et al., 2006; IAHS Publ. 307; 211-219) which is
based on Nash-Sutcliffe efficiency. The formulation will be:

C2M =
KGE ′

2−KGE ′ (1)

Added/Modified: Sect. 3.3, p 13, line 11, To avoid strongly negative values of
the KGE’ criterion, we used the C2M formulation which restricts the variation
range into [−1; 1] (see Mathevet et al., 2006).

We also modified all the figures and occurrences of KGE’ and replaced it by the
C2M .

6. Page 17, line 7: Not really correct to say that nres = 11 solves the second equation
in equation 10. nres = 11 gives a value of 1.2511, so it approximates the required
value of 1.25 very closely, but doesn’t solve it.

Indeed, 11 is the integer that gives the best approximation for the equation 10.
Thus, we chose this integer as the number of stores in the Nash Cascade. We will
be more precise in the sentence by writing: “A number of store nres = 11 is the
best integer approximation to solve the second equation of Eq. 10”
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Added/Modified: Sect. 2.3, p 7, line 9, A number of stores nres = 11 is the
best integer approximation to solve the second equation of Eq. 8.

Typographic errors will also be corrected.
Added/Modified: Done

Léonard Santos, on behalf of co-authors
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Answer to the review comments of Reviewer #2

We would like to thank the reviewer for his analysis and suggestions on the article
which are, in our opinion, complementary to those made by the other reviewer, Dr
Barry Croke.

1. In developing the state-space representation of their model, the authors introduce
two changes. First, a different routing model is used (Nash cascade vs unit hy-
drograph). And second, the model is solved with a different numerical technique
(implicit Euler with adaptive time stepping vs operator splitting approach with
fixed time step). It would be preferable to introduce these two changes separately
rather than together, so as to separate the effects of these two changes.

We thank the reviewer for this remark. We made additional tests to investigate
this, we replaced the unit hydrograph by a Nash Cascade but integrated it using
operator-splitting. This replacement does not change the performances and, when
using hourly time step, the parameters values are similar for the two operator-
splitted models. However, at the daily time-step, the x4 parameter values of the
Nash Cascade are higher than the ones of the unit hydrgraph at daily time-step.
It tends to prove that the insensitivity of the x4 parameter values to temporal
resolution (highlighted in the section 4.2 of the article) is not due to the replace-
ment of the unit hydrograph by a Nash Cascade. These remarks will be taken
into consideration in the revised version of the article.

Added/Modified: This remark induced various modifications in the text, in the
conclusion and in the abstract. By introducing the changes separately, we found
that the insensitivity of parameter to temporal resolution is essentially due to the
use of a robust numerical integration technique.

2. Run times are longer with the new model compared to the original implemen-
tation due to the use of implicit Euler with adaptive time stepping. Have you
considered using a single-step implicit Euler integration? This may be faster
without losing the benefits of the new implementation.

Even if it is not mentioned in the article, we tested the Implicit Euler method
with increasing sub-steps number from 1 to 100. The number of sub-steps seems
to have an influence, particularly in high flow periods. To illustrate the impact of
using a single-step, we compare (see Fig. 1 below) the boxplots of performance for
an adaptive sub-step number implicit integration and a single-step Euler implicit
one. The GR4 parameters used for this comparison are the ones obtained by
the GR4 calibration on KGE’ calculated on square rooted streamflows that is
presented in the article. The boxplots show a decrease of performances. This
tends to show that, even if single-step implicit Euler does not face instabilities
when solving the equations, it can increase errors. This can be linked to the
second comment made by Dr Barry Croke.

Another important disadvantage of not using sub-stepping is that it does not solve
the parameter time instability issue. To prove it, we calibrated the continuous
state-space model at the daily and hourly time-steps using a single-step implicit
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Figure 1: Performances comparisons between adaptive sub-step and single-step Implicit
Euler methods

Euler method without sub-steps. In the Fig. 2, we plotted the resulting parameter
scatter plots comparison (the same way that is used in Fig. 9 in the article). Unlike
with adaptive time-step, the x4 parameters show differences between daily and
hourly time-steps. This result tends to confirm Barry Croke’s third remark in
which he argues that increasing the sub-step number can help to approach a
continuous time model.
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Figure 2: Scatter plots representing the four parameters of the discrete (daily and
hourly) GR4 with Nash Cascade models obtained by calibration with KGE ′(

√
Q) as

the objective function. The solid line represents the y = x line.

Added/Modified: Sect. 3.1, p 12, line 3 (of the revised manuscript), The choice
of using adaptive sub-step rather than single-step implicit method (as recom-
mended by Clark and Kavetski, 2010) is a result of several tests that are not
shown here. We compared the modelling results with single-step integration to
those obtained with the adaptive sub-step algorithms and found some differences
in resulting flows (in particular for high flows). The differences found this way
were not negligible. In this case, we can say that the stability of the implicit single-
step integration is not sufficient to sufficiently reduce the integration errors.
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3. Please provide some details/examples of the actual time steps and number of
non-linear iterations in your model, for example for one specific basin.

If we take the example of the River Azergue at Chatillon catchment (the example
catchment chosen in the article) on the validation period, the mean number of
used sub-steps is 2 for hourly simulation and 22 for daily simulation. Figure 3
graph shows the cumulative appearance frequency of the different numbers of
sub-steps. It is, in majority, one or two sub-steps for the hourly time-step but it
is more variable in the case of daily simulation.
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Figure 3: Cumulative appearance frequency of the number of sub-steps obtained with
adaptive Implicit Euler resolution of the continue GR4 state-space model at the daily
and hourly time-steps

At the hourly time-step, we found out that the number of sub-steps increases
when the rainfall amount increases. In the case of daily time-step it is not clear,
possibly because the number of sub-steps is correlated with a combination of
rainfall and the stores levels. We can notice that the average daily sub-step value
(which approximately corresponds to 1 hour) is higher than the average hourly
sub-step value (approximatively 0.5 hour). This is probably due to the fact that
the maximum sub-step value for the hourly simulation is limited to 1 hour. We
will make a comment on this observation in the article.

Added/Modified: Sect. 4.1, p 17, line 6, This computational time rise is essen-
tially due to the adaptive sub-step algorithm. For example, in the River Azergues
at Châtillon catchment, the mean number of sub-steps is 22 and it can reach
100 during some days. However, in Sect. 3.1 we argue that the adaptive sub-step
method seems necessary to avoid numerical errors.

4. Questions about the state-space formulation, Eq. 1:

• Why not include water balance of the interception store as an additional
differential equation?
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In the current version of GR4, the interception is not calculated with a store
but it is a simple difference between rainfall and potential evapotranspira-
tion. Only one input (which is the difference between the larger and the
smaller of the two) is considered in the model, which is a difference with
other bucket-type rainfall-runoff models. We decided not to change this in-
put calculation in order not to include more differences between the two
models. This answer will be added to the article.
Added/Modified: Sect. 2.4, p 8, line 25, We decided to keep the inter-
ception out of the state-space representation, because it is not represented
by a store in the reference GR4J and we wanted to avoid introducing an
additional difference between the state-space and the reference models.

• Simulated discharge Q in Eq.2 is defined as an instantaneous flow I assume?
Observed discharge is however an integrated quantity (total over an hour or
a day). Wouldn’t it be better to define simulated Q also as an integrated
quantity? You could in fact add Eq.2 to the ODE system in Eq. 1: dQ/dt
= Qr + Qd. Note that you then would have to reset Q = 0 at the start of
each forcing time interval.
You are right, the discharge presented by Eq.2 is an instantaneous flux.
The simulated flow is the integration of this equation over the time-step. In
the code, the integration is calculated using the adaptive sub-step implicit
approximation. It can be seen in the “GR4_STSP.f” script (in the internal
fluxes calculation part) of provided model sources. To clarify this point in
the manuscript, we will add at line 7 page 6 (before the Eq.2) that the
output equation is to calculate the instantaneous output flow q(t). After this
equation (where we will replace Q by q(t)) we will add that the simulated
output Q is the integration of q(t) over the time-step.
Added/Modified: Sect. 2.4, p 8, line 20, The output equation to calculate
the instantaneous output flow (q(t) in Eq. 10) completes the model:
q(t) = Qr +Qd

Sect. 2.4, p 9, line 1, Output: Q is the output flow, it corresponds to the
integration of q(t) (Eq. 10) over the time step.

• It would be good to explicitly point out in table 1 that the instantaneous
flux equations are the same for the two models.
We agree and will point this out.
Added/Modified: Table 1 title, The discrete formulations are the con-
tinuous equations integrated individually over the modelling time step using
the operator splitting technique while continuous equations correspond to the
terms of the water balance differential equation of each store.

5. Section 2: The discrete form is contrasted with the state-space form of the model.
Note that a state-space representation can be either discrete or continuous, so it
may be better to explicitly call it continuous state-space formulation.

You are right, we will try to be more precise by writing, at least in section 2, that
the state-space representation is continuous. However, because of the first point
of the review, we will also mention a discrete (or operator-splitted) form of the
state-space formulation.
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Added/Modified: Modified at different locations in the manuscript

Sect. 3.3, p 13, line 1, Three versions of the model were assessed on the 240
catchments following a split-sample test (Klemes, 1986). These three versions
are the reference model, a discrete state-space model (with a Nash Cascade but
solved using operator splitting) and a continuous state-space model.

6. Section 4.3: this section describes the relation between the unit hydrograph ap-
proach for routing in the old model and the Nash cascade representation in the
new model; in my view this section really fits better in the methods section, for
example following the text at the bottom of page 6. My suggestion is to move it
there.

To be more comprehensive, we will try to add this in the section 2. Because of
the first comment we will also mention the operator-splitted state-space model
with the Nash Cascade and the continuous state-space formulation of this model
in section 2.

Added/Modified: Done, moved to Sect. 2.3

7. Abstract: what do you mean by “resolution”?

By “resolution” we meant “solution”. It will be fixed.

Added/Modified: Abstract, As a result, only the solutions of the split equations
are used to present the different models.

8. These typo mistakes will be corrected.

Added/Modified: Done

Léonard Santos, on behalf of co-authors
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State-space
:::::::::::::::::
Continuous

:::::::::::::::::
state-space

:
representation of a bucket-type

rainfall-runoff model: a case study with
:::::
the

::::::::
GR4

::::::::::
model

::::::::
using

State-Space GR4 (version 1.0)
Léonard Santos, Guillaume Thirel, and Charles Perrin
Irstea, UR HYCAR, 1 rue Pierre-Gilles de Gennes, 92160 Antony, France

Correspondence to: Léonard Santos (leonard.santos@irstea.fr)

Abstract. In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated.

These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with

a technique called “operator splitting”. As a result, only the resolutions
:::::::
solutions of the split equations are used to present the

different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-

runoff model explicit
:::
and

::
to

:::::
solve

::::
them

:::::::::::
continuously. This is done by setting up a comprehensive state-space representation of5

the model. By representing it in this way, the operator splitting, which complexifies the structural analysis of the model, is
:::::
could

::
be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in this type of model

:::::::::::
rainfall-runoff

:::::::
models and make the resolution of the representation difficult, are

::::
first replaced by a so-called “Nash cascade”

. This substitution also improves the lag parameter consistency across time steps
:::
and

::::
then

::::::
solved

:::::
with

:
a
::::::
robust

:::::::::
numerical

:::::::::
integration

::::::::
technique. To illustrate this methodology, the GR4J model is taken as an example. The

:::::::::
substitution

:::
of

:::
the

::::
unit10

::::::::::
hydrographs

::::
with

::
a
:::::
Nash

:::::::
cascade,

:::::
even

::
if

:
it
::::::::

modifies
:::
the

::::::
model

:::::::::
behaviour

:::::
when

::::::
solved

:::::
using

:::::::
operator

::::::::
splitting,

::::
does

::::
not

::::::
modify

::
it

:::::
when

:::
the

:::::::::
state-space

::::::::::::
representation

::
is

::::::
solved

:::::
using

::
an

:::::::
implicit

::::::::::
integration

::::::::
technique.

:::::::
Indeed,

:::
the

:
flow time series

simulated by the new representation of the model are very similar to those simulated by the classic model. The state-space

representation
:::
use

::
of

:
a
::::::
robust

::::::::
numerical

:::::::::
technique

:::
that

:::::::::::
approximates

::::::::::::::
continuous-time

::::::
model

:::
also

::::::::
improves

:::
the

:::
lag

:::::::::
parameter

:::::::::
consistency

::::::
across

::::
time

::::
steps

::::
and provides a more time-consistent model with time-independent parameters.15

1 Introduction

1.1 On the need for an adequate mathematical and computational hydrological model

Hydrological modelling is a widely used tool to manage rivers at the catchment scale. It is used to predict floods and droughts

as well as groundwater recharge and water quality. In a review on the different existing hydrological models, Gupta et al. (2012)

determined that all the existing models follow three modelling steps:20

– Establish a conceptual representation of reality,

– Represent this conceptualization in a mathematical model,

1



– Set up a computational model to be used on computer.

In terms of conceptual representation, many models exist and conceptualize the hydrological processes in the catchment

differently, resulting in models with various levels of complexity. In this study, we will focus on the bucket-type models, which

are among the simplest. These models, such as VIC (Wood et al., 1992), HBV (Bergström and Forsman, 1973) and Sacramento

(Burnash, 1995), describe various conceptualizations of the hydrological processes at the catchment scale. Their parsimony5

(they usually need few input data and use few parameters) make them very useful for research as well as in operational

applications thanks to their robustness and good performance (Michel et al., 2006).

In the context of this study, bucket-type models are advantageous because, even if the concepts are often well documented,

this is not the case of the mathematical and the computational models. In the models documentations, the water balance

equations that would govern the models are rarely explicitely formulated (Clark and Kavetski, 2010). The authors of the models10

often specify the discrete time equations, i.e. the result of the analytical or numerical temporal integration of the governing

water balance equations. The problem is that the temporal resolution of the differential governing equations is part of the

computational model. As a consequence, when the discrete time equations are the only ones available, the real mathematical

model does not appear clearly. In addition, the descriptions of the numerical method used to solve the water balance equations

and to obtain these discrete equations are rarely detailed.15

However, several studies in the last decade (see for example Clark and Kavetski, 2010; Kavetski and Clark, 2010; Schoups

et al., 2010) point out that the numerical solutions implemented to solve the differential equations that govern the models are

sometimes poorly adapted. Clark and Kavetski (2010) showed that the use of the explicit Euler scheme (which is frequent for

this type of model) can introduce significant errors in the simulated variables compared to more stable numerical schemes.

Moreover, other studies prove that poorly adapted numerical treatment causes discontinuities and local optima in the parameter20

hyperspace (Kavetski et al., 2003; Kavetski and Kuczera, 2007; Schoups et al., 2010). This results in problems efficiently

calibrating the models and in uncertainty on parameter values.

Another numerical approximation is commonly applied for bucket-type models: the operator splitting (OS) technique

(Kavetski et al., 2003). The aim is to split a differential equation into more simple equations that can be solved analytically in

order to reduce inaccuracies in the numerical treatment. In the case of hydrological modelling, operator splitting results from25

the sequential calculation of processes such as runoff, evaporation and percolation (Schoups et al., 2010). Kavetski et al. (2003),

Clark and Kavetski (2010) and Schoups et al. (2010) identified several widely used models in which the differential equations

are solved using this type of treatment, e.g. VIC (Wood et al., 1992), Sacramento (Burnash, 1995) and GR4J (Perrin et al.,

2003). However, even if OS may reduce numerical errors, Fenicia et al. (2011) cite several limitations to its use in hydrology.

Indeed, it is physically unsatisfying to separate the different processes in time because, in reality, they are concomittent. In30

addition, it creates numerical splitting errors that are difficult to identify.

According to different studies, an inadequate numerical treatment like OS can lead to inconstencies in flux simulations (see

for example the study conducted by Michel et al., 2003, on an exponential store). It may also create inconsistencies in the

model state variables (Clark and Kavetski, 2010; Kavetski and Clark, 2010). This results in the model inaccurately simulating

flows.35
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For these reasons, it is important to use a robust numerical treatment to better estimate the other uncertainties (for example,

parameter uncertainty).

1.2 Scope of this study

The first step to improve the numerical treatment of rainfall-runoff models is to properly separate the mathematical model

from the computational model (Kavetski and Clark, 2010; Gupta et al., 2012). This article proposes a method to do this by5

setting up a
:::::::::
continuous

:
state-space representation of a rainfall-runoff model. A state-space representation is a matricial function

of a system that depends on input, output and state variables. At all times, the system is described by the values of its state

variables (referred to as “states” in this article). In the case of rainfall-runoff models, inputs can be potential evapotranspiration

and precipitation and output can be the flow at the outlet of the catchment. The soil water content or the amount of water

in the hydrographic network are physical examples of possible state variables. The level of the bucket-type model stores is a10

conceptual example of possible state variables. This state-space representation will give the governing equations to be solved

over time.
:::
This

:::::::::
resolution

:::
will

:::
be

:::::::::
proceeded

::
by

:::::
using

::
an

::::::::
operator

:::::::
splitting

::::::::
technique

::
to

::
be

:::::
used

::
as

:
a
::::::::::
comparison

:::::
point

:::
and

:::
by

::::
using

::
a
::::
more

::::::
robust

:::::::::
numerical

::::::::
technique,

:::
i.e.

::::::
implicit

:::::
Euler

::::
with

:::
an

:::::::
adaptive

:::::::
sub-step

:::::::
number.

::::
The

::::::
model

:::::
solved

:::
by

:::::::
implicit

::::
Euler

::::
will

:::
be

:::::
called

:::::::::
continuous

::::::::::
state-space

:::::::
because

:
it
::::::::::::
approximates

:
a
:::::::::
continuous

:::::::
model.

::
By

::::::::::
opposition,

:::
the

:::::::
operator

:::::::
splitted

:::::::::
state-space

::::::::::::
representation

:::
will

:::
be

:::::
named

:::
as

:::::::
discrete.15

In addition to a clearer mathematical model, we hope that the state-space representation will gain stability due to the direct

implementation of the time step in the numerical resolution. We thus hope to obtain more stable parameter values across time

steps (Young and Garnier, 2006).

To illustrate the methodology proposed, the widely used GR4J model (Perrin et al., 2003) will be taken as an example.

Indeed, this model is currently implemented using the operator splitting technique. A state-space representation will be set up,20

following the GR4J’s conceptualization of the hydrological processes as well as possible. Its behaviour,
::::
both

::::
with

::
a
:::::::
discrete

:::
and

:
a
:::::::::
continuous

:::::::
solving,

:
will be compared to the current formulation of the GR4J model on a wide range of French catchments

with different time steps (day and hour), in terms of performance and parameters.

2 GR4 and its new state-space representation

Hereafter, the notation GR4 will be used to refer to structure of the GR4J model (J stand for Journalier, i.e. daily, Perrin et al.,25

2003), which is transformed and used at different time steps. This is a lumped bucket-type model discribed in its discrete

::::::
current form (Sect. 2.1) and in its state-space form (Sect. 2.4).

:::
2.2).

::
A
:::::::::
discussion

:::
on

:::
the

::::
Nash

:::::::
cascade

:::::::::
introduced

::
in
:::
the

:::::
GR4

:::::::::
state-space

::::
form

::
is

:::::
given

::
in

:::::
Sect.

:::
2.3.

::::
The

:::::::::
continuous

:::::::::
differential

:::::::::
equations

::
of

:::
the

:::::::::
state-space

::::
form

:::
are

:::::::::
described

::
in

::::
Sect.

::::
2.4.

The adaptations needed to change the model time step will be described in Sect. 2.5.

2.1 Discrete
::::::::
Reference

:
GR4 model30
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The equations of the reference GR4J model (Perrin et al., 2003) are the result of the integration of the water balance equations

at a discrete time step (here the daily or hourly time step). Consequently, this model will be called the “discrete” GR4 model

in the present paper.

GR4 (Perrin et al., 2003) is a lumped bucket-type daily rainfall-runoff model with four free parameters. It is widely used

for various hydrological applications in France (Grouillet et al., 2016; van Esse et al., 2013) and in other countries (Dakhlaoui5

et al., 2017; Seiller et al., 2017). It has shown good performances on a wide range of catchments (Coron et al., 2012).
:::
The

::::::::
equations

::
of

:::
the

::::::::
reference

:::::
GR4J

:::::
model

:::::::::::::::::::
(Perrin et al., 2003) are

:::
the

:::::
result

::
of

:::
the

::::::::::
integration

::
of

:::
the

:::::
water

::::::
balance

::::::::
equations

::
at
::
a

::::::
discrete

::::
time

::::
step

:::::
(here

:::
the

::::
daily

::
or

::::::
hourly

::::
time

:::::
step).

The version of GR4 used here is slightly different from the one presented by Perrin et al. (2003) because the two unit hydro-

graphs were replaced by a single one placed before the flow separation (Fig. 1, Mathevet, 2005)
:::::::::::::::::::::::
(Fig. 1 (a), Mathevet, 2005) .10

This simplification of the model does not substantially change the resulting simulated flows.

The equations of the model are given by Perrin et al. (2003) and listed in Table 1. GR4 represents the rainfall-runoff relation-

ship at the catchment scale using an interception function, two stores, a unit hydrograph and an exchange function (see Fig. 1

::
(a)). The model structure can be split into water balance and routing operators.

The water balance operators evaluate effective rainfall (i.e. the part of rainfall that will reach the catchment outlet) by estimat-15

ing several quantities: actual evaporation, storage within the catchment and groundwater exchange. It involves an interception

function and a production (soil moisture accounting) store (S in Fig. 1
::
(a)). The interception corresponds to a neutralization of

rainfall by potential evapotranspiration. The remaining rainfall (Pn), if any, is split into a part going into the production store

(Ps in Fig. 1
::
(a)) and a complementary part (Pn−Ps in Fig. 1

::
(a)) that is directed to the routing component of the model. The

quantity of rainfall that feeds the production store depends on the level of water in the store at the beginning of the time step.20

In case there is remaining energy for evapotranspiration after interception (En in Fig. 1
::
(a)), some water is evaporated from

the production store at an actual rate depending on the level of the production store (Es in Fig. 1
::
(a)). The higher the level is

at the beginning of the time step, the closer Es is to En. Thus, the production store represents the evolution of the catchment

moisture content at each time step. The last water balance operator is a groundwater exchange term (F in Fig. 1
::
(a), positive

or negative), which acts on the routing part of the model.25

The routing function of the model is fed with the rainfall that does not feed the production store (Ps−Pn) plus a percolation

term (Perc in Fig. 1
::
(a)) from the production store, which generally represents a small amount of water. The total amount (Pr

in Fig. 1
::
(a)) is lagged by a symetric

:::::::::
symmetric unit hydrograph and then split into two flow components. The main component

(90% of Pr, Q9 in Fig. 1
::
(a)) is routed by a nonlinear routing store (R in Fig. 1

::
(a)). The complementary component (10%

of Pr, Q1 in Fig. 1
::
(a)) directly reaches the outlet. The groundwater exchange term (F ) is added or removed from the routing30

store and from the Q1 component.

The simulated flow at the catchment outlet (Q in Fig. 1
::
(a)) is the sum of the outputs of the two flow components (Qr and

Qd in Fig. 1
::
(a)).

Four free parameters (called x1, x2, x3 and x4) are used to adapt the model to the variety of catchments. Their meanings are

given in Table 2.35
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Interception
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Unit
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Figure 1. Schemes of the discret
:::::::
reference

:
GR4 model ((a), Perrin et al., 2003) and the state-space (b) structures. P : rainfall; E: potential

evapotranspiration; Q: streamflow; xi: model parameter; other letters are model state variables or fluxes. A Nash cascade replaces the unit

hydrograph in the state-space representation.

As mentioned in the introduction, the governing water balance equations of the model are solved using operator splitting. By

considering that inputs to the store are added at the beginning of the time step as Dirac functions (Michel, 1991), it becomes

possible to find analytical expressions of the model processes when equations are integrated over the time step. Consequently,

the model processes are treated sequentially.

2.2 A state-space formulation for the GR4 model5

To create this state-space representation, it is important to identify the different model state variables. In the GR4 model, two

obvious states are the levels of the production and routing stores. The main challenge to describe the state-space formulation

is to deal with the unit hydrograph. The discrete form used in GR4 corresponds to a convolution product in the state space as

implemented in SUPERFLEX (Kavetski and Fenicia, 2011). This convolution product complexifies the mathematical resolu-

tion of the model
:::
that

::
is

::::::::
necessary

:::
for

:::
the

:::::::::
continuous

::::::
version

::::
that

::::
will

::
be

:::::::::
introduced

::
in

::::
Sect.

:::
2.4. Here we chose to replace this10

unit hydrograph with a series of linear stores in order to simplify this resolution. The use of stores is also convenient because

it creates a model that is only composed of stores.
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Different combinations of linear stores were tested and the choice was made to replace the unit hydrograph with a “Nash

cascade” (Nash, 1957). It is implemented at the same location in the model structure as the unit hydrograph (Fig. 1
::
(b)). The

“Nash cascade” is a chain of linear stores that empty into each other. It has two parameters to govern the shape of the outflow

response, namely the number of stores and the outflow coefficient, which is identical for all stores. In our case, we decided

to fix the number of stores and to only consider the outflow coefficient as a free parameter. This choice will be disscussed in5

::::::::
discussed

::
in

:::
the

::::::::
following

::::::
section

:
(Sect. 2.3

:
). With this type of model, the outflow of the last store has a similar shape to a unit

hydrograph.

2.3
::::::::::::::

Parameterisation
::
of

::::
the

::::
Nash

:::::::
cascade

::
As

:::::::::
introduced

:::
in

:::
the

:::::::
previous

:::::::
section,

:::
the

:::::
Nash

:::::::
cascade

:::
has

::::
two

::::::::::
parameters,

:::::::
namely

:::
the

:::::::
number

::
of

:::::
stores

::::
and

:::
the

:::::::
outflow

:::::::::
coefficient.

:::
The

:::::::
number

::
of

:::::
stores

::::
can

::::
only

:::
take

::::::
integer

::::::
values,

::::::
which

::
is

::
an

::::
issue

:::
for

:::::::::
automatic

:::::::::
calibration

::::::
because

::
it
:::::::::
introduces10

:::::::
threshold

:::::::
effects.

:::
As

:
a
:::::::::::
consequence,

:::
the

:::::::
number

::
of

::::::
stores

:::
was

::::
not

::::::::
optimized

::::::::::::
automatically

:::
and

:::
the

:::::::
outflow

:::::::::
coefficient

::
is

:::
the

:::::::::
preferential

:::::::::
parameter

::
to

::::::::
calibrate.

::
To

:::::
obtain

::
a
:::::::
response

:::
that

::
is
:::::::::
equivalent

::
to

:::
the

::::
GR4

:::
unit

::::::::::
hydrograph

::::::::
response,

::
we

:::::::::
attempted

::
to

::::::::
determine

:::::::
whether

:
a
::::::::::
relationship

:::::
exists

:::::::
between

:::
the

::::
Nash

:::::::
cascade

:::::::::
parameters

:::
and

:::
the

:::::
GR4

::
x4:::::::::

parameter.
::
To

:::::::
manage

::::
this,

:::
the

:::::::::::
determination

:::
of

::
the

:::::
Nash

:::::::
cascade

::::::::
parameter

::
is

:::::
based

::
on

:::
the

::::::::::
comparison

::
of

:::
the

:::::::
impulse

::::::::
response

::
of

:::
the

::::
Nash

:::::::
cascade

:::
and

:::
the

::::::::
response

::
of

:::
the

::::
unit

::::::::::
hydrograph.15

:::
The

:::::::
impulse

:::::::
response

:::
of

:::
the

::::
Nash

:::::::
cascade

::
is

::::::::::::
(Nash, 1957) :

hNash(t) =
k

Γ(nres)
(kt)

nres−1
exp(−kt)

::::::::::::::::::::::::::::::::::

(1)

:::::
where

::::::::
hNash(t)

::
is

:::
the

::::::
impulse

::::::::
response

::
of

:::
the

::::
Nash

:::::::
cascade

::
at

::::
time

::
t,

::::
nres

::
is

:::
the

::::::
number

::
of
::::::
stores,

::
k

:
is
:::
the

:::::::
outflow

:::::::::
coefficient

::
(in

::::
t−1)

::::
and

:::::::
Γ(nres)

::::::::::
corresponds

::
to

:::
the

:::::::
gamma

:::::::
function

::
of

:::::
nres.

:::
The

:::::::
impulse

:::::::
response

:::
of

:::
the

::::
GR4

::::::::::
symmetrical

::::
unit

::::::::::
hydrograph

:
is
::::::::::::::::::
(Perrin et al., 2003) :20

hUH(t) =


2.5
2x4

(
t
x4

)1.5

, for 0 6 t6 x4

2.5
2x4

(
2− t

x4

)1.5

, for x4 < t6 2x4

0 , for t > 2x4
::::::::::::::::::::::::::::::::::::::::::

(2)

:::::
where

:::::::
hUH(t)

:
is
:::
the

:::::::
impulse

::::::::
response

::
of

:::
the

:::
unit

::::::::::
hydrograph

::
at

::::
time

::
t,

::
x4::

is
:::
the

::::
time

::
to

:::::
peak

::
of

:::
the

::::::::::
hydrograph.

:::
The

:::::
Nash

:::::::
cascade

:::::::::
parameters

:::
are

:::::::::
calculated

::::::::
depending

:::
on

:::
x4 ::

in
::::
such

:
a
::::
way

::::
that

:::
the

::::
time

::
to

::::
peak

::::
and

:::
the

::::
peak

::::
flow

::::::
would

::
be

:::
the

::::
same

:::
for

:::
the

::::
two

:::::::
impulse

::::::::
responses.

:::::::::
According

::
to
:::::::::::::::::::
Szöllösi-Nagy (1982) ,

:::
the

::::
time

::
to

:::::
peak

::
of

:::
the

::::
Nash

:::::::
cascade

::
is

:::::
equal

::
to:

:
25

tp =
nres− 1

k
:::::::::::

(3)
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:::
and

:::
the

::::
peak

::::
flow

::
is

:::::
equal

::
to:

:

qp =
k

Γ(nres)
(nres− 1)nres−1 exp(1−nres)

:::::::::::::::::::::::::::::::::::::

(4)

:::::
Using

:::
Eq.

::
2,

:::
the

::::
time

::
to

::::
peak

::
of
:::
the

:::::
GR4

:::
unit

::::::::::
hydrograph

::
is

:::::
equal

::
to:

:

tp = x4
::::::

(5)

:::
and

:::
the

::::
peak

::::
flow

:::
to:5

qp =
1.25

x4
::::::::

(6)

:::
So,

::::
from

:::::
these

:::::
values

:::
the

::::::::
following

::::::
system

::::
can

::
be

::::::::
deduced:

 x4 = nres−1
k

1.25
x4

= k
Γ(nres) (nres− 1)nres−1 exp(1−nres)

:::::::::::::::::::::::::::::::::::::::::::::

(7)

:::::
which

:::
can

:::
be

::::::::::
transformed

::::
into: k = nres−1

x4

1.25 = (nres−1)nres

Γ(nres) exp(1−nres)
:::::::::::::::::::::::::::::::::::

(8)10

:
A
:::::::
number

::
of

:::::
stores

:::::::::
nres= 11

::
is

:::
the

:::
best

::::::
integer

::::::::::::
approximation

::
to

:::::
solve

:::
the

::::::
second

:::::::
equation

::
of

:::
Eq.

::
8.

:::
The

:::::::
outflow

:::::::::
coefficient

:
is
::::::::

deduced
::::
from

::::
this

:::::::
number

::
of

:::::
stores

::::
and

::::
from

::::
x4.

:::
By

:::::
fixing

:::
the

::::::::::
parameters

::
in

:::
this

:::::
way,

::::
only

:::
the

:::
x4:::::::::

parameter
:::
has

::
to

:::
be

::::::::
calibrated.

::::
This

:::::::
method

::::::
allows

:
a
:::::
direct

::::::::::
comparison

:::::::
between

:::
the

:::::::::
parameters

:::
of

:::
the

::::
Nash

:::::::
cascade

:::
and

:::
the

:::::::::
parameter

::
of

:::
the

::::
unit

::::::::::
hydrograph.

:::
For

:
a
:::::
given

:::
x4 ::::::::

parameter,
:::
the

::::
unit

:::::::::
hydrograph

::::
and

:::
the

::::
Nash

:::::::
cascade

:::::::
impulse

::::::::
responses

::::
have

:::
the

:::::
same

::::
time

::
to

::::
peak

:::
and

:::
the

::::
same

:::::
peak

::::
flow

:::
(see

:::
the

::::::
dotted

:::
and

:::
the

::::::
dashed

:::::
curve

::
in

::::
Fig.

:::
2).15

:::::
Using

:::
this

::::::::
formula,

:::
the

:::
x4 :::::::::

parameters
::
of

:::
the

::::
two

::::::
models

:::
are

:::::::::
equivalent

::::
and

::
it

:::
can

:::
be

::::::
argued

:::
that

:::::
their

:::::::
meaning

::
is

::::::
nearly

:::::::
identical.

:

:::::
Fixing

:::
the

:::::::
number

::
of

:::::
stores

::
in

:::
the

::::
Nash

:::::::
cascade

:::
also

::::::::
provides

::::::
another

:::::::::
advantage.

::::::
Indeed,

::::
one

::
of

:::
the

:::::::
potential

:::::
issues

::::
that

::::
arise

::::
when

::::::::
replacing

:::
the

::::
unit

::::::::::
hydrograph

::::
with

:
a
:::::

Nash
:::::::
cascade

::::
was

:::
the

:::::::::
equifinality

::::
with

:::
the

:::::::
routing

:::::
store.

:::::
Given

::::
that

:::
the

::::::::
recession

::::
curve

:::
of

::
the

:::::::
cascade

::
is

::::::::::
theoretically

:::::::
infinite,

::
it

:::::
could

::::
have

:::
the

::::
same

:::::::
function

:::
as

:::
the

::::::
routing

:::::
store.

:::::::::
Calculating

:::
the

::::::::::
parameters

::
of20

::
the

:::::::
cascade

::::::::
regarding

:::
the

:::
x4 ::::::::

parameter
::::::
makes

:
it
::::::::
possible

::
to

:::::
reduce

:::
the

:::::::::
possibility

::
of

:::
an

::::::
infinite

:::::::
impulse

::::::::
response.

2.4
:::::::::
Continuous

::::::::::
differential

:::::::::
equations

::
of

:::
the

::::::::::
state-space

::::::
model

Once the model is only represented by stores, a differential equation can be written for each store (details are provided in

Table 1). For the production and routing stores, the equations were built by adding all the processes that affect the stores. For

7
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Figure 2.
:::::
Impulse

:::::::
response

::::
with

:
a
::::::
x4 = 2

::::
time

::::
steps

:::
for

::
the

::::
unit

:::::::::
hydrograph

::
of

::::
GR4

:::::
(dotted

::::
line)

:::
and

:::
the

::::
Nash

:::::::
cascade

:::
with

:::::::::
nres= 11

::::
stores

:::
and

::::::::
k = 11−1

x4 ::::::
(dashed

::::
line).

example, the differential equation for the production store is the sum of the differential equations of evaporation, rainfall and

the percolation (respectively, Es, Ps and Perc in Fig. 1). This means that all the processes that are a function of this state

are treated simultaneously, unlike the initial model version in which the processes are treated sequentially. The state-space

representation of the Nash cascade is the same as the one proposed by Szöllösi-Nagy (1982).

The resulting model is composed of the differential equations governing the states’ evolution (here represented as a vector5

in the Eq. 9, taking into account nres stores in the Nash cascade):

Ṡ

Ṡh,1

Ṡh,2

...

Ṡh,nres

Ṙ


=



Ps−Es−Perc
Pr −QSh,1

QSh,1−QSh,2

...

QSh,nres−1−Quh

Q9 +F −Qr


(9)

The notation Ṡ stands for dS
dt , the derivative of S at

::::::
against time t and the different elements of this equation are specified in

Table 1.

The output equation to calculate the
:::::::::::
instantaneous

:
output flow (

:::
q(t)

::
in

:
Eq. 10) completes the model:10

Qq(t)
:::

=Qr +Qd (10)

The different elements in Eq. 9 and 10 are shown in Table 1.

The input, state variable and output values are:

8



– Inputs:En and Pn are the potential evapotranspiration (without
:::
after

:
the interception) and the precipitation amounts after

the interception phase in mm · t−1.
::
We

:::::::
decided

::
to

::::
keep

:::
the

::::::::::
interception

:::
out

:::
of

:::
the

:::::::::
state-space

::::::::::::
representation,

:::::::
because

::
it

:
is
:::
not

::::::::::
represented

:::
by

:
a
::::
store

::
in

:::
the

::::::::
reference

:::::
GR4J

::::
and

::
we

:::::::
wanted

::
to

::::
avoid

::::::::::
introducing

:::
an

::::::::
additional

:::::::::
difference

:::::::
between

::
the

::::::::::
state-space

:::
and

:::
the

::::::::
reference

:::::::
models.

– Outputs
::::::
Output: Q is the output flow,

::
it
::::::::::
corresponds

::
to

:::
the

:::::::::
integration

:::
of

:::
q(t)

:::::::
(Eq.10)

::::
over

:::
the

::::
time

::::
step.5

– State variables: S, R and Sh,k are respectively the levels of the production store, the routing store and the Nash cascade

store number k (with k ∈ {1, · · · ,nres}) in mm.

– Fluxes: Ps and Es are, respectively, the rainfall added to the production store and the evapotranspiration extracted from

the production store. Perc is the outflow from the production store. Pr is the amount of water that reaches the model

routing operators. QSh,k is the outflow of the Nash cascade store number k (with k ∈ {1, · · · ,nres− 1}). Quh is the10

outflow of the Nash cascade store number nres (this notation is used to be consistent with the discrete model). Q9 and

Qr are, respectively, the inflow and the outflow of the routing store and F is the inter-catchment groundwater exchange.

Qd is the outflow of the complementary flow component.

The parameter meanings are explained in Table 2. The model is constructed to ensure that the parameters (x1, · · · ,x4 in

the equations) have the same meaning in the state-space
:::::::::
continuous

:
model and in the discrete GR4. This

:::
The

:
state-space15

formulation was sought to be as close as possible to the original model’s formulation, to keep the same general model structure.

We expect similar results to be obtained by the two
:::::::
different

:::::
tested

:
model versions.

2.5 Hourly model

The GR4 model was first designed for daily time step modelling and it was adapted for the hourly time step (GR4H, Mathevet,

2005; Ficchí et al., 2016). The structure and the equations are similar in GR4H (hourly) and in GR4J (daily). The hourly version20

of the discrete
::::::
versions

:::
of

:::
the GR4 model used here is

::::::
models

::::
used

::::
here

:::
are the same as the one

::::
ones showed in Fig. 1.

The adaptation to the time step is handled by a change in the parameter values, which depend on time. Ficchí et al. (2016)

gave the theorical
::::::::
theoretical

:
relationships to transform the GR4 free parameter values as a function of the time step length

(Table 3). The fixed percolation coefficient (ν in Table 1) is also time-dependent.

The
::::::::
continuous

:
state-space GR4 model used for the hourly time step is exactly the same as the one used at the daily time25

step, with no change in the percolation coefficient. The time step change is not managed by a change in parameter values but

by the numerical integration. For the daily time step, the model is integrated on ∆t= 1 day while, for the hourly time step, it

is integrated on ∆t= 1 hour.

9
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Table 2. Meaning of the free and fixed parameters
:::::::::::::::::::::::::::::::::::::
(from Perrin et al., 2003, except for Ut and nres)

Type Name Signification Value Unit

Free

x1 Max capacity of the production store - mm

x2 Inter-catchment exchange coefficient - mm · t−1

x3 Max capacity of the routing store - mm

x4 Base time of the unit hydrograph - t

Fixed

α Production precipitation exponent 2 -

β Percolation exponent 5 -

γ Routing outflow exponent 5 -

ω Exchange exponent 7
2

-

ε Unit hydrograph coefficient 3
2

-

Φ Partition between routing store and direct flow 0.9 -

ν Percolation coefficient 4
9

-

Ut One time step length 1 t

nres Number of stores in Nash cascade 11 -

Table 3. Transformations
:::::::
Temporal

:::::::::::
transformations

:
of the GR4 parameters (Ficchí et al., 2016)

GR4 model parameter
Theoretical transformation from the daily (∆td) to the

hourly (∆th) time step
Source of time step dependency

ν ν∆th = ν∆td

(
∆td
∆th

) 1
4

Integration of the percolation

power 5 function from the pro-

duction store

x1 x1(∆th) = x1(∆td) -

x2 x2(∆th) = x2(∆td)

(
∆td
∆th

)− 1
8

Integration of the exchange flux

formulation (dependent on the

routing store level)

x3 x3(∆th) = x3(∆td)

(
∆td
∆th

) 1
4

Integration of the fueling power

5 function of the routing store

x4 x4(∆th) = x4(∆td)

(
∆td
∆th

) Discrete concentration time in

time step units of the unit hy-

drographs
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3 Implementation and testing methodology

3.1 Numerical integration of the model

The integration of Eq. 9 (necessary to adapt the model to discrete input data) cannot be made analytically. It is therefore

necessary to implement a numerical method to solve this integration.

Following the recommendation in Clark and Kavetski (2010), an implicit Euler algorithm is used to perform this numerical5

integration. Our choice was to set up an adaptative substep
::::::
adaptive

:::::::
sub-step

:
algorithm (Press et al., 1992) to avoid the majority

of numerical instabilities
:::::
errors. The implicit equation is solved using a secant method when necessary.

:::
The

::::::
choice

::
of

::::
using

::::::::
adaptive

:::::::
sub-step

:::::
rather

:::
than

::::::::::
single-step

::::::
implicit

::::::
method

:::::::::::::::::::::::::::::::::::::::::
(as recommended by Clark and Kavetski, 2010) is

:
a
:::::
result

:::
of

::::::
several

::::
tests

::::
that

:::
are

:::
not

::::::
shown

:::::
here.

::::
We

::::::::
compared

:::
the

:::::::::
modelling

::::::
results

:::::
with

:::::::::
single-step

:::::::::
integration

:::
to

:::::
those

:::::::
obtained

::::
with

:::
the

:::::::
adaptive

:::::::
sub-step

:::::::::
algorithms

:::
and

::::::
found

::::
some

:::::::::
differences

::
in
::::::::
resulting

:::::
flows

::
(in

::::::::
particular

:::
for

::::
high

::::::
flows).

::::
The10

:::::::::
differences

:::::
found

:::
this

::::
way

:::::
were

:::
not

:::::::::
negligible.

::
In

:::
this

:::::
case,

:::
we

:::
can

:::
say

::::
that

:::
the

:::::::
stability

::
of

:::
the

::::::
implicit

::::::::::
single-step

:::::::::
integration

:
is
:::
not

::::::::
sufficient

::
to

::::::::::
sufficiently

::::::
reduce

:::
the

:::::::::
integration

:::::
errors.

:

:::
For

::::
both

::::::
hourly

:::
and

:::::
daily

::::
time

:::::
steps,

:::
the

:::::
inputs

:::
are

::::::::::
considered

::
as

:::::::
constant

::::::
during

:::
the

::::
time

::::
step.

:::::
Even

::
if

:::
this

::::::::::
assumption

::
is

:
a
:::::::::::
simplification

:::
of

:::
the

::::
truth,

:::
we

:::::
chose

::
to

:::::
keep

:
it
:::::::
constant

::
to
::::::::
simplify

::
the

::::::::::
calculation

:::
and

:::
not

::
to

::::::::
introduce

::::::::
treatment

::::::::::
differences

:::::::
between

:::::
hourly

::::
and

::::
daily

::::
time

::::
step

:::::::
models.15

3.2 Catchment set and data

To compare the performance and behaviour of the discrete and the
:::::::
reference

::::
and

:::
the

::::::
discrete

::::
and

:::::::::
continuous

:
state-space GR4

model versions, a large data set of 240 catchments across France was set up (Fig. 3). Testing the models on many catchments

will help obtain general conclusions (Andréassian et al., 2006; Gupta et al., 2012).

The data set was built by Ficchí et al. (2016) to test GR4 at different time steps. In this article, we only used daily and20

hourly data. The climate data of the SAFRAN daily reanalysis (Quintana Seguì et al., 2008; Vidal et al., 2010) are used as

input data (precipitation and temperature). Precipitation and temperature are spatially aggregated on each catchment since the

GR4 models are lumped. The hourly precipitation data were obtained by disaggregating the daily SAFRAN precipitation using

the subdaily distribution of rain gauge measurements. Potential evapotranspiration at the daily time step was calculated from

the SAFRAN temperature using the Oudin formula (Oudin et al., 2005) and hourly spread with a Gaussian distribution. Full25

details on this data set are available in Ficchí et al. (2016).

Hourly observed flows are available at each catchment outlet and come from the Banque HYDRO (http://www.hydro.

eaufrance.fr/, French Ministry of the Environment). For daily modelling, hourly measurements are aggregated at the daily

time step. Their availability covers the 2003-2013 period.

The catchments were selected to have less than 10% precipitation falling as snow, to avoid requiring a snow model.30

3.3 Testing methodology
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River Azergues
at Châtillon

Figure 3. Location of the 240 flow gauging stations used for the tests and their associated catchments. The River Azergues at Châtillon is

used as an example for the results (Sect. 4.1).

The two
:::::
Three versions of the model were assessed on the 240 catchments following a split-sample test (Klemeš, 1986).

:::::
These

::::
three

:::::::
versions

:::
are

:::
the

::::::::
reference

::::::
model,

::
a

::::::
discrete

::::::::::
state-space

:::::
model

:::::
(with

:
a
:::::
Nash

:::::::
Cascade

:::
but

::::::
solved

:::::
using

:::::::
operator

::::::::
splitting)

:::
and

:
a
::::::::::

continuous
:::::::::
state-space

::::::
model.

::::::::::
Comparing

:::
the

::::::::
reference

::::
and

::::::
discrete

::::::::::
state-space

::::::
models

::::::
allows

::
to

::::::::
measure

:::
the

::::::
impact

::
of

::::::::
replacing

:::
the

::::
unit

:::::::::
hydrograph

:::::
with

:
a
:::::
Nash

:::::::
cascade.

::::::::::
Comparing

:::
the

:::::::
discrete

:::
and

::::::::::
continuous

:::::::::
state-space

:::::::
models

::::::
allows

::
to

:::::::
measure

:::
the

::::::
impact

::
of

::
a
::::::
nearly

:::::::::
continuous

:::::::::
numerical

::::::::::
integration. For every catchment, the observed flow data period was5

divided into a calibration period (the first half) and a validation period (the second half). A 2-year warm up period was used for

each catchment, before both the calibration and validation periods. The calibration was made automatically with an algorithm

used in Coron et al. (2017) and based on the work of Michel (1991).

The objective function used for calibration is the Kling-Gupta Efficiency (KGE’, Kling et al., 2012). This objective func-

tion is often used in hydrology and assesses different components of the error made by the model (mean bias, variance bias,10

correlation). In addition, to target different flow levels, mathematical transformations are applied (Pushpalatha et al., 2012).

The logarithm is applied to analyse the errors in low-flow conditions (KGE′ (log(Q))), no transformation is applied to pref-

erentially analyse the error on high flows (KGE′ (Q)) and the root square of the flow is used as a compromise representing

the error on intermediate flows (KGE′
(√
Q
)
).

::
In

:::
the

::::
case

::
of

::::::::
logarithm

:::::::::::::
transformation,

::::::::
following

:::
the

:::::::::::::::
recommendations

:::::
made

::
by

::::::::::::::::::::::
Pushpalatha et al. (2012) ,

:
a
:::::
small

:::::::
quantity

::::::
which

::::::::::
corresponds

::
to

::::
one

:::::::::
hundredth

::
of

:::
the

:::::::::
catchment

:::::
mean

::::
flow

::
is

::::::
added

::
to15

::::
avoid

:::::::
troubles

::::
with

::::
null

:::::
flows.

:
These three transformations represent three distinct objective functions. The models were cal-

13



ibrated separately and successively on the three objective functions.
::
To

:::::
avoid

:::::::
strongly

::::::::
negative

:::::
values

:::
of

:::
the

:::::
KGE’

::::::::
criterion,

::
we

::::
used

:::
the

:::::
C2M ::::::::::

formulation
:::::
which

:::::::
restricts

:::
the

::::::::
variation

:::::
range

:::
into

::::::
[−1;1]

:::::::::::::::::::::::
(see Mathevet et al., 2006) .

The results of the calibrations were also analysed in terms of performance in validation on the three evaluation criteria

(i.e. KGE′ (Q), KGE′ (log(Q)) and KGE′
(√
Q
)

::::::::
C2M (Q),

::::::::::::
C2M (log(Q))

::::
and

::::::::::
C2M

(√
Q
)
). Given the large number of

catchments, it is possible to draw a conclusion on the global difference in performance between the two models studied5

::::
three

::::::
studied

::::::
model

:::::::
versions. This avoids a discrepancy due to specific catchment conditions. In addition to the performance

analysis, the simulated hydrographs were visually analysed to detect discrepancies in the flow simulationby the state-space

representation. An analysis of the time series of internal fluxes and state variables also provided further insights to interpret the

difference between the two model versions. Last, the differences in parameter values between the two models was analysed.

It is important to verify that the parameter values are similar and do not take outlier values that would compensate for model10

inconsistencies.

A second test was carried out in order to analyse the time step dependency of the two models. The split-sample test was

performed at the hourly time step and the parameter values were compared to tose
::::
those

:
obtained at the daily time step. With

the discrete
:::::::
reference model, the calibrated parameter values were compared to those theoretically obtained using the equations

in Table 3. With the
::::::::
continuous

:
state-space model, we verified the stability of the parameters. This stability is very important15

for designing a model that is not dependent on its time step.

4 Results and discussion

4.1 Comparison of discrete and state-space
:::::
tested

:
models

::
at

:::
the

:::::
daily

::::
time

::::
step

Figure ?? shows that performance is
:
4
::::::
shows

:::
that

:::::::::::
performances

:::
are

:::::::
globally

:
similar between the different versions of the model

with a calibration using the KGE’
::::
C2M on square-rooted flows. The state-space model is even slightly better on the low-flow20

component. Performance
:::::::::::
performances

::
of

:::
the

::::::::
reference

::::::
model

:::
and

:::
the

::::::::::
continuous

:::::::::
state-space

:::::::
solution

:
are also similar after

calibration with the two other transformations of the flow in the objective function (not shown).
::
In

:::
the

::::
case

:::
of

:::
the

:::::::
discrete

:::::::::
state-space

:::::::
solution,

:::
the

::::::
model

::::
does

:::
not

::::
seem

::
to

:::
be

:::
able

::
to
::::
well

:::::::::
reproduce

::::
high

:::::
flows

:::
but

:::::::
performs

:::::
better

:::
on

:::
low

:::::
flows

::::
than

:::
the

:::
two

:::::
other

::::::
models

:::::
when

:::
the

::::
used

::::::::
objective

:::::::
function

::
is

:::
the

::::
C2M::::

with
::::::::::
logarithmic

:::::::::::::
transformation.

The study of the hydrographs confirms that the models
:::::::
provides

:::::::::::::
complementary

:::::::::::
information.

:::
The

:::::::::
reference

::::
GR4

::::::
model25

:::
and

:::
the

:::::::::
continuous

:::::::::
state-space

:::::::
solution

:
are very similar

::::
while

:::
the

:::::::
discrete

:::::::::
state-space

:::::::
solution

::::::::
simulates

:::::
lower

::::
peak

:::::
flows

:
(see

example hydrograph in Fig. 5).
::::
This

::::::::
behaviour

::::
can

::
be

::::::::
explained

:::::::
because

::::::
solving

:::
the

::::::
eleven

:::::
linear

:::::
stores

:::::::::
introduces

:::::
errors

::::
that

::::::::
propagate

:::
and

:::::::
amplify

:::::
across

:::
the

:::::
Nash

:::::::
cascade.

:

To extend the analysis on the similarity of the two models, we compared the parameter values obtained by calibration. As

shown in Fig. 6, the parameters have the same range of values. We still can note differences in the values of the x4 parameter,30

which are systematically lower for the
:::::
higher

:::
for

:::
the

:::::::
discrete

:
state-space model. Nevertheless, there is a good correlation

between the two sets of x4 parameter values. These differences in the values are probably due to the differences in response

shape between the Nash cascade and the unit hydrograph (see Sect. 2.3)
:::
and

::
to
::::

the
:::::
errors

::::::::
produced

:::
by

:::::::
operator

::::::::
splitting

14
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Figure 4. Performance comparisons obtained in validation between the
:::::::
reference

::::
(with

::::
unit

:::::::::
hydrograph),

:::
the discrete

::::::::
state-space

:::::
(with

::::
Nash

::::::
cascade)

:
and the

::::::::
continuous

:
state-space daily GR4, on 240 catchments, focusing on high (left), intermediate (middle) and low (right) flows

after calibration with the KGE′
(√
Q
)

:::::::::
C2M

(√
Q
)

(i.e. focusing on intermediate flow). The
::::
large points represent the mean performance

:::
and

::
the

::::::
smaller

::::
ones

:::::::
represent

::
the

:::::::
outliers.

:::
The

::
5,

::
25,

:::
50,

::
75

:::
and

:::
95

::::::::
percentiles

:::
are

::::::::
represented

:::
by

::
the

:::::::
boxplots.
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Figure 5. Simulated hydrograph of the River Azergues in the first half of 2012 during the validation period. The discrete
:::::::
reference GR4

model (output in blue)
:
,
::
the

::::
GR4

::::::
discrete

::::::::
state-space

:::::::
solution

:::::
(output

::
in

:::::
green) and the

::::::::
continuous state-space representation

::::::
solution

:
(output

in red) were calibrated with KGE′
(√
Q
)

::::::::
C2M

(√
Q
)
:
as the objective function.

::::::
solving

::
of

:::
the

:::::
Nash

:::::::
cascade.

:::
The

::::::::::
assumption

:::
that

:::
the

::::::::::
differences

::
in

::
x4::::::

values
:::
are

:::
due

::
to

:::::
errors

::::::
caused

:::
by

:::::::::
unsuitable

::::::
solving

::
is

::::::::
confirmed

:::
by

:::
the

:::
fact

::::
that

::
the

:::
x4:::::::::

parameter
:::::
values

:::
are

::::::
similar

:::
for

:::
the

::::
three

:::::::
models

::
at

:::::
hourly

::::
time

::::
step

::::
(not

:::::
shown

:::::
here).

Last, to understand the internal impact of the state-space formulation on the model, we analysed state variables and internal

fluxes. Two differences are induced by the model’s state-space formulation. First, the
::::::
discrete Nash cascade output peaks occur

sooner
::
are

::::::
lower than the peaks of the unit hydrograph (Fig. 7). This is probably due to the choice of the number of stores5

in the cascade and the differences in response shapes (see Sect. 2.3)
:::
The

:::::
peaks

:::
of

:::
the

:::::::::
continuous

::::::::::
state-space

::::::::::::
representation

::
are

:::::
more

::::::
similar

::::
with

:::
the

:::::::::
reference

:::
but

:::
the

:::::
peaks

:::::
occur

::::::
sooner. The second difference between the two models concerns the

levels of the routing store (Fig. 8).
::::
Here

:::
we

::::
only

:::::::::
compared

:::
the

::::::::
reference

::::
GR4

::
to

:::
the

:::::::::
continuous

::::::::::
state-space

:::::::
solution

:::::::
because

::
the

:::::
input

::
in

:::
the

::::::
routing

:::::
store

:::
are

:::
too

:::::::
different

:::
for

:::
the

::::::
discrete

::::::::::
state-space

:::::::
solution.

:
The peak levels are higher in the

:::::::::
continuous

state-space representation, even sometimes higher than the maximum capacity of the routing store. The reason for this is that10

we shifted from the discrete model in which the processes are treated sequentially to the state-space a
::::::::::

continuous
:
model in

which all the processes are treated
:::::
solved simultaneously. In the discrete model, the exchanges are first calculated based on

15
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Figure 6. Scatter plots of the four free parameters of the two
::::::
different

::::::
versions

::
of
:::

the
:
models obtained by calibration with KGE′

(√
Q
)

:::::::::
C2M

(√
Q
)

as an objective function on the basins of the data set.
:::::::

Parameter
:::::::::
comparison

::::::
between

::::
unit

::::::::
hydrograph

::::
and

::::
Nash

::::::
cascade

::
is

::
in

::::
black

:::
and

::::::::
parameter

:::::::::
comparison

::::::
between

::::::
discrete

:::
and

:::::::::
continuous

::::::::
state-space

:::::::::
parameters

:
is
::
in

:::
red.

:
The values of x1, x2 and x3 are similar

for the two models (the line represents the y = x line). The x4 values are lower
:::::
higher in the

::::::
discrete state-space representation

::::
model

::::
than

::
for

:::
the

::::
other

:::::
model

::::::
versions.

the routing level at the beginning of the time step, then the output of the unit hydrograph is added and last the outflow of the

routing store is calculated. Due to this sequential treatment, in high-flow conditions, the quantity of exchanged water and the

outflow of the routing store in the discrete model is lower than those of the
:::::::::
continuous

:
state-space representation. Given that

most of the time the exchange parameter is negative, the lower outflow of the routing store is compensated by less water loss

with the groudwater
::::::::::
groundwater exchange in the complementary flow branch. This can explain why the simulated flows are5

similar despite these internal differences.

Moreover, by analysing the differences between the two models, it is also important to take into account the computational

time. Indeed, running the original model version is on average three times faster than the
:::::::::
continuous state-space version

:::
due

::
to

::
the

::::::::
adaptive

:::::::
sub-step

::::::
method. This is important to consider for some applications.

::::
This

::::::::::::
computational

::::
time

:::
rise

::
is
:::::::::

essentially
::::

due
::
to

:::
the

::::::::
adaptive

:::::::
sub-step

:::::::::
algorithm.

:::
For

::::::::
example,

::
in
:::

the
:::::

River
:::::::::

Azergues
::
at10

::
Châ

::::
tillon

::::::::::
catchment,

:::
the

:::::
mean

:::::::
number

::
of

::::::::
sub-steps

::
is

:::
22

:::
and

::
it
:::
can

:::::
reach

::::
100

::::::
during

:::::
some

:::::
days.

::::::::
However,

::
in

:::::
Sect.

:::
3.1

:::
we

::::
argue

::::
that

:::
the

:::::::
adaptive

:::::::
sub-step

:::::::
method

:::::
seems

::::::::
necessary

::
to
:::::
avoid

:::::::::
numerical

:::::
errors.

:

To conclude with these results, we can argue that the modifications brought by the
:::::::::
continuous state-space representation,

although they modify the model’s internal fluxes, they do not degrade the model’s performance, but only slightly modify the
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Figure 7. Daily inputs in the routing store of the River Azergues in the first half of 2012. The discrete GR4 (blue line) and the state-space

representation (red line)
:::::
models

:
are calibrated with the KGE′

(√
Q
)
:::::::::
C2M

(√
Q
)

as the objective function. The peaks
:::
are

::::
lower

::::
with

:::
the

::::::
discrete

::::::::
state-space

::::
GR4

:::::
(green

::::
lines)

:::
and

:
occur sooner with the

::::::::
continuous state-space GR4

:::
(red

:::::
lines).

Date

Le
ve

l o
f t

he
 r

ou
tin

g 
st

or
e 

[m
m

]

Dec 2011 Jan 2012 Feb 2012 Mar 2012 Apr 2012 May 2012 Jun 2012

0
10

20
30

40

14
0

12
0

10
0

80
60

40
20

0

R
ai

nf
al

l [
m

m
.d

−1
]

Reference GR4J routing store level
Continuous state−space routing store level

River Azergues at Châtillon

Figure 8. Daily routing store filling of the River Azergues in the first half of 2012. The discrete
:::::::
reference

:
GR4 (blue line) and the

::::::::
continuous

state-space representation (red line) are calibrated with the KGE′
(√
Q
)

:::::::::
C2M

(√
Q
)

as the objective function.

model’s internal fluxes.
:
It

::
is

::::::::
important

::
to

::::::::
underline

::::
that

:::
the

:::::::
operator

::::::::
splitting

::::::
solving

::
of

::
a
:::::
Nash

:::::::
cascade

::::::
creates

::::
more

::::::
errors

:::
than

::
a
:::::::
discrete

::::
unit

::::::::::
hydrograph.

:::
To

::
be

:::::::::
equivalent

::
to

:::
the

::::::::
reference

:::::::
model,

:::
the

:::::::::
state-space

::::::::::::
representation

::
of

:::::
GR4

:::::
needs

::
to

:::
be

:::::
solved

::::
with

::
a

:::::
robust

:::::::::
numerical

::::::::
technique.

:

4.2 Consistency of the state-space representation through time steps

The analysis of temporal consistency provide
:::::::
provides

:
the most valuable result produced by the

::::::::
continuous

:
state-space rep-5

resentation. The work of Ficchí et al. (2016) resulted in a GR4 model that is nearly consistent across time steps. However, to

adapt the model, they chose to include the time step variations in a theoretical transformation between the free parameter values

and the percolation fixed coefficient (Table 3) at different time steps.
::
In

:::
this

:::::::
section,

:::
we

::::
only

:::::::
compare

:::
the

::::::::
reference

:::::
GR4

::::
with

::
the

::::::::::
continuous

:::::::
solution

::
of

::::
the

:::::::::
state-space

::::::::::::
representation.

::::
The

::::::::::
parameters

::
of

:::
the

::::::::::
state-space

::::::::::::
representation

:::::::
discrete

:::::::
solution

::::
show

:::
the

:::::
same

::::::::
behaviour

::
as

:::
the

::::::::
reference

:::::
GR4

::::
ones

::
so

::
it

:::
was

::::::
chosen

:::
not

::
to
:::::
show

:::::
them.

::::
This

::::::
proves

:::
that

:::
all

:::
the

::::::::::::
improvements10

:::::
shown

::
in

::::
this

::::::
section

:::
are

::::
only

:::
due

::
to

:::
the

:::::::::
continuous

:::::::::
resolution

::
of

:::
the

:::::::::
state-space

::::::
model.

:
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In Fig. 9, the free parameter values obtained by calibration at the hourly time step are compared to those obtained at the

daily time step using the discrete
:::::::
reference

:
GR4 version. The dashed lines represent the regression obtained by the theoretical

relations reported in Table 3. One can note that the calibrated parameters (the dots in Fig. 9) are quite different between the two

time steps but it is important to note that the values of the x3 parameter follow the relations proposed by Ficchí et al. (2016)

(the dashed lines). The high values of x1 are underestimated compared to the theoretical relation as are the low values of the x25

parameter. There is also an issue with the unit hydrograph parameter (x4 in Fig. 9) for which calibrated hourly parameter values

are systematically lower than the values it would have by following the transformation. Kavetski et al. (2011) and Littlewood

and Croke (2008) encountered the same issue with the lag parameter of their models.

The values of x1, x2 and x4 are inconsistent compared to the values expected using the theoritical
::::::::
theoretical

:
transformations.

Regarding the work of Ficchí (2017), we can argue that the changes in the high values of x1 and the low values of x2 are due10

to temporal unconsistencies
::::::::::::
inconsistencies in the interception calculation. The case of the x4 parameter is more problematic.

The differences in the x4 values probably stem from the discretization of the unit hydrograph at different time steps.
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Figure 9. Scatter plots representing the four parameters of the discrete
:::::::
reference (daily and hourly) GR4 models obtained by calibration

with KGE′
(√
Q
)
:::::::::
C2M

(√
Q
)

as objective function. The solid line represents the y = x regression and the dashed lines the transformation

relations of Table 3.

In the
:::::::::
continuous state-space model, the time step is taken into account in the temporal numerical integration of the model.

For this reason, in theory there is no need to adapt the values of the parameters. This is confirmed in Fig. 10, where the values

of calibrated parameters remain approximately constant despite the time step change. Only the high values of x1 and the values15

of x2 slightly diverge from the x= y line.
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Figure 10. Scatter plots representing the four parameters of the
::::::::
continuous state-space (daily and hourly) GR4 models obtained by calibration

with KGE′
(√
Q
)
:::::::::
C2M

(√
Q
)

as the objective function. The solid line represents the y = x line.

This result is useful in building a model that can adapt its time step resolution depending on given conditions. The results

are particularly interesting for the case of x4 values because the x4 values are constant between the two time steps, resolving

the issue encountered by Littlewood and Croke (2008), Kavetski et al. (2011) and Ficchí et al. (2016) with lag parameters.

::
As

:::::::::
explained

::
in

:::
the

:::::
work

::
of

:::::::::::::::::::::::::
Littlewood and Croke (2013) ,

::::
this

:::::::::::
improvement

:::
can

:::
be

::::::::
explained

:::
by

:::
the

::::
fact

:::
that

:::
the

::::::::
adaptive

:::::::
sub-step

:::::::::
integration

:::::::::::
approximates

::
a
:::::::::
continuous

:::::
time

::::
input

:::
in

:::
the

::::
Nash

::::::::
cascade.

::::
The

:::::
results

::::::::
obtained

::::
with

:::
the

:::
x4:::::::::

parameter5

:::
here

::::
tend

:::
to

::::::
confirm

:::
on

:
a
:::::
wide

:::::
range

::
of

::::::::::
catchments

:::
this

::::::
earlier

:::::
work.

::::::::
However,

::
in

:::::::
addition

:::
to

:::
the

::::
input

::::::
errors,

:::
the

::::
lack

::
of

:::
x4

::::
time

:::::::::
consistency

::::
can

:::
also

:::
be

::::::::
explained

::
by

:::
the

::::::::::
integration

:::::
errors

::::::::
produced

::
by

:::
the

::::::::::::::
operator-splitting

::
at
:::::
daily

::::
time

::::
step.

:::
The

:::::::
outliers

::
in

::
x3::::::

values
:::
that

:::::
occur

::
in
::::
Fig.

:::
10

:::
are

:::
also

:::::::
present

::
in

:::
Fig.

::
9.
:::
No

:::::::::::
explanations

:::::::
relating

::
to

:::::::
physical

::::::::::::
characteristics

::
of

::::
these

::::::::::
catchments

::
or

:::::::::
simulation

::::::::::
performance

:::::
were

::::::
found.

:::
We

::::::
assume

::::
that

::::
these

:::::::
outliers

:::::
values

:::
are

::::
due

::
to

:::
the

:::
non

:::::::::
sensitivity

::
of

:::
the

::
x3:::::::::

parameter
::
for

:::::
these

::::::::::
catchments.10

Finally, to verify stability, we also need to compare the performance of the two models at the hourly time step. Figure 11

shows that , as at the daily time step, the performance is similar for the two
:::::::
different

:
versions.

Thus, the
:::::::::
continuous

:
state-space representation shows better temporal stability in the x4 parameter values with similar

performance.

4.3 Discussions on the Nash cascade15
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Figure 11.
:::::::::
Performance

:::::::::
comparisons

:::::::
obtained

::
in
::::::::

validation
:::::::
between

:::
the

:::::::
reference

::::
(with

::::
unit

::::::::::
hydrograph),

:::
the

::::::
discrete

::::::::
state-space

:::::
(with

::::
Nash

::::::
cascade)

:::
and

:::
the

::::::::
continuous

:::::::::
state-space

:::::
hourly

::::
GR4,

::
on

:::
240

:::::::::
catchments,

:::::::
focusing

::
on

::::
high

::::
(left),

::::::::::
intermediate

:::::::
(middle)

:::
and

:::
low

:::::
(right)

::::
flows

::::
after

::::::::
calibration

:::
with

:::
the

:::::::::
C2M

(√
Q
)
:::
(i.e.

:::::::
focusing

::
on

::::::::::
intermediate

::::
flow).

::::
The

::::
points

:::::::
represent

:::
the

::::
mean

::::::::::
performance.

The Nash cascade has two parameters, namely the number of stores and the outflow coefficient. The number of stores can only

take integer values, which is an issue for automatic calibration because it introduces threshold effects. As a consequence, the

outflow coefficient is the preferential parameter to calibrate.

To obtain a response which is equivalent to the GR4 unit hydrograph response, we attempted to determine whether a

relationship existed between the Nash cascade parameters and the GR4 x4 parameter. To manage this, the determination of the5

Nash cascade parameter is based on the comparison of the impulse response of the Nash cascade and the response of the unit

hydrograph.

The impulse response of the Nash cascade is (Nash, 1957) :

hNash(t) =
k

Γ(nres)
(kt)

nres−1
exp(−kt)

where hNash(t) is the impulse response of the Nash cascade at time t, nres is the number of stores, k is the outflow coefficient10

and Γ(nres) corresponds to the gamma function of nres

The impulse response of the GR4 symmetrical unit hydrograph is:

hUH(t) =


2.5
2x4

(
t
x4

)1.5

, for 0 6 t6 x4

2.5
2x4

(
2− t

x4

)1.5

, for x4 < t6 2x4

0 , for t > 2x4

where hUH(t) is the impulse response of the unit hydrograph at time t, x4 is the time to peak of the hydrograph.

The Nash cascade parameters are calculated depending on x4 in such a way that the time to peak and the peak flow would15

be the same for the two impulse responses. According to Szöllösi-Nagy (1982) , the time to peak of the Nash cascade is equal

to:

tp =
nres− 1

k

20



and the peak flow is equal to:

qp =
k

Γ(nres)
(nres− 1)nres−1 exp(1−nres)

Using Eq. 2, the time to peak of the GR4 unit hydrograph is equal to:

tp = x4

and the peak flow to:5

qp =
1.25

x4

So, from these values the following system can be deduced:

 x4 = nres−1
k

1.25
x4

= k
Γ(nres) (nres− 1)nres−1 exp(1−nres)

which can be transformed into: k = nres−1
x4

1.25 = (nres−1)nres
Γ(nres) exp(1−nres)

10

A number of stores nres= 11 solves the second equation of Eq. 8. The outflow coefficient is deduced from this number

of stores and from x4. By fixing the parameters in this way, only the x4 parameter has to be calibrated. This method allows

a direct comparison between the parameters of the Nash cascade and the parameter of the unit hydrograph. For a given x4

parameter, the unit hydrograph and the Nash cascade impulse responses have the same time to peak and the same peak flow

(see the dotted and the dashed curve in Fig. 2).15

Impulse response with a x4 = 2 time steps for the unit hydrograph of GR4 (dotted line) and the Nash cascade with nres= 11

stores and k = 11−1
x4

(dashed line). In comparaison, the solid curve represents the Nash cascade impulse response with a x4 = 1.

Using this formula, the x4 parameters of the two models are equivalent and it can be argued that their meaning is nearly

identical. Considering this assumption, Fig. 6 shows that the x4 parameters of the state-space model are smaller than the

original x4 values. Since x4 values are smaller, the peak flow of the impulse response is higher and the time to peak is shorter20

(see the solid curve in Fig. 2). We hypothesize that these modifications in responses are due to the difference that is observed in

the routing store levels (Fig. 8). The decrease of the x4 parameter value may compensate the decrease of the peak flow induced

by the simultaneous treatment of the routing store equations.

Fixing the number of stores in the Nash cascade also provides another advantage. Indeed, one of the potential issues that

arise when replacing the unit hydrograph with a Nash cascade was the equifinality with the routing store. Given that recession25

curve of the cascade is theoretically infinite, it could have the same function as the routing store. Calculating the parameters of

the cascade regarding the x4 parameter makes it possible to reduce the possibility of an infinite impulse response.
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5 Conclusions and perspectives

The objective of this study was to present a version of a bucket-type rainfall-runoff model with a robust numerical resolution of

the governing water balance equations by setting up a
::::::::
continuous

:
state-space representation. The methodology is based on (i)

identifying the state variables, (ii) writing their differential equationsand, if necessary, (iii) replacing certain components of the

model with more easily described components in terms of differential equations (namely replacing the unit hydrograph with a5

Nash cascade here),
::::
(iv)

::::
solve

:::::
these

::::::::
equations

::::
with

::
a
:::::
robust

:::::::::
numerical

:::::::::
integration

:::::::::
technique. Finally, all the fluxes that form

the water balance equation governing a state are solved simultaneously while they are solved sequentially in operator-splitted

:::::::
operator

::::::
splitted

:
models. As stated by Fenicia et al. (2011), this is more physically satisfying.

This work was presented using the example of the GR4 model. The new version was created to be as close as possible to the

initial model but a single modification was implemented: a Nash cascade substitutes the model’s unit hydrograph.10

When analysing the results and the output flows, it was shown that the new formulation,
:::::
when

::::::
solved

::::
with

:
a
:::::
robust

:::::::::
numerical

::::::::
technique,

:
has a limited impact on performance. However, the analysis of the parameter values and of the internal fluxes of the

model shows that some discrepencies
:::::::::::
discrepancies

:
occur when running the model. The peak flow of the Nash cascade occurs

sooner than the peak flow of the unit hydrograph. The amount of water in the routing store and exchanged by the grounwater

::::::::::
groundwater

:
exchange function is also higher for the state-space representation, particularly during high-flow periods.15

Nonetheless, the
:::::::::
continuous state-space representation simulates flows that are very similar to th

::
the

:::::
flows simulated by the

original GR4 version and performs equally well. It also seems to provide greater stability in the parameter values, particularly

regarding different modelling time steps. Moreover, the use of the Nash cascade rather than the unit hydrograph improves

:::::
(when

::::::
solved

::::
with

:::::::
implicit

:::::
Euler)

:
the lag parameter value stability with time steps. This improved stability can make it easier

to calibrate the model with a given data set and to apply it at a finer time step for which no discharge data are available. It can20

also allow using a model that runs at a finer time step in high-flow periods and a larger time step in low-flow periods.

::::::::::
Furthermore,

:::
the

::::::::::
comparison

:::::::
between

:::
the

:::::::
discrete

:::
and

::::::::::
continuous

:::::::::
state-space

:::::
model

::::::
shows

:::
that

:::
the

:::::::
benefits

:::::::
provided

:::
by

:::
the

:::::::::
continuous

:::::::::
state-space

::::::::::::
representation

:::
are

::
a
:::::
result

::
of

:::
the

:::
use

:::
of

:
a
::::::
robust

::::::::
numerical

::::::::::
integration

:::::::::
technique.

::::::
Indeed,

:::::::
solving

:::
the

:::::::::
state-space

::::::::::::
representation

:::::
using

:::::::
operator

:::::::
splitting

:::::::::
introduces

:::::
errors

::::
that

::::::
impact

:::
the

::::::::
simulated

::::
flow

::::::
values

:::
and

:::
do

:::
not

:::::
result

::
in

::::::::
parameter

:::::::
stability.

:::::
Thus,

:::
the

::::
real

::::::
benefit

::
of

:::
the

:::
use

::
of

:::
the

:::::
Nash

::::::
cascade

::
is
::
to

:::::::
simplify

:::
the

:::::::::
numerical

::::::
solving

::::::::::
application.

:
25

The performance obtained with the modified
:::::::::
continuous

:::::::::
state-space model is not better than that of the original model. In

addition,
::::::
because

:::
the

:::::::
number

::
of

::::::::
sub-steps

:::::::::
sometimes

:::::
needs

::
to

:::
be

::::
high,

:
the computational time is longer with the

:::::::::
continuous

state-space representation of the model. Consequently, the use of this representation would be helpful for particular applications

such as time-variable modelling. It might also be useful for certain data assimilation techniques (typically variational methods)

because all the components are represented as states and the governing equations are clearly defined.30

In addition, it could also be advantageous to find a way to adapt the number of stores of the Nash cascade to the catchment

studied. Last, the numerical method to solve the differential equation could be optimized (Clark and Kavetski, 2010) . The

adaptative sub-stepping method used in this study is very stable but slow in terms of computational time.
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Although it is necessary to adapt the Nash Cascade to different unit hydrograph shapes, this article suggests a sufficiently

general methodology to erase operator splitting in hydrological bucket-type modelling and can be transposed to other models.

6 Code and data availability

The Fortran code used in this article can be freely downloaded from GitHub at:

https://github.com/HYDRO-group-Irstea-Antony/GR4-State-space-version-1.05

It can test the
:::
The

:
state-space model

:::
can

::
be

::::::
tested on an example catchment data set with already calibrated model parameters.

:::
The

:::
full

::::::::
reference

:::
for

::::
this

::::
code

:::
can

::
be

::::::
found

::
in

:::
the

::::::::
references

::::::::::::::
(Santos, 2017) ,

:
it
::
is

:::::::::
referenced

::::
with

:::
the

::::::::
following

::::
doi:

https://doi.org/10.5281/zenodo.1118183
:
.
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